Files
swift-mirror/lib/SIL/SILModule.cpp
Michael Gottesman 872bf40e17 [sil-optimizer] Centralize how we send out serialization notifications.
Previously SILModule contained two different pathways for the deserializer to
send notifications that it had created functions:

1. A list of function pointers that were called when a function's body was
deserialized. This was added recently so that access enforcement elimination is
run on newly deserialized SIL code if we have already eliminated access
enforcement from the module.

2. SILModule::SerializationCallback. This is an implementation of the full
callback interface and is used by the SILModule to update linkage and other
sorts of book keeping.

To fix the pass manager notification infrastructure, I need to be able to send
notifications to a SILPassManager when deserializing. I also need to be able to
eliminate these callbacks when a SILPassManager is destroyed. These requirements
are incompatible with the current two implementations since: (2) is an
implementation detail of SILModule and (1) only notifies on function bodies
being deserialized instead of the creation of new declarations (what the caller
analysis wants).

Rather than adding a third group of callbacks, this commit refactors the
infrastructure in such a way that all of these use cases can use one
implementation. This is done by:

1. Lifting the interface of SerializedSILLoader::Callback into a base
notification protocol for deserialization called
DeserializationNotificationHandlerBase and its base no-op implementation into an
implementation of the aforementioned protocol:
DeserializationNotificationHandler.

2. Changing SILModule::SerializationCallback to implement
DeserializationNotificationHandler.

3. Creating a class called FunctionBodyDeserializationNotificationHandler that
takes in a function pointer and uses that to just override the
didDeserializeFunctionBody. This eliminates the need for the specific function
body deserialization list.

4. Replacing the state associated with the two other pathways with a single
DeserializationNotificationHandlerSet class that contains a set of
DeserializationNotificationHandler and chains notifications to them. This set
implements DeserializationNotificationHandlerBase so we know that its
implementation will always be in sync with DeserializationNotificationHandler.

rdar://42301529
2018-08-15 15:49:15 -07:00

698 lines
23 KiB
C++

//===--- SILModule.cpp - SILModule implementation -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-module"
#include "swift/SIL/SILModule.h"
#include "Linker.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/Notifications.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include "swift/Strings.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/YAMLTraits.h"
#include <functional>
using namespace swift;
using namespace Lowering;
class SILModule::SerializationCallback final
: public DeserializationNotificationHandler {
void didDeserialize(ModuleDecl *M, SILFunction *fn) override {
updateLinkage(fn);
}
void didDeserialize(ModuleDecl *M, SILGlobalVariable *var) override {
updateLinkage(var);
// For globals we currently do not support available_externally.
// In the interpreter it would result in two instances for a single global:
// one in the imported module and one in the main module.
var->setDeclaration(true);
}
void didDeserialize(ModuleDecl *M, SILVTable *vtable) override {
// TODO: should vtables get linkage?
//updateLinkage(vtable);
}
void didDeserialize(ModuleDecl *M, SILWitnessTable *wt) override {
updateLinkage(wt);
}
template <class T> void updateLinkage(T *decl) {
switch (decl->getLinkage()) {
case SILLinkage::Public:
decl->setLinkage(SILLinkage::PublicExternal);
return;
case SILLinkage::PublicNonABI:
// PublicNonABI functions receive SharedExternal linkage, so that
// they have "link once" semantics when deserialized by multiple
// translation units in the same Swift module.
decl->setLinkage(SILLinkage::SharedExternal);
return;
case SILLinkage::Hidden:
decl->setLinkage(SILLinkage::HiddenExternal);
return;
case SILLinkage::Shared:
decl->setLinkage(SILLinkage::SharedExternal);
return;
case SILLinkage::Private:
decl->setLinkage(SILLinkage::PrivateExternal);
return;
case SILLinkage::PublicExternal:
case SILLinkage::HiddenExternal:
case SILLinkage::SharedExternal:
case SILLinkage::PrivateExternal:
return;
}
}
StringRef getName() const override {
return "SILModule::SerializationCallback";
}
};
SILModule::SILModule(ModuleDecl *SwiftModule, SILOptions &Options,
const DeclContext *associatedDC, bool wholeModule)
: TheSwiftModule(SwiftModule), AssociatedDeclContext(associatedDC),
Stage(SILStage::Raw), wholeModule(wholeModule), Options(Options),
serialized(false), SerializeSILAction(), Types(*this) {
// We always add the base SILModule serialization callback.
std::unique_ptr<DeserializationNotificationHandler> callback(
new SILModule::SerializationCallback());
deserializationNotificationHandlers.add(std::move(callback));
}
SILModule::~SILModule() {
// Decrement ref count for each SILGlobalVariable with static initializers.
for (SILGlobalVariable &v : silGlobals)
v.dropAllReferences();
// Drop everything functions in this module reference.
//
// This is necessary since the functions may reference each other. We don't
// need to worry about sil_witness_tables since witness tables reference each
// other via protocol conformances and sil_vtables don't reference each other
// at all.
for (SILFunction &F : *this)
F.dropAllReferences();
}
std::unique_ptr<SILModule>
SILModule::createEmptyModule(ModuleDecl *M, SILOptions &Options,
bool WholeModule) {
return std::unique_ptr<SILModule>(
new SILModule(M, Options, M, WholeModule));
}
ASTContext &SILModule::getASTContext() const {
return TheSwiftModule->getASTContext();
}
void *SILModule::allocate(unsigned Size, unsigned Align) const {
if (getASTContext().LangOpts.UseMalloc)
return AlignedAlloc(Size, Align);
return BPA.Allocate(Size, Align);
}
void *SILModule::allocateInst(unsigned Size, unsigned Align) const {
return AlignedAlloc(Size, Align);
}
void SILModule::deallocateInst(SILInstruction *I) {
AlignedFree(I);
}
SILWitnessTable *
SILModule::createWitnessTableDeclaration(ProtocolConformance *C,
SILLinkage linkage) {
// If we are passed in a null conformance (a valid value), just return nullptr
// since we cannot map a witness table to it.
if (!C)
return nullptr;
// Extract the base NormalProtocolConformance.
NormalProtocolConformance *NormalC = C->getRootNormalConformance();
return SILWitnessTable::create(*this, linkage, NormalC);
}
SILWitnessTable *
SILModule::lookUpWitnessTable(ProtocolConformanceRef C,
bool deserializeLazily) {
// If we have an abstract conformance passed in (a legal value), just return
// nullptr.
if (!C.isConcrete())
return nullptr;
return lookUpWitnessTable(C.getConcrete());
}
SILWitnessTable *
SILModule::lookUpWitnessTable(const ProtocolConformance *C,
bool deserializeLazily) {
assert(C && "null conformance passed to lookUpWitnessTable");
const NormalProtocolConformance *NormalC = C->getRootNormalConformance();
// Attempt to lookup the witness table from the table.
auto found = WitnessTableMap.find(NormalC);
if (found == WitnessTableMap.end()) {
#ifndef NDEBUG
// Make sure that all witness tables are in the witness table lookup
// cache.
//
// This code should not be hit normally since we add witness tables to the
// lookup cache when we create them. We don't just assert here since there
// is the potential for a conformance without a witness table to be passed
// to this function.
for (SILWitnessTable &WT : witnessTables)
assert(WT.getConformance() != NormalC &&
"Found witness table that is not"
" in the witness table lookup cache.");
#endif
return nullptr;
}
SILWitnessTable *wtable = found->second;
assert(wtable != nullptr && "Should never map a conformance to a null witness"
" table.");
// If we have a definition, return it.
if (wtable->isDefinition())
return wtable;
// If the module is at or past the Lowered stage, then we can't do any
// further deserialization, since pre-IRGen SIL lowering changes the types
// of definitions to make them incompatible with canonical serialized SIL.
switch (getStage()) {
case SILStage::Canonical:
case SILStage::Raw:
break;
case SILStage::Lowered:
return wtable;
}
// Otherwise try to deserialize it. If we succeed return the deserialized
// function.
//
// *NOTE* In practice, wtable will be deserializedTable, but I do not want to rely
// on that behavior for now.
if (deserializeLazily)
if (auto deserialized = getSILLoader()->lookupWitnessTable(wtable))
return deserialized;
// If we fail, just return the declaration.
return wtable;
}
SILDefaultWitnessTable *
SILModule::lookUpDefaultWitnessTable(const ProtocolDecl *Protocol,
bool deserializeLazily) {
// Note: we only ever look up default witness tables in the translation unit
// that is currently being compiled, since they SILGen generates them when it
// visits the protocol declaration, and IRGen emits them when emitting the
// protocol descriptor metadata for the protocol.
auto found = DefaultWitnessTableMap.find(Protocol);
if (found == DefaultWitnessTableMap.end()) {
if (deserializeLazily) {
SILLinkage linkage =
getSILLinkage(getDeclLinkage(Protocol), ForDefinition);
SILDefaultWitnessTable *wtable =
SILDefaultWitnessTable::create(*this, linkage, Protocol);
wtable = getSILLoader()->lookupDefaultWitnessTable(wtable);
if (wtable)
DefaultWitnessTableMap[Protocol] = wtable;
return wtable;
}
return nullptr;
}
return found->second;
}
SILDefaultWitnessTable *
SILModule::createDefaultWitnessTableDeclaration(const ProtocolDecl *Protocol,
SILLinkage Linkage) {
return SILDefaultWitnessTable::create(*this, Linkage, Protocol);
}
void SILModule::deleteWitnessTable(SILWitnessTable *Wt) {
NormalProtocolConformance *Conf = Wt->getConformance();
assert(lookUpWitnessTable(Conf, false) == Wt);
WitnessTableMap.erase(Conf);
witnessTables.erase(Wt);
}
const IntrinsicInfo &SILModule::getIntrinsicInfo(Identifier ID) {
unsigned OldSize = IntrinsicIDCache.size();
IntrinsicInfo &Info = IntrinsicIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == IntrinsicIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
StringRef NameRef = getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
Info.ID = (llvm::Intrinsic::ID)getLLVMIntrinsicID(NameRef);
return Info;
}
const BuiltinInfo &SILModule::getBuiltinInfo(Identifier ID) {
unsigned OldSize = BuiltinIDCache.size();
BuiltinInfo &Info = BuiltinIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == BuiltinIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
// Find the matching ID.
StringRef OperationName =
getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
// Several operation names have suffixes and don't match the name from
// Builtins.def, so handle those first.
if (OperationName.startswith("fence_"))
Info.ID = BuiltinValueKind::Fence;
else if (OperationName.startswith("cmpxchg_"))
Info.ID = BuiltinValueKind::CmpXChg;
else if (OperationName.startswith("atomicrmw_"))
Info.ID = BuiltinValueKind::AtomicRMW;
else if (OperationName.startswith("atomicload_"))
Info.ID = BuiltinValueKind::AtomicLoad;
else if (OperationName.startswith("atomicstore_"))
Info.ID = BuiltinValueKind::AtomicStore;
else if (OperationName.startswith("allocWithTailElems_"))
Info.ID = BuiltinValueKind::AllocWithTailElems;
else {
// Switch through the rest of builtins.
#define BUILTIN(Id, Name, Attrs) \
if (OperationName == Name) { Info.ID = BuiltinValueKind::Id; } else
#include "swift/AST/Builtins.def"
/* final "else" */ { Info.ID = BuiltinValueKind::None; }
}
return Info;
}
SILFunction *SILModule::lookUpFunction(SILDeclRef fnRef) {
auto name = fnRef.mangle();
return lookUpFunction(name);
}
bool SILModule::loadFunction(SILFunction *F) {
SILFunction *NewF = getSILLoader()->lookupSILFunction(F);
if (!NewF)
return false;
assert(F == NewF);
return true;
}
bool SILModule::linkFunction(SILFunction *F, SILModule::LinkingMode Mode) {
return SILLinkerVisitor(*this, Mode).processFunction(F);
}
SILFunction *SILModule::findFunction(StringRef Name, SILLinkage Linkage) {
assert((Linkage == SILLinkage::Public ||
Linkage == SILLinkage::PublicExternal) &&
"Only a lookup of public functions is supported currently");
SILFunction *F = nullptr;
// First, check if there is a function with a required name in the
// current module.
SILFunction *CurF = lookUpFunction(Name);
// Nothing to do if the current module has a required function
// with a proper linkage already.
if (CurF && CurF->getLinkage() == Linkage) {
F = CurF;
} else {
assert((!CurF || CurF->getLinkage() != Linkage) &&
"hasFunction should be only called for functions that are not "
"contained in the SILModule yet or do not have a required linkage");
}
if (!F) {
if (CurF) {
// Perform this lookup only if a function with a given
// name is present in the current module.
// This is done to reduce the amount of IO from the
// swift module file.
if (!getSILLoader()->hasSILFunction(Name, Linkage))
return nullptr;
// The function in the current module will be changed.
F = CurF;
}
// If function with a given name wasn't seen anywhere yet
// or if it is known to exist, perform a lookup.
if (!F) {
// Try to load the function from other modules.
F = getSILLoader()->lookupSILFunction(Name, /*declarationOnly*/ true,
Linkage);
// Bail if nothing was found and we are not sure if
// this function exists elsewhere.
if (!F)
return nullptr;
assert(F && "SILFunction should be present in one of the modules");
assert(F->getLinkage() == Linkage && "SILFunction has a wrong linkage");
}
}
// If a function exists already and it is a non-optimizing
// compilation, simply convert it into an external declaration,
// so that a compiled version from the shared library is used.
if (F->isDefinition() &&
!F->getModule().getOptions().shouldOptimize()) {
F->convertToDeclaration();
}
if (F->isExternalDeclaration())
F->setSerialized(IsSerialized_t::IsNotSerialized);
F->setLinkage(Linkage);
return F;
}
bool SILModule::hasFunction(StringRef Name) {
if (lookUpFunction(Name))
return true;
return getSILLoader()->hasSILFunction(Name);
}
void SILModule::linkAllFromCurrentModule() {
getSILLoader()->getAllForModule(getSwiftModule()->getName(),
/*PrimaryFile=*/nullptr);
}
void SILModule::invalidateSILLoaderCaches() {
getSILLoader()->invalidateCaches();
}
void SILModule::removeFromZombieList(StringRef Name) {
if (auto *Zombie = ZombieFunctionTable.lookup(Name)) {
ZombieFunctionTable.erase(Name);
zombieFunctions.remove(Zombie);
}
}
/// Erase a function from the module.
void SILModule::eraseFunction(SILFunction *F) {
assert(!F->isZombie() && "zombie function is in list of alive functions");
// The owner of the function's Name is the FunctionTable key. As we remove
// the function from the table we have to store the name string elsewhere:
// in zombieFunctionNames.
StringRef copiedName = F->getName().copy(zombieFunctionNames);
FunctionTable.erase(F->getName());
F->Name = copiedName;
// The function is dead, but we need it later (at IRGen) for debug info
// or vtable stub generation. So we move it into the zombie list.
getFunctionList().remove(F);
zombieFunctions.push_back(F);
ZombieFunctionTable[copiedName] = F;
F->setZombie();
// This opens dead-function-removal opportunities for called functions.
// (References are not needed anymore.)
F->dropAllReferences();
}
void SILModule::invalidateFunctionInSILCache(SILFunction *F) {
getSILLoader()->invalidateFunction(F);
}
/// Erase a global SIL variable from the module.
void SILModule::eraseGlobalVariable(SILGlobalVariable *G) {
GlobalVariableMap.erase(G->getName());
getSILGlobalList().erase(G);
}
SILVTable *SILModule::lookUpVTable(const ClassDecl *C) {
if (!C)
return nullptr;
// First try to look up R from the lookup table.
auto R = VTableMap.find(C);
if (R != VTableMap.end())
return R->second;
// If that fails, try to deserialize it. If that fails, return nullptr.
SILVTable *Vtbl = getSILLoader()->lookupVTable(C);
if (!Vtbl)
return nullptr;
// If we succeeded, map C -> VTbl in the table and return VTbl.
VTableMap[C] = Vtbl;
return Vtbl;
}
SerializedSILLoader *SILModule::getSILLoader() {
// If the SILLoader is null, create it.
if (!SILLoader)
SILLoader = SerializedSILLoader::create(
getASTContext(), this, &deserializationNotificationHandlers);
// Return the SerializedSILLoader.
return SILLoader.get();
}
/// \brief Given a conformance \p C and a protocol requirement \p Requirement,
/// search the witness table for the conformance and return the witness thunk
/// for the requirement.
std::pair<SILFunction *, SILWitnessTable *>
SILModule::lookUpFunctionInWitnessTable(ProtocolConformanceRef C,
SILDeclRef Requirement) {
// Look up the witness table associated with our protocol conformance from the
// SILModule.
auto Ret = lookUpWitnessTable(C);
// If no witness table was found, bail.
if (!Ret) {
LLVM_DEBUG(llvm::dbgs() << " Failed speculative lookup of "
"witness for: ";
C.dump(); Requirement.dump());
return std::make_pair(nullptr, nullptr);
}
// Okay, we found the correct witness table. Now look for the method.
for (auto &Entry : Ret->getEntries()) {
// Look at method entries only.
if (Entry.getKind() != SILWitnessTable::WitnessKind::Method)
continue;
SILWitnessTable::MethodWitness MethodEntry = Entry.getMethodWitness();
// Check if this is the member we were looking for.
if (MethodEntry.Requirement != Requirement)
continue;
return std::make_pair(MethodEntry.Witness, Ret);
}
return std::make_pair(nullptr, nullptr);
}
/// \brief Given a protocol \p Protocol and a requirement \p Requirement,
/// search the protocol's default witness table and return the default
/// witness thunk for the requirement.
std::pair<SILFunction *, SILDefaultWitnessTable *>
SILModule::lookUpFunctionInDefaultWitnessTable(const ProtocolDecl *Protocol,
SILDeclRef Requirement,
bool deserializeLazily) {
// Look up the default witness table associated with our protocol from the
// SILModule.
auto Ret = lookUpDefaultWitnessTable(Protocol, deserializeLazily);
// If no default witness table was found, bail.
//
// FIXME: Could be an assert if we fix non-single-frontend mode to link
// together serialized SIL emitted by each translation unit.
if (!Ret) {
LLVM_DEBUG(llvm::dbgs() << " Failed speculative lookup of default "
"witness for " << Protocol->getName() << " ";
Requirement.dump());
return std::make_pair(nullptr, nullptr);
}
// Okay, we found the correct default witness table. Now look for the method.
for (auto &Entry : Ret->getEntries()) {
// Ignore dummy entries semitted for non-method requirements, as well as
// requirements without default implementations.
if (!Entry.isValid())
continue;
// Check if this is the member we were looking for.
if (Entry.getRequirement() != Requirement)
continue;
return std::make_pair(Entry.getWitness(), Ret);
}
// This requirement doesn't have a default implementation.
return std::make_pair(nullptr, nullptr);
}
SILFunction *
SILModule::
lookUpFunctionInVTable(ClassDecl *Class, SILDeclRef Member) {
// Try to lookup a VTable for Class from the module...
auto *Vtbl = lookUpVTable(Class);
// Bail, if the lookup of VTable fails.
if (!Vtbl) {
return nullptr;
}
// Ok, we have a VTable. Try to lookup the SILFunction implementation from
// the VTable.
if (auto E = Vtbl->getEntry(*this, Member))
return E->Implementation;
return nullptr;
}
void SILModule::registerDeserializationNotificationHandler(
std::unique_ptr<DeserializationNotificationHandler> &&handler) {
deserializationNotificationHandlers.add(std::move(handler));
}
void SILModule::registerDeleteNotificationHandler(
DeleteNotificationHandler *handler) {
// Ask the handler (that can be an analysis, a pass, or some other data
// structure) if it wants to receive delete notifications.
if (handler->needsNotifications()) {
NotificationHandlers.insert(handler);
}
}
void SILModule::
removeDeleteNotificationHandler(DeleteNotificationHandler* Handler) {
NotificationHandlers.remove(Handler);
}
void SILModule::notifyDeleteHandlers(SILNode *node) {
for (auto *Handler : NotificationHandlers) {
Handler->handleDeleteNotification(node);
}
}
// TODO: We should have an "isNoReturn" bit on Swift's BuiltinInfo, but for
// now, let's recognize noreturn intrinsics and builtins specially here.
bool SILModule::isNoReturnBuiltinOrIntrinsic(Identifier Name) {
const auto &IntrinsicInfo = getIntrinsicInfo(Name);
if (IntrinsicInfo.ID != llvm::Intrinsic::not_intrinsic) {
return IntrinsicInfo.hasAttribute(llvm::Attribute::NoReturn);
}
const auto &BuiltinInfo = getBuiltinInfo(Name);
switch (BuiltinInfo.ID) {
default:
return false;
case BuiltinValueKind::Unreachable:
case BuiltinValueKind::CondUnreachable:
case BuiltinValueKind::UnexpectedError:
case BuiltinValueKind::ErrorInMain:
return true;
}
}
bool SILModule::
shouldSerializeEntitiesAssociatedWithDeclContext(const DeclContext *DC) const {
// Serialize entities associated with this module's associated context.
if (DC->isChildContextOf(getAssociatedContext())) {
return true;
}
// Serialize entities associated with clang modules, since other entities
// may depend on them, and someone who deserializes those entities may not
// have their own copy.
if (isa<ClangModuleUnit>(DC->getModuleScopeContext())) {
return true;
}
return false;
}
/// Returns true if it is the OnoneSupport module.
bool SILModule::isOnoneSupportModule() const {
return getSwiftModule()->getName().str() == SWIFT_ONONE_SUPPORT;
}
/// Returns true if it is the optimized OnoneSupport module.
bool SILModule::isOptimizedOnoneSupportModule() const {
return getOptions().shouldOptimize() && isOnoneSupportModule();
}
void SILModule::setSerializeSILAction(SILModule::ActionCallback Action) {
assert(!SerializeSILAction && "Serialization action can be set only once");
SerializeSILAction = Action;
}
SILModule::ActionCallback SILModule::getSerializeSILAction() const {
return SerializeSILAction;
}
void SILModule::serialize() {
assert(SerializeSILAction && "Serialization action should be set");
assert(!isSerialized() && "The module was serialized already");
SerializeSILAction();
setSerialized();
}
void SILModule::setOptRecordStream(
std::unique_ptr<llvm::yaml::Output> &&Stream,
std::unique_ptr<llvm::raw_ostream> &&RawStream) {
OptRecordStream = std::move(Stream);
OptRecordRawStream = std::move(RawStream);
}
SILProperty *SILProperty::create(SILModule &M,
bool Serialized,
AbstractStorageDecl *Decl,
Optional<KeyPathPatternComponent> Component) {
auto prop = new (M) SILProperty(Serialized, Decl, Component);
M.properties.push_back(prop);
return prop;
}
// Definition from SILLinkage.h.
SILLinkage swift::getDeclSILLinkage(const ValueDecl *decl) {
AccessLevel access = decl->getEffectiveAccess();
SILLinkage linkage;
switch (access) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
linkage = SILLinkage::Private;
break;
case AccessLevel::Internal:
linkage = SILLinkage::Hidden;
break;
case AccessLevel::Public:
case AccessLevel::Open:
linkage = SILLinkage::Public;
break;
}
return linkage;
}