mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This makes memory allocation for it more efficient and it's more convenient to handle. Swift SVN r12541
1985 lines
65 KiB
C++
1985 lines
65 KiB
C++
//===--- Decl.cpp - Swift Language Decl ASTs ------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Decl class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/DiagnosticsSema.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/TypeLoc.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "swift/Basic/Range.h"
|
|
using namespace swift;
|
|
|
|
// Only allow allocation of Decls using the allocator in ASTContext.
|
|
void *Decl::operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
|
|
// Only allow allocation of Modules using the allocator in ASTContext.
|
|
void *Module::operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
|
|
StringRef Decl::getKindName(DeclKind K) {
|
|
switch (K) {
|
|
#define DECL(Id, Parent) case DeclKind::Id: return #Id;
|
|
#include "swift/AST/DeclNodes.def"
|
|
}
|
|
}
|
|
|
|
|
|
DeclContext *Decl::getInnermostDeclContext() {
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
|
|
return func;
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
|
|
return nominal;
|
|
if (auto ext = dyn_cast<ExtensionDecl>(this))
|
|
return ext;
|
|
if (auto topLevel = dyn_cast<TopLevelCodeDecl>(this))
|
|
return topLevel;
|
|
|
|
return getDeclContext();
|
|
|
|
}
|
|
|
|
Module *Decl::getModuleContext() const {
|
|
return getDeclContext()->getParentModule();
|
|
}
|
|
|
|
// Helper functions to verify statically whether source-location
|
|
// functions have been overridden.
|
|
typedef const char (&TwoChars)[2];
|
|
template<typename Class>
|
|
inline char checkSourceLocType(SourceLoc (Class::*)() const);
|
|
inline TwoChars checkSourceLocType(SourceLoc (Decl::*)() const);
|
|
|
|
template<typename Class>
|
|
inline char checkSourceRangeType(SourceRange (Class::*)() const);
|
|
inline TwoChars checkSourceRangeType(SourceRange (Decl::*)() const);
|
|
|
|
SourceRange Decl::getSourceRange() const {
|
|
switch (getKind()) {
|
|
#define DECL(ID, PARENT) \
|
|
static_assert(sizeof(checkSourceRangeType(&ID##Decl::getSourceRange)) == 1, \
|
|
#ID "Decl is missing getSourceRange()"); \
|
|
case DeclKind::ID: return cast<ID##Decl>(this)->getSourceRange();
|
|
#include "swift/AST/DeclNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("Unknown decl kind");
|
|
}
|
|
|
|
SourceLoc Decl::getLoc() const {
|
|
switch (getKind()) {
|
|
#define DECL(ID, X) \
|
|
static_assert(sizeof(checkSourceLocType(&ID##Decl::getLoc)) == 1, \
|
|
#ID "Decl is missing getLoc()"); \
|
|
case DeclKind::ID: return cast<ID##Decl>(this)->getLoc();
|
|
#include "swift/AST/DeclNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("Unknown decl kind");
|
|
}
|
|
|
|
ClangNode Decl::getClangNodeSlow() const {
|
|
return getASTContext().getClangNode(this);
|
|
}
|
|
|
|
void Decl::setClangNode(ClangNode node) {
|
|
DeclBits.FromClang = true;
|
|
getASTContext().setClangNode(this, node);
|
|
}
|
|
|
|
bool Decl::isTransparent() const {
|
|
// Check if the declaration had the attribute.
|
|
if (getAttrs().isTransparent())
|
|
return true;
|
|
|
|
// Check if this is a function declaration which is within a transparent
|
|
// extension.
|
|
if (const AbstractFunctionDecl *FD = dyn_cast<AbstractFunctionDecl>(this)) {
|
|
if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(FD->getParent()))
|
|
return ED->isTransparent();
|
|
}
|
|
|
|
// If this is a getter or a seter, check if the transparent attribute was set
|
|
// on the value decl.
|
|
if (const FuncDecl *FD = dyn_cast<FuncDecl>(this)) {
|
|
if (ValueDecl *VD = FD->getGetterOrSetterDecl())
|
|
return VD->isTransparent();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
GenericParamList::GenericParamList(SourceLoc LAngleLoc,
|
|
ArrayRef<GenericParam> Params,
|
|
SourceLoc WhereLoc,
|
|
MutableArrayRef<RequirementRepr> Requirements,
|
|
SourceLoc RAngleLoc)
|
|
: Brackets(LAngleLoc, RAngleLoc), NumParams(Params.size()),
|
|
WhereLoc(WhereLoc), Requirements(Requirements),
|
|
OuterParameters(nullptr)
|
|
{
|
|
memcpy(this + 1, Params.data(), NumParams * sizeof(GenericParam));
|
|
}
|
|
|
|
GenericParamList *GenericParamList::create(ASTContext &Context,
|
|
SourceLoc LAngleLoc,
|
|
ArrayRef<GenericParam> Params,
|
|
SourceLoc RAngleLoc) {
|
|
unsigned Size = sizeof(GenericParamList)
|
|
+ sizeof(GenericParam) * Params.size();
|
|
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
|
|
return new (Mem) GenericParamList(LAngleLoc, Params, SourceLoc(),
|
|
MutableArrayRef<RequirementRepr>(),
|
|
RAngleLoc);
|
|
}
|
|
|
|
GenericParamList *
|
|
GenericParamList::create(const ASTContext &Context,
|
|
SourceLoc LAngleLoc,
|
|
ArrayRef<GenericParam> Params,
|
|
SourceLoc WhereLoc,
|
|
MutableArrayRef<RequirementRepr> Requirements,
|
|
SourceLoc RAngleLoc) {
|
|
unsigned Size = sizeof(GenericParamList)
|
|
+ sizeof(GenericParam) * Params.size();
|
|
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
|
|
return new (Mem) GenericParamList(LAngleLoc, Params,
|
|
WhereLoc,
|
|
Context.AllocateCopy(Requirements),
|
|
RAngleLoc);
|
|
}
|
|
|
|
GenericSignature *
|
|
GenericParamList::getAsCanonicalGenericSignature(
|
|
llvm::DenseMap<ArchetypeType *, Type> &archetypeMap,
|
|
ASTContext &C) const {
|
|
SmallVector<GenericTypeParamType *, 4> params;
|
|
SmallVector<Requirement, 4> requirements;
|
|
|
|
getAsGenericSignatureElements(C, archetypeMap, params, requirements);
|
|
|
|
// Canonicalize the types in the signature.
|
|
for (auto ¶m : params)
|
|
param = cast<GenericTypeParamType>(param->getCanonicalType());
|
|
|
|
for (auto &reqt : requirements)
|
|
reqt = Requirement(reqt.getKind(),
|
|
reqt.getFirstType()->getCanonicalType(),
|
|
reqt.getSecondType()->getCanonicalType());
|
|
|
|
return GenericSignature::get(params, requirements, C);
|
|
}
|
|
|
|
// Helper for getAsGenericSignatureElements to remap an archetype in a
|
|
// requirement to a canonical dependent type.
|
|
Type
|
|
ArchetypeType::getAsDependentType(
|
|
const llvm::DenseMap<ArchetypeType*, Type> &archetypeMap) {
|
|
// Map associated archetypes to DependentMemberTypes.
|
|
if (auto parent = getParent()) {
|
|
auto assocTy = getAssocType();
|
|
assert(assocTy);
|
|
Type base = parent->getAsDependentType(archetypeMap);
|
|
return DependentMemberType::get(base, assocTy, getASTContext());
|
|
}
|
|
// Map primary archetypes to generic type parameters.
|
|
auto found = archetypeMap.find(this);
|
|
assert(found != archetypeMap.end()
|
|
&& "did not find generic param for archetype");
|
|
return found->second;
|
|
}
|
|
|
|
static Type getAsDependentType(Type t,
|
|
const llvm::DenseMap<ArchetypeType*, Type> &archetypeMap) {
|
|
if (auto arch = t->getAs<ArchetypeType>())
|
|
return arch->getAsDependentType(archetypeMap);
|
|
return t;
|
|
}
|
|
|
|
// Helper to translate a RequirementRepr into a canonical Requirement expressed
|
|
// in terms of dependent types.
|
|
static void
|
|
addRequirementForRepr(SmallVectorImpl<Requirement> &requirements,
|
|
const RequirementRepr &repr,
|
|
const llvm::DenseMap<ArchetypeType*, Type> &archetypeMap) {
|
|
switch (repr.getKind()) {
|
|
case RequirementKind::Conformance: {
|
|
// Primary conformance declarations would have already been gathered as
|
|
// conformance requirements off the archetype.
|
|
if (auto arch = repr.getSubject()->getAs<ArchetypeType>()) {
|
|
if (!arch->getParent())
|
|
return;
|
|
}
|
|
Requirement reqt(RequirementKind::Conformance,
|
|
getAsDependentType(repr.getSubject(), archetypeMap),
|
|
getAsDependentType(repr.getConstraint(), archetypeMap));
|
|
requirements.push_back(reqt);
|
|
return;
|
|
}
|
|
case RequirementKind::SameType: {
|
|
// FIXME: ArchetypeBuilder doesn't preserve the distinction between the
|
|
// matched archetypes, so this ends up producing useless '$T == $T'
|
|
// requirements.
|
|
/*
|
|
Requirement reqt(RequirementKind::SameType,
|
|
getAsDependentType(repr.getFirstType(), archetypeMap),
|
|
getAsDependentType(repr.getSecondType(), archetypeMap));
|
|
requirements.push_back(reqt);
|
|
*/
|
|
return;
|
|
}
|
|
case RequirementKind::WitnessMarker:
|
|
llvm_unreachable("should not exist after typechecking (?)");
|
|
}
|
|
}
|
|
|
|
// A helper to recursively collect the generic parameters from the outer levels
|
|
// of a generic parameter list.
|
|
void
|
|
GenericParamList::getAsGenericSignatureElements(ASTContext &C,
|
|
llvm::DenseMap<ArchetypeType *, Type> &archetypeMap,
|
|
SmallVectorImpl<GenericTypeParamType *> &genericParams,
|
|
SmallVectorImpl<Requirement> &requirements) const {
|
|
// Collect outer generic parameters first.
|
|
if (OuterParameters) {
|
|
OuterParameters->getAsGenericSignatureElements(C, archetypeMap,
|
|
genericParams,
|
|
requirements);
|
|
}
|
|
|
|
// Collect our parameters.
|
|
for (auto paramIndex : indices(getParams())) {
|
|
auto param = getParams()[paramIndex];
|
|
|
|
GenericTypeParamDecl *typeParam = param.getAsTypeParam();
|
|
auto typeParamTy = typeParam->getDeclaredType()
|
|
->castTo<GenericTypeParamType>();
|
|
|
|
// Make sure we didn't visit this param already in the parent.
|
|
auto found = archetypeMap.find(typeParam->getArchetype());
|
|
if (found != archetypeMap.end()) {
|
|
assert(found->second->isEqual(typeParamTy));
|
|
continue;
|
|
}
|
|
|
|
// Set up a mapping we can use to remap requirements to dependent types.
|
|
ArchetypeType *archetype;
|
|
// The 'Self' archetype doesn't show up in getAllArchetypes.
|
|
if (hasSelfArchetype()) {
|
|
if (paramIndex == 0)
|
|
archetype = typeParam->getArchetype();
|
|
else
|
|
archetype = getPrimaryArchetypes()[paramIndex - 1];
|
|
} else {
|
|
archetype = getPrimaryArchetypes()[paramIndex];
|
|
}
|
|
|
|
archetypeMap[archetype] = typeParamTy;
|
|
|
|
genericParams.push_back(typeParamTy);
|
|
|
|
// Collect conformance requirements declared on the archetype.
|
|
if (auto super = archetype->getSuperclass()) {
|
|
requirements.push_back(Requirement(RequirementKind::Conformance,
|
|
typeParamTy, super));
|
|
}
|
|
for (auto proto : archetype->getConformsTo()) {
|
|
requirements.push_back(Requirement(RequirementKind::Conformance,
|
|
typeParamTy, proto->getDeclaredType()));
|
|
}
|
|
}
|
|
|
|
// Collect requirements from the 'where' clause.
|
|
for (const auto &repr : getRequirements()) {
|
|
addRequirementForRepr(requirements, repr, archetypeMap);
|
|
}
|
|
}
|
|
|
|
ImportDecl *ImportDecl::create(ASTContext &Ctx, DeclContext *DC,
|
|
SourceLoc ImportLoc, ImportKind Kind,
|
|
SourceLoc KindLoc, bool Exported,
|
|
ArrayRef<AccessPathElement> Path) {
|
|
assert(!Path.empty());
|
|
assert(Kind == ImportKind::Module || Path.size() > 1);
|
|
void *buffer = Ctx.Allocate(sizeof(ImportDecl) +
|
|
Path.size() * sizeof(AccessPathElement),
|
|
alignof(ImportDecl));
|
|
return new (buffer) ImportDecl(DC, ImportLoc, Kind, KindLoc, Exported, Path);
|
|
}
|
|
|
|
ImportDecl::ImportDecl(DeclContext *DC, SourceLoc ImportLoc, ImportKind K,
|
|
SourceLoc KindLoc, bool Exported,
|
|
ArrayRef<AccessPathElement> Path)
|
|
: Decl(DeclKind::Import, DC), ImportLoc(ImportLoc), KindLoc(KindLoc),
|
|
NumPathElements(Path.size()) {
|
|
ImportDeclBits.ImportKind = static_cast<unsigned>(K);
|
|
assert(getImportKind() == K && "not enough bits for ImportKind");
|
|
ImportDeclBits.IsExported = Exported;
|
|
std::uninitialized_copy(Path.begin(), Path.end(), getPathBuffer());
|
|
}
|
|
|
|
ImportKind ImportDecl::getBestImportKind(const ValueDecl *VD) {
|
|
switch (VD->getKind()) {
|
|
case DeclKind::Import:
|
|
case DeclKind::Extension:
|
|
case DeclKind::PatternBinding:
|
|
case DeclKind::TopLevelCode:
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
case DeclKind::EnumCase:
|
|
llvm_unreachable("not a ValueDecl");
|
|
|
|
case DeclKind::AssociatedType:
|
|
case DeclKind::Constructor:
|
|
case DeclKind::Destructor:
|
|
case DeclKind::GenericTypeParam:
|
|
case DeclKind::Subscript:
|
|
case DeclKind::EnumElement:
|
|
llvm_unreachable("not a top-level ValueDecl");
|
|
|
|
case DeclKind::Protocol:
|
|
return ImportKind::Protocol;
|
|
|
|
case DeclKind::Class:
|
|
return ImportKind::Class;
|
|
case DeclKind::Enum:
|
|
return ImportKind::Enum;
|
|
case DeclKind::Struct:
|
|
return ImportKind::Struct;
|
|
|
|
case DeclKind::TypeAlias: {
|
|
Type underlyingTy = cast<TypeAliasDecl>(VD)->getUnderlyingType();
|
|
return getBestImportKind(underlyingTy->getAnyNominal());
|
|
}
|
|
|
|
case DeclKind::Func:
|
|
return ImportKind::Func;
|
|
|
|
case DeclKind::Var:
|
|
return ImportKind::Var;
|
|
}
|
|
}
|
|
|
|
Optional<ImportKind>
|
|
ImportDecl::findBestImportKind(ArrayRef<ValueDecl *> Decls) {
|
|
assert(!Decls.empty());
|
|
ImportKind FirstKind = ImportDecl::getBestImportKind(Decls.front());
|
|
|
|
// Only functions can be overloaded.
|
|
if (Decls.size() == 1)
|
|
return FirstKind;
|
|
if (FirstKind != ImportKind::Func)
|
|
return Nothing;
|
|
|
|
for (auto NextDecl : Decls.slice(1)) {
|
|
if (ImportDecl::getBestImportKind(NextDecl) != FirstKind)
|
|
return Nothing;
|
|
}
|
|
|
|
return FirstKind;
|
|
}
|
|
|
|
void ExtensionDecl::setConformances(ArrayRef<ProtocolConformance *> c) {
|
|
Conformances = c;
|
|
}
|
|
|
|
SourceRange PatternBindingDecl::getSourceRange() const {
|
|
SourceLoc startLoc = getStartLoc();
|
|
if (auto init = getInit()) {
|
|
SourceLoc EndLoc = init->getSourceRange().End;
|
|
if (EndLoc.isValid())
|
|
return { startLoc, EndLoc };
|
|
}
|
|
return { startLoc, Pat->getSourceRange().End };
|
|
}
|
|
|
|
SourceLoc TopLevelCodeDecl::getStartLoc() const {
|
|
return Body->getStartLoc();
|
|
}
|
|
|
|
SourceRange TopLevelCodeDecl::getSourceRange() const {
|
|
return Body->getSourceRange();
|
|
}
|
|
|
|
|
|
bool ValueDecl::isDefinition() const {
|
|
switch (getKind()) {
|
|
case DeclKind::Import:
|
|
case DeclKind::Extension:
|
|
case DeclKind::PatternBinding:
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::Subscript:
|
|
case DeclKind::TopLevelCode:
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
llvm_unreachable("non-value decls shouldn't get here");
|
|
|
|
case DeclKind::Func:
|
|
case DeclKind::Constructor:
|
|
case DeclKind::Destructor:
|
|
return cast<AbstractFunctionDecl>(this)->getBodyKind() !=
|
|
AbstractFunctionDecl::BodyKind::None;
|
|
|
|
case DeclKind::Var:
|
|
case DeclKind::Enum:
|
|
case DeclKind::EnumElement:
|
|
case DeclKind::Struct:
|
|
case DeclKind::Class:
|
|
case DeclKind::TypeAlias:
|
|
case DeclKind::GenericTypeParam:
|
|
case DeclKind::AssociatedType:
|
|
case DeclKind::Protocol:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool ValueDecl::isInstanceMember() const {
|
|
DeclContext *DC = getDeclContext();
|
|
if (!DC->isTypeContext())
|
|
return false;
|
|
|
|
switch (getKind()) {
|
|
case DeclKind::Import:
|
|
case DeclKind::Extension:
|
|
case DeclKind::PatternBinding:
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::TopLevelCode:
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
llvm_unreachable("Not a ValueDecl");
|
|
|
|
case DeclKind::Class:
|
|
case DeclKind::Enum:
|
|
case DeclKind::Protocol:
|
|
case DeclKind::Struct:
|
|
case DeclKind::TypeAlias:
|
|
case DeclKind::GenericTypeParam:
|
|
case DeclKind::AssociatedType:
|
|
// Types are not instance members.
|
|
return false;
|
|
|
|
case DeclKind::Constructor:
|
|
// Constructors are not instance members.
|
|
return false;
|
|
|
|
case DeclKind::Destructor:
|
|
// Destructors are technically instance members, although they
|
|
// can't actually be referenced as such.
|
|
return true;
|
|
|
|
case DeclKind::Func:
|
|
// Non-static methods are instance members.
|
|
return !cast<FuncDecl>(this)->isStatic();
|
|
|
|
case DeclKind::EnumElement:
|
|
// enum elements are not instance members.
|
|
return false;
|
|
|
|
case DeclKind::Subscript:
|
|
// Subscripts are always instance members.
|
|
return true;
|
|
|
|
case DeclKind::Var:
|
|
// Non-static variables are instance members.
|
|
return !cast<VarDecl>(this)->isStatic();
|
|
}
|
|
}
|
|
|
|
bool ValueDecl::needsCapture() const {
|
|
// We don't need to capture anything from non-local contexts.
|
|
if (!getDeclContext()->isLocalContext())
|
|
return false;
|
|
// We don't need to capture types.
|
|
if (isa<TypeDecl>(this))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
ValueDecl *ValueDecl::getOverriddenDecl() const {
|
|
if (auto fd = dyn_cast<FuncDecl>(this))
|
|
return fd->getOverriddenDecl();
|
|
if (auto sdd = dyn_cast<AbstractStorageDecl>(this))
|
|
return sdd->getOverriddenDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
bool ValueDecl::canBeAccessedByDynamicLookup() const {
|
|
if (getName().empty())
|
|
return false;
|
|
|
|
// Dynamic lookup can only find [objc] members.
|
|
if (!isObjC())
|
|
return false;
|
|
|
|
// Dynamic lookup can only find class and protocol members, or extensions of
|
|
// classes.
|
|
auto nominalDC =getDeclContext()->getDeclaredTypeOfContext()->getAnyNominal();
|
|
if (!nominalDC ||
|
|
(!isa<ClassDecl>(nominalDC) && !isa<ProtocolDecl>(nominalDC)))
|
|
return false;
|
|
|
|
// Dynamic lookup cannot find results within a non-protocol generic context,
|
|
// because there is no sensible way to infer the generic arguments.
|
|
if (getDeclContext()->isGenericContext() && !isa<ProtocolDecl>(nominalDC))
|
|
return false;
|
|
|
|
// Dynamic lookup can find functions, variables, and subscripts.
|
|
if (isa<FuncDecl>(this) || isa<VarDecl>(this) || isa<SubscriptDecl>(this))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
ArrayRef<ValueDecl *> ValueDecl::getConformances() {
|
|
if (!conformsToProtocolRequirement())
|
|
return ArrayRef<ValueDecl *>();
|
|
|
|
return getASTContext().getConformances(this);
|
|
}
|
|
|
|
void ValueDecl::setType(Type T) {
|
|
assert(Ty.isNull() && "changing type of declaration");
|
|
Ty = T;
|
|
if (!T.isNull() && T->is<ErrorType>())
|
|
setInvalid();
|
|
}
|
|
|
|
/// Overwrite the type of this declaration.
|
|
void ValueDecl::overwriteType(Type T) {
|
|
Ty = T;
|
|
if (!T.isNull() && T->is<ErrorType>())
|
|
setInvalid();
|
|
}
|
|
|
|
DeclContext *ValueDecl::getPotentialGenericDeclContext() {
|
|
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
|
|
return func;
|
|
|
|
return getDeclContext();
|
|
}
|
|
|
|
Type ValueDecl::getInterfaceType() const {
|
|
if (InterfaceTy)
|
|
return InterfaceTy;
|
|
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
|
|
return nominal->computeInterfaceType();
|
|
|
|
if (auto assocType = dyn_cast<AssociatedTypeDecl>(this)) {
|
|
auto proto = cast<ProtocolDecl>(getDeclContext());
|
|
(void)proto->getType(); // make sure we've computed the type.
|
|
auto selfTy = proto->getGenericParamTypes()[0];
|
|
auto &ctx = getASTContext();
|
|
InterfaceTy = DependentMemberType::get(
|
|
selfTy,
|
|
const_cast<AssociatedTypeDecl *>(assocType),
|
|
ctx);
|
|
InterfaceTy = MetatypeType::get(InterfaceTy, ctx);
|
|
return InterfaceTy;
|
|
}
|
|
|
|
if (!hasType())
|
|
return Type();
|
|
|
|
// If the type involves a type variable, don't cache it.
|
|
auto type = getType();
|
|
assert((type.isNull() || !type->is<PolymorphicFunctionType>())
|
|
&& "decl has polymorphic function type but no interface type");
|
|
|
|
if (type->hasTypeVariable())
|
|
return type;
|
|
|
|
InterfaceTy = type;
|
|
return InterfaceTy;
|
|
}
|
|
|
|
void ValueDecl::setInterfaceType(Type type) {
|
|
assert((type.isNull() || !type->hasTypeVariable()) &&
|
|
"Type variable in interface type");
|
|
assert((type.isNull() || !type->is<PolymorphicFunctionType>()) &&
|
|
"setting polymorphic function type as interface type");
|
|
|
|
InterfaceTy = type;
|
|
}
|
|
|
|
Type TypeDecl::getDeclaredType() const {
|
|
if (auto TAD = dyn_cast<TypeAliasDecl>(this))
|
|
return TAD->getAliasType();
|
|
if (auto typeParam = dyn_cast<AbstractTypeParamDecl>(this))
|
|
return typeParam->getType()->castTo<MetatypeType>()->getInstanceType();
|
|
return cast<NominalTypeDecl>(this)->getDeclaredType();
|
|
}
|
|
|
|
Type TypeDecl::getDeclaredInterfaceType() const {
|
|
return getInterfaceType()->castTo<MetatypeType>()->getInstanceType();
|
|
}
|
|
|
|
bool NominalTypeDecl::derivesProtocolConformance(ProtocolDecl *protocol) const {
|
|
// Enums with raw types can derive their RawRepresentable conformance.
|
|
if (auto *enumDecl = dyn_cast<EnumDecl>(this)) {
|
|
auto rawRepresentable
|
|
= getASTContext().getProtocol(KnownProtocolKind::RawRepresentable);
|
|
return enumDecl->hasRawType() && protocol == rawRepresentable;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
GenericSignature::GenericSignature(ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements)
|
|
: NumGenericParams(params.size()), NumRequirements(requirements.size())
|
|
{
|
|
std::copy(params.begin(), params.end(),
|
|
getGenericParamsBuffer().data());
|
|
std::copy(requirements.begin(), requirements.end(),
|
|
getRequirementsBuffer().data());
|
|
}
|
|
|
|
GenericSignature *GenericSignature::get(ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements,
|
|
ASTContext &ctx) {
|
|
// Allocate storage for the object.
|
|
size_t bytes = sizeof(GenericSignature)
|
|
+ sizeof(GenericTypeParamType *) * params.size()
|
|
+ sizeof(Requirement) * requirements.size();
|
|
void *mem = ctx.Allocate(bytes, alignof(GenericSignature));
|
|
return new (mem) GenericSignature(params, requirements);
|
|
}
|
|
|
|
GenericSignature *GenericSignature::getCanonical(
|
|
ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements,
|
|
ASTContext &ctx) {
|
|
// Canonicalize the parameters and requirements.
|
|
SmallVector<GenericTypeParamType*, 8> canonicalParams;
|
|
canonicalParams.reserve(params.size());
|
|
for (auto param : params) {
|
|
canonicalParams.push_back(cast<GenericTypeParamType>(param->getCanonicalType()));
|
|
}
|
|
|
|
SmallVector<Requirement, 8> canonicalRequirements;
|
|
canonicalRequirements.reserve(requirements.size());
|
|
for (auto &reqt : requirements) {
|
|
canonicalRequirements.push_back(Requirement(reqt.getKind(),
|
|
reqt.getFirstType()->getCanonicalType(),
|
|
reqt.getSecondType().getCanonicalTypeOrNull()));
|
|
}
|
|
return get(canonicalParams, canonicalRequirements, ctx);
|
|
}
|
|
|
|
void NominalTypeDecl::setGenericSignature(
|
|
ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements) {
|
|
assert(!GenericSig && "Already have generic signature");
|
|
GenericSig = GenericSignature::get(params, requirements, getASTContext());
|
|
}
|
|
|
|
void NominalTypeDecl::computeType() {
|
|
assert(!hasType() && "Nominal type declaration already has a type");
|
|
|
|
// Compute the declared type.
|
|
Type parentTy = getDeclContext()->getDeclaredTypeInContext();
|
|
ASTContext &ctx = getASTContext();
|
|
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
|
|
if (!DeclaredTy)
|
|
DeclaredTy = ProtocolType::get(proto, ctx);
|
|
} else if (getGenericParams()) {
|
|
DeclaredTy = UnboundGenericType::get(this, parentTy, ctx);
|
|
} else {
|
|
DeclaredTy = NominalType::get(this, parentTy, ctx);
|
|
}
|
|
|
|
// Set the type.
|
|
setType(MetatypeType::get(DeclaredTy, ctx));
|
|
|
|
// A protocol has an implicit generic parameter list consisting of a single
|
|
// generic parameter, Self, that conforms to the protocol itself. This
|
|
// parameter is always implicitly bound.
|
|
//
|
|
// If this protocol has been deserialized, it already has generic parameters.
|
|
// Don't add them again.
|
|
if (!getGenericParams()) {
|
|
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
|
|
// The generic parameter 'Self'.
|
|
auto selfId = ctx.getIdentifier("Self");
|
|
auto selfDecl = new (ctx) GenericTypeParamDecl(proto, selfId,
|
|
proto->getLoc(), 0, 0);
|
|
auto protoRef = new (ctx) SimpleIdentTypeRepr(proto->getLoc(),
|
|
proto->getName());
|
|
protoRef->setValue(proto);
|
|
TypeLoc selfInherited[1] = { TypeLoc(protoRef) };
|
|
selfInherited[0].setType(DeclaredTy);
|
|
selfDecl->setInherited(ctx.AllocateCopy(selfInherited));
|
|
selfDecl->setImplicit();
|
|
|
|
// The generic parameter list itself.
|
|
GenericParams = GenericParamList::create(ctx, SourceLoc(),
|
|
GenericParam(selfDecl),
|
|
SourceLoc());
|
|
}
|
|
}
|
|
}
|
|
|
|
Type NominalTypeDecl::getDeclaredTypeInContext() {
|
|
if (DeclaredTyInContext)
|
|
return DeclaredTyInContext;
|
|
|
|
Type Ty = getDeclaredType();
|
|
if (UnboundGenericType *UGT = Ty->getAs<UnboundGenericType>()) {
|
|
// If we have an unbound generic type, bind the type to the archetypes
|
|
// in the type's definition.
|
|
NominalTypeDecl *D = UGT->getDecl();
|
|
SmallVector<Type, 4> GenericArgs;
|
|
for (auto Param : *D->getGenericParams())
|
|
GenericArgs.push_back(Param.getAsTypeParam()->getArchetype());
|
|
Ty = BoundGenericType::get(D, getDeclContext()->getDeclaredTypeInContext(),
|
|
GenericArgs);
|
|
}
|
|
DeclaredTyInContext = Ty;
|
|
return DeclaredTyInContext;
|
|
}
|
|
|
|
Type NominalTypeDecl::computeInterfaceType() const {
|
|
if (InterfaceTy)
|
|
return InterfaceTy;
|
|
|
|
// Figure out the interface type of the parent.
|
|
Type parentType;
|
|
if (auto typeOfParentContext = getDeclContext()->getDeclaredTypeOfContext())
|
|
parentType = typeOfParentContext->getAnyNominal()
|
|
->getDeclaredInterfaceType();
|
|
|
|
Type type;
|
|
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
|
|
type = ProtocolType::get(const_cast<ProtocolDecl *>(proto),getASTContext());
|
|
} else if (auto params = getGenericParams()) {
|
|
// If we have a generic type, bind the type to the archetypes
|
|
// in the type's definition.
|
|
SmallVector<Type, 4> genericArgs;
|
|
for (auto param : *params)
|
|
genericArgs.push_back(param.getAsTypeParam()->getDeclaredType());
|
|
|
|
type = BoundGenericType::get(const_cast<NominalTypeDecl *>(this),
|
|
parentType, genericArgs);
|
|
} else {
|
|
type = NominalType::get(const_cast<NominalTypeDecl *>(this), parentType,
|
|
getASTContext());
|
|
}
|
|
|
|
InterfaceTy = MetatypeType::get(type, getASTContext());
|
|
return InterfaceTy;
|
|
|
|
}
|
|
|
|
ExtensionRange NominalTypeDecl::getExtensions() {
|
|
auto &context = Decl::getASTContext();
|
|
|
|
// If our list of extensions is out of date, update it now.
|
|
if (context.getCurrentGeneration() > ExtensionGeneration) {
|
|
unsigned previousGeneration = ExtensionGeneration;
|
|
ExtensionGeneration = context.getCurrentGeneration();
|
|
context.loadExtensions(this, previousGeneration);
|
|
}
|
|
|
|
return ExtensionRange(ExtensionIterator(FirstExtension), ExtensionIterator());
|
|
}
|
|
|
|
void NominalTypeDecl::addExtension(ExtensionDecl *extension) {
|
|
assert(!extension->NextExtension.getInt() && "Already added extension");
|
|
extension->NextExtension.setInt(true);
|
|
|
|
// First extension; set both first and last.
|
|
if (!FirstExtension) {
|
|
FirstExtension = extension;
|
|
LastExtension = extension;
|
|
return;
|
|
}
|
|
|
|
// Add to the end of the list.
|
|
LastExtension->NextExtension.setPointer(extension);
|
|
LastExtension = extension;
|
|
}
|
|
|
|
void NominalTypeDecl::getImplicitProtocols(
|
|
SmallVectorImpl<ProtocolDecl *> &protocols) {
|
|
// If this is a class, it conforms to the DynamicLookup protocol.
|
|
if (isa<ClassDecl>(this)) {
|
|
if (auto dynamicLookup
|
|
= getASTContext().getProtocol(KnownProtocolKind::DynamicLookup)) {
|
|
protocols.push_back(dynamicLookup);
|
|
}
|
|
}
|
|
}
|
|
|
|
OptionalTypeKind NominalTypeDecl::classifyAsOptionalType() const {
|
|
const ASTContext &ctx = getASTContext();
|
|
if (this == ctx.getOptionalDecl()) {
|
|
return OTK_Optional;
|
|
} else if (this == ctx.getUncheckedOptionalDecl()) {
|
|
return OTK_UncheckedOptional;
|
|
} else {
|
|
return OTK_None;
|
|
}
|
|
}
|
|
|
|
TypeAliasDecl::TypeAliasDecl(SourceLoc TypeAliasLoc, Identifier Name,
|
|
SourceLoc NameLoc, TypeLoc UnderlyingTy,
|
|
DeclContext *DC)
|
|
: TypeDecl(DeclKind::TypeAlias, DC, Name, NameLoc, {}),
|
|
TypeAliasLoc(TypeAliasLoc),
|
|
UnderlyingTy(UnderlyingTy)
|
|
{
|
|
// Set the type of the TypeAlias to the right MetatypeType.
|
|
ASTContext &Ctx = getASTContext();
|
|
AliasTy = new (Ctx, AllocationArena::Permanent) NameAliasType(this);
|
|
setType(MetatypeType::get(AliasTy, Ctx));
|
|
}
|
|
|
|
SourceRange TypeAliasDecl::getSourceRange() const {
|
|
if (UnderlyingTy.hasLocation())
|
|
return { TypeAliasLoc, UnderlyingTy.getSourceRange().End };
|
|
// FIXME: Inherits clauses
|
|
return { TypeAliasLoc, getNameLoc() };
|
|
}
|
|
|
|
GenericTypeParamDecl::GenericTypeParamDecl(DeclContext *dc, Identifier name,
|
|
SourceLoc nameLoc,
|
|
unsigned depth, unsigned index)
|
|
: AbstractTypeParamDecl(DeclKind::GenericTypeParam, dc, name, nameLoc),
|
|
Depth(depth), Index(index)
|
|
{
|
|
auto &ctx = dc->getASTContext();
|
|
auto type = new (ctx, AllocationArena::Permanent) GenericTypeParamType(this);
|
|
setType(MetatypeType::get(type, ctx));
|
|
}
|
|
|
|
SourceRange GenericTypeParamDecl::getSourceRange() const {
|
|
SourceLoc endLoc = getNameLoc();
|
|
|
|
if (!getInherited().empty()) {
|
|
endLoc = getInherited().back().getSourceRange().End;
|
|
}
|
|
return SourceRange(getNameLoc(), endLoc);
|
|
}
|
|
|
|
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
|
|
Identifier name, SourceLoc nameLoc,
|
|
TypeLoc defaultDefinition)
|
|
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
|
|
KeywordLoc(keywordLoc), DefaultDefinition(defaultDefinition)
|
|
{
|
|
auto &ctx = dc->getASTContext();
|
|
auto type = new (ctx, AllocationArena::Permanent) AssociatedTypeType(this);
|
|
setType(MetatypeType::get(type, ctx));
|
|
}
|
|
|
|
SourceRange AssociatedTypeDecl::getSourceRange() const {
|
|
SourceLoc endLoc = getNameLoc();
|
|
|
|
if (!getInherited().empty()) {
|
|
endLoc = getInherited().back().getSourceRange().End;
|
|
}
|
|
return SourceRange(KeywordLoc, endLoc);
|
|
}
|
|
|
|
EnumDecl::EnumDecl(SourceLoc EnumLoc,
|
|
Identifier Name, SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> Inherited,
|
|
GenericParamList *GenericParams, DeclContext *Parent)
|
|
: NominalTypeDecl(DeclKind::Enum, Parent, Name, NameLoc, Inherited,
|
|
GenericParams),
|
|
EnumLoc(EnumLoc)
|
|
{
|
|
EnumDeclBits.Circularity
|
|
= static_cast<unsigned>(CircularityCheck::Unchecked);
|
|
}
|
|
|
|
StructDecl::StructDecl(SourceLoc StructLoc, Identifier Name, SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> Inherited,
|
|
GenericParamList *GenericParams, DeclContext *Parent)
|
|
: NominalTypeDecl(DeclKind::Struct, Parent, Name, NameLoc, Inherited,
|
|
GenericParams),
|
|
StructLoc(StructLoc) { }
|
|
|
|
ClassDecl::ClassDecl(SourceLoc ClassLoc, Identifier Name, SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> Inherited,
|
|
GenericParamList *GenericParams, DeclContext *Parent)
|
|
: NominalTypeDecl(DeclKind::Class, Parent, Name, NameLoc, Inherited,
|
|
GenericParams),
|
|
ClassLoc(ClassLoc) {
|
|
ClassDeclBits.Circularity
|
|
= static_cast<unsigned>(CircularityCheck::Unchecked);
|
|
ClassDeclBits.RequiresStoredPropertyInits = 0;
|
|
}
|
|
|
|
DestructorDecl *ClassDecl::getDestructor() {
|
|
auto name = getASTContext().getIdentifier("destructor");
|
|
auto results = lookupDirect(name);
|
|
assert(!results.empty() && "Class without destructor?");
|
|
assert(results.size() == 1 && "More than one destructor?");
|
|
return cast<DestructorDecl>(results.front());
|
|
}
|
|
|
|
EnumCaseDecl *EnumCaseDecl::create(SourceLoc CaseLoc,
|
|
ArrayRef<EnumElementDecl *> Elements,
|
|
DeclContext *DC) {
|
|
void *buf = DC->getASTContext()
|
|
.Allocate(sizeof(EnumCaseDecl) +
|
|
sizeof(EnumElementDecl*) * Elements.size(),
|
|
alignof(EnumCaseDecl));
|
|
return ::new (buf) EnumCaseDecl(CaseLoc, Elements, DC);
|
|
}
|
|
|
|
EnumElementDecl *EnumDecl::getElement(Identifier Name) const {
|
|
// FIXME: Linear search is not great for large enum decls.
|
|
for (Decl *D : getMembers())
|
|
if (EnumElementDecl *Elt = dyn_cast<EnumElementDecl>(D))
|
|
if (Elt->getName() == Name)
|
|
return Elt;
|
|
return 0;
|
|
}
|
|
|
|
ProtocolDecl::ProtocolDecl(DeclContext *DC, SourceLoc ProtocolLoc,
|
|
SourceLoc NameLoc, Identifier Name,
|
|
MutableArrayRef<TypeLoc> Inherited)
|
|
: NominalTypeDecl(DeclKind::Protocol, DC, Name, NameLoc, Inherited,
|
|
nullptr),
|
|
ProtocolLoc(ProtocolLoc)
|
|
{
|
|
ProtocolDeclBits.RequiresClassValid = false;
|
|
ProtocolDeclBits.RequiresClass = false;
|
|
ProtocolDeclBits.ExistentialConformsToSelfValid = false;
|
|
ProtocolDeclBits.ExistentialConformsToSelf = false;
|
|
ProtocolDeclBits.KnownProtocol = 0;
|
|
ProtocolDeclBits.Circularity
|
|
= static_cast<unsigned>(CircularityCheck::Unchecked);
|
|
}
|
|
|
|
bool ProtocolDecl::inheritsFrom(const ProtocolDecl *Super) const {
|
|
if (this == Super)
|
|
return false;
|
|
|
|
llvm::SmallPtrSet<const ProtocolDecl *, 4> Visited;
|
|
SmallVector<const ProtocolDecl *, 4> Stack;
|
|
|
|
Stack.push_back(this);
|
|
Visited.insert(this);
|
|
while (!Stack.empty()) {
|
|
const ProtocolDecl *Current = Stack.back();
|
|
Stack.pop_back();
|
|
|
|
for (auto InheritedProto : Current->getProtocols()) {
|
|
if (InheritedProto == Super)
|
|
return true;
|
|
|
|
if (Visited.insert(InheritedProto))
|
|
Stack.push_back(InheritedProto);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ProtocolDecl::collectInherited(
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> &Inherited) {
|
|
SmallVector<const ProtocolDecl *, 4> Stack;
|
|
|
|
Stack.push_back(this);
|
|
while (!Stack.empty()) {
|
|
const ProtocolDecl *Current = Stack.back();
|
|
Stack.pop_back();
|
|
|
|
for (auto InheritedProto : Current->getProtocols()) {
|
|
if (Inherited.insert(InheritedProto))
|
|
Stack.push_back(InheritedProto);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ProtocolDecl::requiresClassSlow() {
|
|
ProtocolDeclBits.RequiresClass = false;
|
|
|
|
if (isProtocolsValid()) {
|
|
// Only cache the result if it can not change in future.
|
|
ProtocolDeclBits.RequiresClassValid = true;
|
|
}
|
|
|
|
if (getAttrs().isClassProtocol()) {
|
|
ProtocolDeclBits.RequiresClass = true;
|
|
return true;
|
|
}
|
|
|
|
// Check inherited protocols for class-ness.
|
|
for (auto *proto : getProtocols()) {
|
|
if (proto->requiresClass()) {
|
|
ProtocolDeclBits.RequiresClass = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
GenericTypeParamDecl *ProtocolDecl::getSelf() const {
|
|
return getGenericParams()->getParams()[0].getAsTypeParam();
|
|
}
|
|
|
|
void AbstractStorageDecl::setComputedAccessors(SourceLoc LBraceLoc,
|
|
FuncDecl *Get, FuncDecl *Set,
|
|
SourceLoc RBraceLoc) {
|
|
auto &Context = getASTContext();
|
|
assert(!GetSetInfo && "Variable already has accessors?");
|
|
void *Mem = Context.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
|
|
GetSetInfo = new (Mem) GetSetRecord;
|
|
GetSetInfo->Braces = SourceRange(LBraceLoc, RBraceLoc);
|
|
GetSetInfo->Get = Get;
|
|
GetSetInfo->Set = Set;
|
|
|
|
if (Get)
|
|
Get->makeGetter(this);
|
|
if (Set)
|
|
Set->makeSetter(this);
|
|
}
|
|
|
|
|
|
/// \brief Returns whether the var is settable in the specified context: this
|
|
/// is either because it is a stored var, because it has a custom setter, or
|
|
/// is a let member in an initializer.
|
|
bool VarDecl::isSettable(DeclContext *UseDC) const {
|
|
// 'let' properties are generally immutable, unless they are a 'let' ivar
|
|
// and we are in the init() for the type that holds the ivar.
|
|
if (isLet()) {
|
|
if (auto *CD = dyn_cast<ConstructorDecl>(UseDC))
|
|
if (CD->getDeclContext() == getDeclContext())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// vars are settable unless they are computed and have no setter.
|
|
return !isComputed() || getSetter();
|
|
}
|
|
|
|
SourceRange VarDecl::getTypeSourceRangeForDiagnostics() const {
|
|
if (!getParentPattern())
|
|
return getSourceRange();
|
|
|
|
auto *Pat = getParentPattern()->getPattern();
|
|
if (auto *VP = dyn_cast<VarPattern>(Pat))
|
|
Pat = VP->getSubPattern();
|
|
if (auto *TP = dyn_cast<TypedPattern>(Pat))
|
|
return TP->getTypeLoc().getTypeRepr()->getSourceRange();
|
|
return getSourceRange();
|
|
}
|
|
|
|
Type VarDecl::getGetterType() const {
|
|
// If we have a getter, use its type.
|
|
if (auto getter = getGetter())
|
|
return getter->getType();
|
|
|
|
// Otherwise, compute the type.
|
|
GenericParamList *outerParams = nullptr;
|
|
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/isStatic(),
|
|
/*@mutating*/false,
|
|
&outerParams);
|
|
|
|
// Form the getter type.
|
|
auto &ctx = getASTContext();
|
|
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx), getType());
|
|
|
|
// Add 'self', if we have one.
|
|
if (selfTy) {
|
|
if (outerParams)
|
|
getterTy = PolymorphicFunctionType::get(selfTy, getterTy, outerParams);
|
|
else
|
|
getterTy = FunctionType::get(selfTy, getterTy);
|
|
}
|
|
|
|
return getterTy;
|
|
}
|
|
|
|
Type VarDecl::getGetterInterfaceType() const {
|
|
// If we have a getter, use its type.
|
|
if (auto getter = getGetter())
|
|
return getter->getInterfaceType();
|
|
|
|
// Otherwise, compute the type.
|
|
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/isStatic(),
|
|
/*@mutating*/ false);
|
|
|
|
// Form the getter type.
|
|
auto &ctx = getASTContext();
|
|
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx),
|
|
getInterfaceType());
|
|
|
|
// Add 'self', if we have one.
|
|
if (selfTy) {
|
|
ArrayRef<GenericTypeParamType*> genericParams;
|
|
ArrayRef<Requirement> requirements;
|
|
std::tie(genericParams, requirements)
|
|
= getDeclContext()->getGenericSignatureOfContext();
|
|
|
|
if (genericParams.empty() && requirements.empty())
|
|
getterTy = FunctionType::get(selfTy, getterTy);
|
|
else
|
|
getterTy = GenericFunctionType::get(genericParams, requirements,
|
|
selfTy, getterTy,
|
|
AnyFunctionType::ExtInfo());
|
|
}
|
|
|
|
return getterTy;
|
|
}
|
|
|
|
Type VarDecl::getSetterType() const {
|
|
// If we have a setter, use its type.
|
|
if (auto setter = getSetter())
|
|
return setter->getType();
|
|
|
|
// Otherwise, compute the type.
|
|
GenericParamList *outerParams = nullptr;
|
|
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/isStatic(),
|
|
/*@mutating*/!isStatic(),
|
|
&outerParams);
|
|
|
|
// Form the element -> () function type.
|
|
auto &ctx = getASTContext();
|
|
TupleTypeElt valueElt(getType(), ctx.getIdentifier("value"));
|
|
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
|
|
TupleType::getEmpty(ctx));
|
|
|
|
// Add the 'self' type, if we have one.
|
|
if (selfTy) {
|
|
if (outerParams)
|
|
setterTy = PolymorphicFunctionType::get(selfTy, setterTy, outerParams);
|
|
else
|
|
setterTy = FunctionType::get(selfTy, setterTy);
|
|
}
|
|
|
|
return setterTy;
|
|
}
|
|
|
|
Type VarDecl::getSetterInterfaceType() const {
|
|
// If we have a getter, use its type.
|
|
if (auto setter = getSetter())
|
|
return setter->getInterfaceType();
|
|
|
|
// Otherwise, compute the type.
|
|
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/isStatic(),
|
|
/*@mutating*/ !isStatic());
|
|
|
|
// Form the element -> () function type.
|
|
auto &ctx = getASTContext();
|
|
TupleTypeElt valueElt(getInterfaceType(), ctx.getIdentifier("value"));
|
|
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
|
|
TupleType::getEmpty(ctx));
|
|
|
|
// Add the 'self' type, if we have one.
|
|
if (selfTy) {
|
|
ArrayRef<GenericTypeParamType*> genericParams;
|
|
ArrayRef<Requirement> requirements;
|
|
std::tie(genericParams, requirements)
|
|
= getDeclContext()->getGenericSignatureOfContext();
|
|
|
|
if (genericParams.empty() && requirements.empty())
|
|
setterTy = FunctionType::get(selfTy, setterTy);
|
|
else
|
|
setterTy = GenericFunctionType::get(genericParams, requirements,
|
|
selfTy, setterTy,
|
|
AnyFunctionType::ExtInfo());
|
|
}
|
|
|
|
return setterTy;
|
|
}
|
|
|
|
/// Return true if this stored property needs to be accessed with getters and
|
|
/// setters for Objective-C.
|
|
bool AbstractStorageDecl::usesObjCGetterAndSetter() const {
|
|
// We don't export generic methods or subclasses to IRGen yet.
|
|
auto *DC = getDeclContext();
|
|
if (DC->getDeclaredTypeInContext() &&
|
|
DC->getDeclaredTypeInContext()->is<BoundGenericType>() &&
|
|
!isa<ProtocolDecl>(DC))
|
|
return false;
|
|
|
|
if (auto override = getOverriddenDecl())
|
|
return override->usesObjCGetterAndSetter();
|
|
|
|
if (!isObjC())
|
|
return false;
|
|
|
|
// Don't expose objc properties for variables with function type. We can't
|
|
// autorelease them, and eventually we want to map them back to blocks.
|
|
if (isa<VarDecl>(this) && getType()->is<AnyFunctionType>())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool VarDecl::isAnonClosureParam() const {
|
|
auto name = getName();
|
|
if (name.empty())
|
|
return false;
|
|
|
|
auto nameStr = name.str();
|
|
if (nameStr.empty())
|
|
return false;
|
|
|
|
return nameStr[0] == '$';
|
|
}
|
|
|
|
|
|
/// Determine whether the given type is (or bridges to) an
|
|
/// Objective-C object type.
|
|
static bool isObjCObjectOrBridgedType(Type type) {
|
|
// FIXME: Bridged types info should be available here in the AST
|
|
// library, rather than hard-coding them.
|
|
if (auto structTy = type->getAs<StructType>()) {
|
|
auto structDecl = structTy->getDecl();
|
|
const DeclContext *DC = structDecl->getDeclContext();
|
|
if (DC->isModuleScopeContext() && DC->getParentModule()->isStdlibModule()) {
|
|
if (structDecl->getName().str() == "String")
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Unwrap metatypes for remaining checks.
|
|
if (auto metaTy = type->getAs<MetatypeType>())
|
|
type = metaTy->getInstanceType();
|
|
|
|
// Class types are Objective-C object types.
|
|
if (type->is<ClassType>())
|
|
return true;
|
|
|
|
// [objc] protocols
|
|
if (auto protoTy = type->getAs<ProtocolType>()) {
|
|
auto proto = protoTy->getDecl();
|
|
return proto->requiresClass() && proto->isObjC();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the given Swift type is an integral type, i.e.,
|
|
/// a type that wraps a builtin integer.
|
|
static bool isIntegralType(Type type) {
|
|
// Consider structs in the "swift" module that wrap a builtin
|
|
// integer type to be integral types.
|
|
if (auto structTy = type->getAs<StructType>()) {
|
|
auto structDecl = structTy->getDecl();
|
|
const DeclContext *DC = structDecl->getDeclContext();
|
|
if (!DC->isModuleScopeContext() || !DC->getParentModule()->isStdlibModule())
|
|
return false;
|
|
|
|
// Find the single ivar.
|
|
VarDecl *singleVar = nullptr;
|
|
for (auto member : structDecl->getMembers()) {
|
|
auto var = dyn_cast<VarDecl>(member);
|
|
if (!var || var->isComputed())
|
|
continue;
|
|
|
|
if (singleVar)
|
|
return false;
|
|
|
|
singleVar = var;
|
|
}
|
|
|
|
if (!singleVar)
|
|
return false;
|
|
|
|
// Check whether it has integer type.
|
|
return singleVar->getType()->is<BuiltinIntegerType>();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Type SubscriptDecl::getGetterType() const {
|
|
// If we have a getter, use its type.
|
|
if (auto getter = getGetter())
|
|
return getter->getType();
|
|
|
|
// Otherwise, compute the type.
|
|
GenericParamList *outerParams = nullptr;
|
|
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/false,
|
|
/*@mutating*/false,
|
|
&outerParams);
|
|
|
|
// Form the () -> element function type.
|
|
auto &ctx = getASTContext();
|
|
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx), getElementType());
|
|
|
|
// Prepend the indices.
|
|
getterTy = FunctionType::get(getIndices()->getType(), getterTy);
|
|
|
|
// Prepend the 'self' type.
|
|
if (outerParams)
|
|
getterTy = PolymorphicFunctionType::get(selfTy, getterTy, outerParams);
|
|
else
|
|
getterTy = FunctionType::get(selfTy, getterTy);
|
|
|
|
return getterTy;
|
|
}
|
|
|
|
Type SubscriptDecl::getGetterInterfaceType() const {
|
|
// If we have a getter, use its type.
|
|
if (auto getter = getGetter())
|
|
return getter->getInterfaceType();
|
|
|
|
// Otherwise, compute the type.
|
|
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/false,
|
|
/*@mutating*/ false);
|
|
|
|
auto interfaceTy = getInterfaceType()->castTo<AnyFunctionType>();
|
|
auto indicesTy = interfaceTy->getInput();
|
|
auto elementTy = interfaceTy->getResult();
|
|
|
|
// Form the () -> element function type.
|
|
auto &ctx = getASTContext();
|
|
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx), elementTy);
|
|
|
|
// Prepend the indices.
|
|
getterTy = FunctionType::get(indicesTy, getterTy);
|
|
|
|
// Prepend the 'self' type.
|
|
ArrayRef<GenericTypeParamType*> genericParams;
|
|
ArrayRef<Requirement> requirements;
|
|
std::tie(genericParams, requirements)
|
|
= getDeclContext()->getGenericSignatureOfContext();
|
|
|
|
if (genericParams.empty() && requirements.empty())
|
|
getterTy = FunctionType::get(selfTy, getterTy);
|
|
else
|
|
getterTy = GenericFunctionType::get(genericParams, requirements,
|
|
selfTy, getterTy,
|
|
AnyFunctionType::ExtInfo());
|
|
|
|
return getterTy;
|
|
}
|
|
|
|
Type SubscriptDecl::getSetterType() const {
|
|
// If we have a setter, use its type.
|
|
if (auto setter = getSetter())
|
|
return setter->getType();
|
|
|
|
// Otherwise, compute the type.
|
|
GenericParamList *outerParams = nullptr;
|
|
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/false,
|
|
/*@mutating*/true,
|
|
&outerParams);
|
|
|
|
// Form the element -> () function type.
|
|
auto &ctx = getASTContext();
|
|
TupleTypeElt valueElt(getElementType(), ctx.getIdentifier("value"));
|
|
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
|
|
TupleType::getEmpty(ctx));
|
|
|
|
// Prepend the indices.
|
|
setterTy = FunctionType::get(getIndices()->getType(), setterTy);
|
|
|
|
// Prepend the 'self' type.
|
|
if (outerParams)
|
|
setterTy = PolymorphicFunctionType::get(selfTy, setterTy, outerParams);
|
|
else
|
|
setterTy = FunctionType::get(selfTy, setterTy);
|
|
|
|
return setterTy;
|
|
}
|
|
|
|
Type SubscriptDecl::getSetterInterfaceType() const {
|
|
// If we have a setter, use its type.
|
|
if (auto setter = getSetter())
|
|
return setter->getInterfaceType();
|
|
|
|
// Otherwise, compute the type.
|
|
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/false,
|
|
/*@mutating*/ true);
|
|
|
|
auto interfaceTy = getInterfaceType()->castTo<AnyFunctionType>();
|
|
auto indicesTy = interfaceTy->getInput();
|
|
auto elementTy = interfaceTy->getResult();
|
|
|
|
// Form the element -> () function type.
|
|
auto &ctx = getASTContext();
|
|
TupleTypeElt valueElt(elementTy, ctx.getIdentifier("value"));
|
|
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
|
|
TupleType::getEmpty(ctx));
|
|
|
|
// Prepend the indices.
|
|
setterTy = FunctionType::get(indicesTy, setterTy);
|
|
|
|
// Prepend the 'self' type.
|
|
ArrayRef<GenericTypeParamType*> genericParams;
|
|
ArrayRef<Requirement> requirements;
|
|
std::tie(genericParams, requirements)
|
|
= getDeclContext()->getGenericSignatureOfContext();
|
|
|
|
if (genericParams.empty() && requirements.empty())
|
|
setterTy = FunctionType::get(selfTy, setterTy);
|
|
else
|
|
setterTy = GenericFunctionType::get(genericParams, requirements,
|
|
selfTy, setterTy,
|
|
AnyFunctionType::ExtInfo());
|
|
|
|
return setterTy;
|
|
}
|
|
|
|
ObjCSubscriptKind SubscriptDecl::getObjCSubscriptKind() const {
|
|
auto indexTy = getIndices()->getType();
|
|
|
|
// Look through a named 1-tuple.
|
|
if (auto tupleTy = indexTy->getAs<TupleType>()) {
|
|
if (tupleTy->getNumElements() == 1 &&
|
|
!tupleTy->getFields()[0].isVararg()) {
|
|
indexTy = tupleTy->getElementType(0);
|
|
}
|
|
}
|
|
|
|
// If the index type is an integral type, we have an indexed
|
|
// subscript.
|
|
if (isIntegralType(indexTy))
|
|
return ObjCSubscriptKind::Indexed;
|
|
|
|
// If the index type is an object type in Objective-C, we have a
|
|
// keyed subscript.
|
|
if (isObjCObjectOrBridgedType(indexTy))
|
|
return ObjCSubscriptKind::Keyed;
|
|
|
|
return ObjCSubscriptKind::None;
|
|
}
|
|
|
|
StringRef SubscriptDecl::getObjCGetterSelector() const {
|
|
switch (getObjCSubscriptKind()) {
|
|
case ObjCSubscriptKind::None:
|
|
llvm_unreachable("Not an Objective-C subscript");
|
|
|
|
case ObjCSubscriptKind::Indexed:
|
|
return "objectAtIndexedSubscript:";
|
|
|
|
case ObjCSubscriptKind::Keyed:
|
|
return "objectForKeyedSubscript:";
|
|
}
|
|
}
|
|
|
|
StringRef SubscriptDecl::getObjCSetterSelector() const {
|
|
switch (getObjCSubscriptKind()) {
|
|
case ObjCSubscriptKind::None:
|
|
llvm_unreachable("Not an Objective-C subscript");
|
|
|
|
case ObjCSubscriptKind::Indexed:
|
|
return "setObject:atIndexedSubscript:";
|
|
|
|
case ObjCSubscriptKind::Keyed:
|
|
return "setObject:forKeyedSubscript:";
|
|
}
|
|
}
|
|
|
|
SourceRange SubscriptDecl::getSourceRange() const {
|
|
if (getBracesRange().isValid())
|
|
return { getSubscriptLoc(), getBracesRange().End };
|
|
return { getSubscriptLoc(), ElementTy.getSourceRange().End };
|
|
}
|
|
|
|
|
|
Type AbstractFunctionDecl::
|
|
computeSelfType(GenericParamList **outerGenericParams) {
|
|
bool isStatic = false;
|
|
bool isMutating = false;
|
|
|
|
if (auto *FD = dyn_cast<FuncDecl>(this)) {
|
|
isStatic = FD->isStatic();
|
|
isMutating = FD->isMutating();
|
|
} else if (isa<ConstructorDecl>(this) || isa<DestructorDecl>(this)) {
|
|
// constructors and destructors of value types always have an implicitly
|
|
// @inout self.
|
|
isMutating = true;
|
|
}
|
|
|
|
return getDeclContext()->getSelfTypeInContext(isStatic, isMutating,
|
|
outerGenericParams);
|
|
}
|
|
|
|
VarDecl *AbstractFunctionDecl::getImplicitSelfDeclSlow() const {
|
|
if (auto FD = dyn_cast<FuncDecl>(this)) {
|
|
VarDecl *SelfDecl = FD->getImplicitSelfDeclImpl();
|
|
ImplicitSelfDeclAndIsCached.setPointerAndInt(SelfDecl, true);
|
|
return SelfDecl;
|
|
}
|
|
ImplicitSelfDeclAndIsCached.setPointerAndInt(nullptr, true);
|
|
return nullptr;
|
|
}
|
|
|
|
Type AbstractFunctionDecl::getExtensionType() const {
|
|
return getDeclContext()->getDeclaredTypeInContext();
|
|
}
|
|
|
|
std::pair<DefaultArgumentKind, Type>
|
|
AbstractFunctionDecl::getDefaultArg(unsigned Index) const {
|
|
ArrayRef<const Pattern *> Patterns = getArgParamPatterns();
|
|
|
|
if (isa<FuncDecl>(this) && getImplicitSelfDecl()) {
|
|
// Skip the 'self' parameter; it is not counted.
|
|
Patterns = Patterns.slice(1);
|
|
}
|
|
|
|
// Find the (sub-)pattern for this index.
|
|
// FIXME: This is O(n), which is lame. We should fix the FuncDecl
|
|
// representation.
|
|
const TuplePatternElt *Found = nullptr;
|
|
for (auto OrigPattern : Patterns) {
|
|
auto Params =
|
|
dyn_cast<TuplePattern>(OrigPattern->getSemanticsProvidingPattern());
|
|
if (!Params) {
|
|
if (Index == 0) {
|
|
return { DefaultArgumentKind::None, Type() };
|
|
}
|
|
|
|
--Index;
|
|
continue;
|
|
}
|
|
|
|
for (auto &Elt : Params->getFields()) {
|
|
if (Index == 0) {
|
|
Found = &Elt;
|
|
break;
|
|
}
|
|
--Index;
|
|
}
|
|
|
|
if (Found)
|
|
break;
|
|
}
|
|
|
|
assert(Found && "No argument with this index");
|
|
return { Found->getDefaultArgKind(), Found->getPattern()->getType() };
|
|
}
|
|
|
|
VarDecl *FuncDecl::getImplicitSelfDeclImpl() const {
|
|
ArrayRef<const Pattern *> ArgParamPatterns = getArgParamPatterns();
|
|
if (ArgParamPatterns.empty())
|
|
return nullptr;
|
|
|
|
// "self" is represented as (typed_pattern (named_pattern (var_decl 'self')).
|
|
const Pattern *P = ArgParamPatterns[0]->getSemanticsProvidingPattern();
|
|
|
|
// The decl should be named 'self' and be implicit.
|
|
auto NP = dyn_cast<NamedPattern>(P);
|
|
if (NP && NP->getBoundName().str() == "self" && NP->isImplicit())
|
|
return NP->getDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
FuncDecl *FuncDecl::createDeserialized(ASTContext &Context,
|
|
SourceLoc StaticLoc, SourceLoc FuncLoc,
|
|
Identifier Name, SourceLoc NameLoc,
|
|
GenericParamList *GenericParams,
|
|
Type Ty, unsigned NumParamPatterns,
|
|
DeclContext *Parent) {
|
|
assert(NumParamPatterns > 0);
|
|
void *Mem = Context.Allocate(
|
|
sizeof(FuncDecl) + 2 * NumParamPatterns * sizeof(Pattern *),
|
|
alignof(FuncDecl));
|
|
return ::new (Mem)
|
|
FuncDecl(StaticLoc, FuncLoc, Name, NameLoc, NumParamPatterns,
|
|
GenericParams, Ty, Parent);
|
|
}
|
|
|
|
FuncDecl *FuncDecl::create(ASTContext &Context, SourceLoc StaticLoc,
|
|
SourceLoc FuncLoc, Identifier Name,
|
|
SourceLoc NameLoc, GenericParamList *GenericParams,
|
|
Type Ty, ArrayRef<Pattern *> ArgParams,
|
|
ArrayRef<Pattern *> BodyParams,
|
|
TypeLoc FnRetType, DeclContext *Parent) {
|
|
assert(ArgParams.size() == BodyParams.size());
|
|
const unsigned NumParamPatterns = ArgParams.size();
|
|
auto *FD = FuncDecl::createDeserialized(
|
|
Context, StaticLoc, FuncLoc, Name, NameLoc, GenericParams, Ty,
|
|
NumParamPatterns, Parent);
|
|
FD->setDeserializedSignature(ArgParams, BodyParams, FnRetType);
|
|
return FD;
|
|
}
|
|
|
|
void FuncDecl::setDeserializedSignature(ArrayRef<Pattern *> ArgParams,
|
|
ArrayRef<Pattern *> BodyParams,
|
|
TypeLoc FnRetType) {
|
|
MutableArrayRef<Pattern *> ArgParamsRef = getArgParamPatterns();
|
|
MutableArrayRef<Pattern *> BodyParamsRef = getBodyParamPatterns();
|
|
const unsigned NumParamPatterns = ArgParamsRef.size();
|
|
|
|
assert(ArgParams.size() == BodyParams.size());
|
|
assert(NumParamPatterns == ArgParams.size());
|
|
|
|
for (unsigned i = 0; i != NumParamPatterns; ++i)
|
|
ArgParamsRef[i] = ArgParams[i];
|
|
for (unsigned i = 0; i != NumParamPatterns; ++i)
|
|
BodyParamsRef[i] = BodyParams[i];
|
|
|
|
this->FnRetType = FnRetType;
|
|
}
|
|
|
|
Type FuncDecl::getResultType() const {
|
|
Type resultTy = getType();
|
|
if (!resultTy || resultTy->is<ErrorType>())
|
|
return resultTy;
|
|
|
|
for (unsigned i = 0, e = getNaturalArgumentCount(); i != e; ++i)
|
|
resultTy = resultTy->castTo<AnyFunctionType>()->getResult();
|
|
|
|
if (!resultTy)
|
|
resultTy = TupleType::getEmpty(getASTContext());
|
|
|
|
return resultTy;
|
|
}
|
|
|
|
bool FuncDecl::isUnaryOperator() const {
|
|
if (!isOperator())
|
|
return false;
|
|
|
|
unsigned opArgIndex = isa<ProtocolDecl>(getDeclContext()) ? 1 : 0;
|
|
|
|
auto *argTuple = dyn_cast<TuplePattern>(getArgParamPatterns()[opArgIndex]);
|
|
if (!argTuple)
|
|
return true;
|
|
|
|
return argTuple->getNumFields() == 1 && !argTuple->hasVararg();
|
|
}
|
|
|
|
bool FuncDecl::isBinaryOperator() const {
|
|
if (!isOperator())
|
|
return false;
|
|
|
|
unsigned opArgIndex = isa<ProtocolDecl>(getDeclContext()) ? 1 : 0;
|
|
|
|
auto *argTuple = dyn_cast<TuplePattern>(getArgParamPatterns()[opArgIndex]);
|
|
if (!argTuple)
|
|
return false;
|
|
|
|
return argTuple->getNumFields() == 2
|
|
|| (argTuple->getNumFields() == 1 && argTuple->hasVararg());
|
|
}
|
|
|
|
StringRef VarDecl::getObjCGetterSelector(SmallVectorImpl<char> &buffer) const {
|
|
llvm::raw_svector_ostream out(buffer);
|
|
|
|
// The getter selector is the property name itself.
|
|
// FIXME: 'is' prefix for boolean properties?
|
|
out << getName().str();
|
|
return out.str();
|
|
}
|
|
|
|
StringRef VarDecl::getObjCSetterSelector(SmallVectorImpl<char> &buffer) const {
|
|
llvm::raw_svector_ostream out(buffer);
|
|
|
|
// The setter selector for, e.g., 'fooBar' is 'setFooBar:', with the
|
|
// property name capitalized and preceded by 'set'.
|
|
StringRef name = getName().str();
|
|
assert(name.size() >= 1 && "empty var name?!");
|
|
|
|
out << "set" << char(toupper(name[0])) << name.slice(1, name.size()) << ':';
|
|
return out.str();
|
|
}
|
|
|
|
/// Produce the selector for this "Objective-C method" in the given buffer.
|
|
StringRef FuncDecl::getObjCSelector(SmallVectorImpl<char> &buffer) const {
|
|
assert(buffer.empty());
|
|
|
|
// Property accessors should go through a different path.
|
|
assert(!isGetterOrSetter());
|
|
|
|
llvm::raw_svector_ostream out(buffer);
|
|
|
|
// Start with the method name.
|
|
out << getName().str();
|
|
|
|
// We should always have exactly two levels of argument pattern.
|
|
auto argPatterns = getArgParamPatterns();
|
|
assert(argPatterns.size() == 2);
|
|
const Pattern *pattern = argPatterns[1];
|
|
auto tuple = dyn_cast<TuplePattern>(pattern);
|
|
|
|
// If it's an empty tuple pattern, it's a nullary selector.
|
|
if (tuple && tuple->getNumFields() == 0)
|
|
return out.str();
|
|
|
|
// Otherwise, it's at least a unary selector.
|
|
out << ':';
|
|
|
|
// If it's a unary selector, we're done.
|
|
if (!tuple) {
|
|
return out.str();
|
|
}
|
|
|
|
// For every element except the first, add a selector component.
|
|
for (auto &elt : tuple->getFields().slice(1)) {
|
|
auto eltPattern = elt.getPattern()->getSemanticsProvidingPattern();
|
|
|
|
// Add a label to the selector component if there's a tag.
|
|
if (auto named = dyn_cast<NamedPattern>(eltPattern)) {
|
|
out << named->getBoundName().str();
|
|
}
|
|
|
|
// Add the colon regardless. Yes, this can sometimes create a
|
|
// component that's just a colon, and that's actually a legal
|
|
// selector.
|
|
out << ':';
|
|
}
|
|
|
|
return out.str();
|
|
}
|
|
|
|
SourceRange FuncDecl::getSourceRange() const {
|
|
if (getBodyKind() == BodyKind::Unparsed ||
|
|
getBodyKind() == BodyKind::Skipped)
|
|
return { FuncLoc, BodyEndLoc };
|
|
|
|
if (auto *B = getBody())
|
|
return { FuncLoc, B->getEndLoc() };
|
|
if (getBodyResultTypeLoc().hasLocation())
|
|
return { FuncLoc, getBodyResultTypeLoc().getSourceRange().End };
|
|
const Pattern *LastPat = getArgParamPatterns().back();
|
|
return { FuncLoc, LastPat->getEndLoc() };
|
|
}
|
|
|
|
SourceRange EnumElementDecl::getSourceRange() const {
|
|
if (RawValueExpr && !RawValueExpr->isImplicit())
|
|
return {getStartLoc(), RawValueExpr->getEndLoc()};
|
|
if (ArgumentType.hasLocation())
|
|
return {getStartLoc(), ArgumentType.getSourceRange().End};
|
|
return {getStartLoc(), getNameLoc()};
|
|
}
|
|
SourceRange ConstructorDecl::getSourceRange() const {
|
|
if (getBodyKind() == BodyKind::Unparsed ||
|
|
getBodyKind() == BodyKind::Skipped)
|
|
return { getConstructorLoc(), BodyEndLoc };
|
|
|
|
if (!Body || !Body->getEndLoc().isValid()) {
|
|
const DeclContext *DC = getDeclContext();
|
|
switch (DC->getContextKind()) {
|
|
case DeclContextKind::ExtensionDecl:
|
|
return cast<ExtensionDecl>(DC)->getSourceRange();
|
|
case DeclContextKind::NominalTypeDecl:
|
|
return cast<NominalTypeDecl>(DC)->getSourceRange();
|
|
default:
|
|
if (isInvalid())
|
|
return getConstructorLoc();
|
|
llvm_unreachable("Unhandled decl kind");
|
|
}
|
|
}
|
|
return { getConstructorLoc(), Body->getEndLoc() };
|
|
}
|
|
|
|
Type ConstructorDecl::getArgumentType() const {
|
|
Type ArgTy = getType();
|
|
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
|
|
ArgTy = ArgTy->castTo<AnyFunctionType>()->getInput();
|
|
return ArgTy;
|
|
}
|
|
|
|
Type ConstructorDecl::getResultType() const {
|
|
Type ArgTy = getType();
|
|
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
|
|
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
|
|
return ArgTy;
|
|
}
|
|
|
|
/// Produce the selector for this "Objective-C method" in the given buffer.
|
|
StringRef
|
|
ConstructorDecl::getObjCSelector(SmallVectorImpl<char> &buffer) const {
|
|
assert(buffer.empty());
|
|
|
|
llvm::raw_svector_ostream out(buffer);
|
|
|
|
// In the beginning, there was 'init'.
|
|
out << "init";
|
|
|
|
// If there are no parameters, this is just 'init'.
|
|
auto tuple = cast<TuplePattern>(getArgParams());
|
|
if (tuple->getNumFields() == 0) {
|
|
return out.str();
|
|
}
|
|
|
|
// The first field is special: we uppercase the name.
|
|
const auto &firstElt = tuple->getFields()[0];
|
|
auto firstPattern = firstElt.getPattern()->getSemanticsProvidingPattern();
|
|
if (auto firstNamed = dyn_cast<NamedPattern>(firstPattern)) {
|
|
if (!firstNamed->getBoundName().empty()) {
|
|
auto nameStr = firstNamed->getBoundName().str();
|
|
out << (char)toupper(nameStr[0]);
|
|
out << nameStr.substr(1);
|
|
}
|
|
|
|
// If there is only a single parameter and its type is the empty tuple
|
|
// type, we're done: don't add the trailing colon.
|
|
if (tuple->getNumFields() == 1) {
|
|
auto emptyTupleTy = TupleType::getEmpty(getASTContext());
|
|
if (!firstPattern->getType()->isEqual(emptyTupleTy))
|
|
out << ':';
|
|
return out.str();
|
|
}
|
|
|
|
// Continue with the remaining selectors.
|
|
out << ':';
|
|
}
|
|
|
|
// For every remaining element, add a selector component.
|
|
for (auto &elt : tuple->getFields().slice(1)) {
|
|
auto eltPattern = elt.getPattern()->getSemanticsProvidingPattern();
|
|
|
|
// Add a label to the selector component if there's a tag.
|
|
if (auto named = dyn_cast<NamedPattern>(eltPattern)) {
|
|
out << named->getBoundName().str();
|
|
}
|
|
|
|
// Add the colon regardless. Yes, this can sometimes create a
|
|
// component that's just a colon, and that's actually a legal
|
|
// selector.
|
|
out << ':';
|
|
}
|
|
|
|
return out.str();
|
|
}
|
|
|
|
Type ConstructorDecl::getInitializerInterfaceType() {
|
|
if (!InitializerInterfaceType) {
|
|
assert((!InitializerType || !InitializerType->is<PolymorphicFunctionType>())
|
|
&& "polymorphic function type is invalid interface type");
|
|
|
|
// Don't cache type variable types.
|
|
if (InitializerType->hasTypeVariable())
|
|
return InitializerType;
|
|
|
|
InitializerInterfaceType = InitializerType;
|
|
}
|
|
|
|
return InitializerInterfaceType;
|
|
}
|
|
|
|
void ConstructorDecl::setInitializerInterfaceType(Type t) {
|
|
assert(!t->is<PolymorphicFunctionType>()
|
|
&& "polymorphic function type is invalid interface type");
|
|
InitializerInterfaceType = t;
|
|
}
|
|
|
|
ConstructorDecl::BodyInitKind
|
|
ConstructorDecl::getDelegatingOrChainedInitKind(DiagnosticEngine *diags,
|
|
Expr **init) {
|
|
assert(hasBody() && "Constructor does not have a definition");
|
|
|
|
if (init)
|
|
*init = nullptr;
|
|
|
|
// If we already computed the result, return it.
|
|
if (ConstructorDeclBits.ComputedBodyInitKind) {
|
|
return static_cast<BodyInitKind>(
|
|
ConstructorDeclBits.ComputedBodyInitKind - 1);
|
|
}
|
|
|
|
|
|
struct FindReferenceToInitializer : ASTWalker {
|
|
BodyInitKind Kind = BodyInitKind::None;
|
|
Expr *InitExpr = nullptr;
|
|
DiagnosticEngine *Diags;
|
|
|
|
FindReferenceToInitializer(DiagnosticEngine *diags) : Diags(diags) { }
|
|
|
|
std::pair<bool, Expr*> walkToExprPre(Expr *E) override {
|
|
if (auto apply = dyn_cast<ApplyExpr>(E)) {
|
|
if (isa<OtherConstructorDeclRefExpr>(
|
|
apply->getFn()->getSemanticsProvidingExpr())) {
|
|
BodyInitKind myKind;
|
|
if (isa<SuperRefExpr>(apply->getArg()->getSemanticsProvidingExpr()))
|
|
myKind = BodyInitKind::Chained;
|
|
else
|
|
myKind = BodyInitKind::Delegating;
|
|
|
|
if (Kind == BodyInitKind::None) {
|
|
Kind = myKind;
|
|
|
|
// If we're not emitting diagnostics, we're done.
|
|
if (!Diags) {
|
|
return { false, nullptr };
|
|
}
|
|
|
|
InitExpr = E;
|
|
return { true, E };
|
|
}
|
|
|
|
assert(Diags && "Failed to abort traversal early");
|
|
|
|
// If the kind changed, complain.
|
|
if (Kind != myKind) {
|
|
// The kind changed. Complain.
|
|
Diags->diagnose(E->getLoc(), diag::init_delegates_and_chains);
|
|
Diags->diagnose(InitExpr->getLoc(), diag::init_delegation_or_chain,
|
|
Kind == BodyInitKind::Chained);
|
|
}
|
|
|
|
return { true, E };
|
|
}
|
|
}
|
|
|
|
// Don't walk into closures.
|
|
if (isa<ClosureExpr>(E))
|
|
return { false, E };
|
|
|
|
return { true, E };
|
|
}
|
|
} finder(diags);
|
|
getBody()->walk(finder);
|
|
|
|
// If we didn't find any delegating or chained initializers, check whether
|
|
// we have a class with a superclass: it gets an implicit chained initializer.
|
|
if (finder.Kind == BodyInitKind::None) {
|
|
if (auto classDecl = getDeclContext()->getDeclaredTypeInContext()
|
|
->getClassOrBoundGenericClass()) {
|
|
if (classDecl->getSuperclass())
|
|
finder.Kind = BodyInitKind::ImplicitChained;
|
|
}
|
|
}
|
|
|
|
// Cache the result.
|
|
ConstructorDeclBits.ComputedBodyInitKind
|
|
= static_cast<unsigned>(finder.Kind) + 1;
|
|
if (init)
|
|
*init = finder.InitExpr;
|
|
|
|
return finder.Kind;
|
|
}
|
|
|
|
SourceRange DestructorDecl::getSourceRange() const {
|
|
if (getBodyKind() == BodyKind::Unparsed ||
|
|
getBodyKind() == BodyKind::Skipped)
|
|
return { getDestructorLoc(), BodyEndLoc };
|
|
|
|
if (getBodyKind() == BodyKind::None)
|
|
return getDestructorLoc();
|
|
|
|
return { getDestructorLoc(), Body->getEndLoc() };
|
|
}
|