Files
swift-mirror/lib/AST/SwiftNameTranslation.cpp
Gabor Horvath 8603dfe53a [cxx-interop] Support nested classes in reverse interop
Turns out we already had most of the building blocks given we already
support nested structs.

rdar://143343490
2025-02-03 14:56:31 +00:00

396 lines
14 KiB
C++

//===--- SwiftNameTranslation.cpp - Swift to ObjC Name Translation APIs ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file contains utilities for translating Swift names to ObjC.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/SwiftNameTranslation.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/StringExtras.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/SmallString.h"
#include <optional>
using namespace swift;
StringRef swift::objc_translation::
getNameForObjC(const ValueDecl *VD, CustomNamesOnly_t customNamesOnly) {
assert(isa<ClassDecl>(VD) || isa<ProtocolDecl>(VD) || isa<StructDecl>(VD) ||
isa<EnumDecl>(VD) || isa<EnumElementDecl>(VD) ||
isa<TypeAliasDecl>(VD));
if (auto objc = VD->getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName()) {
assert(name->getNumSelectorPieces() == 1);
return name->getSelectorPieces().front().str();
}
}
if (customNamesOnly)
return StringRef();
if (auto clangDecl = dyn_cast_or_null<clang::NamedDecl>(VD->getClangDecl())) {
if (const clang::IdentifierInfo *II = clangDecl->getIdentifier())
return II->getName();
if (auto *anonDecl = dyn_cast<clang::TagDecl>(clangDecl))
if (auto *anonTypedef = anonDecl->getTypedefNameForAnonDecl())
return anonTypedef->getIdentifier()->getName();
}
return VD->getBaseIdentifier().str();
}
std::string swift::objc_translation::
getErrorDomainStringForObjC(const EnumDecl *ED) {
// Should have already been diagnosed as diag::objc_enum_generic.
assert(!ED->isGenericContext() && "Trying to bridge generic enum error to Obj-C");
SmallVector<const NominalTypeDecl *, 4> outerTypes;
for (const NominalTypeDecl * D = ED;
D != nullptr;
D = D->getDeclContext()->getSelfNominalTypeDecl()) {
// We don't currently PrintAsClang any types whose parents are private or
// fileprivate.
assert(D->getFormalAccess() >= AccessLevel::Internal &&
"We don't currently append private discriminators");
outerTypes.push_back(D);
}
std::string buffer = ED->getParentModule()->getNameStr().str();
for (auto D : llvm::reverse(outerTypes)) {
buffer += ".";
buffer += D->getNameStr();
}
return buffer;
}
bool swift::objc_translation::
printSwiftEnumElemNameInObjC(const EnumElementDecl *EL, llvm::raw_ostream &OS,
Identifier PreferredName) {
StringRef ElemName = getNameForObjC(EL, CustomNamesOnly);
if (!ElemName.empty()) {
OS << ElemName;
return true;
}
OS << getNameForObjC(EL->getDeclContext()->getSelfEnumDecl());
if (PreferredName.empty())
ElemName = EL->getBaseIdentifier().str();
else
ElemName = PreferredName.str();
SmallString<64> Scratch;
OS << camel_case::toSentencecase(ElemName, Scratch);
return false;
}
std::pair<Identifier, ObjCSelector> swift::objc_translation::
getObjCNameForSwiftDecl(const ValueDecl *VD, DeclName PreferredName){
ASTContext &Ctx = VD->getASTContext();
Identifier BaseName;
if (PreferredName) {
auto BaseNameStr = PreferredName.getBaseName().userFacingName();
BaseName = Ctx.getIdentifier(BaseNameStr);
}
if (auto *FD = dyn_cast<AbstractFunctionDecl>(VD)) {
return {Identifier(), FD->getObjCSelector(PreferredName)};
} else if (auto *VAD = dyn_cast<VarDecl>(VD)) {
if (PreferredName)
return {BaseName, ObjCSelector()};
return {VAD->getObjCPropertyName(), ObjCSelector()};
} else if (auto *SD = dyn_cast<SubscriptDecl>(VD)) {
return getObjCNameForSwiftDecl(SD->getParsedAccessor(AccessorKind::Get),
PreferredName);
} else if (auto *EL = dyn_cast<EnumElementDecl>(VD)) {
SmallString<64> Buffer;
{
llvm::raw_svector_ostream OS(Buffer);
printSwiftEnumElemNameInObjC(EL, OS, BaseName);
}
return {Ctx.getIdentifier(Buffer.str()), ObjCSelector()};
} else {
// @objc(ExplicitName) > PreferredName > Swift name.
StringRef Name = getNameForObjC(VD, CustomNamesOnly);
if (!Name.empty())
return {Ctx.getIdentifier(Name), ObjCSelector()};
if (PreferredName)
return {BaseName, ObjCSelector()};
return {Ctx.getIdentifier(getNameForObjC(VD)), ObjCSelector()};
}
}
bool swift::objc_translation::
isVisibleToObjC(const ValueDecl *VD, AccessLevel minRequiredAccess,
bool checkParent) {
if (!(VD->isObjC() || !VD->getCDeclName().empty()))
return false;
if (VD->getFormalAccess() >= minRequiredAccess) {
return true;
} else if (checkParent) {
if (auto ctor = dyn_cast<ConstructorDecl>(VD)) {
// Check if we're overriding an initializer that is visible to obj-c
if (auto parent = ctor->getOverriddenDecl())
return isVisibleToObjC(parent, minRequiredAccess, false);
}
}
return false;
}
StringRef
swift::cxx_translation::getNameForCxx(const ValueDecl *VD,
CustomNamesOnly_t customNamesOnly) {
ASTContext& ctx = VD->getASTContext();
for (auto *EA : VD->getAttrs().getAttributes<ExposeAttr>()) {
if (EA->getExposureKind() == ExposureKind::Cxx && !EA->Name.empty())
return EA->Name;
}
if (customNamesOnly)
return StringRef();
if (isa<ConstructorDecl>(VD))
return "init";
if (VD->isOperator()) {
std::string name = ("operator" + VD->getBaseIdentifier().str()).str();
return ctx.getIdentifier(name).str();
}
if (auto *mod = dyn_cast<ModuleDecl>(VD)) {
if (mod->isStdlibModule())
return "swift";
}
if (VD->getModuleContext()->isStdlibModule()) {
// Incorporate argument labels into Stdlib API names.
// FIXME: This should be done more broadly.
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
std::string result;
llvm::raw_string_ostream os(result);
os << VD->getBaseIdentifier().str();
if (!AFD->getParameters())
return os.str();
for (const auto *param : *AFD->getParameters()) {
auto paramName = param->getArgumentName();
if (paramName.empty())
continue;
auto paramNameStr = paramName.str();
os << char(std::toupper(paramNameStr[0]));
os << paramNameStr.drop_front(1);
}
auto r = ctx.getIdentifier(os.str());
return r.str();
}
// FIXME: String.Index should be exposed as String::Index, not
// _String_Index.
if (VD->getBaseIdentifier().str() == "Index") {
return "String_Index";
}
}
return VD->getBaseIdentifier().str();
}
swift::cxx_translation::DeclRepresentation
swift::cxx_translation::getDeclRepresentation(
const ValueDecl *VD,
std::optional<std::function<bool(const NominalTypeDecl *)>> isZeroSized) {
if (getActorIsolation(const_cast<ValueDecl *>(VD)).isActorIsolated())
return {Unsupported, UnrepresentableIsolatedInActor};
if (isa<MacroDecl>(VD))
return {Unsupported, UnrepresentableMacro};
GenericSignature genericSignature;
// Don't expose @_alwaysEmitIntoClient decls as they require their
// bodies to be emitted into client.
if (VD->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
return {Unsupported, UnrepresentableRequiresClientEmission};
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
if (AFD->hasAsync())
return {Unsupported, UnrepresentableAsync};
if (AFD->hasThrows() &&
!AFD->getASTContext().LangOpts.hasFeature(
Feature::GenerateBindingsForThrowingFunctionsInCXX))
return {Unsupported, UnrepresentableThrows};
if (AFD->isGeneric())
genericSignature = AFD->getGenericSignature();
}
if (const auto *typeDecl = dyn_cast<NominalTypeDecl>(VD)) {
if (isa<ProtocolDecl>(typeDecl)) {
if (typeDecl->hasClangNode())
return {ObjCxxOnly, std::nullopt};
return {Unsupported, UnrepresentableProtocol};
}
// Swift's consume semantics are not yet supported in C++.
if (!typeDecl->canBeCopyable())
return {Unsupported, UnrepresentableMoveOnly};
if (isa<ClassDecl>(VD) && VD->isObjC())
return {Unsupported, UnrepresentableObjC};
if (typeDecl->isGeneric()) {
if (isa<ClassDecl>(VD))
return {Unsupported, UnrepresentableGeneric};
genericSignature = typeDecl->getGenericSignature();
}
if (!isa<ClassDecl>(typeDecl) && isZeroSized && (*isZeroSized)(typeDecl))
return {Unsupported, UnrepresentableZeroSizedValueType};
}
if (const auto *varDecl = dyn_cast<VarDecl>(VD)) {
// Check if any property accessor throws, do not expose it in that case.
for (const auto *accessor : varDecl->getAllAccessors()) {
if (accessor->hasThrows())
return {Unsupported, UnrepresentableThrows};
}
}
if (const auto *enumDecl = dyn_cast<EnumDecl>(VD)) {
if (enumDecl->isIndirect())
return {Unsupported, UnrepresentableIndirectEnum};
for (const auto *enumCase : enumDecl->getAllCases()) {
for (const auto *elementDecl : enumCase->getElements()) {
if (!elementDecl->hasAssociatedValues())
continue;
if (elementDecl->isIndirect())
return {Unsupported, UnrepresentableIndirectEnum};
// Do not expose any enums with > 1
// enum parameter, or any enum parameter
// whose type we do not yet support.
if (auto *params = elementDecl->getParameterList()) {
if (params->size() > 1)
return {Unsupported, UnrepresentableEnumCaseTuple};
for (const auto *param : *params) {
auto paramType = param->getInterfaceType();
if (!paramType->is<GenericTypeParamType>()) {
auto *nominal = paramType->getNominalOrBoundGenericNominal();
if (!nominal || isa<ProtocolDecl>(nominal))
return {Unsupported, UnrepresentableEnumCaseType};
}
}
}
}
}
}
// Generic requirements are not yet supported in C++.
if (!isExposableToCxx(genericSignature)) {
return {Unsupported, UnrepresentableGenericRequirements};
}
return {Representable, std::nullopt};
}
bool swift::cxx_translation::isVisibleToCxx(const ValueDecl *VD,
AccessLevel minRequiredAccess,
bool checkParent) {
// Do not expose anything from _Concurrency module yet.
if (VD->getModuleContext()->ValueDecl::getName().getBaseIdentifier() ==
VD->getASTContext().Id_Concurrency)
return false;
if (VD->getFormalAccess() >= minRequiredAccess) {
return true;
} else if (checkParent) {
if (auto ctor = dyn_cast<ConstructorDecl>(VD)) {
// Check if we're overriding an initializer that is visible to obj-c
if (auto parent = ctor->getOverriddenDecl())
return isVisibleToCxx(parent, minRequiredAccess, false);
}
}
return false;
}
bool swift::cxx_translation::isExposableToCxx(GenericSignature genericSig) {
// If there's no generic signature, it's fine.
if (!genericSig)
return true;
// FIXME: This should use getRequirements() and actually
// support arbitrary requirements. We don't really want
// to use getRequirementsWithInverses() here.
//
// For now, we use the inverse transform as a quick way to
// check for the "default" generic signature where each
// generic parameter is Copyable and Escapable, but not
// subject to any other requirements; that's exactly the
// generic signature that C++ interop supports today.
SmallVector<Requirement, 2> reqs;
SmallVector<InverseRequirement, 2> inverseReqs;
genericSig->getRequirementsWithInverses(reqs, inverseReqs);
if (!reqs.empty()) {
// Conformance requirements to marker protocols are okay.
for (const auto &req: reqs) {
if (req.getKind() != RequirementKind::Conformance)
return false;
auto proto = req.getProtocolDecl();
if (!proto->isMarkerProtocol() && !proto->hasClangNode())
return false;
}
}
// Allow Copyable and Escapable.
for (const auto &req: inverseReqs) {
switch (req.getKind()) {
case InvertibleProtocolKind::Copyable:
continue;
case InvertibleProtocolKind::Escapable:
continue;
}
return false;
}
return true;
}
Diagnostic
swift::cxx_translation::diagnoseRepresenationError(RepresentationError error,
ValueDecl *vd) {
switch (error) {
case UnrepresentableObjC:
return Diagnostic(diag::expose_unsupported_objc_decl_to_cxx, vd);
case UnrepresentableAsync:
return Diagnostic(diag::expose_unsupported_async_decl_to_cxx, vd);
case UnrepresentableIsolatedInActor:
return Diagnostic(diag::expose_unsupported_actor_isolated_to_cxx, vd);
case UnrepresentableRequiresClientEmission:
return Diagnostic(diag::expose_unsupported_client_emission_to_cxx, vd);
case UnrepresentableGeneric:
return Diagnostic(diag::expose_generic_decl_to_cxx, vd);
case UnrepresentableGenericRequirements:
return Diagnostic(diag::expose_generic_requirement_to_cxx, vd);
case UnrepresentableThrows:
return Diagnostic(diag::expose_throwing_to_cxx, vd);
case UnrepresentableIndirectEnum:
return Diagnostic(diag::expose_indirect_enum_cxx, vd);
case UnrepresentableEnumCaseType:
return Diagnostic(diag::expose_enum_case_type_to_cxx, vd);
case UnrepresentableEnumCaseTuple:
return Diagnostic(diag::expose_enum_case_tuple_to_cxx, vd);
case UnrepresentableProtocol:
return Diagnostic(diag::expose_protocol_to_cxx_unsupported, vd);
case UnrepresentableMoveOnly:
return Diagnostic(diag::expose_move_only_to_cxx, vd);
case UnrepresentableMacro:
return Diagnostic(diag::expose_macro_to_cxx, vd);
case UnrepresentableZeroSizedValueType:
return Diagnostic(diag::expose_zero_size_to_cxx, vd);
}
}