mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This replaces a number of `#include`-s like this:
```
#include "../../../stdlib/public/SwiftShims/Visibility.h"
```
with this:
```
#include "swift/shims/Visibility.h"
```
This is needed to allow SwiftCompilerSources to use C++ headers which include SwiftShims headers. Currently trying to do that results in errors:
```
swift/swift/include/swift/Demangling/../../../stdlib/public/SwiftShims/module.modulemap:1:8: error: redefinition of module 'SwiftShims'
module SwiftShims {
^
Builds.noindex/swift/swift/bootstrapping0/lib/swift/shims/module.modulemap:1:8: note: previously defined here
module SwiftShims {
^
```
This happens because the headers in both the source dir and the build dir refer to SwiftShims headers by relative path, and both the source root and the build root contain SwiftShims headers (which are equivalent, but since they are located in different dirs, Clang treats them as different modules).
573 lines
17 KiB
C++
573 lines
17 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#if SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
|
|
#if defined(__APPLE__)
|
|
#include "Apple/ScalarPropsData.h"
|
|
#else
|
|
#include "Common/ScalarPropsData.h"
|
|
#endif
|
|
|
|
#include "Common/CaseData.h"
|
|
#include "Common/ScriptData.h"
|
|
|
|
#else
|
|
#include "swift/Runtime/Debug.h"
|
|
#endif
|
|
|
|
#include "swift/shims/UnicodeData.h"
|
|
#include <limits>
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
__swift_uint64_t _swift_stdlib_getBinaryProperties(__swift_uint32_t scalar) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto lowerBoundIndex = 0;
|
|
auto endIndex = BIN_PROPS_COUNT;
|
|
auto upperBoundIndex = endIndex - 1;
|
|
|
|
while (upperBoundIndex >= lowerBoundIndex) {
|
|
auto index = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
|
|
|
|
auto entry = _swift_stdlib_scalar_binProps[index];
|
|
|
|
// Shift the ccc value out of the scalar.
|
|
auto lowerBoundScalar = (entry << 11) >> 11;
|
|
|
|
__swift_uint32_t upperBoundScalar = 0;
|
|
|
|
// If we're not at the end of the array, the range count is simply the
|
|
// distance to the next element.
|
|
if (index != endIndex - 1) {
|
|
auto nextEntry = _swift_stdlib_scalar_binProps[index + 1];
|
|
|
|
auto nextLower = (nextEntry << 11) >> 11;
|
|
|
|
upperBoundScalar = nextLower - 1;
|
|
} else {
|
|
// Otherwise, the range count is the distance to 0x10FFFF
|
|
upperBoundScalar = 0x10FFFF;
|
|
}
|
|
|
|
// Shift everything out.
|
|
auto dataIndex = entry >> 21;
|
|
|
|
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
|
|
return _swift_stdlib_scalar_binProps_data[dataIndex];
|
|
}
|
|
|
|
if (scalar > upperBoundScalar) {
|
|
lowerBoundIndex = index + 1;
|
|
continue;
|
|
}
|
|
|
|
if (scalar < lowerBoundScalar) {
|
|
upperBoundIndex = index - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we make it out of this loop, then it means the scalar was not found at
|
|
// all in the array. This should never happen because the array represents all
|
|
// scalars from 0x0 to 0x10FFFF, but if somehow this branch gets reached,
|
|
// return 0 to indicate no properties.
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
__swift_uint8_t _swift_stdlib_getNumericType(__swift_uint32_t scalar) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto lowerBoundIndex = 0;
|
|
auto endIndex = NUMERIC_TYPE_COUNT;
|
|
auto upperBoundIndex = endIndex - 1;
|
|
|
|
while (upperBoundIndex >= lowerBoundIndex) {
|
|
auto idx = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
|
|
|
|
auto entry = _swift_stdlib_numeric_type[idx];
|
|
|
|
auto lowerBoundScalar = (entry << 11) >> 11;
|
|
auto rangeCount = (entry << 3) >> 24;
|
|
auto upperBoundScalar = lowerBoundScalar + rangeCount;
|
|
|
|
auto numericType = (__swift_uint8_t)(entry >> 29);
|
|
|
|
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
|
|
return numericType;
|
|
}
|
|
|
|
if (scalar > upperBoundScalar) {
|
|
lowerBoundIndex = idx + 1;
|
|
continue;
|
|
}
|
|
|
|
if (scalar < lowerBoundScalar) {
|
|
upperBoundIndex = idx - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we made it out here, then our scalar was not found in the composition
|
|
// array.
|
|
// Return the max here to indicate that we couldn't find one.
|
|
return std::numeric_limits<__swift_uint8_t>::max();
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
double _swift_stdlib_getNumericValue(__swift_uint32_t scalar) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto levelCount = NUMERIC_VALUES_LEVEL_COUNT;
|
|
__swift_intptr_t scalarIdx = _swift_stdlib_getMphIdx(scalar, levelCount,
|
|
_swift_stdlib_numeric_values_keys,
|
|
_swift_stdlib_numeric_values_ranks,
|
|
_swift_stdlib_numeric_values_sizes);
|
|
|
|
auto valueIdx = _swift_stdlib_numeric_values_indices[scalarIdx];
|
|
return _swift_stdlib_numeric_values[valueIdx];
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
const char *_swift_stdlib_getNameAlias(__swift_uint32_t scalar) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
|
|
_swift_stdlib_nameAlias,
|
|
_swift_stdlib_nameAlias_ranks);
|
|
|
|
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
|
|
return nullptr;
|
|
}
|
|
|
|
return _swift_stdlib_nameAlias_data[dataIdx];
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
__swift_int32_t _swift_stdlib_getMapping(__swift_uint32_t scalar,
|
|
__swift_uint8_t mapping) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
|
|
_swift_stdlib_mappings,
|
|
_swift_stdlib_mappings_ranks);
|
|
|
|
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
|
|
return 0;
|
|
}
|
|
|
|
auto mappings = _swift_stdlib_mappings_data_indices[dataIdx];
|
|
|
|
__swift_uint8_t mappingIdx;
|
|
|
|
switch (mapping) {
|
|
// Uppercase
|
|
case 0:
|
|
mappingIdx = mappings & 0xFF;
|
|
break;
|
|
|
|
// Lowercase
|
|
case 1:
|
|
mappingIdx = (mappings & 0xFF00) >> 8;
|
|
break;
|
|
|
|
// Titlecase
|
|
case 2:
|
|
mappingIdx = (mappings & 0xFF0000) >> 16;
|
|
break;
|
|
|
|
// Unknown mapping
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (mappingIdx == 0xFF) {
|
|
return 0;
|
|
}
|
|
|
|
return _swift_stdlib_mappings_data[mappingIdx];
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
const __swift_uint8_t *_swift_stdlib_getSpecialMapping(__swift_uint32_t scalar,
|
|
__swift_uint8_t mapping,
|
|
__swift_intptr_t *length) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
|
|
_swift_stdlib_special_mappings,
|
|
_swift_stdlib_special_mappings_ranks);
|
|
|
|
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto index = _swift_stdlib_special_mappings_data_indices[dataIdx];
|
|
|
|
auto uppercase = _swift_stdlib_special_mappings_data + index;
|
|
auto lowercase = uppercase + 1 + *uppercase;
|
|
auto titlecase = lowercase + 1 + *lowercase;
|
|
|
|
switch (mapping) {
|
|
// Uppercase
|
|
case 0:
|
|
*length = *uppercase;
|
|
return uppercase + 1;
|
|
|
|
// Lowercase
|
|
case 1:
|
|
*length = *lowercase;
|
|
return lowercase + 1;
|
|
|
|
// Titlecase
|
|
case 2:
|
|
*length = *titlecase;
|
|
return titlecase + 1;
|
|
|
|
// Unknown mapping.
|
|
default:
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
__swift_intptr_t _swift_stdlib_getScalarName(__swift_uint32_t scalar,
|
|
__swift_uint8_t *buffer,
|
|
__swift_intptr_t capacity) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto setOffset = _swift_stdlib_names_scalar_sets[scalar >> 7];
|
|
|
|
if (setOffset == std::numeric_limits<__swift_uint16_t>::max()) {
|
|
return 0;
|
|
}
|
|
|
|
auto scalarIndex = (setOffset << 7) + (scalar & ((1 << 7) - 1));
|
|
auto scalarOffset = _swift_stdlib_names_scalars[scalarIndex];
|
|
|
|
// U+20 is the first scalar that Unicode defines a name for, so their offset
|
|
// will the only valid 0.
|
|
if (scalarOffset == 0 && scalar != 0x20) {
|
|
return 0;
|
|
}
|
|
|
|
__swift_uint32_t nextScalarOffset = 0;
|
|
|
|
if (scalarIndex != NAMES_SCALARS_MAX_INDEX) {
|
|
int i = 1;
|
|
|
|
// Look for the next scalar who has a name and their position in the names
|
|
// array. This tells us exactly how many bytes our name takes up.
|
|
while (nextScalarOffset == 0) {
|
|
nextScalarOffset = _swift_stdlib_names_scalars[scalarIndex + i];
|
|
i += 1;
|
|
}
|
|
} else {
|
|
// This is the last element in the array which represents the last scalar
|
|
// name that Unicode defines (excluding variation selectors).
|
|
nextScalarOffset = NAMES_LAST_SCALAR_OFFSET;
|
|
}
|
|
|
|
auto nameSize = nextScalarOffset - scalarOffset;
|
|
|
|
// The total number of initialized bytes in the name string.
|
|
int c = 0;
|
|
|
|
for (__swift_uint32_t i = 0; i < nameSize; i += 1) {
|
|
__swift_uint16_t wordIndex = (__swift_uint16_t) _swift_stdlib_names[
|
|
scalarOffset + i
|
|
];
|
|
|
|
// If our word index is 0xFF, then it means our word index is larger than a
|
|
// byte, so the next two bytes will compose the 16 bit index.
|
|
if (wordIndex == 0xFF) {
|
|
i += 1;
|
|
auto firstPart = _swift_stdlib_names[scalarOffset + i];
|
|
wordIndex = firstPart;
|
|
|
|
i += 1;
|
|
auto secondPart = _swift_stdlib_names[scalarOffset + i];
|
|
wordIndex |= secondPart << 8;
|
|
}
|
|
|
|
auto wordOffset = _swift_stdlib_word_indices[wordIndex];
|
|
|
|
auto word = _swift_stdlib_words + wordOffset;
|
|
|
|
// The last character in a word has the 7th bit set.
|
|
while (*word < 0x80) {
|
|
if (c >= capacity) {
|
|
return c;
|
|
}
|
|
|
|
buffer[c++] = *word++;
|
|
}
|
|
|
|
if (c >= capacity) {
|
|
return c;
|
|
}
|
|
|
|
buffer[c++] = *word & 0x7F;
|
|
|
|
if (c >= capacity) {
|
|
return c;
|
|
}
|
|
|
|
buffer[c++] = ' ';
|
|
}
|
|
|
|
// Remove the trailing space.
|
|
c -= 1;
|
|
|
|
// The return value is the number of initialized bytes.
|
|
return c;
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
__swift_uint16_t _swift_stdlib_getAge(__swift_uint32_t scalar) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto lowerBoundIndex = 0;
|
|
auto endIndex = AGE_COUNT;
|
|
auto upperBoundIndex = endIndex - 1;
|
|
|
|
while (upperBoundIndex >= lowerBoundIndex) {
|
|
auto idx = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
|
|
|
|
auto entry = _swift_stdlib_ages[idx];
|
|
|
|
auto lowerBoundScalar = (entry << 43) >> 43;
|
|
auto rangeCount = entry >> 32;
|
|
auto upperBoundScalar = lowerBoundScalar + rangeCount;
|
|
|
|
auto ageIdx = (__swift_uint8_t)((entry << 32) >> 32 >> 21);
|
|
|
|
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
|
|
return _swift_stdlib_ages_data[ageIdx];
|
|
}
|
|
|
|
if (scalar > upperBoundScalar) {
|
|
lowerBoundIndex = idx + 1;
|
|
continue;
|
|
}
|
|
|
|
if (scalar < lowerBoundScalar) {
|
|
upperBoundIndex = idx - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we made it out here, then our scalar was not found in the composition
|
|
// array.
|
|
// Return the max here to indicate that we couldn't find one.
|
|
return std::numeric_limits<__swift_uint16_t>::max();
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
__swift_uint8_t _swift_stdlib_getGeneralCategory(__swift_uint32_t scalar) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto lowerBoundIndex = 0;
|
|
auto endIndex = GENERAL_CATEGORY_COUNT;
|
|
auto upperBoundIndex = endIndex - 1;
|
|
|
|
while (upperBoundIndex >= lowerBoundIndex) {
|
|
auto idx = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
|
|
|
|
auto entry = _swift_stdlib_generalCategory[idx];
|
|
|
|
auto lowerBoundScalar = (entry << 43) >> 43;
|
|
auto rangeCount = entry >> 32;
|
|
auto upperBoundScalar = lowerBoundScalar + rangeCount;
|
|
|
|
auto generalCategory = (__swift_uint8_t)((entry << 32) >> 32 >> 21);
|
|
|
|
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
|
|
return generalCategory;
|
|
}
|
|
|
|
if (scalar > upperBoundScalar) {
|
|
lowerBoundIndex = idx + 1;
|
|
continue;
|
|
}
|
|
|
|
if (scalar < lowerBoundScalar) {
|
|
upperBoundIndex = idx - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we made it out here, then our scalar was not found in the composition
|
|
// array.
|
|
// Return the max here to indicate that we couldn't find one.
|
|
return std::numeric_limits<__swift_uint8_t>::max();
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
__swift_uint8_t _swift_stdlib_getScript(__swift_uint32_t scalar) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto lowerBoundIndex = 0;
|
|
auto endIndex = SCRIPTS_COUNT;
|
|
auto upperBoundIndex = endIndex - 1;
|
|
|
|
while (upperBoundIndex >= lowerBoundIndex) {
|
|
auto index = lowerBoundIndex + (upperBoundIndex - lowerBoundIndex) / 2;
|
|
|
|
auto entry = _swift_stdlib_scripts[index];
|
|
|
|
// Shift the enum value out of the scalar.
|
|
auto lowerBoundScalar = (entry << 11) >> 11;
|
|
|
|
__swift_uint32_t upperBoundScalar = 0;
|
|
|
|
// If we're not at the end of the array, the range count is simply the
|
|
// distance to the next element.
|
|
if (index != endIndex - 1) {
|
|
auto nextEntry = _swift_stdlib_scripts[index + 1];
|
|
|
|
auto nextLower = (nextEntry << 11) >> 11;
|
|
|
|
upperBoundScalar = nextLower - 1;
|
|
} else {
|
|
// Otherwise, the range count is the distance to 0x10FFFF
|
|
upperBoundScalar = 0x10FFFF;
|
|
}
|
|
|
|
// Shift the scalar out and get the enum value.
|
|
auto script = entry >> 21;
|
|
|
|
if (scalar >= lowerBoundScalar && scalar <= upperBoundScalar) {
|
|
return script;
|
|
}
|
|
|
|
if (scalar > upperBoundScalar) {
|
|
lowerBoundIndex = index + 1;
|
|
continue;
|
|
}
|
|
|
|
if (scalar < lowerBoundScalar) {
|
|
upperBoundIndex = index - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we make it out of this loop, then it means the scalar was not found at
|
|
// all in the array. This should never happen because the array represents all
|
|
// scalars from 0x0 to 0x10FFFF, but if somehow this branch gets reached,
|
|
// return 255 to indicate a failure.
|
|
return std::numeric_limits<__swift_uint8_t>::max();
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
const __swift_uint8_t *_swift_stdlib_getScriptExtensions(__swift_uint32_t scalar,
|
|
__swift_uint8_t *count) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto dataIdx = _swift_stdlib_getScalarBitArrayIdx(scalar,
|
|
_swift_stdlib_script_extensions,
|
|
_swift_stdlib_script_extensions_ranks);
|
|
|
|
// If we don't have an index into the data indices, then this scalar has no
|
|
// script extensions
|
|
if (dataIdx == std::numeric_limits<__swift_intptr_t>::max()) {
|
|
return 0;
|
|
}
|
|
|
|
auto scalarDataIdx = _swift_stdlib_script_extensions_data_indices[dataIdx];
|
|
*count = scalarDataIdx >> 11;
|
|
|
|
return _swift_stdlib_script_extensions_data + (scalarDataIdx & 0x7FF);
|
|
#endif
|
|
}
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
void _swift_stdlib_getCaseMapping(__swift_uint32_t scalar,
|
|
__swift_uint32_t *buffer) {
|
|
#if !SWIFT_STDLIB_ENABLE_UNICODE_DATA
|
|
swift::swift_abortDisabledUnicodeSupport();
|
|
#else
|
|
auto mphIdx = _swift_stdlib_getMphIdx(scalar, CASE_FOLD_LEVEL_COUNT,
|
|
_swift_stdlib_case_keys,
|
|
_swift_stdlib_case_ranks,
|
|
_swift_stdlib_case_sizes);
|
|
|
|
auto caseValue = _swift_stdlib_case[mphIdx];
|
|
__swift_uint32_t hashedScalar = (caseValue << 43) >> 43;
|
|
|
|
// If our scalar is not the original one we hashed, then this scalar has no
|
|
// case mapping. It maps to itself.
|
|
if (scalar != hashedScalar) {
|
|
buffer[0] = scalar;
|
|
return;
|
|
}
|
|
|
|
// If the top bit is NOT set, then this scalar simply maps to another scalar.
|
|
// We have stored the distance to said scalar in this value.
|
|
if ((caseValue & ((__swift_uint64_t)(0x1) << 63)) == 0) {
|
|
auto distance = (__swift_int32_t)((caseValue << 1) >> 22);
|
|
auto mappedScalar = (__swift_uint32_t)((__swift_int32_t)(scalar) - distance);
|
|
|
|
buffer[0] = mappedScalar;
|
|
return;
|
|
}
|
|
|
|
// Our top bit WAS set which means this scalar maps to multiple scalars.
|
|
// Lookup our mapping in the full mph.
|
|
auto fullMphIdx = _swift_stdlib_getMphIdx(scalar, CASE_FULL_FOLD_LEVEL_COUNT,
|
|
_swift_stdlib_case_full_keys,
|
|
_swift_stdlib_case_full_ranks,
|
|
_swift_stdlib_case_full_sizes);
|
|
|
|
auto fullCaseValue = _swift_stdlib_case_full[fullMphIdx];
|
|
|
|
// Count is either 2 or 3.
|
|
auto count = fullCaseValue >> 62;
|
|
|
|
for (__swift_uint64_t i = 0; i != count; i += 1) {
|
|
auto distance = (__swift_int32_t)(fullCaseValue & 0xFFFF);
|
|
|
|
if ((fullCaseValue & 0x10000) != 0) {
|
|
distance = -distance;
|
|
}
|
|
|
|
fullCaseValue >>= 17;
|
|
|
|
auto mappedScalar = (__swift_uint32_t)((__swift_int32_t)(scalar) - distance);
|
|
|
|
buffer[i] = mappedScalar;
|
|
}
|
|
#endif
|
|
}
|