mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
@objc protocols don't have witness tables. However, both type metadata (in the nominal type descriptors) and the runtime code to demangle type names into metadata weren't acknowledging this. Fix type metadata emission to not count an "extra argument" for @objc protocol conformance requirements, and teach the runtime code to properly look for conformances to @objc protocols (through the Objective-C runtime) and not record witness tables for them.
816 lines
27 KiB
C++
816 lines
27 KiB
C++
//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Checking and caching of Swift protocol conformances.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Basic/LLVM.h"
|
|
#include "swift/Basic/Lazy.h"
|
|
#include "swift/Demangling/Demangle.h"
|
|
#include "swift/Runtime/Casting.h"
|
|
#include "swift/Runtime/Concurrent.h"
|
|
#include "swift/Runtime/HeapObject.h"
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "swift/Runtime/Mutex.h"
|
|
#include "swift/Runtime/Unreachable.h"
|
|
#include "ImageInspection.h"
|
|
#include "Private.h"
|
|
|
|
#include <vector>
|
|
|
|
using namespace swift;
|
|
|
|
#ifndef NDEBUG
|
|
template <> void ProtocolDescriptor::dump() const {
|
|
unsigned NumInheritedProtocols =
|
|
InheritedProtocols ? InheritedProtocols->NumProtocols : 0;
|
|
|
|
printf("TargetProtocolDescriptor.\n"
|
|
"Name: \"%s\".\n"
|
|
"ObjC Isa: %p.\n",
|
|
Name, _ObjC_Isa);
|
|
Flags.dump();
|
|
printf("Has Inherited Protocols: %s.\n",
|
|
(NumInheritedProtocols ? "true" : "false"));
|
|
if (NumInheritedProtocols) {
|
|
printf("Inherited Protocol List:\n");
|
|
for (unsigned i = 0, e = NumInheritedProtocols; i != e; ++i) {
|
|
printf("%s\n", (*InheritedProtocols)[i]->Name);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProtocolDescriptorFlags::dump() const {
|
|
printf("ProtocolDescriptorFlags.\n");
|
|
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
|
|
printf("Needs Witness Table: %s.\n",
|
|
(needsWitnessTable() ? "true" : "false"));
|
|
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
|
|
printf("Special Protocol: %s.\n",
|
|
(bool(getSpecialProtocol()) ? "Error" : "None"));
|
|
printf("Class Constraint: %s.\n",
|
|
(bool(getClassConstraint()) ? "Class" : "Any"));
|
|
printf("Dispatch Strategy: %s.\n",
|
|
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
|
|
}
|
|
|
|
#endif
|
|
|
|
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
|
|
#include <objc/runtime.h>
|
|
|
|
static const char *class_getName(const ClassMetadata* type) {
|
|
return class_getName(
|
|
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
|
|
}
|
|
|
|
template<> void ProtocolConformanceDescriptor::dump() const {
|
|
auto symbolName = [&](const void *addr) -> const char * {
|
|
SymbolInfo info;
|
|
int ok = lookupSymbol(addr, &info);
|
|
if (!ok)
|
|
return "<unknown addr>";
|
|
return info.symbolName;
|
|
};
|
|
|
|
switch (auto kind = getTypeKind()) {
|
|
case TypeMetadataRecordKind::Reserved:
|
|
printf("unknown (reserved)");
|
|
break;
|
|
|
|
case TypeMetadataRecordKind::IndirectObjCClass:
|
|
printf("indirect Objective-C class %s",
|
|
class_getName(*getIndirectObjCClass()));
|
|
break;
|
|
|
|
case TypeMetadataRecordKind::DirectNominalTypeDescriptor:
|
|
case TypeMetadataRecordKind::IndirectNominalTypeDescriptor:
|
|
printf("unique nominal type descriptor %s", symbolName(getTypeContextDescriptor()));
|
|
break;
|
|
}
|
|
|
|
printf(" => ");
|
|
|
|
switch (getConformanceKind()) {
|
|
case ConformanceFlags::ConformanceKind::WitnessTable:
|
|
printf("witness table %s\n", symbolName(getStaticWitnessTable()));
|
|
break;
|
|
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
|
|
printf("witness table accessor %s\n",
|
|
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
|
|
break;
|
|
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor:
|
|
printf("conditional witness table accessor %s\n",
|
|
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
template<> void ProtocolConformanceDescriptor::verify() const {
|
|
auto typeKind = unsigned(getTypeKind());
|
|
assert(((unsigned(TypeMetadataRecordKind::First_Kind) <= typeKind) &&
|
|
(unsigned(TypeMetadataRecordKind::Last_Kind) >= typeKind)) &&
|
|
"Corrupted type metadata record kind");
|
|
|
|
auto confKind = unsigned(getConformanceKind());
|
|
using ConformanceKind = ConformanceFlags::ConformanceKind;
|
|
assert(((unsigned(ConformanceKind::First_Kind) <= confKind) &&
|
|
(unsigned(ConformanceKind::Last_Kind) >= confKind)) &&
|
|
"Corrupted conformance kind");
|
|
}
|
|
#endif
|
|
|
|
/// Take the type reference inside a protocol conformance record and fetch the
|
|
/// canonical metadata pointer for the type it refers to.
|
|
/// Returns nil for universal or generic type references.
|
|
template <>
|
|
const Metadata *
|
|
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
|
|
switch (getTypeKind()) {
|
|
case TypeMetadataRecordKind::Reserved:
|
|
return nullptr;
|
|
case TypeMetadataRecordKind::IndirectObjCClass:
|
|
// The class may be ObjC, in which case we need to instantiate its Swift
|
|
// metadata. The class additionally may be weak-linked, so we have to check
|
|
// for null.
|
|
if (auto *ClassMetadata = *getIndirectObjCClass())
|
|
return getMetadataForClass(ClassMetadata);
|
|
return nullptr;
|
|
|
|
case TypeMetadataRecordKind::DirectNominalTypeDescriptor:
|
|
case TypeMetadataRecordKind::IndirectNominalTypeDescriptor:
|
|
return nullptr;
|
|
}
|
|
|
|
swift_runtime_unreachable("Unhandled TypeMetadataRecordKind in switch.");
|
|
}
|
|
|
|
template<>
|
|
const WitnessTable *
|
|
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
|
|
switch (getConformanceKind()) {
|
|
case ConformanceFlags::ConformanceKind::WitnessTable:
|
|
return getStaticWitnessTable();
|
|
|
|
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
|
|
return getWitnessTableAccessor()(type, nullptr, 0);
|
|
|
|
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor: {
|
|
// Check the conditional requirements.
|
|
std::vector<unsigned> genericParamCounts;
|
|
(void)_gatherGenericParameterCounts(type->getTypeContextDescriptor(),
|
|
genericParamCounts);
|
|
auto genericArgs = type->getGenericArgs();
|
|
std::vector<const void *> conditionalArgs;
|
|
bool failed =
|
|
_checkGenericRequirements(getConditionalRequirements(), conditionalArgs,
|
|
[&](unsigned flatIndex) {
|
|
// FIXME: Adjust for non-key type parameters.
|
|
return genericArgs[flatIndex];
|
|
},
|
|
[&](unsigned depth, unsigned index) -> const Metadata * {
|
|
// FIXME: Adjust for non-key type parameters.
|
|
if (auto flatIndex = _depthIndexToFlatIndex(depth, index,
|
|
genericParamCounts)) {
|
|
return genericArgs[*flatIndex];
|
|
}
|
|
|
|
return nullptr;
|
|
});
|
|
if (failed) return nullptr;
|
|
|
|
return getWitnessTableAccessor()(
|
|
type,
|
|
(const swift::WitnessTable**)conditionalArgs.data(),
|
|
conditionalArgs.size());
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
struct ConformanceSection {
|
|
const ProtocolConformanceRecord *Begin, *End;
|
|
const ProtocolConformanceRecord *begin() const {
|
|
return Begin;
|
|
}
|
|
const ProtocolConformanceRecord *end() const {
|
|
return End;
|
|
}
|
|
};
|
|
|
|
struct ConformanceCacheKey {
|
|
/// Either a Metadata* or a NominalTypeDescriptor*.
|
|
const void *Type;
|
|
const ProtocolDescriptor *Proto;
|
|
|
|
ConformanceCacheKey(const void *type, const ProtocolDescriptor *proto)
|
|
: Type(type), Proto(proto) {}
|
|
};
|
|
|
|
struct ConformanceCacheEntry {
|
|
private:
|
|
const void *Type;
|
|
const ProtocolDescriptor *Proto;
|
|
std::atomic<const WitnessTable *> Table;
|
|
std::atomic<uintptr_t> FailureGeneration;
|
|
|
|
public:
|
|
ConformanceCacheEntry(ConformanceCacheKey key,
|
|
const WitnessTable *table,
|
|
uintptr_t failureGeneration)
|
|
: Type(key.Type), Proto(key.Proto), Table(table),
|
|
FailureGeneration(failureGeneration) {
|
|
}
|
|
|
|
int compareWithKey(const ConformanceCacheKey &key) const {
|
|
if (key.Type != Type) {
|
|
return (uintptr_t(key.Type) < uintptr_t(Type) ? -1 : 1);
|
|
} else if (key.Proto != Proto) {
|
|
return (uintptr_t(key.Proto) < uintptr_t(Proto) ? -1 : 1);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
template <class... Args>
|
|
static size_t getExtraAllocationSize(Args &&... ignored) {
|
|
return 0;
|
|
}
|
|
|
|
bool isSuccessful() const {
|
|
return Table.load(std::memory_order_relaxed) != nullptr;
|
|
}
|
|
|
|
void makeSuccessful(const WitnessTable *table) {
|
|
Table.store(table, std::memory_order_release);
|
|
}
|
|
|
|
void updateFailureGeneration(uintptr_t failureGeneration) {
|
|
assert(!isSuccessful());
|
|
FailureGeneration.store(failureGeneration, std::memory_order_relaxed);
|
|
}
|
|
|
|
/// Get the cached witness table, if successful.
|
|
const WitnessTable *getWitnessTable() const {
|
|
assert(isSuccessful());
|
|
return Table.load(std::memory_order_acquire);
|
|
}
|
|
|
|
/// Get the generation number under which this lookup failed.
|
|
unsigned getFailureGeneration() const {
|
|
assert(!isSuccessful());
|
|
return FailureGeneration.load(std::memory_order_relaxed);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// Conformance Cache.
|
|
struct ConformanceState {
|
|
ConcurrentMap<ConformanceCacheEntry> Cache;
|
|
std::vector<ConformanceSection> SectionsToScan;
|
|
Mutex SectionsToScanLock;
|
|
|
|
ConformanceState() {
|
|
SectionsToScan.reserve(16);
|
|
initializeProtocolConformanceLookup();
|
|
}
|
|
|
|
void cacheSuccess(const void *type, const ProtocolDescriptor *proto,
|
|
const WitnessTable *witness) {
|
|
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
|
|
witness, uintptr_t(0));
|
|
|
|
// If the entry was already present, we may need to update it.
|
|
if (!result.second) {
|
|
result.first->makeSuccessful(witness);
|
|
}
|
|
}
|
|
|
|
void cacheFailure(const void *type, const ProtocolDescriptor *proto) {
|
|
uintptr_t failureGeneration = SectionsToScan.size();
|
|
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
|
|
(const WitnessTable *) nullptr,
|
|
failureGeneration);
|
|
|
|
// If the entry was already present, we may need to update it.
|
|
if (!result.second) {
|
|
result.first->updateFailureGeneration(failureGeneration);
|
|
}
|
|
}
|
|
|
|
ConformanceCacheEntry *findCached(const void *type,
|
|
const ProtocolDescriptor *proto) {
|
|
return Cache.find(ConformanceCacheKey(type, proto));
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void verify() const LLVM_ATTRIBUTE_USED;
|
|
#endif
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
void ConformanceState::verify() const {
|
|
// Iterate over all of the sections and verify all of the protocol
|
|
// descriptors.
|
|
auto &Self = const_cast<ConformanceState &>(*this);
|
|
ScopedLock guard(Self.SectionsToScanLock);
|
|
|
|
for (const auto &Section : SectionsToScan) {
|
|
for (const auto &Record : Section) {
|
|
Record.get()->verify();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static Lazy<ConformanceState> Conformances;
|
|
|
|
static void
|
|
_registerProtocolConformances(ConformanceState &C,
|
|
const ProtocolConformanceRecord *begin,
|
|
const ProtocolConformanceRecord *end) {
|
|
ScopedLock guard(C.SectionsToScanLock);
|
|
C.SectionsToScan.push_back(ConformanceSection{begin, end});
|
|
}
|
|
|
|
void swift::addImageProtocolConformanceBlockCallback(const void *conformances,
|
|
uintptr_t conformancesSize) {
|
|
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
|
|
"conformances section not a multiple of ProtocolConformanceRecord");
|
|
|
|
// If we have a section, enqueue the conformances for lookup.
|
|
auto conformanceBytes = reinterpret_cast<const char *>(conformances);
|
|
auto recordsBegin
|
|
= reinterpret_cast<const ProtocolConformanceRecord*>(conformances);
|
|
auto recordsEnd
|
|
= reinterpret_cast<const ProtocolConformanceRecord*>
|
|
(conformanceBytes + conformancesSize);
|
|
|
|
// Conformance cache should always be sufficiently initialized by this point.
|
|
_registerProtocolConformances(Conformances.unsafeGetAlreadyInitialized(),
|
|
recordsBegin, recordsEnd);
|
|
}
|
|
|
|
void
|
|
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
|
|
const ProtocolConformanceRecord *end){
|
|
auto &C = Conformances.get();
|
|
_registerProtocolConformances(C, begin, end);
|
|
}
|
|
|
|
|
|
struct ConformanceCacheResult {
|
|
// true if witnessTable is an authoritative result as-is.
|
|
// false if more searching is required (for example, because a cached
|
|
// failure was returned in failureEntry but it is out-of-date.
|
|
bool isAuthoritative;
|
|
|
|
// The matching witness table, or null if no cached conformance was found.
|
|
const WitnessTable *witnessTable;
|
|
|
|
// If the search fails, this may be the negative cache entry for the
|
|
// queried type itself. This entry may be null or out-of-date.
|
|
ConformanceCacheEntry *failureEntry;
|
|
|
|
static ConformanceCacheResult
|
|
cachedSuccess(const WitnessTable *table) {
|
|
return ConformanceCacheResult { true, table, nullptr };
|
|
}
|
|
|
|
static ConformanceCacheResult
|
|
cachedFailure(ConformanceCacheEntry *entry, bool auth) {
|
|
return ConformanceCacheResult { auth, nullptr, entry };
|
|
}
|
|
|
|
static ConformanceCacheResult
|
|
cacheMiss() {
|
|
return ConformanceCacheResult { false, nullptr, nullptr };
|
|
}
|
|
};
|
|
|
|
/// Search for a witness table in the ConformanceCache.
|
|
static
|
|
ConformanceCacheResult
|
|
searchInConformanceCache(const Metadata *type,
|
|
const ProtocolDescriptor *protocol) {
|
|
auto &C = Conformances.get();
|
|
auto origType = type;
|
|
ConformanceCacheEntry *failureEntry = nullptr;
|
|
|
|
recur:
|
|
{
|
|
// Try the specific type first.
|
|
if (auto *Value = C.findCached(type, protocol)) {
|
|
if (Value->isSuccessful()) {
|
|
// Found a conformance on the type or some superclass. Return it.
|
|
return ConformanceCacheResult::cachedSuccess(Value->getWitnessTable());
|
|
}
|
|
|
|
// Found a negative cache entry.
|
|
|
|
bool isAuthoritative;
|
|
if (type == origType) {
|
|
// This negative cache entry is for the original query type.
|
|
// Remember it so it can be returned later.
|
|
failureEntry = Value;
|
|
// An up-to-date entry for the original type is authoritative.
|
|
isAuthoritative = true;
|
|
} else {
|
|
// An up-to-date cached failure for a superclass of the type is not
|
|
// authoritative: there may be a still-undiscovered conformance
|
|
// for the original query type.
|
|
isAuthoritative = false;
|
|
}
|
|
|
|
// Check if the negative cache entry is up-to-date.
|
|
// FIXME: Using SectionsToScan.size() outside SectionsToScanLock
|
|
// is undefined.
|
|
if (Value->getFailureGeneration() == C.SectionsToScan.size()) {
|
|
// Negative cache entry is up-to-date. Return failure along with
|
|
// the original query type's own cache entry, if we found one.
|
|
// (That entry may be out of date but the caller still has use for it.)
|
|
return ConformanceCacheResult::cachedFailure(failureEntry,
|
|
isAuthoritative);
|
|
}
|
|
|
|
// Negative cache entry is out-of-date.
|
|
// Continue searching for a better result.
|
|
}
|
|
}
|
|
|
|
{
|
|
// For generic and resilient types, nondependent conformances
|
|
// are keyed by the nominal type descriptor rather than the
|
|
// metadata, so try that.
|
|
const auto *description = type->getTypeContextDescriptor();
|
|
|
|
// Hash and lookup the type-protocol pair in the cache.
|
|
if (auto *Value = C.findCached(description, protocol)) {
|
|
if (Value->isSuccessful())
|
|
return ConformanceCacheResult::cachedSuccess(Value->getWitnessTable());
|
|
|
|
// We don't try to cache negative responses for generic
|
|
// patterns.
|
|
}
|
|
}
|
|
|
|
// If the type is a class, try its superclass.
|
|
if (const ClassMetadata *classType = type->getClassObject()) {
|
|
if (classHasSuperclass(classType)) {
|
|
type = getMetadataForClass(classType->SuperClass);
|
|
goto recur;
|
|
}
|
|
}
|
|
|
|
// We did not find an up-to-date cache entry.
|
|
// If we found an out-of-date entry for the original query type then
|
|
// return it (non-authoritatively). Otherwise return a cache miss.
|
|
if (failureEntry)
|
|
return ConformanceCacheResult::cachedFailure(failureEntry, false);
|
|
else
|
|
return ConformanceCacheResult::cacheMiss();
|
|
}
|
|
|
|
/// Checks if a given candidate is a type itself, one of its
|
|
/// superclasses or a related generic type.
|
|
///
|
|
/// This check is supposed to use the same logic that is used
|
|
/// by searchInConformanceCache.
|
|
///
|
|
/// \param candidate Pointer to a Metadata or a NominalTypeDescriptor.
|
|
///
|
|
static
|
|
bool isRelatedType(const Metadata *type, const void *candidate,
|
|
bool candidateIsMetadata) {
|
|
|
|
while (true) {
|
|
// Check whether the types match.
|
|
if (candidateIsMetadata && type == candidate)
|
|
return true;
|
|
|
|
// Check whether the nominal type descriptors match.
|
|
if (!candidateIsMetadata) {
|
|
const auto *description = type->getTypeContextDescriptor();
|
|
auto candidateDescription =
|
|
static_cast<const TypeContextDescriptor *>(candidate);
|
|
if (description && equalContexts(description, candidateDescription))
|
|
return true;
|
|
}
|
|
|
|
// If the type is a class, try its superclass.
|
|
if (const ClassMetadata *classType = type->getClassObject()) {
|
|
if (classHasSuperclass(classType)) {
|
|
type = getMetadataForClass(classType->SuperClass);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const WitnessTable *
|
|
swift::swift_conformsToProtocol(const Metadata * const type,
|
|
const ProtocolDescriptor *protocol) {
|
|
auto &C = Conformances.get();
|
|
|
|
// See if we have a cached conformance. The ConcurrentMap data structure
|
|
// allows us to insert and search the map concurrently without locking.
|
|
// We do lock the slow path because the SectionsToScan data structure is not
|
|
// concurrent.
|
|
auto FoundConformance = searchInConformanceCache(type, protocol);
|
|
// If the result (positive or negative) is authoritative, return it.
|
|
if (FoundConformance.isAuthoritative)
|
|
return FoundConformance.witnessTable;
|
|
|
|
auto failureEntry = FoundConformance.failureEntry;
|
|
|
|
// No up-to-date cache entry found.
|
|
// Acquire the lock so we can scan conformance records.
|
|
ScopedLock guard(C.SectionsToScanLock);
|
|
|
|
// The world may have changed while we waited for the lock.
|
|
// If we found an out-of-date negative cache entry before
|
|
// acquiring the lock, make sure the entry is still negative and out of date.
|
|
// If we found no entry before acquiring the lock, search the cache again.
|
|
if (failureEntry) {
|
|
if (failureEntry->isSuccessful()) {
|
|
// Somebody else found a conformance.
|
|
return failureEntry->getWitnessTable();
|
|
}
|
|
if (failureEntry->getFailureGeneration() == C.SectionsToScan.size()) {
|
|
// Somebody else brought the negative cache entry up to date.
|
|
return nullptr;
|
|
}
|
|
}
|
|
else {
|
|
FoundConformance = searchInConformanceCache(type, protocol);
|
|
if (FoundConformance.isAuthoritative) {
|
|
// Somebody else found a conformance or cached an up-to-date failure.
|
|
return FoundConformance.witnessTable;
|
|
}
|
|
failureEntry = FoundConformance.failureEntry;
|
|
}
|
|
|
|
// We are now caught up after acquiring the lock.
|
|
// Prepare to scan conformance records.
|
|
|
|
// Scan only sections that were not scanned yet.
|
|
// If we found an out-of-date negative cache entry,
|
|
// we need not to re-scan the sections that it covers.
|
|
unsigned startSectionIdx =
|
|
failureEntry ? failureEntry->getFailureGeneration() : 0;
|
|
|
|
unsigned endSectionIdx = C.SectionsToScan.size();
|
|
|
|
// If there are no unscanned sections outstanding
|
|
// then we can cache failure and give up now.
|
|
if (startSectionIdx == endSectionIdx) {
|
|
C.cacheFailure(type, protocol);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Local function to retrieve the witness table and record the result.
|
|
auto recordWitnessTable = [&](const ProtocolConformanceDescriptor &descriptor,
|
|
const Metadata *type) {
|
|
switch (descriptor.getConformanceKind()) {
|
|
case ConformanceFlags::ConformanceKind::WitnessTable:
|
|
// If the record provides a nondependent witness table for all
|
|
// instances of a generic type, cache it for the generic pattern.
|
|
C.cacheSuccess(type, protocol, descriptor.getStaticWitnessTable());
|
|
return;
|
|
|
|
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
|
|
// If the record provides a dependent witness table accessor,
|
|
// cache the result for the instantiated type metadata.
|
|
C.cacheSuccess(type, protocol, descriptor.getWitnessTable(type));
|
|
return;
|
|
|
|
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor: {
|
|
// Note: we might end up doing more scanning for other conformances
|
|
// when checking the conditional requirements, so do a gross unlock/lock.
|
|
// FIXME: Don't do this :)
|
|
C.SectionsToScanLock.unlock();
|
|
auto witnessTable = descriptor.getWitnessTable(type);
|
|
C.SectionsToScanLock.lock();
|
|
if (witnessTable)
|
|
C.cacheSuccess(type, protocol, witnessTable);
|
|
else
|
|
C.cacheFailure(type, protocol);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Always fail, because we cannot interpret a future conformance
|
|
// kind.
|
|
C.cacheFailure(type, protocol);
|
|
};
|
|
|
|
// Really scan conformance records.
|
|
|
|
for (unsigned sectionIdx = startSectionIdx;
|
|
sectionIdx < endSectionIdx;
|
|
++sectionIdx) {
|
|
auto §ion = C.SectionsToScan[sectionIdx];
|
|
// Eagerly pull records for nondependent witnesses into our cache.
|
|
for (const auto &record : section) {
|
|
auto &descriptor = *record.get();
|
|
|
|
// If the record applies to a specific type, cache it.
|
|
if (auto metadata = descriptor.getCanonicalTypeMetadata()) {
|
|
auto P = descriptor.getProtocol();
|
|
|
|
// Look for an exact match.
|
|
if (protocol != P)
|
|
continue;
|
|
|
|
if (!isRelatedType(type, metadata, /*candidateIsMetadata=*/true))
|
|
continue;
|
|
|
|
// Record the witness table.
|
|
recordWitnessTable(descriptor, metadata);
|
|
|
|
// TODO: "Nondependent witness table" probably deserves its own flag.
|
|
// An accessor function might still be necessary even if the witness table
|
|
// can be shared.
|
|
} else if (descriptor.getTypeKind()
|
|
== TypeMetadataRecordKind::DirectNominalTypeDescriptor ||
|
|
descriptor.getTypeKind()
|
|
== TypeMetadataRecordKind::IndirectNominalTypeDescriptor) {
|
|
auto R = descriptor.getTypeContextDescriptor();
|
|
auto P = descriptor.getProtocol();
|
|
|
|
// Look for an exact match.
|
|
if (protocol != P)
|
|
continue;
|
|
|
|
if (!isRelatedType(type, R, /*candidateIsMetadata=*/false))
|
|
continue;
|
|
|
|
recordWitnessTable(descriptor, type);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Conformance scan is complete.
|
|
// Search the cache once more, and this time update the cache if necessary.
|
|
|
|
FoundConformance = searchInConformanceCache(type, protocol);
|
|
if (FoundConformance.isAuthoritative) {
|
|
return FoundConformance.witnessTable;
|
|
} else {
|
|
C.cacheFailure(type, protocol);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
const TypeContextDescriptor *
|
|
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
|
|
auto &C = Conformances.get();
|
|
|
|
ScopedLock guard(C.SectionsToScanLock);
|
|
|
|
unsigned sectionIdx = 0;
|
|
unsigned endSectionIdx = C.SectionsToScan.size();
|
|
|
|
for (; sectionIdx < endSectionIdx; ++sectionIdx) {
|
|
auto §ion = C.SectionsToScan[sectionIdx];
|
|
for (const auto &record : section) {
|
|
if (auto ntd = record->getTypeContextDescriptor()) {
|
|
if (_contextDescriptorMatchesMangling(ntd, node))
|
|
return ntd;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Resolve a reference to a generic parameter to type metadata.
|
|
static const Metadata *resolveGenericParamRef(
|
|
const GenericParamRef ¶m,
|
|
SubstFlatGenericParameterFn substFlatGenericParam) {
|
|
// Resolve the root generic parameter.
|
|
const Metadata *current = substFlatGenericParam(param.getRootParamIndex());
|
|
if (!current) return nullptr;
|
|
|
|
// Follow the associated type path.
|
|
for (const auto &assocTypeRef : param) {
|
|
// Look for the witness table.
|
|
auto witnessTable =
|
|
swift_conformsToProtocol(current, assocTypeRef.Protocol);
|
|
if (!witnessTable) return nullptr;
|
|
|
|
// Call the associated type access function.
|
|
using AssociatedTypeAccessFn =
|
|
const Metadata *(*)(const Metadata *base, const WitnessTable *);
|
|
unsigned adjustedIndex =
|
|
assocTypeRef.Index + WitnessTableFirstRequirementOffset;
|
|
current =
|
|
((const AssociatedTypeAccessFn *)witnessTable)[adjustedIndex]
|
|
(current, witnessTable);
|
|
if (!current) return nullptr;
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
bool swift::_checkGenericRequirements(
|
|
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
|
|
std::vector<const void *> &extraArguments,
|
|
SubstFlatGenericParameterFn substFlatGenericParam,
|
|
SubstGenericParameterFn substGenericParam) {
|
|
for (const auto &req : requirements) {
|
|
// Make sure we understand the requirement we're dealing with.
|
|
if (!req.hasKnownKind()) return true;
|
|
|
|
// Resolve the subject generic parameter.
|
|
auto subjectType =
|
|
resolveGenericParamRef(req.getParam(), substFlatGenericParam);
|
|
if (!subjectType) return true;
|
|
|
|
// Check the requirement.
|
|
switch (req.getKind()) {
|
|
case GenericRequirementKind::Protocol: {
|
|
const WitnessTable *witnessTable = nullptr;
|
|
if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
|
|
&witnessTable))
|
|
return true;
|
|
|
|
// If we need a witness table, add it.
|
|
if (req.getProtocol()->Flags.needsWitnessTable()) {
|
|
assert(witnessTable);
|
|
extraArguments.push_back(witnessTable);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
case GenericRequirementKind::SameType: {
|
|
// Demangle the second type under the given substitutions.
|
|
auto otherType =
|
|
_getTypeByMangledName(req.getMangledTypeName(), substGenericParam);
|
|
if (!otherType) return true;
|
|
|
|
assert(!req.getFlags().hasExtraArgument());
|
|
|
|
// Check that the types are equivalent.
|
|
if (subjectType != otherType) return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
case GenericRequirementKind::Layout: {
|
|
switch (req.getLayout()) {
|
|
case GenericRequirementLayoutKind::Class:
|
|
if (!subjectType->satisfiesClassConstraint())
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
// Unknown layout.
|
|
return true;
|
|
}
|
|
|
|
case GenericRequirementKind::BaseClass: {
|
|
// Demangle the base type under the given substitutions.
|
|
auto baseType =
|
|
_getTypeByMangledName(req.getMangledTypeName(), substGenericParam);
|
|
if (!baseType) return true;
|
|
|
|
// Check whether it's dynamically castable, which works as a superclass
|
|
// check.
|
|
if (!swift_dynamicCastMetatype(subjectType, baseType)) return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
case GenericRequirementKind::SameConformance: {
|
|
// FIXME: Implement this check.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Unknown generic requirement kind.
|
|
return true;
|
|
}
|
|
|
|
// Success!
|
|
return false;
|
|
}
|