mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
- Instead of keeping multiple flags in the type descriptor flags, just keep a single flag indicating the presence of additional import information after the name. - That import information consists of a sequence of null-terminated C strings, terminated by an empty string (i.e. by a double null terminator), each prefixed with a character describing its purpose. - In addition to the symbol namespace and related entity name, include the ABI name if it differs from the user-facing name of the type, and make the name the user-facing Swift name. There's a remaining issue here that isn't great: we don't correctly represent the parent relationship between error types and their codes, and instead we just use the Clang module as the parent. But I'll leave that for a later commit.
4026 lines
142 KiB
C++
4026 lines
142 KiB
C++
//===--- Metadata.h - Swift Language ABI Metadata Support -------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Swift ABI describing metadata.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_ABI_METADATA_H
|
|
#define SWIFT_ABI_METADATA_H
|
|
|
|
#include <atomic>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <string.h>
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "swift/Strings.h"
|
|
#include "swift/Runtime/Config.h"
|
|
#include "swift/ABI/MetadataValues.h"
|
|
#include "swift/ABI/System.h"
|
|
#include "swift/ABI/TrailingObjects.h"
|
|
#include "swift/Basic/Malloc.h"
|
|
#include "swift/Basic/FlaggedPointer.h"
|
|
#include "swift/Basic/RelativePointer.h"
|
|
#include "swift/Demangling/Demangle.h"
|
|
#include "swift/Demangling/ManglingMacros.h"
|
|
#include "swift/Runtime/Unreachable.h"
|
|
#include "../../../stdlib/public/SwiftShims/HeapObject.h"
|
|
#if SWIFT_OBJC_INTEROP
|
|
#include <objc/runtime.h>
|
|
#endif
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
namespace swift {
|
|
template <unsigned PointerSize>
|
|
struct RuntimeTarget;
|
|
|
|
template <>
|
|
struct RuntimeTarget<4> {
|
|
using StoredPointer = uint32_t;
|
|
using StoredSize = uint32_t;
|
|
using StoredPointerDifference = int32_t;
|
|
static constexpr size_t PointerSize = 4;
|
|
};
|
|
|
|
template <>
|
|
struct RuntimeTarget<8> {
|
|
using StoredPointer = uint64_t;
|
|
using StoredSize = uint64_t;
|
|
using StoredPointerDifference = int64_t;
|
|
static constexpr size_t PointerSize = 8;
|
|
};
|
|
|
|
/// In-process native runtime target.
|
|
///
|
|
/// For interactions in the runtime, this should be the equivalent of working
|
|
/// with a plain old pointer type.
|
|
struct InProcess {
|
|
static constexpr size_t PointerSize = sizeof(uintptr_t);
|
|
using StoredPointer = uintptr_t;
|
|
using StoredSize = size_t;
|
|
using StoredPointerDifference = ptrdiff_t;
|
|
|
|
static_assert(sizeof(StoredSize) == sizeof(StoredPointerDifference),
|
|
"target uses differently-sized size_t and ptrdiff_t");
|
|
|
|
template <typename T>
|
|
using Pointer = T*;
|
|
|
|
template <typename T, bool Nullable = false>
|
|
using FarRelativeDirectPointer = FarRelativeDirectPointer<T, Nullable>;
|
|
|
|
template <typename T, bool Nullable = false>
|
|
using RelativeIndirectablePointer =
|
|
RelativeIndirectablePointer<T, Nullable>;
|
|
|
|
template <typename T, bool Nullable = true>
|
|
using RelativeDirectPointer = RelativeDirectPointer<T, Nullable>;
|
|
};
|
|
|
|
/// Represents a pointer in another address space.
|
|
///
|
|
/// This type should not have * or -> operators -- you must as a memory reader
|
|
/// to read the data at the stored address on your behalf.
|
|
template <typename Runtime, typename Pointee>
|
|
struct ExternalPointer {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
StoredPointer PointerValue;
|
|
};
|
|
|
|
/// An external process's runtime target, which may be a different architecture.
|
|
template <typename Runtime>
|
|
struct External {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
using StoredPointerDifference = typename Runtime::StoredPointerDifference;
|
|
static constexpr size_t PointerSize = Runtime::PointerSize;
|
|
const StoredPointer PointerValue;
|
|
|
|
template <typename T>
|
|
using Pointer = StoredPointer;
|
|
|
|
template <typename T, bool Nullable = false>
|
|
using FarRelativeDirectPointer = StoredPointer;
|
|
|
|
template <typename T, bool Nullable = false>
|
|
using RelativeIndirectablePointer = int32_t;
|
|
|
|
template <typename T, bool Nullable = true>
|
|
using RelativeDirectPointer = int32_t;
|
|
};
|
|
|
|
/// Template for branching on native pointer types versus external ones
|
|
template <typename Runtime, template <typename> class Pointee>
|
|
using TargetMetadataPointer
|
|
= typename Runtime::template Pointer<Pointee<Runtime>>;
|
|
|
|
template <typename Runtime, template <typename> class Pointee>
|
|
using ConstTargetMetadataPointer
|
|
= typename Runtime::template Pointer<const Pointee<Runtime>>;
|
|
|
|
template <typename Runtime, typename T>
|
|
using TargetPointer = typename Runtime::template Pointer<T>;
|
|
|
|
template <typename Runtime, typename T>
|
|
using ConstTargetPointer = typename Runtime::template Pointer<const T>;
|
|
|
|
template <typename Runtime, template <typename> class Pointee,
|
|
bool Nullable = true>
|
|
using ConstTargetFarRelativeDirectPointer
|
|
= typename Runtime::template FarRelativeDirectPointer<const Pointee<Runtime>,
|
|
Nullable>;
|
|
|
|
template <typename Runtime, typename Pointee, bool Nullable = true>
|
|
using TargetRelativeDirectPointer
|
|
= typename Runtime::template RelativeDirectPointer<Pointee, Nullable>;
|
|
|
|
template <typename Runtime, typename Pointee, bool Nullable = true>
|
|
using TargetRelativeIndirectablePointer
|
|
= typename Runtime::template RelativeIndirectablePointer<Pointee,Nullable>;
|
|
|
|
struct HeapObject;
|
|
class WeakReference;
|
|
|
|
template <typename Runtime> struct TargetMetadata;
|
|
using Metadata = TargetMetadata<InProcess>;
|
|
|
|
/// The result of requesting type metadata. Generally the return value of
|
|
/// a function.
|
|
///
|
|
/// For performance, functions returning this type should use SWIFT_CC so
|
|
/// that the components are returned as separate values.
|
|
struct MetadataResponse {
|
|
/// The requested metadata.
|
|
const Metadata *Value;
|
|
|
|
/// The current state of the metadata returned. Always use this
|
|
/// instead of trying to inspect the metadata directly to see if it
|
|
/// satisfies the request. An incomplete metadata may be getting
|
|
/// initialized concurrently. But this can generally be ignored if
|
|
/// the metadata request was for abstract metadata or if the request
|
|
/// is blocking.
|
|
MetadataState State;
|
|
};
|
|
|
|
/// A dependency on the metadata progress of other type, indicating that
|
|
/// initialization of a metadata cannot progress until another metadata
|
|
/// reaches a particular state.
|
|
///
|
|
/// For performance, functions returning this type should use SWIFT_CC so
|
|
/// that the components are returned as separate values.
|
|
struct MetadataDependency {
|
|
/// Either null, indicating that initialization was successful, or
|
|
/// a metadata on which initialization depends for further progress.
|
|
const Metadata *Value;
|
|
|
|
/// The state that Metadata needs to be in before initialization
|
|
/// can continue.
|
|
MetadataState Requirement;
|
|
|
|
MetadataDependency() : Value(nullptr) {}
|
|
MetadataDependency(const Metadata *metadata, MetadataState requirement)
|
|
: Value(metadata), Requirement(requirement) {}
|
|
|
|
explicit operator bool() const { return Value != nullptr; }
|
|
|
|
bool operator==(MetadataDependency other) const {
|
|
assert(Value && other.Value);
|
|
return Value == other.Value &&
|
|
Requirement == other.Requirement;
|
|
}
|
|
};
|
|
|
|
template <typename Runtime> struct TargetProtocolConformanceDescriptor;
|
|
|
|
/// Storage for an arbitrary value. In C/C++ terms, this is an
|
|
/// 'object', because it is rooted in memory.
|
|
///
|
|
/// The context dictates what type is actually stored in this object,
|
|
/// and so this type is intentionally incomplete.
|
|
///
|
|
/// An object can be in one of two states:
|
|
/// - An uninitialized object has a completely unspecified state.
|
|
/// - An initialized object holds a valid value of the type.
|
|
struct OpaqueValue;
|
|
|
|
/// A fixed-size buffer for local values. It is capable of owning
|
|
/// (possibly in side-allocated memory) the storage necessary
|
|
/// to hold a value of an arbitrary type. Because it is fixed-size,
|
|
/// it can be allocated in places that must be agnostic to the
|
|
/// actual type: for example, within objects of existential type,
|
|
/// or for local variables in generic functions.
|
|
///
|
|
/// The context dictates its type, which ultimately means providing
|
|
/// access to a value witness table by which the value can be
|
|
/// accessed and manipulated.
|
|
///
|
|
/// A buffer can directly store three pointers and is pointer-aligned.
|
|
/// Three pointers is a sweet spot for Swift, because it means we can
|
|
/// store a structure containing a pointer, a size, and an owning
|
|
/// object, which is a common pattern in code due to ARC. In a GC
|
|
/// environment, this could be reduced to two pointers without much loss.
|
|
///
|
|
/// A buffer can be in one of three states:
|
|
/// - An unallocated buffer has a completely unspecified state.
|
|
/// - An allocated buffer has been initialized so that it
|
|
/// owns uninitialized value storage for the stored type.
|
|
/// - An initialized buffer is an allocated buffer whose value
|
|
/// storage has been initialized.
|
|
template <typename Runtime>
|
|
struct TargetValueBuffer {
|
|
TargetPointer<Runtime, void> PrivateData[NumWords_ValueBuffer];
|
|
};
|
|
using ValueBuffer = TargetValueBuffer<InProcess>;
|
|
|
|
/// Can a value with the given size and alignment be allocated inline?
|
|
constexpr inline bool canBeInline(bool isBitwiseTakable, size_t size,
|
|
size_t alignment) {
|
|
return isBitwiseTakable && size <= sizeof(ValueBuffer) &&
|
|
alignment <= alignof(ValueBuffer);
|
|
}
|
|
|
|
template <class T>
|
|
constexpr inline bool canBeInline(bool isBitwiseTakable) {
|
|
return canBeInline(isBitwiseTakable, sizeof(T), alignof(T));
|
|
}
|
|
|
|
template <typename Runtime> struct TargetValueWitnessTable;
|
|
using ValueWitnessTable = TargetValueWitnessTable<InProcess>;
|
|
|
|
template <typename Runtime> class TargetValueWitnessTypes;
|
|
using ValueWitnessTypes = TargetValueWitnessTypes<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
class TargetValueWitnessTypes {
|
|
public:
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
|
|
// Note that, for now, we aren't strict about 'const'.
|
|
#define WANT_ALL_VALUE_WITNESSES
|
|
#define DATA_VALUE_WITNESS(lowerId, upperId, type)
|
|
#define FUNCTION_VALUE_WITNESS(lowerId, upperId, returnType, paramTypes) \
|
|
typedef TargetPointer<Runtime, returnType paramTypes> lowerId;
|
|
#define MUTABLE_VALUE_TYPE TargetPointer<Runtime, OpaqueValue>
|
|
#define IMMUTABLE_VALUE_TYPE ConstTargetPointer<Runtime, OpaqueValue>
|
|
#define MUTABLE_BUFFER_TYPE TargetPointer<Runtime, ValueBuffer>
|
|
#define IMMUTABLE_BUFFER_TYPE ConstTargetPointer<Runtime, ValueBuffer>
|
|
#define TYPE_TYPE ConstTargetPointer<Runtime, Metadata>
|
|
#define SIZE_TYPE StoredSize
|
|
#define INT_TYPE int
|
|
#define UINT_TYPE unsigned
|
|
#define VOID_TYPE void
|
|
#include "swift/ABI/ValueWitness.def"
|
|
|
|
// Handle the data witnesses explicitly so we can use more specific
|
|
// types for the flags enums.
|
|
typedef size_t size;
|
|
typedef ValueWitnessFlags flags;
|
|
typedef size_t stride;
|
|
typedef ExtraInhabitantFlags extraInhabitantFlags;
|
|
|
|
};
|
|
|
|
struct TypeLayout;
|
|
|
|
/// A value-witness table. A value witness table is built around
|
|
/// the requirements of some specific type. The information in
|
|
/// a value-witness table is intended to be sufficient to lay out
|
|
/// and manipulate values of an arbitrary type.
|
|
template <typename Runtime> struct TargetValueWitnessTable {
|
|
// For the meaning of all of these witnesses, consult the comments
|
|
// on their associated typedefs, above.
|
|
|
|
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
|
|
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
|
|
typename TargetValueWitnessTypes<Runtime>::LOWER_ID LOWER_ID;
|
|
#include "swift/ABI/ValueWitness.def"
|
|
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
|
|
/// Is the external type layout of this type incomplete?
|
|
bool isIncomplete() const {
|
|
return flags.isIncomplete();
|
|
}
|
|
|
|
/// Would values of a type with the given layout requirements be
|
|
/// allocated inline?
|
|
static bool isValueInline(bool isBitwiseTakable, StoredSize size,
|
|
StoredSize alignment) {
|
|
return (isBitwiseTakable && size <= sizeof(TargetValueBuffer<Runtime>) &&
|
|
alignment <= alignof(TargetValueBuffer<Runtime>));
|
|
}
|
|
|
|
/// Are values of this type allocated inline?
|
|
bool isValueInline() const {
|
|
return flags.isInlineStorage();
|
|
}
|
|
|
|
/// Is this type POD?
|
|
bool isPOD() const {
|
|
return flags.isPOD();
|
|
}
|
|
|
|
/// Is this type bitwise-takable?
|
|
bool isBitwiseTakable() const {
|
|
return flags.isBitwiseTakable();
|
|
}
|
|
|
|
/// Return the size of this type. Unlike in C, this has not been
|
|
/// padded up to the alignment; that value is maintained as
|
|
/// 'stride'.
|
|
StoredSize getSize() const {
|
|
return size;
|
|
}
|
|
|
|
/// Return the stride of this type. This is the size rounded up to
|
|
/// be a multiple of the alignment.
|
|
StoredSize getStride() const {
|
|
return stride;
|
|
}
|
|
|
|
/// Return the alignment required by this type, in bytes.
|
|
StoredSize getAlignment() const {
|
|
return flags.getAlignment();
|
|
}
|
|
|
|
/// The alignment mask of this type. An offset may be rounded up to
|
|
/// the required alignment by adding this mask and masking by its
|
|
/// bit-negation.
|
|
///
|
|
/// For example, if the type needs to be 8-byte aligned, the value
|
|
/// of this witness is 0x7.
|
|
StoredSize getAlignmentMask() const {
|
|
return flags.getAlignmentMask();
|
|
}
|
|
|
|
/// The number of extra inhabitants, that is, bit patterns that do not form
|
|
/// valid values of the type, in this type's binary representation.
|
|
unsigned getNumExtraInhabitants() const;
|
|
|
|
/// Assert that this value witness table is an extra-inhabitants
|
|
/// value witness table and return it as such.
|
|
///
|
|
/// This has an awful name because it's supposed to be internal to
|
|
/// this file. Code outside this file should use LLVM's cast/dyn_cast.
|
|
/// We don't want to use those here because we need to avoid accidentally
|
|
/// introducing ABI dependencies on LLVM structures.
|
|
const struct ExtraInhabitantsValueWitnessTable *_asXIVWT() const;
|
|
|
|
/// Assert that this value witness table is an enum value witness table
|
|
/// and return it as such.
|
|
///
|
|
/// This has an awful name because it's supposed to be internal to
|
|
/// this file. Code outside this file should use LLVM's cast/dyn_cast.
|
|
/// We don't want to use those here because we need to avoid accidentally
|
|
/// introducing ABI dependencies on LLVM structures.
|
|
const struct EnumValueWitnessTable *_asEVWT() const;
|
|
|
|
/// Get the type layout record within this value witness table.
|
|
const TypeLayout *getTypeLayout() const {
|
|
return reinterpret_cast<const TypeLayout *>(&size);
|
|
}
|
|
|
|
/// Check whether this metadata is complete.
|
|
bool checkIsComplete() const;
|
|
|
|
/// "Publish" the layout of this type to other threads. All other stores
|
|
/// to the value witness table (including its extended header) should have
|
|
/// happened before this is called.
|
|
void publishLayout(const TypeLayout &layout);
|
|
};
|
|
|
|
/// The header before a metadata object which appears on all type
|
|
/// metadata. Note that heap metadata are not necessarily type
|
|
/// metadata, even for objects of a heap type: for example, objects of
|
|
/// Objective-C type possess a form of heap metadata (an Objective-C
|
|
/// Class pointer), but this metadata lacks the type metadata header.
|
|
/// This case can be distinguished using the isTypeMetadata() flag
|
|
/// on ClassMetadata.
|
|
template <typename Runtime>
|
|
struct TargetTypeMetadataHeader {
|
|
/// A pointer to the value-witnesses for this type. This is only
|
|
/// present for type metadata.
|
|
TargetPointer<Runtime, const ValueWitnessTable> ValueWitnesses;
|
|
};
|
|
using TypeMetadataHeader = TargetTypeMetadataHeader<InProcess>;
|
|
|
|
/// A "full" metadata pointer is simply an adjusted address point on a
|
|
/// metadata object; it points to the beginning of the metadata's
|
|
/// allocation, rather than to the canonical address point of the
|
|
/// metadata object.
|
|
template <class T> struct FullMetadata : T::HeaderType, T {
|
|
typedef typename T::HeaderType HeaderType;
|
|
|
|
FullMetadata() = default;
|
|
constexpr FullMetadata(const HeaderType &header, const T &metadata)
|
|
: HeaderType(header), T(metadata) {}
|
|
};
|
|
|
|
/// Given a canonical metadata pointer, produce the adjusted metadata pointer.
|
|
template <class T>
|
|
static inline FullMetadata<T> *asFullMetadata(T *metadata) {
|
|
return (FullMetadata<T>*) (((typename T::HeaderType*) metadata) - 1);
|
|
}
|
|
template <class T>
|
|
static inline const FullMetadata<T> *asFullMetadata(const T *metadata) {
|
|
return asFullMetadata(const_cast<T*>(metadata));
|
|
}
|
|
|
|
// std::result_of is busted in Xcode 5. This is a simplified reimplementation
|
|
// that isn't SFINAE-safe.
|
|
namespace {
|
|
template<typename T> struct _ResultOf;
|
|
|
|
template<typename R, typename...A>
|
|
struct _ResultOf<R(*)(A...)> {
|
|
using type = R;
|
|
};
|
|
}
|
|
|
|
template <typename Runtime> struct TargetGenericMetadataInstantiationCache;
|
|
template <typename Runtime> struct TargetAnyClassMetadata;
|
|
template <typename Runtime> struct TargetClassMetadata;
|
|
template <typename Runtime> struct TargetStructMetadata;
|
|
template <typename Runtime> struct TargetOpaqueMetadata;
|
|
template <typename Runtime> struct TargetValueMetadata;
|
|
template <typename Runtime> struct TargetForeignClassMetadata;
|
|
template <typename Runtime> class TargetTypeContextDescriptor;
|
|
template <typename Runtime> class TargetClassDescriptor;
|
|
template <typename Runtime> class TargetValueTypeDescriptor;
|
|
template <typename Runtime> class TargetEnumDescriptor;
|
|
template <typename Runtime> class TargetStructDescriptor;
|
|
template <typename Runtime> struct TargetGenericMetadataPattern;
|
|
|
|
// FIXME: https://bugs.swift.org/browse/SR-1155
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Winvalid-offsetof"
|
|
|
|
/// Bounds for metadata objects.
|
|
template <typename Runtime>
|
|
struct TargetMetadataBounds {
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
|
|
/// The negative extent of the metadata, in words.
|
|
uint32_t NegativeSizeInWords;
|
|
|
|
/// The positive extent of the metadata, in words.
|
|
uint32_t PositiveSizeInWords;
|
|
|
|
/// Return the total size of the metadata in bytes, including both
|
|
/// negatively- and positively-offset members.
|
|
StoredSize getTotalSizeInBytes() const {
|
|
return (StoredSize(NegativeSizeInWords) + StoredSize(PositiveSizeInWords))
|
|
* sizeof(void*);
|
|
}
|
|
|
|
/// Return the offset of the address point of the metadata from its
|
|
/// start, in bytes.
|
|
StoredSize getAddressPointInBytes() const {
|
|
return StoredSize(NegativeSizeInWords) * sizeof(void*);
|
|
}
|
|
};
|
|
using MetadataBounds = TargetMetadataBounds<InProcess>;
|
|
|
|
/// The common structure of all type metadata.
|
|
template <typename Runtime>
|
|
struct TargetMetadata {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
|
|
/// The basic header type.
|
|
typedef TargetTypeMetadataHeader<Runtime> HeaderType;
|
|
|
|
constexpr TargetMetadata()
|
|
: Kind(static_cast<StoredPointer>(MetadataKind::Class)) {}
|
|
constexpr TargetMetadata(MetadataKind Kind)
|
|
: Kind(static_cast<StoredPointer>(Kind)) {}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
protected:
|
|
constexpr TargetMetadata(TargetAnyClassMetadata<Runtime> *isa)
|
|
: Kind(reinterpret_cast<StoredPointer>(isa)) {}
|
|
#endif
|
|
|
|
private:
|
|
/// The kind. Only valid for non-class metadata; getKind() must be used to get
|
|
/// the kind value.
|
|
StoredPointer Kind;
|
|
public:
|
|
/// Get the metadata kind.
|
|
MetadataKind getKind() const {
|
|
return getEnumeratedMetadataKind(Kind);
|
|
}
|
|
|
|
/// Set the metadata kind.
|
|
void setKind(MetadataKind kind) {
|
|
Kind = static_cast<StoredPointer>(kind);
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
protected:
|
|
const TargetAnyClassMetadata<Runtime> *getClassISA() const {
|
|
return reinterpret_cast<const TargetAnyClassMetadata<Runtime> *>(Kind);
|
|
}
|
|
void setClassISA(const TargetAnyClassMetadata<Runtime> *isa) {
|
|
Kind = reinterpret_cast<StoredPointer>(isa);
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
/// Is this a class object--the metadata record for a Swift class (which also
|
|
/// serves as the class object), or the class object for an ObjC class (which
|
|
/// is not metadata)?
|
|
bool isClassObject() const {
|
|
return static_cast<MetadataKind>(getKind()) == MetadataKind::Class;
|
|
}
|
|
|
|
/// Does the given metadata kind represent metadata for some kind of class?
|
|
static bool isAnyKindOfClass(MetadataKind k) {
|
|
switch (k) {
|
|
case MetadataKind::Class:
|
|
case MetadataKind::ObjCClassWrapper:
|
|
case MetadataKind::ForeignClass:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Is this metadata for an existential type?
|
|
bool isAnyExistentialType() const {
|
|
switch (getKind()) {
|
|
case MetadataKind::ExistentialMetatype:
|
|
case MetadataKind::Existential:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Is this either type metadata or a class object for any kind of class?
|
|
bool isAnyClass() const {
|
|
return isAnyKindOfClass(getKind());
|
|
}
|
|
|
|
const ValueWitnessTable *getValueWitnesses() const {
|
|
return asFullMetadata(this)->ValueWitnesses;
|
|
}
|
|
|
|
const TypeLayout *getTypeLayout() const {
|
|
return getValueWitnesses()->getTypeLayout();
|
|
}
|
|
|
|
void setValueWitnesses(const ValueWitnessTable *table) {
|
|
asFullMetadata(this)->ValueWitnesses = table;
|
|
}
|
|
|
|
// Define forwarders for value witnesses. These invoke this metadata's value
|
|
// witness table with itself as the 'self' parameter.
|
|
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
|
|
#define FUNCTION_VALUE_WITNESS(WITNESS, UPPER, RET_TYPE, PARAM_TYPES) \
|
|
template<typename...A> \
|
|
_ResultOf<ValueWitnessTypes::WITNESS>::type \
|
|
vw_##WITNESS(A &&...args) const { \
|
|
return getValueWitnesses()->WITNESS(std::forward<A>(args)..., this); \
|
|
}
|
|
#define DATA_VALUE_WITNESS(LOWER, UPPER, TYPE)
|
|
#include "swift/ABI/ValueWitness.def"
|
|
|
|
int vw_getExtraInhabitantIndex(const OpaqueValue *value) const {
|
|
return getValueWitnesses()->_asXIVWT()->getExtraInhabitantIndex(value, this);
|
|
}
|
|
void vw_storeExtraInhabitant(OpaqueValue *value, int index) const {
|
|
getValueWitnesses()->_asXIVWT()->storeExtraInhabitant(value, index, this);
|
|
}
|
|
|
|
unsigned vw_getEnumTag(const OpaqueValue *value) const {
|
|
return getValueWitnesses()->_asEVWT()->getEnumTag(const_cast<OpaqueValue*>(value), this);
|
|
}
|
|
void vw_destructiveProjectEnumData(OpaqueValue *value) const {
|
|
getValueWitnesses()->_asEVWT()->destructiveProjectEnumData(value, this);
|
|
}
|
|
void vw_destructiveInjectEnumTag(OpaqueValue *value, unsigned tag) const {
|
|
getValueWitnesses()->_asEVWT()->destructiveInjectEnumTag(value, tag, this);
|
|
}
|
|
|
|
/// Allocate an out-of-line buffer if values of this type don't fit in the
|
|
/// ValueBuffer.
|
|
/// NOTE: This is not a box for copy-on-write existentials.
|
|
OpaqueValue *allocateBufferIn(ValueBuffer *buffer) const;
|
|
|
|
/// Deallocate an out-of-line buffer stored in 'buffer' if values of this type
|
|
/// are not stored inline in the ValueBuffer.
|
|
void deallocateBufferIn(ValueBuffer *buffer) const;
|
|
|
|
// Allocate an out-of-line buffer box (reference counted) if values of this
|
|
// type don't fit in the ValueBuffer.
|
|
// NOTE: This *is* a box for copy-on-write existentials.
|
|
OpaqueValue *allocateBoxForExistentialIn(ValueBuffer *Buffer) const;
|
|
|
|
/// Get the nominal type descriptor if this metadata describes a nominal type,
|
|
/// or return null if it does not.
|
|
ConstTargetMetadataPointer<Runtime, TargetTypeContextDescriptor>
|
|
getTypeContextDescriptor() const {
|
|
switch (getKind()) {
|
|
case MetadataKind::Class: {
|
|
const auto cls = static_cast<const TargetClassMetadata<Runtime> *>(this);
|
|
if (!cls->isTypeMetadata())
|
|
return nullptr;
|
|
if (cls->isArtificialSubclass())
|
|
return nullptr;
|
|
return cls->getDescription();
|
|
}
|
|
case MetadataKind::Struct:
|
|
case MetadataKind::Enum:
|
|
case MetadataKind::Optional:
|
|
return static_cast<const TargetValueMetadata<Runtime> *>(this)
|
|
->Description;
|
|
case MetadataKind::ForeignClass:
|
|
return static_cast<const TargetForeignClassMetadata<Runtime> *>(this)
|
|
->Description;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Get the class object for this type if it has one, or return null if the
|
|
/// type is not a class (or not a class with a class object).
|
|
const TargetClassMetadata<Runtime> *getClassObject() const;
|
|
|
|
/// Retrieve the generic arguments of this type, if it has any.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> const *
|
|
getGenericArgs() const {
|
|
auto description = getTypeContextDescriptor();
|
|
if (!description)
|
|
return nullptr;
|
|
|
|
auto generics = description->getGenericContext();
|
|
if (!generics)
|
|
return nullptr;
|
|
|
|
auto asWords = reinterpret_cast<
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> const *>(this);
|
|
return asWords + description->getGenericArgumentOffset();
|
|
}
|
|
|
|
bool satisfiesClassConstraint() const;
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
/// Get the ObjC class object for this type if it has one, or return null if
|
|
/// the type is not a class (or not a class with a class object).
|
|
/// This is allowed for InProcess values only.
|
|
template <typename R = Runtime>
|
|
typename std::enable_if<std::is_same<R, InProcess>::value, Class>::type
|
|
getObjCClassObject() const {
|
|
return reinterpret_cast<Class>(
|
|
const_cast<TargetClassMetadata<InProcess>*>(
|
|
getClassObject()));
|
|
}
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_ATTRIBUTE_DEPRECATED(void dump() const LLVM_ATTRIBUTE_USED,
|
|
"Only meant for use in the debugger");
|
|
#endif
|
|
|
|
protected:
|
|
friend struct TargetOpaqueMetadata<Runtime>;
|
|
|
|
/// Metadata should not be publicly copied or moved.
|
|
constexpr TargetMetadata(const TargetMetadata &) = default;
|
|
TargetMetadata &operator=(const TargetMetadata &) = default;
|
|
constexpr TargetMetadata(TargetMetadata &&) = default;
|
|
TargetMetadata &operator=(TargetMetadata &&) = default;
|
|
};
|
|
|
|
/// The common structure of opaque metadata. Adds nothing.
|
|
template <typename Runtime>
|
|
struct TargetOpaqueMetadata {
|
|
typedef TargetTypeMetadataHeader<Runtime> HeaderType;
|
|
|
|
// We have to represent this as a member so we can list-initialize it.
|
|
TargetMetadata<Runtime> base;
|
|
};
|
|
|
|
using HeapObjectDestroyer =
|
|
SWIFT_CC(swift) void(SWIFT_CONTEXT HeapObject *);
|
|
|
|
/// The prefix on a heap metadata.
|
|
template <typename Runtime>
|
|
struct TargetHeapMetadataHeaderPrefix {
|
|
/// Destroy the object, returning the allocated size of the object
|
|
/// or 0 if the object shouldn't be deallocated.
|
|
TargetPointer<Runtime, HeapObjectDestroyer> destroy;
|
|
};
|
|
using HeapMetadataHeaderPrefix =
|
|
TargetHeapMetadataHeaderPrefix<InProcess>;
|
|
|
|
/// The header present on all heap metadata.
|
|
template <typename Runtime>
|
|
struct TargetHeapMetadataHeader
|
|
: TargetHeapMetadataHeaderPrefix<Runtime>,
|
|
TargetTypeMetadataHeader<Runtime> {
|
|
constexpr TargetHeapMetadataHeader(
|
|
const TargetHeapMetadataHeaderPrefix<Runtime> &heapPrefix,
|
|
const TargetTypeMetadataHeader<Runtime> &typePrefix)
|
|
: TargetHeapMetadataHeaderPrefix<Runtime>(heapPrefix),
|
|
TargetTypeMetadataHeader<Runtime>(typePrefix) {}
|
|
};
|
|
using HeapMetadataHeader =
|
|
TargetHeapMetadataHeader<InProcess>;
|
|
|
|
/// The common structure of all metadata for heap-allocated types. A
|
|
/// pointer to one of these can be retrieved by loading the 'isa'
|
|
/// field of any heap object, whether it was managed by Swift or by
|
|
/// Objective-C. However, when loading from an Objective-C object,
|
|
/// this metadata may not have the heap-metadata header, and it may
|
|
/// not be the Swift type metadata for the object's dynamic type.
|
|
template <typename Runtime>
|
|
struct TargetHeapMetadata : TargetMetadata<Runtime> {
|
|
using HeaderType = TargetHeapMetadataHeader<Runtime>;
|
|
|
|
TargetHeapMetadata() = default;
|
|
constexpr TargetHeapMetadata(MetadataKind kind)
|
|
: TargetMetadata<Runtime>(kind) {}
|
|
#if SWIFT_OBJC_INTEROP
|
|
constexpr TargetHeapMetadata(TargetAnyClassMetadata<Runtime> *isa)
|
|
: TargetMetadata<Runtime>(isa) {}
|
|
#endif
|
|
};
|
|
using HeapMetadata = TargetHeapMetadata<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
struct TargetMethodDescriptor {
|
|
/// The method implementation.
|
|
TargetRelativeDirectPointer<Runtime, void> Impl;
|
|
|
|
/// Flags describing the method.
|
|
MethodDescriptorFlags Flags;
|
|
|
|
// TODO: add method types or anything else needed for reflection.
|
|
};
|
|
|
|
/// Header for a class vtable descriptor. This is a variable-sized
|
|
/// structure that describes how to find and parse a vtable
|
|
/// within the type metadata for a class.
|
|
template <typename Runtime>
|
|
struct TargetVTableDescriptorHeader {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
|
|
private:
|
|
/// The offset of the vtable for this class in its metadata, if any,
|
|
/// in words.
|
|
///
|
|
/// If this class has a resilient superclass, this offset is relative to the
|
|
/// the start of the immediate class's metadata. Otherwise, it is relative
|
|
/// to the metadata address point.
|
|
uint32_t VTableOffset;
|
|
|
|
public:
|
|
/// The number of vtable entries. This is the number of MethodDescriptor
|
|
/// records following the vtable header in the class's nominal type
|
|
/// descriptor, which is equal to the number of words this subclass's vtable
|
|
/// entries occupy in instantiated class metadata.
|
|
uint32_t VTableSize;
|
|
|
|
uint32_t getVTableOffset(const TargetClassMetadata<Runtime> *metadata) const {
|
|
const auto *description = metadata->getDescription();
|
|
if (description->hasResilientSuperclass())
|
|
return metadata->Superclass->getSizeInWords() + VTableOffset;
|
|
return VTableOffset;
|
|
}
|
|
};
|
|
|
|
/// The bounds of a class metadata object.
|
|
///
|
|
/// This type is a currency type and is not part of the ABI.
|
|
/// See TargetStoredClassMetadataBounds for the type of the class
|
|
/// metadata bounds variable.
|
|
template <typename Runtime>
|
|
struct TargetClassMetadataBounds : TargetMetadataBounds<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
using StoredPointerDifference = typename Runtime::StoredPointerDifference;
|
|
|
|
using TargetMetadataBounds<Runtime>::NegativeSizeInWords;
|
|
using TargetMetadataBounds<Runtime>::PositiveSizeInWords;
|
|
|
|
/// The offset from the address point of the metadata to the immediate
|
|
/// members.
|
|
StoredPointerDifference ImmediateMembersOffset;
|
|
|
|
constexpr TargetClassMetadataBounds() = default;
|
|
constexpr TargetClassMetadataBounds(
|
|
StoredPointerDifference immediateMembersOffset,
|
|
uint32_t negativeSizeInWords, uint32_t positiveSizeInWords)
|
|
: TargetMetadataBounds<Runtime>{negativeSizeInWords, positiveSizeInWords},
|
|
ImmediateMembersOffset(immediateMembersOffset) {}
|
|
|
|
/// Return the basic bounds of all Swift class metadata.
|
|
/// The immediate members offset will not be meaningful.
|
|
static constexpr TargetClassMetadataBounds<Runtime> forSwiftRootClass() {
|
|
using Metadata = FullMetadata<TargetClassMetadata<Runtime>>;
|
|
return forAddressPointAndSize(sizeof(typename Metadata::HeaderType),
|
|
sizeof(Metadata));
|
|
}
|
|
|
|
/// Return the bounds of a Swift class metadata with the given address
|
|
/// point and size (both in bytes).
|
|
/// The immediate members offset will not be meaningful.
|
|
static constexpr TargetClassMetadataBounds<Runtime>
|
|
forAddressPointAndSize(StoredSize addressPoint, StoredSize totalSize) {
|
|
return {
|
|
// Immediate offset in bytes.
|
|
StoredPointerDifference(totalSize - addressPoint),
|
|
// Negative size in words.
|
|
uint32_t(addressPoint / sizeof(StoredPointer)),
|
|
// Positive size in words.
|
|
uint32_t((totalSize - addressPoint) / sizeof(StoredPointer))
|
|
};
|
|
}
|
|
|
|
/// Adjust these bounds for a subclass with the given immediate-members
|
|
/// section.
|
|
void adjustForSubclass(bool areImmediateMembersNegative,
|
|
uint32_t numImmediateMembers) {
|
|
if (areImmediateMembersNegative) {
|
|
NegativeSizeInWords += numImmediateMembers;
|
|
ImmediateMembersOffset =
|
|
-StoredPointerDifference(NegativeSizeInWords) * sizeof(StoredPointer);
|
|
} else {
|
|
ImmediateMembersOffset = PositiveSizeInWords * sizeof(StoredPointer);
|
|
PositiveSizeInWords += numImmediateMembers;
|
|
}
|
|
}
|
|
};
|
|
using ClassMetadataBounds =
|
|
TargetClassMetadataBounds<InProcess>;
|
|
|
|
/// The portion of a class metadata object that is compatible with
|
|
/// all classes, even non-Swift ones.
|
|
template <typename Runtime>
|
|
struct TargetAnyClassMetadata : public TargetHeapMetadata<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
constexpr TargetAnyClassMetadata(TargetAnyClassMetadata<Runtime> *isa,
|
|
TargetClassMetadata<Runtime> *superclass)
|
|
: TargetHeapMetadata<Runtime>(isa),
|
|
Superclass(superclass),
|
|
CacheData{nullptr, nullptr},
|
|
Data(SWIFT_CLASS_IS_SWIFT_MASK) {}
|
|
#endif
|
|
|
|
constexpr TargetAnyClassMetadata(TargetClassMetadata<Runtime> *superclass)
|
|
: TargetHeapMetadata<Runtime>(MetadataKind::Class),
|
|
Superclass(superclass),
|
|
CacheData{nullptr, nullptr},
|
|
Data(SWIFT_CLASS_IS_SWIFT_MASK) {}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
// Allow setting the metadata kind to a class ISA on class metadata.
|
|
using TargetMetadata<Runtime>::getClassISA;
|
|
using TargetMetadata<Runtime>::setClassISA;
|
|
#endif
|
|
|
|
// Note that ObjC classes does not have a metadata header.
|
|
|
|
/// The metadata for the superclass. This is null for the root class.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetClassMetadata> Superclass;
|
|
|
|
// TODO: remove the CacheData and Data fields in non-ObjC-interop builds.
|
|
|
|
/// The cache data is used for certain dynamic lookups; it is owned
|
|
/// by the runtime and generally needs to interoperate with
|
|
/// Objective-C's use.
|
|
TargetPointer<Runtime, void> CacheData[2];
|
|
|
|
/// The data pointer is used for out-of-line metadata and is
|
|
/// generally opaque, except that the compiler sets the low bit in
|
|
/// order to indicate that this is a Swift metatype and therefore
|
|
/// that the type metadata header is present.
|
|
StoredSize Data;
|
|
|
|
static constexpr StoredPointer offsetToData() {
|
|
return offsetof(TargetAnyClassMetadata, Data);
|
|
}
|
|
|
|
/// Is this object a valid swift type metadata? That is, can it be
|
|
/// safely downcast to ClassMetadata?
|
|
bool isTypeMetadata() const {
|
|
return (Data & SWIFT_CLASS_IS_SWIFT_MASK);
|
|
}
|
|
/// A different perspective on the same bit
|
|
bool isPureObjC() const {
|
|
return !isTypeMetadata();
|
|
}
|
|
};
|
|
using AnyClassMetadata =
|
|
TargetAnyClassMetadata<InProcess>;
|
|
|
|
using ClassIVarDestroyer =
|
|
SWIFT_CC(swift) void(SWIFT_CONTEXT HeapObject *);
|
|
|
|
/// The structure of all class metadata. This structure is embedded
|
|
/// directly within the class's heap metadata structure and therefore
|
|
/// cannot be extended without an ABI break.
|
|
///
|
|
/// Note that the layout of this type is compatible with the layout of
|
|
/// an Objective-C class.
|
|
template <typename Runtime>
|
|
struct TargetClassMetadata : public TargetAnyClassMetadata<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
|
|
friend class ReflectionContext;
|
|
|
|
TargetClassMetadata() = default;
|
|
constexpr TargetClassMetadata(const TargetAnyClassMetadata<Runtime> &base,
|
|
ClassFlags flags,
|
|
ClassIVarDestroyer *ivarDestroyer,
|
|
StoredPointer size, StoredPointer addressPoint,
|
|
StoredPointer alignMask,
|
|
StoredPointer classSize, StoredPointer classAddressPoint)
|
|
: TargetAnyClassMetadata<Runtime>(base),
|
|
Flags(flags), InstanceAddressPoint(addressPoint),
|
|
InstanceSize(size), InstanceAlignMask(alignMask),
|
|
Reserved(0), ClassSize(classSize), ClassAddressPoint(classAddressPoint),
|
|
Description(nullptr), IVarDestroyer(ivarDestroyer) {}
|
|
|
|
// The remaining fields are valid only when isTypeMetadata().
|
|
// The Objective-C runtime knows the offsets to some of these fields.
|
|
// Be careful when accessing them.
|
|
|
|
/// Swift-specific class flags.
|
|
ClassFlags Flags;
|
|
|
|
/// The address point of instances of this type.
|
|
uint32_t InstanceAddressPoint;
|
|
|
|
/// The required size of instances of this type.
|
|
/// 'InstanceAddressPoint' bytes go before the address point;
|
|
/// 'InstanceSize - InstanceAddressPoint' bytes go after it.
|
|
uint32_t InstanceSize;
|
|
|
|
/// The alignment mask of the address point of instances of this type.
|
|
uint16_t InstanceAlignMask;
|
|
|
|
/// Reserved for runtime use.
|
|
uint16_t Reserved;
|
|
|
|
/// The total size of the class object, including prefix and suffix
|
|
/// extents.
|
|
uint32_t ClassSize;
|
|
|
|
/// The offset of the address point within the class object.
|
|
uint32_t ClassAddressPoint;
|
|
|
|
// Description is by far the most likely field for a client to try
|
|
// to access directly, so we force access to go through accessors.
|
|
private:
|
|
/// An out-of-line Swift-specific description of the type, or null
|
|
/// if this is an artificial subclass. We currently provide no
|
|
/// supported mechanism for making a non-artificial subclass
|
|
/// dynamically.
|
|
ConstTargetMetadataPointer<Runtime, TargetClassDescriptor> Description;
|
|
|
|
public:
|
|
/// A function for destroying instance variables, used to clean up
|
|
/// after an early return from a constructor.
|
|
TargetPointer<Runtime, ClassIVarDestroyer> IVarDestroyer;
|
|
|
|
// After this come the class members, laid out as follows:
|
|
// - class members for the superclass (recursively)
|
|
// - metadata reference for the parent, if applicable
|
|
// - generic parameters for this class
|
|
// - class variables (if we choose to support these)
|
|
// - "tabulated" virtual methods
|
|
|
|
using TargetAnyClassMetadata<Runtime>::isTypeMetadata;
|
|
|
|
ConstTargetMetadataPointer<Runtime, TargetClassDescriptor>
|
|
getDescription() const {
|
|
assert(isTypeMetadata());
|
|
return Description;
|
|
}
|
|
|
|
void setDescription(const TargetClassDescriptor<Runtime> *description) {
|
|
Description = description;
|
|
}
|
|
|
|
/// Is this class an artificial subclass, such as one dynamically
|
|
/// created for various dynamic purposes like KVO?
|
|
bool isArtificialSubclass() const {
|
|
assert(isTypeMetadata());
|
|
return Description == 0;
|
|
}
|
|
void setArtificialSubclass() {
|
|
assert(isTypeMetadata());
|
|
Description = 0;
|
|
}
|
|
|
|
ClassFlags getFlags() const {
|
|
assert(isTypeMetadata());
|
|
return Flags;
|
|
}
|
|
void setFlags(ClassFlags flags) {
|
|
assert(isTypeMetadata());
|
|
Flags = flags;
|
|
}
|
|
|
|
StoredSize getInstanceSize() const {
|
|
assert(isTypeMetadata());
|
|
return InstanceSize;
|
|
}
|
|
void setInstanceSize(StoredSize size) {
|
|
assert(isTypeMetadata());
|
|
InstanceSize = size;
|
|
}
|
|
|
|
StoredPointer getInstanceAddressPoint() const {
|
|
assert(isTypeMetadata());
|
|
return InstanceAddressPoint;
|
|
}
|
|
void setInstanceAddressPoint(StoredSize size) {
|
|
assert(isTypeMetadata());
|
|
InstanceAddressPoint = size;
|
|
}
|
|
|
|
StoredPointer getInstanceAlignMask() const {
|
|
assert(isTypeMetadata());
|
|
return InstanceAlignMask;
|
|
}
|
|
void setInstanceAlignMask(StoredSize mask) {
|
|
assert(isTypeMetadata());
|
|
InstanceAlignMask = mask;
|
|
}
|
|
|
|
StoredPointer getClassSize() const {
|
|
assert(isTypeMetadata());
|
|
return ClassSize;
|
|
}
|
|
void setClassSize(StoredSize size) {
|
|
assert(isTypeMetadata());
|
|
ClassSize = size;
|
|
}
|
|
|
|
StoredPointer getClassAddressPoint() const {
|
|
assert(isTypeMetadata());
|
|
return ClassAddressPoint;
|
|
}
|
|
void setClassAddressPoint(StoredSize offset) {
|
|
assert(isTypeMetadata());
|
|
ClassAddressPoint = offset;
|
|
}
|
|
|
|
uint16_t getRuntimeReservedData() const {
|
|
assert(isTypeMetadata());
|
|
return Reserved;
|
|
}
|
|
void setRuntimeReservedData(uint16_t data) {
|
|
assert(isTypeMetadata());
|
|
Reserved = data;
|
|
}
|
|
|
|
/// Get a pointer to the field offset vector, if present, or null.
|
|
const StoredPointer *getFieldOffsets() const {
|
|
assert(isTypeMetadata());
|
|
auto offset = getDescription()->getFieldOffsetVectorOffset(this);
|
|
if (offset == 0)
|
|
return nullptr;
|
|
auto asWords = reinterpret_cast<const void * const*>(this);
|
|
return reinterpret_cast<const StoredPointer *>(asWords + offset);
|
|
}
|
|
|
|
uint32_t getSizeInWords() const {
|
|
assert(isTypeMetadata());
|
|
uint32_t size = getClassSize() - getClassAddressPoint();
|
|
assert(size % sizeof(StoredPointer) == 0);
|
|
return size / sizeof(StoredPointer);
|
|
}
|
|
|
|
/// Given that this class is serving as the superclass of a Swift class,
|
|
/// return its bounds as metadata.
|
|
///
|
|
/// Note that the ImmediateMembersOffset member will not be meaningful.
|
|
TargetClassMetadataBounds<Runtime>
|
|
getClassBoundsAsSwiftSuperclass() const {
|
|
using Bounds = TargetClassMetadataBounds<Runtime>;
|
|
|
|
auto rootBounds = Bounds::forSwiftRootClass();
|
|
|
|
// If the class is not type metadata, just use the root-class bounds.
|
|
if (!isTypeMetadata())
|
|
return rootBounds;
|
|
|
|
// Otherwise, pull out the bounds from the metadata.
|
|
auto bounds = Bounds::forAddressPointAndSize(getClassAddressPoint(),
|
|
getClassSize());
|
|
|
|
// Round the bounds up to the required dimensions.
|
|
if (bounds.NegativeSizeInWords < rootBounds.NegativeSizeInWords)
|
|
bounds.NegativeSizeInWords = rootBounds.NegativeSizeInWords;
|
|
if (bounds.PositiveSizeInWords < rootBounds.PositiveSizeInWords)
|
|
bounds.PositiveSizeInWords = rootBounds.PositiveSizeInWords;
|
|
|
|
return bounds;
|
|
}
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Class;
|
|
}
|
|
};
|
|
using ClassMetadata = TargetClassMetadata<InProcess>;
|
|
|
|
/// The structure of metadata for heap-allocated local variables.
|
|
/// This is non-type metadata.
|
|
template <typename Runtime>
|
|
struct TargetHeapLocalVariableMetadata
|
|
: public TargetHeapMetadata<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
uint32_t OffsetToFirstCapture;
|
|
TargetPointer<Runtime, const char> CaptureDescription;
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::HeapLocalVariable;
|
|
}
|
|
constexpr TargetHeapLocalVariableMetadata()
|
|
: TargetHeapMetadata<Runtime>(MetadataKind::HeapLocalVariable),
|
|
OffsetToFirstCapture(0), CaptureDescription(nullptr) {}
|
|
};
|
|
using HeapLocalVariableMetadata
|
|
= TargetHeapLocalVariableMetadata<InProcess>;
|
|
|
|
/// The structure of wrapper metadata for Objective-C classes. This
|
|
/// is used as a type metadata pointer when the actual class isn't
|
|
/// Swift-compiled.
|
|
template <typename Runtime>
|
|
struct TargetObjCClassWrapperMetadata : public TargetMetadata<Runtime> {
|
|
ConstTargetMetadataPointer<Runtime, TargetClassMetadata> Class;
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::ObjCClassWrapper;
|
|
}
|
|
};
|
|
using ObjCClassWrapperMetadata
|
|
= TargetObjCClassWrapperMetadata<InProcess>;
|
|
|
|
/// The structure of metadata for foreign types where the source
|
|
/// language doesn't provide any sort of more interesting metadata for
|
|
/// us to use.
|
|
template <typename Runtime>
|
|
struct TargetForeignTypeMetadata : public TargetMetadata<Runtime> {
|
|
};
|
|
using ForeignTypeMetadata = TargetForeignTypeMetadata<InProcess>;
|
|
|
|
/// The structure of metadata objects for foreign class types.
|
|
/// A foreign class is a foreign type with reference semantics and
|
|
/// Swift-supported reference counting. Generally this requires
|
|
/// special logic in the importer.
|
|
///
|
|
/// We assume for now that foreign classes are entirely opaque
|
|
/// to Swift introspection.
|
|
template <typename Runtime>
|
|
struct TargetForeignClassMetadata : public TargetForeignTypeMetadata<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
|
|
/// An out-of-line description of the type.
|
|
ConstTargetMetadataPointer<Runtime, TargetClassDescriptor> Description;
|
|
|
|
/// The superclass of the foreign class, if any.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetForeignClassMetadata>
|
|
Superclass;
|
|
|
|
/// Reserved space. For now, this should be zero-initialized.
|
|
/// If this is used for anything in the future, at least some of these
|
|
/// first bits should be flags.
|
|
StoredPointer Reserved[1];
|
|
|
|
ConstTargetMetadataPointer<Runtime, TargetClassDescriptor>
|
|
getDescription() const {
|
|
return Description;
|
|
}
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::ForeignClass;
|
|
}
|
|
};
|
|
using ForeignClassMetadata = TargetForeignClassMetadata<InProcess>;
|
|
|
|
/// The common structure of metadata for structs and enums.
|
|
template <typename Runtime>
|
|
struct TargetValueMetadata : public TargetMetadata<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
TargetValueMetadata(MetadataKind Kind,
|
|
const TargetTypeContextDescriptor<Runtime> *description)
|
|
: TargetMetadata<Runtime>(Kind), Description(description) {}
|
|
|
|
/// An out-of-line description of the type.
|
|
ConstTargetMetadataPointer<Runtime, TargetValueTypeDescriptor>
|
|
Description;
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Struct
|
|
|| metadata->getKind() == MetadataKind::Enum
|
|
|| metadata->getKind() == MetadataKind::Optional;
|
|
}
|
|
|
|
ConstTargetMetadataPointer<Runtime, TargetValueTypeDescriptor>
|
|
getDescription() const {
|
|
return Description;
|
|
}
|
|
};
|
|
using ValueMetadata = TargetValueMetadata<InProcess>;
|
|
|
|
/// The structure of type metadata for structs.
|
|
template <typename Runtime>
|
|
struct TargetStructMetadata : public TargetValueMetadata<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using TargetValueMetadata<Runtime>::TargetValueMetadata;
|
|
|
|
const TargetStructDescriptor<Runtime> *getDescription() const {
|
|
return llvm::cast<TargetStructDescriptor<Runtime>>(this->Description);
|
|
}
|
|
|
|
// The first trailing field of struct metadata is always the generic
|
|
// argument array.
|
|
|
|
/// Get a pointer to the field offset vector, if present, or null.
|
|
const uint32_t *getFieldOffsets() const {
|
|
auto offset = getDescription()->FieldOffsetVectorOffset;
|
|
if (offset == 0)
|
|
return nullptr;
|
|
auto asWords = reinterpret_cast<const void * const*>(this);
|
|
return reinterpret_cast<const uint32_t *>(asWords + offset);
|
|
}
|
|
|
|
static constexpr int32_t getGenericArgumentOffset() {
|
|
return sizeof(TargetStructMetadata<Runtime>) / sizeof(void*);
|
|
}
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Struct;
|
|
}
|
|
};
|
|
using StructMetadata = TargetStructMetadata<InProcess>;
|
|
|
|
/// The structure of type metadata for enums.
|
|
template <typename Runtime>
|
|
struct TargetEnumMetadata : public TargetValueMetadata<Runtime> {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
using TargetValueMetadata<Runtime>::TargetValueMetadata;
|
|
|
|
const TargetEnumDescriptor<Runtime> *getDescription() const {
|
|
return llvm::cast<TargetEnumDescriptor<Runtime>>(this->Description);
|
|
}
|
|
|
|
// The first trailing field of enum metadata is always the generic
|
|
// argument array.
|
|
|
|
/// True if the metadata records the size of the payload area.
|
|
bool hasPayloadSize() const {
|
|
return getDescription()->hasPayloadSizeOffset();
|
|
}
|
|
|
|
/// Retrieve the size of the payload area.
|
|
///
|
|
/// `hasPayloadSize` must be true for this to be valid.
|
|
StoredSize getPayloadSize() const {
|
|
assert(hasPayloadSize());
|
|
auto offset = getDescription()->getPayloadSizeOffset();
|
|
const StoredSize *asWords = reinterpret_cast<const StoredSize *>(this);
|
|
asWords += offset;
|
|
return *asWords;
|
|
}
|
|
|
|
StoredSize &getPayloadSize() {
|
|
assert(hasPayloadSize());
|
|
auto offset = getDescription()->getPayloadSizeOffset();
|
|
StoredSize *asWords = reinterpret_cast<StoredSize *>(this);
|
|
asWords += offset;
|
|
return *asWords;
|
|
}
|
|
|
|
static constexpr int32_t getGenericArgumentOffset() {
|
|
return sizeof(TargetEnumMetadata<Runtime>) / sizeof(void*);
|
|
}
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Enum
|
|
|| metadata->getKind() == MetadataKind::Optional;
|
|
}
|
|
};
|
|
using EnumMetadata = TargetEnumMetadata<InProcess>;
|
|
|
|
/// The structure of function type metadata.
|
|
template <typename Runtime>
|
|
struct TargetFunctionTypeMetadata : public TargetMetadata<Runtime> {
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
using Parameter = ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>;
|
|
|
|
TargetFunctionTypeFlags<StoredSize> Flags;
|
|
|
|
/// The type metadata for the result type.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> ResultType;
|
|
|
|
Parameter *getParameters() { return reinterpret_cast<Parameter *>(this + 1); }
|
|
|
|
const Parameter *getParameters() const {
|
|
return reinterpret_cast<const Parameter *>(this + 1);
|
|
}
|
|
|
|
Parameter getParameter(unsigned index) const {
|
|
assert(index < getNumParameters());
|
|
return getParameters()[index];
|
|
}
|
|
|
|
ParameterFlags getParameterFlags(unsigned index) const {
|
|
assert(index < getNumParameters());
|
|
auto flags = hasParameterFlags() ? getParameterFlags()[index] : 0;
|
|
return ParameterFlags::fromIntValue(flags);
|
|
}
|
|
|
|
StoredSize getNumParameters() const {
|
|
return Flags.getNumParameters();
|
|
}
|
|
FunctionMetadataConvention getConvention() const {
|
|
return Flags.getConvention();
|
|
}
|
|
bool throws() const { return Flags.throws(); }
|
|
bool hasParameterFlags() const { return Flags.hasParameterFlags(); }
|
|
bool isEscaping() const { return Flags.isEscaping(); }
|
|
|
|
static constexpr StoredSize OffsetToFlags = sizeof(TargetMetadata<Runtime>);
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Function;
|
|
}
|
|
|
|
uint32_t *getParameterFlags() {
|
|
return reinterpret_cast<uint32_t *>(getParameters() + getNumParameters());
|
|
}
|
|
|
|
const uint32_t *getParameterFlags() const {
|
|
return reinterpret_cast<const uint32_t *>(getParameters() +
|
|
getNumParameters());
|
|
}
|
|
};
|
|
using FunctionTypeMetadata = TargetFunctionTypeMetadata<InProcess>;
|
|
|
|
/// The structure of metadata for metatypes.
|
|
template <typename Runtime>
|
|
struct TargetMetatypeMetadata : public TargetMetadata<Runtime> {
|
|
/// The type metadata for the element.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> InstanceType;
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Metatype;
|
|
}
|
|
};
|
|
using MetatypeMetadata = TargetMetatypeMetadata<InProcess>;
|
|
|
|
/// The structure of tuple type metadata.
|
|
template <typename Runtime>
|
|
struct TargetTupleTypeMetadata : public TargetMetadata<Runtime> {
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
TargetTupleTypeMetadata() = default;
|
|
constexpr TargetTupleTypeMetadata(const TargetMetadata<Runtime> &base,
|
|
StoredSize numElements,
|
|
TargetPointer<Runtime, const char> labels)
|
|
: TargetMetadata<Runtime>(base),
|
|
NumElements(numElements),
|
|
Labels(labels) {}
|
|
|
|
/// The number of elements.
|
|
StoredSize NumElements;
|
|
|
|
/// The labels string; see swift_getTupleTypeMetadata.
|
|
TargetPointer<Runtime, const char> Labels;
|
|
|
|
struct Element {
|
|
/// The type of the element.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> Type;
|
|
|
|
/// The offset of the tuple element within the tuple.
|
|
StoredSize Offset;
|
|
|
|
OpaqueValue *findIn(OpaqueValue *tuple) const {
|
|
return (OpaqueValue*) (((char*) tuple) + Offset);
|
|
}
|
|
|
|
const TypeLayout *getTypeLayout() const {
|
|
return Type->getTypeLayout();
|
|
}
|
|
};
|
|
|
|
Element *getElements() {
|
|
return reinterpret_cast<Element*>(this + 1);
|
|
}
|
|
|
|
const Element *getElements() const {
|
|
return reinterpret_cast<const Element*>(this + 1);
|
|
}
|
|
|
|
const Element &getElement(unsigned i) const {
|
|
return getElements()[i];
|
|
}
|
|
|
|
Element &getElement(unsigned i) {
|
|
return getElements()[i];
|
|
}
|
|
|
|
static constexpr StoredSize OffsetToNumElements = sizeof(TargetMetadata<Runtime>);
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Tuple;
|
|
}
|
|
};
|
|
using TupleTypeMetadata = TargetTupleTypeMetadata<InProcess>;
|
|
|
|
template <typename Runtime> struct TargetProtocolDescriptor;
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
/// Layout of a small prefix of an Objective-C protocol, used only to
|
|
/// directly extract the name of the protocol.
|
|
template <typename Runtime>
|
|
struct TargetObjCProtocolPrefix {
|
|
/// Unused by the Swift runtime.
|
|
TargetPointer<Runtime, const void> _ObjC_Isa;
|
|
|
|
/// The mangled name of the protocol.
|
|
TargetPointer<Runtime, const char> Name;
|
|
};
|
|
#endif
|
|
|
|
/// A reference to a protocol within the runtime, which may be either
|
|
/// a Swift protocol or (when Objective-C interoperability is enabled) an
|
|
/// Objective-C protocol.
|
|
///
|
|
/// This type always contains a single target pointer, whose lowest bit is
|
|
/// used to distinguish between a Swift protocol referent and an Objective-C
|
|
/// protocol referent.
|
|
template <typename Runtime>
|
|
class TargetProtocolDescriptorRef {
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using ProtocolDescriptorPointer =
|
|
ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptor>;
|
|
|
|
enum : StoredPointer {
|
|
// The bit used to indicate whether this is an Objective-C protocol.
|
|
IsObjCBit = 0x1U,
|
|
};
|
|
|
|
/// A direct pointer to a protocol descriptor for either an Objective-C
|
|
/// protocol (if the low bit is set) or a Swift protocol (if the low bit
|
|
/// is clear).
|
|
StoredPointer storage;
|
|
|
|
constexpr TargetProtocolDescriptorRef(StoredPointer storage)
|
|
: storage(storage) { }
|
|
|
|
public:
|
|
constexpr TargetProtocolDescriptorRef() : storage() { }
|
|
|
|
TargetProtocolDescriptorRef(
|
|
ProtocolDescriptorPointer protocol,
|
|
ProtocolDispatchStrategy dispatchStrategy) {
|
|
#if SWIFT_OBJC_INTEROP
|
|
storage = reinterpret_cast<StoredPointer>(protocol)
|
|
| (dispatchStrategy == ProtocolDispatchStrategy::ObjC ? IsObjCBit : 0);
|
|
#else
|
|
assert(dispatchStrategy == ProtocolDispatchStrategy::Swift);
|
|
storage = reinterpret_cast<StoredPointer>(protocol);
|
|
#endif
|
|
}
|
|
|
|
const static TargetProtocolDescriptorRef forSwift(
|
|
ProtocolDescriptorPointer protocol) {
|
|
return TargetProtocolDescriptorRef{
|
|
reinterpret_cast<StoredPointer>(protocol)};
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
constexpr static TargetProtocolDescriptorRef forObjC(Protocol *objcProtocol) {
|
|
return TargetProtocolDescriptorRef{
|
|
reinterpret_cast<StoredPointer>(objcProtocol) | IsObjCBit};
|
|
}
|
|
#endif
|
|
|
|
explicit constexpr operator bool() const {
|
|
return storage != 0;
|
|
}
|
|
|
|
/// The name of the protocol.
|
|
TargetPointer<Runtime, const char> getName() const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (isObjC()) {
|
|
return reinterpret_cast<TargetObjCProtocolPrefix<Runtime> *>(
|
|
getObjCProtocol())->Name;
|
|
}
|
|
#endif
|
|
|
|
return getSwiftProtocol()->Name;
|
|
}
|
|
|
|
/// Determine what kind of protocol this is, Swift or Objective-C.
|
|
ProtocolDispatchStrategy getDispatchStrategy() const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (isObjC()) {
|
|
return ProtocolDispatchStrategy::ObjC;
|
|
}
|
|
#endif
|
|
|
|
return ProtocolDispatchStrategy::Swift;
|
|
}
|
|
|
|
/// Determine whether this protocol has a 'class' constraint.
|
|
ProtocolClassConstraint getClassConstraint() const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (isObjC()) {
|
|
return ProtocolClassConstraint::Class;
|
|
}
|
|
#endif
|
|
|
|
return getSwiftProtocol()->getProtocolContextDescriptorFlags()
|
|
.getClassConstraint();
|
|
}
|
|
|
|
/// Determine whether this protocol needs a witness table.
|
|
bool needsWitnessTable() const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (isObjC()) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
SpecialProtocol getSpecialProtocol() const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (isObjC()) {
|
|
return SpecialProtocol::None;
|
|
}
|
|
#endif
|
|
|
|
return getSwiftProtocol()->getProtocolContextDescriptorFlags()
|
|
.getSpecialProtocol();
|
|
}
|
|
|
|
/// Retrieve the Swift protocol descriptor.
|
|
ProtocolDescriptorPointer getSwiftProtocol() const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
assert(!isObjC());
|
|
#endif
|
|
|
|
return reinterpret_cast<ProtocolDescriptorPointer>(storage & ~IsObjCBit);
|
|
}
|
|
|
|
/// Retrieve the raw stored pointer and discriminator bit.
|
|
constexpr StoredPointer getRawData() const {
|
|
return storage;
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
/// Whether this references an Objective-C protocol.
|
|
bool isObjC() const {
|
|
return (storage & IsObjCBit) != 0;
|
|
}
|
|
|
|
/// Retrieve the Objective-C protocol.
|
|
TargetPointer<Runtime, Protocol> getObjCProtocol() const {
|
|
assert(isObjC());
|
|
return reinterpret_cast<TargetPointer<Runtime, Protocol> >(
|
|
storage & ~IsObjCBit);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
using ProtocolDescriptorRef = TargetProtocolDescriptorRef<InProcess>;
|
|
|
|
/// A protocol requirement descriptor. This describes a single protocol
|
|
/// requirement in a protocol descriptor. The index of the requirement in
|
|
/// the descriptor determines the offset of the witness in a witness table
|
|
/// for this protocol.
|
|
template <typename Runtime>
|
|
struct TargetProtocolRequirement {
|
|
ProtocolRequirementFlags Flags;
|
|
// TODO: name, type
|
|
|
|
/// A function pointer to a global symbol which is used by client code
|
|
/// to invoke the protocol requirement from a witness table. This pointer
|
|
/// is also to uniquely identify the requirement in resilient witness
|
|
/// tables, which is why it appears here.
|
|
///
|
|
/// This forms the basis of our mechanism to hide witness table offsets
|
|
/// from clients, both when calling protocol requirements and when
|
|
/// defining witness tables.
|
|
///
|
|
/// Will be null if the protocol is not resilient.
|
|
RelativeDirectPointer<void, /*nullable*/ true> Function;
|
|
|
|
/// The optional default implementation of the protocol.
|
|
RelativeDirectPointer<void, /*nullable*/ true> DefaultImplementation;
|
|
};
|
|
|
|
using ProtocolRequirement = TargetProtocolRequirement<InProcess>;
|
|
|
|
template<typename Runtime> struct TargetProtocolDescriptor;
|
|
using ProtocolDescriptor = TargetProtocolDescriptor<InProcess>;
|
|
|
|
/// A witness table for a protocol.
|
|
///
|
|
/// With the exception of the initial protocol conformance descriptor,
|
|
/// the layout of a witness table is dependent on the protocol being
|
|
/// represented.
|
|
template <typename Runtime>
|
|
struct TargetWitnessTable {
|
|
/// The protocol conformance descriptor from which this witness table
|
|
/// was generated.
|
|
ConstTargetMetadataPointer<Runtime, TargetProtocolConformanceDescriptor>
|
|
Description;
|
|
};
|
|
|
|
using WitnessTable = TargetWitnessTable<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
using TargetWitnessTablePointer =
|
|
ConstTargetMetadataPointer<Runtime, TargetWitnessTable>;
|
|
|
|
using WitnessTablePointer = TargetWitnessTablePointer<InProcess>;
|
|
|
|
using AssociatedTypeAccessFunction =
|
|
SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
|
|
const Metadata *self,
|
|
const WitnessTable *selfConformance);
|
|
|
|
using AssociatedWitnessTableAccessFunction =
|
|
SWIFT_CC(swift) WitnessTable *(const Metadata *associatedType,
|
|
const Metadata *self,
|
|
const WitnessTable *selfConformance);
|
|
|
|
/// The possible physical representations of existential types.
|
|
enum class ExistentialTypeRepresentation {
|
|
/// The type uses an opaque existential representation.
|
|
Opaque,
|
|
/// The type uses a class existential representation.
|
|
Class,
|
|
/// The type uses the Error boxed existential representation.
|
|
Error,
|
|
};
|
|
|
|
/// The structure of existential type metadata.
|
|
template <typename Runtime>
|
|
struct TargetExistentialTypeMetadata
|
|
: TargetMetadata<Runtime>,
|
|
swift::ABI::TrailingObjects<
|
|
TargetExistentialTypeMetadata<Runtime>,
|
|
ConstTargetMetadataPointer<Runtime, TargetMetadata>,
|
|
TargetProtocolDescriptorRef<Runtime>> {
|
|
|
|
private:
|
|
using ProtocolDescriptorRef = TargetProtocolDescriptorRef<Runtime>;
|
|
using MetadataPointer = ConstTargetMetadataPointer<Runtime, TargetMetadata>;
|
|
using TrailingObjects =
|
|
swift::ABI::TrailingObjects<
|
|
TargetExistentialTypeMetadata<Runtime>,
|
|
MetadataPointer,
|
|
ProtocolDescriptorRef>;
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
size_t numTrailingObjects(OverloadToken<ProtocolDescriptorRef>) const {
|
|
return NumProtocols;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<MetadataPointer>) const {
|
|
return Flags.hasSuperclassConstraint() ? 1 : 0;
|
|
}
|
|
|
|
public:
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
/// The number of witness tables and class-constrained-ness of the type.
|
|
ExistentialTypeFlags Flags;
|
|
|
|
/// The number of protocols.
|
|
uint32_t NumProtocols;
|
|
|
|
constexpr TargetExistentialTypeMetadata()
|
|
: TargetMetadata<Runtime>(MetadataKind::Existential),
|
|
Flags(ExistentialTypeFlags()), NumProtocols(0) {}
|
|
|
|
explicit constexpr TargetExistentialTypeMetadata(ExistentialTypeFlags Flags)
|
|
: TargetMetadata<Runtime>(MetadataKind::Existential),
|
|
Flags(Flags), NumProtocols(0) {}
|
|
|
|
/// Get the representation form this existential type uses.
|
|
ExistentialTypeRepresentation getRepresentation() const;
|
|
|
|
/// True if it's valid to take ownership of the value in the existential
|
|
/// container if we own the container.
|
|
bool mayTakeValue(const OpaqueValue *container) const;
|
|
|
|
/// Clean up an existential container whose value is uninitialized.
|
|
void deinitExistentialContainer(OpaqueValue *container) const;
|
|
|
|
/// Project the value pointer from an existential container of the type
|
|
/// described by this metadata.
|
|
const OpaqueValue *projectValue(const OpaqueValue *container) const;
|
|
|
|
OpaqueValue *projectValue(OpaqueValue *container) const {
|
|
return const_cast<OpaqueValue *>(projectValue((const OpaqueValue*)container));
|
|
}
|
|
|
|
/// Get the dynamic type from an existential container of the type described
|
|
/// by this metadata.
|
|
const TargetMetadata<Runtime> *
|
|
getDynamicType(const OpaqueValue *container) const;
|
|
|
|
/// Get a witness table from an existential container of the type described
|
|
/// by this metadata.
|
|
const TargetWitnessTable<Runtime> * getWitnessTable(
|
|
const OpaqueValue *container,
|
|
unsigned i) const;
|
|
|
|
/// Return true iff all the protocol constraints are @objc.
|
|
bool isObjC() const {
|
|
return isClassBounded() && Flags.getNumWitnessTables() == 0;
|
|
}
|
|
|
|
bool isClassBounded() const {
|
|
return Flags.getClassConstraint() == ProtocolClassConstraint::Class;
|
|
}
|
|
|
|
/// Retrieve the set of protocols required by the existential.
|
|
ArrayRef<ProtocolDescriptorRef> getProtocols() const {
|
|
return { this->template getTrailingObjects<ProtocolDescriptorRef>(),
|
|
NumProtocols };
|
|
}
|
|
|
|
MetadataPointer getSuperclassConstraint() const {
|
|
if (!Flags.hasSuperclassConstraint())
|
|
return MetadataPointer();
|
|
|
|
return this->template getTrailingObjects<MetadataPointer>()[0];
|
|
}
|
|
|
|
/// Retrieve the set of protocols required by the existential.
|
|
MutableArrayRef<ProtocolDescriptorRef> getMutableProtocols() {
|
|
return { this->template getTrailingObjects<ProtocolDescriptorRef>(),
|
|
NumProtocols };
|
|
}
|
|
|
|
/// Set the superclass.
|
|
void setSuperclassConstraint(MetadataPointer superclass) {
|
|
assert(Flags.hasSuperclassConstraint());
|
|
assert(superclass != nullptr);
|
|
this->template getTrailingObjects<MetadataPointer>()[0] = superclass;
|
|
}
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::Existential;
|
|
}
|
|
};
|
|
using ExistentialTypeMetadata
|
|
= TargetExistentialTypeMetadata<InProcess>;
|
|
|
|
/// The basic layout of an existential metatype type.
|
|
template <typename Runtime>
|
|
struct TargetExistentialMetatypeContainer {
|
|
ConstTargetMetadataPointer<Runtime, TargetMetadata> Value;
|
|
|
|
TargetWitnessTablePointer<Runtime> *getWitnessTables() {
|
|
return reinterpret_cast<TargetWitnessTablePointer<Runtime> *>(this + 1);
|
|
}
|
|
TargetWitnessTablePointer<Runtime> const *getWitnessTables() const {
|
|
return reinterpret_cast<TargetWitnessTablePointer<Runtime> const *>(this+1);
|
|
}
|
|
|
|
void copyTypeInto(TargetExistentialMetatypeContainer *dest,
|
|
unsigned numTables) const {
|
|
for (unsigned i = 0; i != numTables; ++i)
|
|
dest->getWitnessTables()[i] = getWitnessTables()[i];
|
|
}
|
|
};
|
|
using ExistentialMetatypeContainer
|
|
= TargetExistentialMetatypeContainer<InProcess>;
|
|
|
|
/// The structure of metadata for existential metatypes.
|
|
template <typename Runtime>
|
|
struct TargetExistentialMetatypeMetadata
|
|
: public TargetMetadata<Runtime> {
|
|
/// The type metadata for the element.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> InstanceType;
|
|
|
|
/// The number of witness tables and class-constrained-ness of the
|
|
/// underlying type.
|
|
ExistentialTypeFlags Flags;
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::ExistentialMetatype;
|
|
}
|
|
|
|
/// Return true iff all the protocol constraints are @objc.
|
|
bool isObjC() const {
|
|
return isClassBounded() && Flags.getNumWitnessTables() == 0;
|
|
}
|
|
|
|
bool isClassBounded() const {
|
|
return Flags.getClassConstraint() == ProtocolClassConstraint::Class;
|
|
}
|
|
};
|
|
using ExistentialMetatypeMetadata
|
|
= TargetExistentialMetatypeMetadata<InProcess>;
|
|
|
|
/// Heap metadata for a box, which may have been generated statically by the
|
|
/// compiler or by the runtime.
|
|
template <typename Runtime>
|
|
struct TargetBoxHeapMetadata : public TargetHeapMetadata<Runtime> {
|
|
/// The offset from the beginning of a box to its value.
|
|
unsigned Offset;
|
|
|
|
constexpr TargetBoxHeapMetadata(MetadataKind kind, unsigned offset)
|
|
: TargetHeapMetadata<Runtime>(kind), Offset(offset) {}
|
|
};
|
|
using BoxHeapMetadata = TargetBoxHeapMetadata<InProcess>;
|
|
|
|
/// Heap metadata for runtime-instantiated generic boxes.
|
|
template <typename Runtime>
|
|
struct TargetGenericBoxHeapMetadata : public TargetBoxHeapMetadata<Runtime> {
|
|
using super = TargetBoxHeapMetadata<Runtime>;
|
|
using super::Offset;
|
|
|
|
/// The type inside the box.
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> BoxedType;
|
|
|
|
constexpr
|
|
TargetGenericBoxHeapMetadata(MetadataKind kind, unsigned offset,
|
|
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> boxedType)
|
|
: TargetBoxHeapMetadata<Runtime>(kind, offset), BoxedType(boxedType)
|
|
{}
|
|
|
|
static unsigned getHeaderOffset(const Metadata *boxedType) {
|
|
// Round up the header size to alignment.
|
|
unsigned alignMask = boxedType->getValueWitnesses()->getAlignmentMask();
|
|
return (sizeof(HeapObject) + alignMask) & ~alignMask;
|
|
}
|
|
|
|
/// Project the value out of a box of this type.
|
|
OpaqueValue *project(HeapObject *box) const {
|
|
auto bytes = reinterpret_cast<char*>(box);
|
|
return reinterpret_cast<OpaqueValue *>(bytes + Offset);
|
|
}
|
|
|
|
/// Get the allocation size of this box.
|
|
unsigned getAllocSize() const {
|
|
return Offset + BoxedType->getValueWitnesses()->getSize();
|
|
}
|
|
|
|
/// Get the allocation alignment of this box.
|
|
unsigned getAllocAlignMask() const {
|
|
// Heap allocations are at least pointer aligned.
|
|
return BoxedType->getValueWitnesses()->getAlignmentMask()
|
|
| (alignof(void*) - 1);
|
|
}
|
|
|
|
static bool classof(const TargetMetadata<Runtime> *metadata) {
|
|
return metadata->getKind() == MetadataKind::HeapGenericLocalVariable;
|
|
}
|
|
};
|
|
using GenericBoxHeapMetadata = TargetGenericBoxHeapMetadata<InProcess>;
|
|
|
|
/// \brief The control structure of a generic or resilient protocol
|
|
/// conformance witness.
|
|
///
|
|
/// Resilient conformances must use a pattern where new requirements
|
|
/// with default implementations can be added and the order of existing
|
|
/// requirements can be changed.
|
|
///
|
|
/// This is accomplished by emitting an order-independent series of
|
|
/// relative pointer pairs, consisting of a protocol requirement together
|
|
/// with a witness. The requirement is identified by an indirect relative
|
|
/// pointer to the protocol dispatch thunk.
|
|
template <typename Runtime>
|
|
struct TargetResilientWitness {
|
|
RelativeIndirectPointer<void> Function;
|
|
RelativeDirectPointer<void> Witness;
|
|
};
|
|
using ResilientWitness = TargetResilientWitness<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
struct TargetResilientWitnessTable final
|
|
: public swift::ABI::TrailingObjects<
|
|
TargetResilientWitnessTable<Runtime>,
|
|
TargetResilientWitness<Runtime>> {
|
|
uint32_t NumWitnesses;
|
|
|
|
using TrailingObjects = swift::ABI::TrailingObjects<
|
|
TargetResilientWitnessTable<Runtime>,
|
|
TargetResilientWitness<Runtime>>;
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
size_t numTrailingObjects(
|
|
OverloadToken<TargetResilientWitness<Runtime>>) const {
|
|
return NumWitnesses;
|
|
}
|
|
|
|
llvm::ArrayRef<TargetResilientWitness<Runtime>>
|
|
getWitnesses() const {
|
|
return {this->template getTrailingObjects<TargetResilientWitness<Runtime>>(),
|
|
NumWitnesses};
|
|
}
|
|
|
|
const TargetResilientWitness<Runtime> &
|
|
getWitness(unsigned i) const {
|
|
return getWitnesses()[i];
|
|
}
|
|
};
|
|
using ResilientWitnessTable = TargetResilientWitnessTable<InProcess>;
|
|
|
|
/// \brief The control structure of a generic or resilient protocol
|
|
/// conformance.
|
|
///
|
|
/// Witness tables need to be instantiated at runtime in these cases:
|
|
/// - For a generic conforming type, associated type requirements might be
|
|
/// dependent on the conforming type.
|
|
/// - For a type conforming to a resilient protocol, the runtime size of
|
|
/// the witness table is not known because default requirements can be
|
|
/// added resiliently.
|
|
///
|
|
/// One per conformance.
|
|
template <typename Runtime>
|
|
struct TargetGenericWitnessTable {
|
|
/// The size of the witness table in words. This amount is copied from
|
|
/// the witness table template into the instantiated witness table.
|
|
uint16_t WitnessTableSizeInWords;
|
|
|
|
/// The amount of private storage to allocate before the address point,
|
|
/// in words. This memory is zeroed out in the instantiated witness table
|
|
/// template.
|
|
uint16_t WitnessTablePrivateSizeInWords;
|
|
|
|
/// The protocol descriptor. Only used for resilient conformances.
|
|
RelativeIndirectablePointer<ProtocolDescriptor,
|
|
/*nullable*/ true> Protocol;
|
|
|
|
/// The pattern.
|
|
RelativeDirectPointer<const TargetWitnessTable<Runtime>> Pattern;
|
|
|
|
/// The resilient witness table, if any.
|
|
RelativeDirectPointer<const TargetResilientWitnessTable<Runtime>,
|
|
/*nullable*/ true> ResilientWitnesses;
|
|
|
|
/// The instantiation function, which is called after the template is copied.
|
|
RelativeDirectPointer<void(TargetWitnessTable<Runtime> *instantiatedTable,
|
|
const TargetMetadata<Runtime> *type,
|
|
void ** const *instantiationArgs),
|
|
/*nullable*/ true> Instantiator;
|
|
|
|
using PrivateDataType = void *[swift::NumGenericMetadataPrivateDataWords];
|
|
|
|
/// Private data for the instantiator. Out-of-line so that the rest
|
|
/// of this structure can be constant.
|
|
RelativeDirectPointer<PrivateDataType> PrivateData;
|
|
};
|
|
using GenericWitnessTable = TargetGenericWitnessTable<InProcess>;
|
|
|
|
/// The structure of a type metadata record.
|
|
///
|
|
/// This contains enough static information to recover type metadata from a
|
|
/// name.
|
|
template <typename Runtime>
|
|
struct TargetTypeMetadataRecord {
|
|
private:
|
|
union {
|
|
/// A direct reference to a nominal type descriptor.
|
|
RelativeDirectPointerIntPair<TargetTypeContextDescriptor<Runtime>,
|
|
TypeReferenceKind>
|
|
DirectNominalTypeDescriptor;
|
|
|
|
/// An indirect reference to a nominal type descriptor.
|
|
RelativeDirectPointerIntPair<TargetTypeContextDescriptor<Runtime> * const,
|
|
TypeReferenceKind>
|
|
IndirectNominalTypeDescriptor;
|
|
|
|
// We only allow a subset of the TypeReferenceKinds here.
|
|
// Should we just acknowledge that this is a different enum?
|
|
};
|
|
|
|
public:
|
|
TypeReferenceKind getTypeKind() const {
|
|
return DirectNominalTypeDescriptor.getInt();
|
|
}
|
|
|
|
const TargetTypeContextDescriptor<Runtime> *
|
|
getTypeContextDescriptor() const {
|
|
switch (getTypeKind()) {
|
|
case TypeReferenceKind::DirectNominalTypeDescriptor:
|
|
return DirectNominalTypeDescriptor.getPointer();
|
|
|
|
case TypeReferenceKind::IndirectNominalTypeDescriptor:
|
|
return *IndirectNominalTypeDescriptor.getPointer();
|
|
|
|
// These types (and any others we might add to TypeReferenceKind
|
|
// in the future) are just never used in these lists.
|
|
case TypeReferenceKind::DirectObjCClassName:
|
|
case TypeReferenceKind::IndirectObjCClass:
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
using TypeMetadataRecord = TargetTypeMetadataRecord<InProcess>;
|
|
|
|
template<typename Runtime> struct TargetContextDescriptor;
|
|
|
|
template<typename Runtime>
|
|
using RelativeContextPointer =
|
|
RelativeIndirectablePointer<const TargetContextDescriptor<Runtime>,
|
|
/*nullable*/ true>;
|
|
|
|
/// The structure of a protocol reference record.
|
|
template <typename Runtime>
|
|
struct TargetProtocolRecord {
|
|
/// The protocol referenced.
|
|
///
|
|
/// The remaining low bit is reserved for future use.
|
|
RelativeIndirectablePointerIntPair<TargetProtocolDescriptor<Runtime>,
|
|
/*reserved=*/bool>
|
|
Protocol;
|
|
};
|
|
using ProtocolRecord = TargetProtocolRecord<InProcess>;
|
|
|
|
template<typename Runtime> class TargetGenericRequirementDescriptor;
|
|
|
|
/// A relative pointer to a protocol descriptor, which provides the relative-
|
|
/// pointer equivalent to \c TargetProtocolDescriptorRef.
|
|
template <typename Runtime>
|
|
class RelativeTargetProtocolDescriptorPointer {
|
|
union AnyProtocol {
|
|
TargetProtocolDescriptor<Runtime> descriptor;
|
|
};
|
|
|
|
/// The relative pointer itself.
|
|
///
|
|
/// The \c AnyProtocol value type ensures that we can reference any
|
|
/// protocol descriptor; it will be reinterpret_cast to the appropriate
|
|
/// protocol descriptor type.
|
|
///
|
|
/// The \c bool integer value will be false to indicate that the protocol
|
|
/// is a Swift protocol, or true to indicate that this references
|
|
/// an Objective-C protocol.
|
|
RelativeIndirectablePointerIntPair<AnyProtocol, bool> pointer;
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
bool isObjC() const {
|
|
return pointer.getInt();
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
/// Retrieve a reference to the protocol.
|
|
TargetProtocolDescriptorRef<Runtime> getProtocol() const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (isObjC()) {
|
|
return TargetProtocolDescriptorRef<Runtime>::forObjC(
|
|
protocol_const_cast(pointer.getPointer()));
|
|
}
|
|
#endif
|
|
|
|
return TargetProtocolDescriptorRef<Runtime>::forSwift(
|
|
reinterpret_cast<ConstTargetMetadataPointer<
|
|
Runtime, TargetProtocolDescriptor>>(pointer.getPointer()));
|
|
}
|
|
|
|
operator TargetProtocolDescriptorRef<Runtime>() const {
|
|
return getProtocol();
|
|
}
|
|
};
|
|
|
|
/// A reference to a type.
|
|
template <typename Runtime>
|
|
struct TargetTypeReference {
|
|
union {
|
|
/// A direct reference to a nominal type descriptor.
|
|
RelativeDirectPointer<TargetTypeContextDescriptor<Runtime>>
|
|
DirectNominalTypeDescriptor;
|
|
|
|
/// An indirect reference to a nominal type descriptor.
|
|
RelativeDirectPointer<
|
|
ConstTargetMetadataPointer<Runtime, TargetTypeContextDescriptor>>
|
|
IndirectNominalTypeDescriptor;
|
|
|
|
/// An indirect reference to an Objective-C class.
|
|
RelativeDirectPointer<
|
|
ConstTargetMetadataPointer<Runtime, TargetClassMetadata>>
|
|
IndirectObjCClass;
|
|
|
|
/// A direct reference to an Objective-C class name.
|
|
RelativeDirectPointer<const char>
|
|
DirectObjCClassName;
|
|
};
|
|
|
|
const TargetTypeContextDescriptor<Runtime> *
|
|
getTypeContextDescriptor(TypeReferenceKind kind) const {
|
|
switch (kind) {
|
|
case TypeReferenceKind::DirectNominalTypeDescriptor:
|
|
return DirectNominalTypeDescriptor;
|
|
|
|
case TypeReferenceKind::IndirectNominalTypeDescriptor:
|
|
return *IndirectNominalTypeDescriptor;
|
|
|
|
case TypeReferenceKind::DirectObjCClassName:
|
|
case TypeReferenceKind::IndirectObjCClass:
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
/// If this type reference is one of the kinds that supports ObjC
|
|
/// references,
|
|
const TargetClassMetadata<Runtime> *
|
|
getObjCClass(TypeReferenceKind kind) const;
|
|
#endif
|
|
|
|
const TargetClassMetadata<Runtime> * const *
|
|
getIndirectObjCClass(TypeReferenceKind kind) const {
|
|
assert(kind == TypeReferenceKind::IndirectObjCClass);
|
|
return IndirectObjCClass.get();
|
|
}
|
|
|
|
const char *getDirectObjCClassName(TypeReferenceKind kind) const {
|
|
assert(kind == TypeReferenceKind::DirectObjCClassName);
|
|
return DirectObjCClassName.get();
|
|
}
|
|
};
|
|
using TypeReference = TargetTypeReference<InProcess>;
|
|
|
|
/// The structure of a protocol conformance.
|
|
///
|
|
/// This contains enough static information to recover the witness table for a
|
|
/// type's conformance to a protocol.
|
|
template <typename Runtime>
|
|
struct TargetProtocolConformanceDescriptor final
|
|
: public swift::ABI::TrailingObjects<
|
|
TargetProtocolConformanceDescriptor<Runtime>,
|
|
RelativeContextPointer<Runtime>,
|
|
TargetGenericRequirementDescriptor<Runtime>> {
|
|
|
|
using TrailingObjects = swift::ABI::TrailingObjects<
|
|
TargetProtocolConformanceDescriptor<Runtime>,
|
|
RelativeContextPointer<Runtime>,
|
|
TargetGenericRequirementDescriptor<Runtime>>;
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
public:
|
|
using WitnessTableAccessorFn
|
|
= const TargetWitnessTable<Runtime> *(const TargetMetadata<Runtime>*,
|
|
const TargetWitnessTable<Runtime> **,
|
|
size_t);
|
|
|
|
using GenericRequirementDescriptor =
|
|
TargetGenericRequirementDescriptor<Runtime>;
|
|
|
|
private:
|
|
/// The protocol being conformed to.
|
|
RelativeIndirectablePointer<ProtocolDescriptor> Protocol;
|
|
|
|
// Some description of the type that conforms to the protocol.
|
|
TargetTypeReference<Runtime> TypeRef;
|
|
|
|
// The conformance, or a generator function for the conformance.
|
|
union {
|
|
/// A direct reference to the witness table for the conformance.
|
|
RelativeDirectPointer<const TargetWitnessTable<Runtime>> WitnessTable;
|
|
|
|
/// A function that produces the witness table given an instance of the
|
|
/// type.
|
|
RelativeDirectPointer<WitnessTableAccessorFn> WitnessTableAccessor;
|
|
};
|
|
|
|
/// Various flags, including the kind of conformance.
|
|
ConformanceFlags Flags;
|
|
|
|
public:
|
|
const ProtocolDescriptor *getProtocol() const {
|
|
return Protocol;
|
|
}
|
|
|
|
TypeReferenceKind getTypeKind() const {
|
|
return Flags.getTypeReferenceKind();
|
|
}
|
|
|
|
typename ConformanceFlags::ConformanceKind getConformanceKind() const {
|
|
return Flags.getConformanceKind();
|
|
}
|
|
|
|
const char *getDirectObjCClassName() const {
|
|
return TypeRef.getDirectObjCClassName(getTypeKind());
|
|
}
|
|
|
|
const TargetClassMetadata<Runtime> * const *getIndirectObjCClass() const {
|
|
return TypeRef.getIndirectObjCClass(getTypeKind());
|
|
}
|
|
|
|
const TargetTypeContextDescriptor<Runtime> *getTypeContextDescriptor() const {
|
|
return TypeRef.getTypeContextDescriptor(getTypeKind());
|
|
}
|
|
|
|
/// Retrieve the context of a retroactive conformance.
|
|
const TargetContextDescriptor<Runtime> *getRetroactiveContext() const {
|
|
if (!Flags.isRetroactive()) return nullptr;
|
|
|
|
return this->template getTrailingObjects<RelativeContextPointer<Runtime>>();
|
|
}
|
|
|
|
/// Retrieve the conditional requirements that must also be
|
|
/// satisfied
|
|
llvm::ArrayRef<GenericRequirementDescriptor>
|
|
getConditionalRequirements() const {
|
|
return {this->template getTrailingObjects<GenericRequirementDescriptor>(),
|
|
Flags.getNumConditionalRequirements()};
|
|
}
|
|
|
|
/// Get the directly-referenced static witness table.
|
|
const swift::TargetWitnessTable<Runtime> *getStaticWitnessTable() const {
|
|
switch (getConformanceKind()) {
|
|
case ConformanceFlags::ConformanceKind::WitnessTable:
|
|
break;
|
|
|
|
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
|
|
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor:
|
|
assert(false && "not witness table");
|
|
}
|
|
return WitnessTable;
|
|
}
|
|
|
|
WitnessTableAccessorFn *getWitnessTableAccessor() const {
|
|
switch (getConformanceKind()) {
|
|
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
|
|
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor:
|
|
break;
|
|
|
|
case ConformanceFlags::ConformanceKind::WitnessTable:
|
|
assert(false && "not witness table accessor");
|
|
}
|
|
return WitnessTableAccessor;
|
|
}
|
|
|
|
/// Get the canonical metadata for the type referenced by this record, or
|
|
/// return null if the record references a generic or universal type.
|
|
const TargetMetadata<Runtime> *getCanonicalTypeMetadata() const;
|
|
|
|
/// Get the witness table for the specified type, realizing it if
|
|
/// necessary, or return null if the conformance does not apply to the
|
|
/// type.
|
|
const swift::TargetWitnessTable<Runtime> *
|
|
getWitnessTable(const TargetMetadata<Runtime> *type) const;
|
|
|
|
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
|
|
void dump() const;
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
/// Verify that the protocol descriptor obeys all invariants.
|
|
///
|
|
/// We currently check that the descriptor:
|
|
///
|
|
/// 1. Has a valid TypeReferenceKind.
|
|
/// 2. Has a valid conformance kind.
|
|
void verify() const LLVM_ATTRIBUTE_USED;
|
|
#endif
|
|
|
|
private:
|
|
size_t numTrailingObjects(
|
|
OverloadToken<RelativeContextPointer<Runtime>>) const {
|
|
return Flags.isRetroactive() ? 1 : 0;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<GenericRequirementDescriptor>) const {
|
|
return Flags.getNumConditionalRequirements();
|
|
}
|
|
};
|
|
using ProtocolConformanceDescriptor
|
|
= TargetProtocolConformanceDescriptor<InProcess>;
|
|
|
|
template<typename Runtime>
|
|
using TargetProtocolConformanceRecord =
|
|
RelativeDirectPointer<TargetProtocolConformanceDescriptor<Runtime>,
|
|
/*Nullable=*/false>;
|
|
|
|
using ProtocolConformanceRecord = TargetProtocolConformanceRecord<InProcess>;
|
|
|
|
template<typename Runtime>
|
|
struct TargetGenericContext;
|
|
|
|
template<typename Runtime>
|
|
struct TargetModuleContextDescriptor;
|
|
|
|
/// Base class for all context descriptors.
|
|
template<typename Runtime>
|
|
struct TargetContextDescriptor {
|
|
/// Flags describing the context, including its kind and format version.
|
|
ContextDescriptorFlags Flags;
|
|
|
|
/// The parent context, or null if this is a top-level context.
|
|
RelativeContextPointer<Runtime> Parent;
|
|
|
|
bool isGeneric() const { return Flags.isGeneric(); }
|
|
bool isUnique() const { return Flags.isUnique(); }
|
|
ContextDescriptorKind getKind() const { return Flags.getKind(); }
|
|
|
|
/// Get the generic context information for this context, or null if the
|
|
/// context is not generic.
|
|
const TargetGenericContext<Runtime> *getGenericContext() const;
|
|
|
|
/// Get the module context for this context.
|
|
const TargetModuleContextDescriptor<Runtime> *getModuleContext() const;
|
|
|
|
/// Is this context part of a C-imported module?
|
|
bool isCImportedContext() const;
|
|
|
|
unsigned getNumGenericParams() const {
|
|
auto *genericContext = getGenericContext();
|
|
return genericContext
|
|
? genericContext->getGenericContextHeader().NumParams
|
|
: 0;
|
|
}
|
|
private:
|
|
TargetContextDescriptor(const TargetContextDescriptor &) = delete;
|
|
TargetContextDescriptor(TargetContextDescriptor &&) = delete;
|
|
TargetContextDescriptor &operator=(const TargetContextDescriptor &) = delete;
|
|
TargetContextDescriptor &operator=(TargetContextDescriptor &&) = delete;
|
|
};
|
|
|
|
using ContextDescriptor = TargetContextDescriptor<InProcess>;
|
|
|
|
inline bool isCImportedModuleName(StringRef name) {
|
|
// This does not include MANGLING_MODULE_CLANG_IMPORTER because that's
|
|
// used only for synthesized declarations and not actual imported
|
|
// declarations.
|
|
return name == MANGLING_MODULE_OBJC;
|
|
}
|
|
|
|
/// Descriptor for a module context.
|
|
template<typename Runtime>
|
|
struct TargetModuleContextDescriptor final : TargetContextDescriptor<Runtime> {
|
|
/// The module name.
|
|
RelativeDirectPointer<const char, /*nullable*/ false> Name;
|
|
|
|
/// Is this module a special C-imported module?
|
|
bool isCImportedContext() const {
|
|
return isCImportedModuleName(Name.get());
|
|
}
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Module;
|
|
}
|
|
};
|
|
|
|
using ModuleContextDescriptor = TargetModuleContextDescriptor<InProcess>;
|
|
|
|
template<typename Runtime>
|
|
inline bool TargetContextDescriptor<Runtime>::isCImportedContext() const {
|
|
return getModuleContext()->isCImportedContext();
|
|
}
|
|
|
|
template<typename Runtime>
|
|
inline const TargetModuleContextDescriptor<Runtime> *
|
|
TargetContextDescriptor<Runtime>::getModuleContext() const {
|
|
// All context chains should eventually find a module.
|
|
for (auto cur = this; true; cur = cur->Parent.get()) {
|
|
if (auto module = dyn_cast<TargetModuleContextDescriptor<Runtime>>(cur))
|
|
return module;
|
|
}
|
|
}
|
|
|
|
template<typename Runtime>
|
|
struct TargetGenericContextDescriptorHeader {
|
|
uint16_t NumParams, NumRequirements, NumKeyArguments, NumExtraArguments;
|
|
|
|
uint32_t getNumArguments() const {
|
|
return NumKeyArguments + NumExtraArguments;
|
|
}
|
|
|
|
bool hasArguments() const {
|
|
return getNumArguments() > 0;
|
|
}
|
|
};
|
|
using GenericContextDescriptorHeader =
|
|
TargetGenericContextDescriptorHeader<InProcess>;
|
|
|
|
/// A reference to a generic parameter that is the subject of a requirement.
|
|
/// This can refer either directly to a generic parameter or to a path to an
|
|
/// associated type.
|
|
template<typename Runtime>
|
|
class TargetGenericParamRef {
|
|
union {
|
|
/// The word of storage, whose low bit indicates whether there is an
|
|
/// associated type path stored out-of-line and whose upper bits describe
|
|
/// the generic parameter at root of the path.
|
|
uint32_t Word;
|
|
|
|
/// This is the associated type path stored out-of-line. The \c bool
|
|
/// is used for masking purposes and is otherwise unused; instead, check
|
|
/// the low bit of \c Word.
|
|
RelativeDirectPointerIntPair<const void, bool> AssociatedTypePath;
|
|
};
|
|
|
|
public:
|
|
/// Index of the parameter being referenced. 0 is the first generic parameter
|
|
/// of the root of the context hierarchy, and subsequent parameters are
|
|
/// numbered breadth-first from there.
|
|
unsigned getRootParamIndex() const {
|
|
// If there is no path, retrieve the index directly.
|
|
if ((Word & 0x01) == 0) return Word >> 1;
|
|
|
|
// Otherwise, the index is at the start of the associated type path.
|
|
return *reinterpret_cast<const unsigned *>(AssociatedTypePath.getPointer());
|
|
}
|
|
|
|
/// A reference to an associated type along the reference path.
|
|
struct AssociatedTypeRef {
|
|
/// The protocol the associated type belongs to.
|
|
RelativeIndirectablePointer<TargetProtocolDescriptor<Runtime>,
|
|
/*nullable*/ false> Protocol;
|
|
/// The index of the associated type metadata within a witness table for
|
|
/// the protocol.
|
|
unsigned Index;
|
|
};
|
|
|
|
/// A forward iterator that walks through the associated type path, which is
|
|
/// a zero-terminated array of AssociatedTypeRefs.
|
|
class AssociatedTypeIterator {
|
|
const void *addr;
|
|
|
|
explicit AssociatedTypeIterator(const void *startAddr) : addr(startAddr) {}
|
|
|
|
bool isEnd() const {
|
|
if (addr == nullptr)
|
|
return true;
|
|
unsigned word;
|
|
memcpy(&word, addr, sizeof(unsigned));
|
|
if (word == 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template <class> friend class TargetGenericParamRef;
|
|
|
|
public:
|
|
AssociatedTypeIterator() : addr(nullptr) {}
|
|
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = AssociatedTypeRef;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = const AssociatedTypeRef *;
|
|
using reference = const AssociatedTypeRef &;
|
|
|
|
bool operator==(AssociatedTypeIterator i) const {
|
|
// Iterators are same if they both point at the same place, or are both
|
|
// at the end (either by being initialized as an end iterator with a
|
|
// null address, or by being advanced to the null terminator of an
|
|
// associated type list).
|
|
if (addr == i.addr)
|
|
return true;
|
|
|
|
if (isEnd() && i.isEnd())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool operator!=(AssociatedTypeIterator i) const {
|
|
return !(*this == i);
|
|
}
|
|
|
|
reference operator*() const {
|
|
return *reinterpret_cast<pointer>(addr);
|
|
}
|
|
pointer operator->() const {
|
|
return reinterpret_cast<pointer>(addr);
|
|
}
|
|
|
|
AssociatedTypeIterator &operator++() {
|
|
addr = reinterpret_cast<const char*>(addr) + sizeof(AssociatedTypeRef);
|
|
return *this;
|
|
}
|
|
|
|
AssociatedTypeIterator operator++(int) {
|
|
auto copy = *this;
|
|
++*this;
|
|
return copy;
|
|
}
|
|
};
|
|
|
|
/// Iterators for going through the associated type path from the root param.
|
|
AssociatedTypeIterator begin() const {
|
|
if (Word & 0x01) {
|
|
// The associated types start after the first word, which holds the
|
|
// root param index.
|
|
return AssociatedTypeIterator(
|
|
reinterpret_cast<const char*>(AssociatedTypePath.getPointer()) +
|
|
sizeof(unsigned));
|
|
} else {
|
|
// This is a direct param reference, so there are no associated types.
|
|
return end();
|
|
}
|
|
}
|
|
|
|
AssociatedTypeIterator end() const {
|
|
return AssociatedTypeIterator{};
|
|
}
|
|
};
|
|
|
|
using GenericParamRef = TargetGenericParamRef<InProcess>;
|
|
|
|
template<typename Runtime>
|
|
class TargetGenericRequirementDescriptor {
|
|
public:
|
|
GenericRequirementFlags Flags;
|
|
/// The generic parameter or associated type that's constrained.
|
|
TargetGenericParamRef<Runtime> Param;
|
|
|
|
private:
|
|
union {
|
|
/// A mangled representation of the same-type or base class the param is
|
|
/// constrained to.
|
|
///
|
|
/// Only valid if the requirement has SameType or BaseClass kind.
|
|
RelativeDirectPointer<const char, /*nullable*/ false> Type;
|
|
|
|
/// The protocol the param is constrained to.
|
|
///
|
|
/// Only valid if the requirement has Protocol kind.
|
|
RelativeTargetProtocolDescriptorPointer<Runtime> Protocol;
|
|
|
|
/// The conformance the param is constrained to use.
|
|
///
|
|
/// Only valid if the requirement has SameConformance kind.
|
|
RelativeIndirectablePointer<TargetProtocolConformanceRecord<Runtime>,
|
|
/*nullable*/ false> Conformance;
|
|
|
|
/// The kind of layout constraint.
|
|
///
|
|
/// Only valid if the requirement has Layout kind.
|
|
GenericRequirementLayoutKind Layout;
|
|
};
|
|
|
|
public:
|
|
constexpr GenericRequirementFlags getFlags() const {
|
|
return Flags;
|
|
}
|
|
|
|
constexpr GenericRequirementKind getKind() const {
|
|
return getFlags().getKind();
|
|
}
|
|
|
|
/// Retrieve the generic parameter that is the subject of this requirement.
|
|
const TargetGenericParamRef<Runtime> &getParam() const {
|
|
return Param;
|
|
}
|
|
|
|
/// Retrieve the protocol for a Protocol requirement.
|
|
TargetProtocolDescriptorRef<Runtime> getProtocol() const {
|
|
assert(getKind() == GenericRequirementKind::Protocol);
|
|
return Protocol;
|
|
}
|
|
|
|
/// Retrieve the right-hand type for a SameType or BaseClass requirement.
|
|
StringRef getMangledTypeName() const {
|
|
assert(getKind() == GenericRequirementKind::SameType ||
|
|
getKind() == GenericRequirementKind::BaseClass);
|
|
return swift::Demangle::makeSymbolicMangledNameStringRef(Type.get());
|
|
}
|
|
|
|
/// Retrieve the protocol conformance record for a SameConformance
|
|
/// requirement.
|
|
const TargetProtocolConformanceRecord<Runtime> *getConformance() const {
|
|
assert(getKind() == GenericRequirementKind::SameConformance);
|
|
return Conformance;
|
|
}
|
|
|
|
/// Retrieve the layout constraint.
|
|
GenericRequirementLayoutKind getLayout() const {
|
|
assert(getKind() == GenericRequirementKind::Layout);
|
|
return Layout;
|
|
}
|
|
|
|
/// Determine whether this generic requirement has a known kind.
|
|
///
|
|
/// \returns \c false for any future generic requirement kinds.
|
|
bool hasKnownKind() const {
|
|
switch (getKind()) {
|
|
case GenericRequirementKind::BaseClass:
|
|
case GenericRequirementKind::Layout:
|
|
case GenericRequirementKind::Protocol:
|
|
case GenericRequirementKind::SameConformance:
|
|
case GenericRequirementKind::SameType:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
};
|
|
using GenericRequirementDescriptor =
|
|
TargetGenericRequirementDescriptor<InProcess>;
|
|
|
|
/// CRTP class for a context descriptor that includes trailing generic
|
|
/// context description.
|
|
template<class Self,
|
|
template <typename> class TargetGenericContextHeaderType =
|
|
TargetGenericContextDescriptorHeader,
|
|
typename... FollowingTrailingObjects>
|
|
class TrailingGenericContextObjects;
|
|
|
|
// This oddity with partial specialization is necessary to get
|
|
// reasonable-looking code while also working around various kinds of
|
|
// compiler bad behavior with injected class names.
|
|
template<class Runtime,
|
|
template <typename> class TargetSelf,
|
|
template <typename> class TargetGenericContextHeaderType,
|
|
typename... FollowingTrailingObjects>
|
|
class TrailingGenericContextObjects<TargetSelf<Runtime>,
|
|
TargetGenericContextHeaderType,
|
|
FollowingTrailingObjects...> :
|
|
protected swift::ABI::TrailingObjects<TargetSelf<Runtime>,
|
|
TargetGenericContextHeaderType<Runtime>,
|
|
GenericParamDescriptor,
|
|
TargetGenericRequirementDescriptor<Runtime>,
|
|
FollowingTrailingObjects...>
|
|
{
|
|
protected:
|
|
using Self = TargetSelf<Runtime>;
|
|
using GenericContextHeaderType = TargetGenericContextHeaderType<Runtime>;
|
|
using GenericRequirementDescriptor =
|
|
TargetGenericRequirementDescriptor<Runtime>;
|
|
|
|
using TrailingObjects = swift::ABI::TrailingObjects<Self,
|
|
GenericContextHeaderType,
|
|
GenericParamDescriptor,
|
|
GenericRequirementDescriptor,
|
|
FollowingTrailingObjects...>;
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
const Self *asSelf() const {
|
|
return static_cast<const Self *>(this);
|
|
}
|
|
public:
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
|
|
const GenericContextHeaderType &getFullGenericContextHeader() const {
|
|
assert(asSelf()->isGeneric());
|
|
return *this->template getTrailingObjects<GenericContextHeaderType>();
|
|
}
|
|
|
|
const TargetGenericContextDescriptorHeader<Runtime> &
|
|
getGenericContextHeader() const {
|
|
/// HeaderType ought to be convertible to GenericContextDescriptorHeader.
|
|
return getFullGenericContextHeader();
|
|
}
|
|
|
|
const TargetGenericContext<Runtime> *getGenericContext() const {
|
|
if (!asSelf()->isGeneric())
|
|
return nullptr;
|
|
// The generic context header should always be immediately followed in
|
|
// memory by trailing parameter and requirement descriptors.
|
|
auto *header = reinterpret_cast<const char *>(&getGenericContextHeader());
|
|
return reinterpret_cast<const TargetGenericContext<Runtime> *>(
|
|
header - sizeof(TargetGenericContext<Runtime>));
|
|
}
|
|
|
|
llvm::ArrayRef<GenericParamDescriptor> getGenericParams() const {
|
|
if (!asSelf()->isGeneric())
|
|
return {};
|
|
|
|
return {this->template getTrailingObjects<GenericParamDescriptor>(),
|
|
getGenericContextHeader().NumParams};
|
|
}
|
|
|
|
llvm::ArrayRef<GenericRequirementDescriptor> getGenericRequirements() const {
|
|
if (!asSelf()->isGeneric())
|
|
return {};
|
|
return {this->template getTrailingObjects<GenericRequirementDescriptor>(),
|
|
getGenericContextHeader().NumRequirements};
|
|
}
|
|
|
|
/// Return the amount of space that the generic arguments take up in
|
|
/// metadata of this type.
|
|
StoredSize getGenericArgumentsStorageSize() const {
|
|
return StoredSize(getGenericContextHeader().getNumArguments())
|
|
* sizeof(StoredPointer);
|
|
}
|
|
|
|
protected:
|
|
size_t numTrailingObjects(OverloadToken<GenericContextHeaderType>) const {
|
|
return asSelf()->isGeneric() ? 1 : 0;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<GenericParamDescriptor>) const {
|
|
return asSelf()->isGeneric() ? getGenericContextHeader().NumParams : 0;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<GenericRequirementDescriptor>) const {
|
|
return asSelf()->isGeneric() ? getGenericContextHeader().NumRequirements : 0;
|
|
}
|
|
};
|
|
|
|
/// Reference to a generic context.
|
|
template<typename Runtime>
|
|
struct TargetGenericContext final
|
|
: TrailingGenericContextObjects<TargetGenericContext<Runtime>,
|
|
TargetGenericContextDescriptorHeader>
|
|
{
|
|
// This struct is supposed to be empty, but TrailingObjects respects the
|
|
// unique-address-per-object C++ rule, so even if this type is empty, the
|
|
// trailing objects will come after one byte of padding. This dummy field
|
|
// takes up space to make the offset of the trailing objects portable.
|
|
unsigned _dummy;
|
|
|
|
bool isGeneric() const { return true; }
|
|
};
|
|
|
|
/// Descriptor for an extension context.
|
|
template<typename Runtime>
|
|
struct TargetExtensionContextDescriptor final
|
|
: TargetContextDescriptor<Runtime>,
|
|
TrailingGenericContextObjects<TargetExtensionContextDescriptor<Runtime>>
|
|
{
|
|
private:
|
|
using TrailingGenericContextObjects
|
|
= TrailingGenericContextObjects<TargetExtensionContextDescriptor<Runtime>>;
|
|
|
|
/// A mangling of the `Self` type context that the extension extends.
|
|
/// The mangled name represents the type in the generic context encoded by
|
|
/// this descriptor. For example, a nongeneric nominal type extension will
|
|
/// encode the nominal type name. A generic nominal type extension will encode
|
|
/// the instance of the type with any generic arguments bound.
|
|
///
|
|
/// Note that the Parent of the extension will be the module context the
|
|
/// extension is declared inside.
|
|
RelativeDirectPointer<const char> ExtendedContext;
|
|
|
|
public:
|
|
using TrailingGenericContextObjects::getGenericContext;
|
|
|
|
StringRef getMangledExtendedContext() const {
|
|
return Demangle::makeSymbolicMangledNameStringRef(ExtendedContext.get());
|
|
}
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Extension;
|
|
}
|
|
};
|
|
|
|
using ExtensionContextDescriptor = TargetExtensionContextDescriptor<InProcess>;
|
|
|
|
template<typename Runtime>
|
|
struct TargetAnonymousContextDescriptor final
|
|
: TargetContextDescriptor<Runtime>,
|
|
TrailingGenericContextObjects<TargetAnonymousContextDescriptor<Runtime>>
|
|
{
|
|
private:
|
|
using TrailingGenericContextObjects
|
|
= TrailingGenericContextObjects<TargetAnonymousContextDescriptor<Runtime>>;
|
|
|
|
public:
|
|
using TrailingGenericContextObjects::getGenericContext;
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Anonymous;
|
|
}
|
|
};
|
|
|
|
/// A protocol descriptor.
|
|
///
|
|
/// Protocol descriptors contain information about the contents of a protocol:
|
|
/// it's name, requirements, requirement signature, context, and so on. They
|
|
/// are used both to identify a protocol and to reason about its contents.
|
|
///
|
|
/// Only Swift protocols are defined by a protocol descriptor, whereas
|
|
/// Objective-C (including protocols defined in Swift as @objc) use the
|
|
/// Objective-C protocol layout.
|
|
template<typename Runtime>
|
|
struct TargetProtocolDescriptor final
|
|
: TargetContextDescriptor<Runtime>,
|
|
swift::ABI::TrailingObjects<
|
|
TargetProtocolDescriptor<Runtime>,
|
|
TargetGenericRequirementDescriptor<Runtime>,
|
|
TargetProtocolRequirement<Runtime>>
|
|
{
|
|
private:
|
|
using TrailingObjects
|
|
= swift::ABI::TrailingObjects<
|
|
TargetProtocolDescriptor<Runtime>,
|
|
TargetGenericRequirementDescriptor<Runtime>,
|
|
TargetProtocolRequirement<Runtime>>;
|
|
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
public:
|
|
size_t numTrailingObjects(
|
|
OverloadToken<TargetGenericRequirementDescriptor<Runtime>>) const {
|
|
return NumRequirementsInSignature;
|
|
}
|
|
|
|
size_t numTrailingObjects(
|
|
OverloadToken<TargetProtocolRequirement<Runtime>>) const {
|
|
return NumRequirements;
|
|
}
|
|
|
|
|
|
/// The name of the protocol.
|
|
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> Name;
|
|
|
|
/// The number of generic requirements in the requirement signature of the
|
|
/// protocol.
|
|
uint32_t NumRequirementsInSignature;
|
|
|
|
/// The number of requirements in the protocol.
|
|
/// If any requirements beyond MinimumWitnessTableSizeInWords are present
|
|
/// in the witness table template, they will be not be overwritten with
|
|
/// defaults.
|
|
uint32_t NumRequirements;
|
|
|
|
/// Associated type names, as a space-separated list in the same order
|
|
/// as the requirements.
|
|
RelativeDirectPointer<const char, /*Nullable=*/true> AssociatedTypeNames;
|
|
|
|
ProtocolContextDescriptorFlags getProtocolContextDescriptorFlags() const {
|
|
return ProtocolContextDescriptorFlags(this->Flags.getKindSpecificFlags());
|
|
}
|
|
|
|
/// Retrieve the requirements that make up the requirement signature of
|
|
/// this protocol.
|
|
llvm::ArrayRef<TargetGenericRequirementDescriptor<Runtime>>
|
|
getRequirementSignature() const {
|
|
return {this->template getTrailingObjects<
|
|
TargetGenericRequirementDescriptor<Runtime>>(),
|
|
NumRequirementsInSignature};
|
|
}
|
|
|
|
/// Retrieve the requirements of this protocol.
|
|
llvm::ArrayRef<TargetProtocolRequirement<Runtime>>
|
|
getRequirements() const {
|
|
return {this->template getTrailingObjects<
|
|
TargetProtocolRequirement<Runtime>>(),
|
|
NumRequirements};
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_ATTRIBUTE_DEPRECATED(void dump() const LLVM_ATTRIBUTE_USED,
|
|
"only for use in the debugger");
|
|
#endif
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Protocol;
|
|
}
|
|
};
|
|
|
|
/// The instantiation cache for generic metadata. This must be guaranteed
|
|
/// to zero-initialized before it is first accessed. Its contents are private
|
|
/// to the runtime.
|
|
template <typename Runtime>
|
|
struct TargetGenericMetadataInstantiationCache {
|
|
/// Data that the runtime can use for its own purposes. It is guaranteed
|
|
/// to be zero-filled by the compiler.
|
|
TargetPointer<Runtime, void>
|
|
PrivateData[swift::NumGenericMetadataPrivateDataWords];
|
|
};
|
|
using GenericMetadataInstantiationCache =
|
|
TargetGenericMetadataInstantiationCache<InProcess>;
|
|
|
|
/// A function that instantiates metadata. This function is required
|
|
/// to succeed.
|
|
///
|
|
/// In general, the metadata returned by this function should have all the
|
|
/// basic structure necessary to identify itself: that is, it must have a
|
|
/// type descriptor and generic arguments. However, it does not need to be
|
|
/// fully functional as type metadata; for example, it does not need to have
|
|
/// a meaningful value witness table, v-table entries, or a superclass.
|
|
///
|
|
/// Operations which may fail (due to e.g. recursive dependencies) but which
|
|
/// must be performed in order to prepare the metadata object to be fully
|
|
/// functional as type metadata should be delayed until the completion
|
|
/// function.
|
|
using MetadataInstantiator =
|
|
Metadata *(const TargetTypeContextDescriptor<InProcess> *type,
|
|
const void *arguments,
|
|
const TargetGenericMetadataPattern<InProcess> *pattern);
|
|
|
|
/// The opaque completion context of a metadata completion function.
|
|
/// A completion function that needs to report a completion dependency
|
|
/// can use this to figure out where it left off and thus avoid redundant
|
|
/// work when re-invoked. It will be zero on first entry for a type, and
|
|
/// the runtime is free to copy it to a different location between
|
|
/// invocations.
|
|
struct MetadataCompletionContext {
|
|
void *Data[NumWords_MetadataCompletionContext];
|
|
};
|
|
|
|
/// A function which attempts to complete the given metadata.
|
|
///
|
|
/// This function may fail due to a dependency on the completion of some
|
|
/// other metadata object. It can indicate this by returning the metadata
|
|
/// on which it depends. In this case, the function will be invoked again
|
|
/// when the dependency is resolved. The function must be careful not to
|
|
/// indicate a completion dependency on a type that has always been
|
|
/// completed; the runtime cannot reliably distinguish this sort of
|
|
/// programming failure from a race in which the dependent type was
|
|
/// completed immediately after it was observed to be incomplete, and so
|
|
/// the function will be repeatedly re-invoked.
|
|
///
|
|
/// The function will never be called multiple times simultaneously, but
|
|
/// it may be called many times as successive dependencies are resolved.
|
|
/// If the function ever completes successfully (by returning null), it
|
|
/// will not be called again for the same type.
|
|
///
|
|
/// \return null to indicate that the type has been completed, or a non-null
|
|
/// pointer to indicate that completion is blocked on the completion of
|
|
/// some other type
|
|
using MetadataCompleter =
|
|
SWIFT_CC(swift)
|
|
MetadataDependency(const Metadata *type,
|
|
MetadataCompletionContext *context,
|
|
const TargetGenericMetadataPattern<InProcess> *pattern);
|
|
|
|
/// An instantiation pattern for type metadata.
|
|
template <typename Runtime>
|
|
struct TargetGenericMetadataPattern {
|
|
/// The function to call to instantiate the template.
|
|
TargetRelativeDirectPointer<Runtime, MetadataInstantiator>
|
|
InstantiationFunction;
|
|
|
|
/// The function to call to complete the instantiation. If this is null,
|
|
/// the instantiation function must always generate complete metadata.
|
|
TargetRelativeDirectPointer<Runtime, MetadataCompleter, /*nullable*/ true>
|
|
CompletionFunction;
|
|
|
|
/// Flags describing the layout of this instantiation pattern.
|
|
GenericMetadataPatternFlags PatternFlags;
|
|
|
|
bool hasExtraDataPattern() const {
|
|
return PatternFlags.hasExtraDataPattern();
|
|
}
|
|
};
|
|
using GenericMetadataPattern =
|
|
TargetGenericMetadataPattern<InProcess>;
|
|
|
|
/// Part of a generic metadata instantiation pattern.
|
|
template <typename Runtime>
|
|
struct TargetGenericMetadataPartialPattern {
|
|
/// A reference to the pattern. The pattern must always be at least
|
|
/// word-aligned.
|
|
TargetRelativeDirectPointer<Runtime, typename Runtime::StoredPointer> Pattern;
|
|
|
|
/// The offset into the section into which to copy this pattern, in words.
|
|
uint16_t OffsetInWords;
|
|
|
|
/// The size of the pattern, in words.
|
|
uint16_t SizeInWords;
|
|
};
|
|
using GenericMetadataPartialPattern =
|
|
TargetGenericMetadataPartialPattern<InProcess>;
|
|
|
|
/// A base class for conveniently adding trailing fields to a
|
|
/// generic metadata pattern.
|
|
template <typename Runtime,
|
|
typename Self,
|
|
typename... ExtraTrailingObjects>
|
|
class TargetGenericMetadataPatternTrailingObjects :
|
|
protected swift::ABI::TrailingObjects<Self,
|
|
TargetGenericMetadataPartialPattern<Runtime>,
|
|
ExtraTrailingObjects...> {
|
|
|
|
using TrailingObjects =
|
|
swift::ABI::TrailingObjects<Self,
|
|
TargetGenericMetadataPartialPattern<Runtime>,
|
|
ExtraTrailingObjects...>;
|
|
friend TrailingObjects;
|
|
|
|
using GenericMetadataPartialPattern =
|
|
TargetGenericMetadataPartialPattern<Runtime>;
|
|
|
|
const Self *asSelf() const {
|
|
return static_cast<const Self *>(this);
|
|
}
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
public:
|
|
/// Return the extra-data pattern.
|
|
///
|
|
/// For class metadata, the existence of this pattern creates the need
|
|
/// for extra data to be allocated in the metadata. The amount of extra
|
|
/// data allocated is the sum of the offset and the size of this pattern.
|
|
///
|
|
/// In value metadata, the size of the extra data section is passed to the
|
|
/// allocation function; this is because it is currently not stored elsewhere
|
|
/// and because the extra data is principally used for storing values that
|
|
/// cannot be patterned anyway.
|
|
///
|
|
/// In value metadata, this section is relative to the end of the
|
|
/// metadata header (e.g. after the last members declared in StructMetadata).
|
|
/// In class metadata, this section is relative to the end of the entire
|
|
/// class metadata.
|
|
const GenericMetadataPartialPattern *getExtraDataPattern() const {
|
|
assert(asSelf()->hasExtraDataPattern());
|
|
return this->template getTrailingObjects<GenericMetadataPartialPattern>();
|
|
}
|
|
|
|
protected:
|
|
/// Return the class immediate-members pattern.
|
|
const GenericMetadataPartialPattern *class_getImmediateMembersPattern() const{
|
|
assert(asSelf()->class_hasImmediateMembersPattern());
|
|
return this->template getTrailingObjects<GenericMetadataPartialPattern>()
|
|
+ size_t(asSelf()->hasExtraDataPattern());
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<GenericMetadataPartialPattern>) const{
|
|
return size_t(asSelf()->hasExtraDataPattern())
|
|
+ size_t(asSelf()->class_hasImmediateMembersPattern());
|
|
}
|
|
};
|
|
|
|
/// An instantiation pattern for class metadata.
|
|
template <typename Runtime>
|
|
struct TargetGenericClassMetadataPattern final :
|
|
TargetGenericMetadataPattern<Runtime>,
|
|
TargetGenericMetadataPatternTrailingObjects<Runtime,
|
|
TargetGenericClassMetadataPattern<Runtime>> {
|
|
using TrailingObjects =
|
|
TargetGenericMetadataPatternTrailingObjects<Runtime,
|
|
TargetGenericClassMetadataPattern<Runtime>>;
|
|
friend TrailingObjects;
|
|
|
|
using TargetGenericMetadataPattern<Runtime>::PatternFlags;
|
|
|
|
/// The heap-destructor function.
|
|
TargetRelativeDirectPointer<Runtime, HeapObjectDestroyer> Destroy;
|
|
|
|
/// The ivar-destructor function.
|
|
TargetRelativeDirectPointer<Runtime, ClassIVarDestroyer> IVarDestroyer;
|
|
|
|
/// The class flags.
|
|
ClassFlags Flags;
|
|
|
|
// The following fields are only present in ObjC interop.
|
|
|
|
/// The offset of the class RO-data within the extra data pattern,
|
|
/// in words.
|
|
uint16_t ClassRODataOffset;
|
|
|
|
/// The offset of the metaclass object within the extra data pattern,
|
|
/// in words.
|
|
uint16_t MetaclassObjectOffset;
|
|
|
|
/// The offset of the metaclass RO-data within the extra data pattern,
|
|
/// in words.
|
|
uint16_t MetaclassRODataOffset;
|
|
|
|
uint16_t Reserved;
|
|
|
|
bool hasImmediateMembersPattern() const {
|
|
return PatternFlags.class_hasImmediateMembersPattern();
|
|
}
|
|
const GenericMetadataPartialPattern *getImmediateMembersPattern() const{
|
|
return this->class_getImmediateMembersPattern();
|
|
}
|
|
|
|
private:
|
|
bool class_hasImmediateMembersPattern() const {
|
|
return hasImmediateMembersPattern();
|
|
}
|
|
};
|
|
using GenericClassMetadataPattern =
|
|
TargetGenericClassMetadataPattern<InProcess>;
|
|
|
|
/// An instantiation pattern for value metadata.
|
|
template <typename Runtime>
|
|
struct TargetGenericValueMetadataPattern final :
|
|
TargetGenericMetadataPattern<Runtime>,
|
|
TargetGenericMetadataPatternTrailingObjects<Runtime,
|
|
TargetGenericValueMetadataPattern<Runtime>> {
|
|
using TrailingObjects =
|
|
TargetGenericMetadataPatternTrailingObjects<Runtime,
|
|
TargetGenericValueMetadataPattern<Runtime>>;
|
|
friend TrailingObjects;
|
|
|
|
using TargetGenericMetadataPattern<Runtime>::PatternFlags;
|
|
|
|
/// The value-witness table. Indirectable so that we can re-use tables
|
|
/// from other libraries if that seems wise.
|
|
TargetRelativeIndirectablePointer<Runtime, const ValueWitnessTable>
|
|
ValueWitnesses;
|
|
|
|
const ValueWitnessTable *getValueWitnessesPattern() const {
|
|
return ValueWitnesses.get();
|
|
}
|
|
|
|
/// Return the metadata kind to use in the instantiation.
|
|
MetadataKind getMetadataKind() const {
|
|
return PatternFlags.value_getMetadataKind();
|
|
}
|
|
|
|
private:
|
|
bool class_hasImmediateMembersPattern() const {
|
|
// It's important to not look at the flag because we use those
|
|
// bits for other things.
|
|
return false;
|
|
}
|
|
};
|
|
using GenericValueMetadataPattern =
|
|
TargetGenericValueMetadataPattern<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
struct TargetTypeGenericContextDescriptorHeader {
|
|
/// The metadata instantiation cache.
|
|
TargetRelativeDirectPointer<Runtime,
|
|
TargetGenericMetadataInstantiationCache<Runtime>>
|
|
InstantiationCache;
|
|
|
|
GenericMetadataInstantiationCache *getInstantiationCache() const {
|
|
return InstantiationCache.get();
|
|
}
|
|
|
|
/// The default instantiation pattern.
|
|
TargetRelativeDirectPointer<Runtime, TargetGenericMetadataPattern<Runtime>>
|
|
DefaultInstantiationPattern;
|
|
|
|
/// The base header. Must always be the final member.
|
|
TargetGenericContextDescriptorHeader<Runtime> Base;
|
|
|
|
operator const TargetGenericContextDescriptorHeader<Runtime> &() const {
|
|
return Base;
|
|
}
|
|
};
|
|
using TypeGenericContextDescriptorHeader =
|
|
TargetTypeGenericContextDescriptorHeader<InProcess>;
|
|
|
|
/// Wrapper class for the pointer to a metadata access function that provides
|
|
/// operator() overloads to call it with the right calling convention.
|
|
class MetadataAccessFunction {
|
|
MetadataResponse (*Function)(...);
|
|
|
|
static_assert(NumDirectGenericTypeMetadataAccessFunctionArgs == 3,
|
|
"Need to account for change in number of direct arguments");
|
|
|
|
public:
|
|
explicit MetadataAccessFunction(MetadataResponse (*Function)(...))
|
|
: Function(Function)
|
|
{}
|
|
|
|
explicit operator bool() const {
|
|
return Function != nullptr;
|
|
}
|
|
|
|
/// Invoke with an array of arguments of dynamic size.
|
|
MetadataResponse operator()(MetadataRequest request,
|
|
llvm::ArrayRef<const void *> args) const {
|
|
switch (args.size()) {
|
|
case 0:
|
|
return operator()(request);
|
|
case 1:
|
|
return operator()(request, args[0]);
|
|
case 2:
|
|
return operator()(request, args[0], args[1]);
|
|
case 3:
|
|
return operator()(request, args[0], args[1], args[2]);
|
|
default:
|
|
return applyMany(request, args.data());
|
|
}
|
|
}
|
|
|
|
/// Invoke with exactly 0 arguments.
|
|
MetadataResponse operator()(MetadataRequest request) const {
|
|
using Fn0 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request);
|
|
return reinterpret_cast<Fn0*>(Function)(request);
|
|
}
|
|
|
|
/// Invoke with exactly 1 argument.
|
|
MetadataResponse operator()(MetadataRequest request,
|
|
const void *arg0) const {
|
|
using Fn1 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
|
|
const void *arg0);
|
|
return reinterpret_cast<Fn1*>(Function)(request, arg0);
|
|
|
|
}
|
|
|
|
/// Invoke with exactly 2 arguments.
|
|
MetadataResponse operator()(MetadataRequest request,
|
|
const void *arg0,
|
|
const void *arg1) const {
|
|
using Fn2 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
|
|
const void *arg0,
|
|
const void *arg1);
|
|
return reinterpret_cast<Fn2*>(Function)(request, arg0, arg1);
|
|
}
|
|
|
|
/// Invoke with exactly 3 arguments.
|
|
MetadataResponse operator()(MetadataRequest request,
|
|
const void *arg0,
|
|
const void *arg1,
|
|
const void *arg2) const {
|
|
using Fn3 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
|
|
const void *arg0,
|
|
const void *arg1,
|
|
const void *arg2);
|
|
return reinterpret_cast<Fn3*>(Function)(request, arg0, arg1, arg2);
|
|
}
|
|
|
|
/// Invoke with more than 3 arguments.
|
|
template<typename...Args>
|
|
MetadataResponse operator()(MetadataRequest request,
|
|
const void *arg0,
|
|
const void *arg1,
|
|
const void *arg2,
|
|
Args... argN) const {
|
|
const void *args[] = { arg0, arg1, arg2, argN... };
|
|
return applyMany(request, args);
|
|
}
|
|
|
|
private:
|
|
/// In the more-then-max case, just pass all the arguments as an array.
|
|
MetadataResponse applyMany(MetadataRequest request,
|
|
const void * const *args) const {
|
|
using FnN = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
|
|
const void * const *args);
|
|
return reinterpret_cast<FnN*>(Function)(request, args);
|
|
}
|
|
};
|
|
|
|
/// The control structure for performing non-trivial initialization of
|
|
/// singleton foreign metadata.
|
|
template <typename Runtime>
|
|
struct TargetForeignMetadataInitialization {
|
|
/// The completion function. The pattern will always be null.
|
|
TargetRelativeDirectPointer<Runtime, MetadataCompleter, /*nullable*/ true>
|
|
CompletionFunction;
|
|
};
|
|
|
|
template <typename Runtime>
|
|
class TargetTypeContextDescriptor
|
|
: public TargetContextDescriptor<Runtime> {
|
|
public:
|
|
/// The name of the type.
|
|
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> Name;
|
|
|
|
/// A pointer to the metadata access function for this type.
|
|
///
|
|
/// The function type here is a stand-in. You should use getAccessFunction()
|
|
/// to wrap the function pointer in an accessor that uses the proper calling
|
|
/// convention for a given number of arguments.
|
|
TargetRelativeDirectPointer<Runtime, MetadataResponse(...),
|
|
/*Nullable*/ true> AccessFunctionPtr;
|
|
|
|
MetadataAccessFunction getAccessFunction() const {
|
|
return MetadataAccessFunction(AccessFunctionPtr.get());
|
|
}
|
|
|
|
TypeContextDescriptorFlags getTypeContextDescriptorFlags() const {
|
|
return TypeContextDescriptorFlags(this->Flags.getKindSpecificFlags());
|
|
}
|
|
|
|
/// Return the kind of metadata initialization required by this type.
|
|
/// Note that this is only meaningful for non-generic types.
|
|
TypeContextDescriptorFlags::MetadataInitializationKind
|
|
getMetadataInitialization() const {
|
|
return getTypeContextDescriptorFlags().getMetadataInitialization();
|
|
}
|
|
|
|
/// Does this type have non-trivial "in place" metadata initialization?
|
|
///
|
|
/// The type of the initialization-control structure differs by subclass,
|
|
/// so it doesn't appear here.
|
|
bool hasInPlaceMetadataInitialization() const {
|
|
return getTypeContextDescriptorFlags().hasInPlaceMetadataInitialization();
|
|
}
|
|
|
|
/// Does this type have "foreign" metadata initialiation?
|
|
bool hasForeignMetadataInitialization() const {
|
|
return getTypeContextDescriptorFlags().hasForeignMetadataInitialization();
|
|
}
|
|
|
|
/// Given that this type has foreign metadata initialization, return the
|
|
/// control structure for it.
|
|
const TargetForeignMetadataInitialization<Runtime> &
|
|
getForeignMetadataInitialization() const;
|
|
|
|
const TargetTypeGenericContextDescriptorHeader<Runtime> &
|
|
getFullGenericContextHeader() const;
|
|
|
|
const TargetGenericContextDescriptorHeader<Runtime> &
|
|
getGenericContextHeader() const {
|
|
return getFullGenericContextHeader();
|
|
}
|
|
|
|
llvm::ArrayRef<GenericParamDescriptor> getGenericParams() const;
|
|
|
|
/// Return the offset of the start of generic arguments in the nominal
|
|
/// type's metadata. The returned value is measured in sizeof(void*).
|
|
int32_t getGenericArgumentOffset() const;
|
|
|
|
/// Return the start of the generic arguments array in the nominal
|
|
/// type's metadata. The returned value is measured in sizeof(void*).
|
|
const TargetMetadata<Runtime> * const *getGenericArguments(
|
|
const TargetMetadata<Runtime> *metadata) const {
|
|
auto offset = getGenericArgumentOffset();
|
|
auto words =
|
|
reinterpret_cast<const TargetMetadata<Runtime> * const *>(metadata);
|
|
return words + offset;
|
|
}
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() >= ContextDescriptorKind::Type_First
|
|
&& cd->getKind() <= ContextDescriptorKind::Type_Last;
|
|
}
|
|
};
|
|
|
|
using TypeContextDescriptor = TargetTypeContextDescriptor<InProcess>;
|
|
|
|
/// Storage for class metadata bounds. This is the variable returned
|
|
/// by getAddrOfClassMetadataBounds in the compiler.
|
|
///
|
|
/// This storage is initialized before the allocation of any metadata
|
|
/// for the class to which it belongs. In classes without resilient
|
|
/// superclasses, it is initialized statically with values derived
|
|
/// during compilation. In classes with resilient superclasses, it
|
|
/// is initialized dynamically, generally during the allocation of
|
|
/// the first metadata of this class's type. If metadata for this
|
|
/// class is available to you to use, you must have somehow synchronized
|
|
/// with the thread which allocated the metadata, and therefore the
|
|
/// complete initialization of this variable is also ordered before
|
|
/// your access. That is why you can safely access this variable,
|
|
/// and moreover access it without further atomic accesses. However,
|
|
/// since this variable may be accessed in a way that is not dependency-
|
|
/// ordered on the metadata pointer, it is important that you do a full
|
|
/// synchronization and not just a dependency-ordered (consume)
|
|
/// synchronization when sharing class metadata pointers between
|
|
/// threads. (There are other reasons why this is true; for example,
|
|
/// field offset variables are also accessed without dependency-ordering.)
|
|
///
|
|
/// If you are accessing this storage without such a guarantee, you
|
|
/// should be aware that it may be lazily initialized, and moreover
|
|
/// it may be getting lazily initialized from another thread. To ensure
|
|
/// correctness, the fields must be read in the correct order: the
|
|
/// immediate-members offset is initialized last with a store-release,
|
|
/// so it must be read first with a load-acquire, and if the result
|
|
/// is non-zero then the rest of the variable is known to be valid.
|
|
/// (No locking is required because racing initializations should always
|
|
/// assign the same values to the storage.)
|
|
template <typename Runtime>
|
|
struct TargetStoredClassMetadataBounds {
|
|
using StoredPointerDifference =
|
|
typename Runtime::StoredPointerDifference;
|
|
|
|
/// The offset to the immediate members. This value is in bytes so that
|
|
/// clients don't have to sign-extend it.
|
|
|
|
|
|
/// It is not necessary to use atomic-ordered loads when accessing this
|
|
/// variable just to read the immediate-members offset when drilling to
|
|
/// the immediate members of an already-allocated metadata object.
|
|
/// The proper initialization of this variable is always ordered before
|
|
/// any allocation of metadata for this class.
|
|
std::atomic<StoredPointerDifference> ImmediateMembersOffset;
|
|
|
|
/// The positive and negative bounds of the class metadata.
|
|
TargetMetadataBounds<Runtime> Bounds;
|
|
|
|
/// Attempt to read the cached immediate-members offset.
|
|
///
|
|
/// \return true if the read was successful, or false if the cache hasn't
|
|
/// been filled yet
|
|
bool tryGetImmediateMembersOffset(StoredPointerDifference &output) {
|
|
output = ImmediateMembersOffset.load(std::memory_order_relaxed);
|
|
return output != 0;
|
|
}
|
|
|
|
/// Attempt to read the full cached bounds.
|
|
///
|
|
/// \return true if the read was successful, or false if the cache hasn't
|
|
/// been filled yet
|
|
bool tryGet(TargetClassMetadataBounds<Runtime> &output) {
|
|
auto offset = ImmediateMembersOffset.load(std::memory_order_acquire);
|
|
if (offset == 0) return false;
|
|
|
|
output.ImmediateMembersOffset = offset;
|
|
output.NegativeSizeInWords = Bounds.NegativeSizeInWords;
|
|
output.PositiveSizeInWords = Bounds.PositiveSizeInWords;
|
|
return true;
|
|
}
|
|
|
|
void initialize(TargetClassMetadataBounds<Runtime> value) {
|
|
assert(value.ImmediateMembersOffset != 0 &&
|
|
"attempting to initialize metadata bounds cache to a zero state!");
|
|
|
|
Bounds.NegativeSizeInWords = value.NegativeSizeInWords;
|
|
Bounds.PositiveSizeInWords = value.PositiveSizeInWords;
|
|
ImmediateMembersOffset.store(value.ImmediateMembersOffset,
|
|
std::memory_order_release);
|
|
}
|
|
};
|
|
using StoredClassMetadataBounds =
|
|
TargetStoredClassMetadataBounds<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
class TargetClassDescriptor final
|
|
: public TargetTypeContextDescriptor<Runtime>,
|
|
public TrailingGenericContextObjects<TargetClassDescriptor<Runtime>,
|
|
TargetTypeGenericContextDescriptorHeader,
|
|
/*additional trailing objects:*/
|
|
TargetForeignMetadataInitialization<Runtime>,
|
|
TargetVTableDescriptorHeader<Runtime>,
|
|
TargetMethodDescriptor<Runtime>> {
|
|
private:
|
|
using TrailingGenericContextObjects =
|
|
TrailingGenericContextObjects<TargetClassDescriptor<Runtime>,
|
|
TargetTypeGenericContextDescriptorHeader,
|
|
TargetForeignMetadataInitialization<Runtime>,
|
|
TargetVTableDescriptorHeader<Runtime>,
|
|
TargetMethodDescriptor<Runtime>>;
|
|
|
|
using TrailingObjects =
|
|
typename TrailingGenericContextObjects::TrailingObjects;
|
|
friend TrailingObjects;
|
|
|
|
public:
|
|
using MethodDescriptor = TargetMethodDescriptor<Runtime>;
|
|
using VTableDescriptorHeader = TargetVTableDescriptorHeader<Runtime>;
|
|
using ForeignMetadataInitialization =
|
|
TargetForeignMetadataInitialization<Runtime>;
|
|
|
|
using StoredPointer = typename Runtime::StoredPointer;
|
|
using StoredPointerDifference = typename Runtime::StoredPointerDifference;
|
|
using StoredSize = typename Runtime::StoredSize;
|
|
|
|
using TrailingGenericContextObjects::getGenericContext;
|
|
using TrailingGenericContextObjects::getGenericContextHeader;
|
|
using TrailingGenericContextObjects::getFullGenericContextHeader;
|
|
using TrailingGenericContextObjects::getGenericParams;
|
|
using TargetTypeContextDescriptor<Runtime>::getTypeContextDescriptorFlags;
|
|
|
|
/// The superclass of this class. This pointer can be interpreted
|
|
/// using the superclass reference kind stored in the type context
|
|
/// descriptor flags. It is null if the class has no formal superclass.
|
|
///
|
|
/// Note that SwiftObject, the implicit superclass of all Swift root
|
|
/// classes when building with ObjC compatibility, does not appear here.
|
|
TargetRelativeDirectPointer<Runtime, const void, /*nullable*/true> Superclass;
|
|
|
|
/// Does this class have a formal superclass?
|
|
bool hasSuperclass() const {
|
|
return !Superclass.isNull();
|
|
}
|
|
|
|
TypeReferenceKind getSuperclassReferenceKind() const {
|
|
return getTypeContextDescriptorFlags().class_getSuperclassReferenceKind();
|
|
}
|
|
|
|
union {
|
|
/// If this descriptor does not have a resilient superclass, this is the
|
|
/// negative size of metadata objects of this class (in words).
|
|
uint32_t MetadataNegativeSizeInWords;
|
|
|
|
/// If this descriptor has a resilient superclass, this is a reference
|
|
/// to a cache holding the metadata's extents.
|
|
TargetRelativeDirectPointer<Runtime,
|
|
TargetStoredClassMetadataBounds<Runtime>>
|
|
ResilientMetadataBounds;
|
|
};
|
|
|
|
union {
|
|
/// If this descriptor does not have a resilient superclass, this is the
|
|
/// positive size of metadata objects of this class (in words).
|
|
uint32_t MetadataPositiveSizeInWords;
|
|
|
|
// Maybe add something here that's useful only for resilient types?
|
|
};
|
|
|
|
/// The number of additional members added by this class to the class
|
|
/// metadata. This data is opaque by default to the runtime, other than
|
|
/// as exposed in other members; it's really just
|
|
/// NumImmediateMembers * sizeof(void*) bytes of data.
|
|
///
|
|
/// Whether those bytes are added before or after the address point
|
|
/// depends on areImmediateMembersNegative().
|
|
uint32_t NumImmediateMembers; // ABI: could be uint16_t?
|
|
|
|
StoredSize getImmediateMembersSize() const {
|
|
return StoredSize(NumImmediateMembers) * sizeof(StoredPointer);
|
|
}
|
|
|
|
/// Are the immediate members of the class metadata allocated at negative
|
|
/// offsets instead of positive?
|
|
bool areImmediateMembersNegative() const {
|
|
return getTypeContextDescriptorFlags().class_areImmediateMembersNegative();
|
|
}
|
|
|
|
/// The number of stored properties in the class, not including its
|
|
/// superclasses. If there is a field offset vector, this is its length.
|
|
uint32_t NumFields;
|
|
|
|
private:
|
|
/// The offset of the field offset vector for this class's stored
|
|
/// properties in its metadata, in words. 0 means there is no field offset
|
|
/// vector.
|
|
///
|
|
/// If this class has a resilient superclass, this offset is relative to
|
|
/// the size of the resilient superclass metadata. Otherwise, it is
|
|
/// absolute.
|
|
uint32_t FieldOffsetVectorOffset;
|
|
|
|
template<typename T>
|
|
using OverloadToken =
|
|
typename TrailingGenericContextObjects::template OverloadToken<T>;
|
|
|
|
using TrailingGenericContextObjects::numTrailingObjects;
|
|
|
|
size_t numTrailingObjects(OverloadToken<ForeignMetadataInitialization>) const{
|
|
return this->hasForeignMetadataInitialization() ? 1 : 0;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<VTableDescriptorHeader>) const {
|
|
return hasVTable() ? 1 : 0;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<MethodDescriptor>) const {
|
|
if (!hasVTable())
|
|
return 0;
|
|
|
|
return getVTableDescriptor()->VTableSize;
|
|
}
|
|
|
|
public:
|
|
const ForeignMetadataInitialization &getForeignMetadataInitialization() const{
|
|
assert(this->hasForeignMetadataInitialization());
|
|
return *this->template getTrailingObjects<ForeignMetadataInitialization>();
|
|
}
|
|
|
|
/// True if metadata records for this type have a field offset vector for
|
|
/// its stored properties.
|
|
bool hasFieldOffsetVector() const { return FieldOffsetVectorOffset != 0; }
|
|
|
|
unsigned getFieldOffsetVectorOffset(const ClassMetadata *metadata) const {
|
|
const auto *description = metadata->getDescription();
|
|
|
|
if (description->hasResilientSuperclass())
|
|
return metadata->Superclass->getSizeInWords() + FieldOffsetVectorOffset;
|
|
|
|
return FieldOffsetVectorOffset;
|
|
}
|
|
|
|
bool hasVTable() const {
|
|
return this->getTypeContextDescriptorFlags().class_hasVTable();
|
|
}
|
|
|
|
bool hasResilientSuperclass() const {
|
|
return this->getTypeContextDescriptorFlags().class_hasResilientSuperclass();
|
|
}
|
|
|
|
const VTableDescriptorHeader *getVTableDescriptor() const {
|
|
if (!hasVTable())
|
|
return nullptr;
|
|
return this->template getTrailingObjects<VTableDescriptorHeader>();
|
|
}
|
|
|
|
llvm::ArrayRef<MethodDescriptor> getMethodDescriptors() const {
|
|
if (!hasVTable())
|
|
return {};
|
|
return {this->template getTrailingObjects<MethodDescriptor>(),
|
|
numTrailingObjects(OverloadToken<MethodDescriptor>{})};
|
|
}
|
|
|
|
/// Return the bounds of this class's metadata.
|
|
TargetClassMetadataBounds<Runtime> getMetadataBounds() const {
|
|
if (!hasResilientSuperclass())
|
|
return getNonResilientMetadataBounds();
|
|
|
|
// This lookup works by ADL and will intentionally fail for
|
|
// non-InProcess instantiations.
|
|
return getResilientMetadataBounds(this);
|
|
}
|
|
|
|
/// Given that this class is known to not have a resilient superclass
|
|
/// return its metadata bounds.
|
|
TargetClassMetadataBounds<Runtime> getNonResilientMetadataBounds() const {
|
|
return { getNonResilientImmediateMembersOffset()
|
|
* StoredPointerDifference(sizeof(void*)),
|
|
MetadataNegativeSizeInWords,
|
|
MetadataPositiveSizeInWords };
|
|
}
|
|
|
|
/// Return the offset of the start of generic arguments in the nominal
|
|
/// type's metadata. The returned value is measured in words.
|
|
int32_t getGenericArgumentOffset() const {
|
|
if (!hasResilientSuperclass())
|
|
return getNonResilientGenericArgumentOffset();
|
|
|
|
// This lookup works by ADL and will intentionally fail for
|
|
// non-InProcess instantiations.
|
|
return getResilientImmediateMembersOffset(this);
|
|
}
|
|
|
|
/// Given that this class is known to not have a resilient superclass,
|
|
/// return the offset of its generic arguments in words.
|
|
int32_t getNonResilientGenericArgumentOffset() const {
|
|
return getNonResilientImmediateMembersOffset();
|
|
}
|
|
|
|
/// Given that this class is known to not have a resilient superclass,
|
|
/// return the offset of its immediate members in words.
|
|
int32_t getNonResilientImmediateMembersOffset() const {
|
|
assert(!hasResilientSuperclass());
|
|
return areImmediateMembersNegative()
|
|
? -int32_t(MetadataNegativeSizeInWords)
|
|
: int32_t(MetadataPositiveSizeInWords - NumImmediateMembers);
|
|
}
|
|
|
|
void *getMethod(unsigned i) const {
|
|
assert(hasVTable()
|
|
&& i < numTrailingObjects(OverloadToken<MethodDescriptor>{}));
|
|
return getMethodDescriptors()[i].Impl.get();
|
|
}
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Class;
|
|
}
|
|
};
|
|
|
|
using ClassDescriptor = TargetClassDescriptor<InProcess>;
|
|
|
|
/// The cache structure for non-trivial initialization of singleton value
|
|
/// metadata.
|
|
template <typename Runtime>
|
|
struct TargetInPlaceValueMetadataCache {
|
|
/// The metadata pointer. Clients can do dependency-ordered loads
|
|
/// from this, and if they see a non-zero value, it's a Complete
|
|
/// metadata.
|
|
std::atomic<TargetMetadataPointer<Runtime, TargetMetadata>> Metadata;
|
|
|
|
/// The private cache data.
|
|
std::atomic<TargetPointer<Runtime, void>> Private;
|
|
};
|
|
using InPlaceValueMetadataCache =
|
|
TargetInPlaceValueMetadataCache<InProcess>;
|
|
|
|
/// The control structure for performing non-trivial initialization of
|
|
/// singleton value metadata, which is required when e.g. a non-generic
|
|
/// value type has a resilient component type.
|
|
template <typename Runtime>
|
|
struct TargetInPlaceValueMetadataInitialization {
|
|
/// The initialization cache. Out-of-line because mutable.
|
|
TargetRelativeDirectPointer<Runtime,
|
|
TargetInPlaceValueMetadataCache<Runtime>>
|
|
InitializationCache;
|
|
|
|
/// The incomplete metadata.
|
|
TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>>
|
|
IncompleteMetadata;
|
|
|
|
/// The completion function. The pattern will always be null.
|
|
TargetRelativeDirectPointer<Runtime, MetadataCompleter>
|
|
CompletionFunction;
|
|
};
|
|
|
|
template <typename Runtime>
|
|
class TargetValueTypeDescriptor
|
|
: public TargetTypeContextDescriptor<Runtime> {
|
|
public:
|
|
using InPlaceMetadataInitialization =
|
|
TargetInPlaceValueMetadataInitialization<Runtime>;
|
|
|
|
const InPlaceMetadataInitialization &getInPlaceMetadataInitialization() const;
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Struct ||
|
|
cd->getKind() == ContextDescriptorKind::Enum;
|
|
}
|
|
};
|
|
using ValueTypeDescriptor = TargetValueTypeDescriptor<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
class TargetStructDescriptor final
|
|
: public TargetValueTypeDescriptor<Runtime>,
|
|
public TrailingGenericContextObjects<TargetStructDescriptor<Runtime>,
|
|
TargetTypeGenericContextDescriptorHeader,
|
|
/*additional trailing objects*/
|
|
TargetForeignMetadataInitialization<Runtime>,
|
|
TargetInPlaceValueMetadataInitialization<Runtime>> {
|
|
public:
|
|
using ForeignMetadataInitialization =
|
|
TargetForeignMetadataInitialization<Runtime>;
|
|
using InPlaceMetadataInitialization =
|
|
TargetInPlaceValueMetadataInitialization<Runtime>;
|
|
|
|
private:
|
|
using TrailingGenericContextObjects =
|
|
TrailingGenericContextObjects<TargetStructDescriptor<Runtime>,
|
|
TargetTypeGenericContextDescriptorHeader,
|
|
ForeignMetadataInitialization,
|
|
InPlaceMetadataInitialization>;
|
|
|
|
using TrailingObjects =
|
|
typename TrailingGenericContextObjects::TrailingObjects;
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
using TrailingGenericContextObjects::numTrailingObjects;
|
|
|
|
size_t numTrailingObjects(OverloadToken<ForeignMetadataInitialization>) const{
|
|
return this->hasForeignMetadataInitialization() ? 1 : 0;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<InPlaceMetadataInitialization>) const{
|
|
return this->hasInPlaceMetadataInitialization() ? 1 : 0;
|
|
}
|
|
|
|
public:
|
|
using TrailingGenericContextObjects::getGenericContext;
|
|
using TrailingGenericContextObjects::getGenericContextHeader;
|
|
using TrailingGenericContextObjects::getFullGenericContextHeader;
|
|
using TrailingGenericContextObjects::getGenericParams;
|
|
|
|
/// The number of stored properties in the struct.
|
|
/// If there is a field offset vector, this is its length.
|
|
uint32_t NumFields;
|
|
/// The offset of the field offset vector for this struct's stored
|
|
/// properties in its metadata, if any. 0 means there is no field offset
|
|
/// vector.
|
|
uint32_t FieldOffsetVectorOffset;
|
|
|
|
/// True if metadata records for this type have a field offset vector for
|
|
/// its stored properties.
|
|
bool hasFieldOffsetVector() const { return FieldOffsetVectorOffset != 0; }
|
|
|
|
const ForeignMetadataInitialization &getForeignMetadataInitialization() const{
|
|
assert(this->hasForeignMetadataInitialization());
|
|
return *this->template getTrailingObjects<ForeignMetadataInitialization>();
|
|
}
|
|
|
|
const InPlaceMetadataInitialization &getInPlaceMetadataInitialization() const{
|
|
assert(this->hasInPlaceMetadataInitialization());
|
|
return *this->template getTrailingObjects<InPlaceMetadataInitialization>();
|
|
}
|
|
|
|
static constexpr int32_t getGenericArgumentOffset() {
|
|
return TargetStructMetadata<Runtime>::getGenericArgumentOffset();
|
|
}
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Struct;
|
|
}
|
|
};
|
|
|
|
using StructDescriptor = TargetStructDescriptor<InProcess>;
|
|
|
|
template <typename Runtime>
|
|
class TargetEnumDescriptor final
|
|
: public TargetValueTypeDescriptor<Runtime>,
|
|
public TrailingGenericContextObjects<TargetEnumDescriptor<Runtime>,
|
|
TargetTypeGenericContextDescriptorHeader,
|
|
/*additional trailing objects*/
|
|
TargetForeignMetadataInitialization<Runtime>,
|
|
TargetInPlaceValueMetadataInitialization<Runtime>> {
|
|
public:
|
|
using InPlaceMetadataInitialization =
|
|
TargetInPlaceValueMetadataInitialization<Runtime>;
|
|
using ForeignMetadataInitialization =
|
|
TargetForeignMetadataInitialization<Runtime>;
|
|
|
|
private:
|
|
using TrailingGenericContextObjects =
|
|
TrailingGenericContextObjects<TargetEnumDescriptor<Runtime>,
|
|
TargetTypeGenericContextDescriptorHeader,
|
|
ForeignMetadataInitialization,
|
|
InPlaceMetadataInitialization>;
|
|
|
|
using TrailingObjects =
|
|
typename TrailingGenericContextObjects::TrailingObjects;
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
using TrailingGenericContextObjects::numTrailingObjects;
|
|
|
|
size_t numTrailingObjects(OverloadToken<ForeignMetadataInitialization>) const{
|
|
return this->hasForeignMetadataInitialization() ? 1 : 0;
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<InPlaceMetadataInitialization>) const{
|
|
return this->hasInPlaceMetadataInitialization() ? 1 : 0;
|
|
}
|
|
|
|
public:
|
|
using TrailingGenericContextObjects::getGenericContext;
|
|
using TrailingGenericContextObjects::getGenericContextHeader;
|
|
using TrailingGenericContextObjects::getFullGenericContextHeader;
|
|
using TrailingGenericContextObjects::getGenericParams;
|
|
|
|
/// The number of non-empty cases in the enum are in the low 24 bits;
|
|
/// the offset of the payload size in the metadata record in words,
|
|
/// if any, is stored in the high 8 bits.
|
|
uint32_t NumPayloadCasesAndPayloadSizeOffset;
|
|
|
|
/// The number of empty cases in the enum.
|
|
uint32_t NumEmptyCases;
|
|
|
|
uint32_t getNumPayloadCases() const {
|
|
return NumPayloadCasesAndPayloadSizeOffset & 0x00FFFFFFU;
|
|
}
|
|
|
|
uint32_t getNumEmptyCases() const {
|
|
return NumEmptyCases;
|
|
}
|
|
uint32_t getNumCases() const {
|
|
return getNumPayloadCases() + NumEmptyCases;
|
|
}
|
|
size_t getPayloadSizeOffset() const {
|
|
return ((NumPayloadCasesAndPayloadSizeOffset & 0xFF000000U) >> 24);
|
|
}
|
|
|
|
bool hasPayloadSizeOffset() const {
|
|
return getPayloadSizeOffset() != 0;
|
|
}
|
|
|
|
static constexpr int32_t getGenericArgumentOffset() {
|
|
return TargetEnumMetadata<Runtime>::getGenericArgumentOffset();
|
|
}
|
|
|
|
const ForeignMetadataInitialization &getForeignMetadataInitialization() const{
|
|
assert(this->hasForeignMetadataInitialization());
|
|
return *this->template getTrailingObjects<ForeignMetadataInitialization>();
|
|
}
|
|
|
|
const InPlaceMetadataInitialization &getInPlaceMetadataInitialization() const{
|
|
assert(this->hasInPlaceMetadataInitialization());
|
|
return *this->template getTrailingObjects<InPlaceMetadataInitialization>();
|
|
}
|
|
|
|
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
|
|
return cd->getKind() == ContextDescriptorKind::Enum;
|
|
}
|
|
};
|
|
|
|
using EnumDescriptor = TargetEnumDescriptor<InProcess>;
|
|
|
|
template<typename Runtime>
|
|
inline const TargetGenericContext<Runtime> *
|
|
TargetContextDescriptor<Runtime>::getGenericContext() const {
|
|
if (!isGeneric())
|
|
return nullptr;
|
|
|
|
switch (getKind()) {
|
|
case ContextDescriptorKind::Module:
|
|
// Never generic.
|
|
return nullptr;
|
|
case ContextDescriptorKind::Extension:
|
|
return llvm::cast<TargetExtensionContextDescriptor<Runtime>>(this)
|
|
->getGenericContext();
|
|
case ContextDescriptorKind::Anonymous:
|
|
return llvm::cast<TargetAnonymousContextDescriptor<Runtime>>(this)
|
|
->getGenericContext();
|
|
case ContextDescriptorKind::Class:
|
|
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
|
|
->getGenericContext();
|
|
case ContextDescriptorKind::Enum:
|
|
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
|
|
->getGenericContext();
|
|
case ContextDescriptorKind::Struct:
|
|
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
|
|
->getGenericContext();
|
|
default:
|
|
// We don't know about this kind of descriptor.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
template <typename Runtime>
|
|
int32_t TargetTypeContextDescriptor<Runtime>::getGenericArgumentOffset() const {
|
|
switch (this->getKind()) {
|
|
case ContextDescriptorKind::Class:
|
|
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
|
|
->getGenericArgumentOffset();
|
|
case ContextDescriptorKind::Enum:
|
|
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
|
|
->getGenericArgumentOffset();
|
|
case ContextDescriptorKind::Struct:
|
|
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
|
|
->getGenericArgumentOffset();
|
|
default:
|
|
swift_runtime_unreachable("Not a type context descriptor.");
|
|
}
|
|
}
|
|
|
|
template <typename Runtime>
|
|
const TargetTypeGenericContextDescriptorHeader<Runtime> &
|
|
TargetTypeContextDescriptor<Runtime>::getFullGenericContextHeader() const {
|
|
switch (this->getKind()) {
|
|
case ContextDescriptorKind::Class:
|
|
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
|
|
->getFullGenericContextHeader();
|
|
case ContextDescriptorKind::Enum:
|
|
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
|
|
->getFullGenericContextHeader();
|
|
case ContextDescriptorKind::Struct:
|
|
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
|
|
->getFullGenericContextHeader();
|
|
default:
|
|
swift_runtime_unreachable("Not a type context descriptor.");
|
|
}
|
|
}
|
|
|
|
template <typename Runtime>
|
|
llvm::ArrayRef<GenericParamDescriptor>
|
|
TargetTypeContextDescriptor<Runtime>::getGenericParams() const {
|
|
switch (this->getKind()) {
|
|
case ContextDescriptorKind::Class:
|
|
return llvm::cast<TargetClassDescriptor<Runtime>>(this)->getGenericParams();
|
|
case ContextDescriptorKind::Enum:
|
|
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)->getGenericParams();
|
|
case ContextDescriptorKind::Struct:
|
|
return llvm::cast<TargetStructDescriptor<Runtime>>(this)->getGenericParams();
|
|
default:
|
|
swift_runtime_unreachable("Not a type context descriptor.");
|
|
}
|
|
}
|
|
|
|
template <typename Runtime>
|
|
const TargetForeignMetadataInitialization<Runtime> &
|
|
TargetTypeContextDescriptor<Runtime>::getForeignMetadataInitialization() const {
|
|
switch (this->getKind()) {
|
|
case ContextDescriptorKind::Class:
|
|
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
|
|
->getForeignMetadataInitialization();
|
|
case ContextDescriptorKind::Enum:
|
|
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
|
|
->getForeignMetadataInitialization();
|
|
case ContextDescriptorKind::Struct:
|
|
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
|
|
->getForeignMetadataInitialization();
|
|
default:
|
|
swift_runtime_unreachable("Not a type context descriptor.");
|
|
}
|
|
}
|
|
|
|
template<typename Runtime>
|
|
inline const TargetInPlaceValueMetadataInitialization<Runtime> &
|
|
TargetValueTypeDescriptor<Runtime>::getInPlaceMetadataInitialization() const {
|
|
switch (this->getKind()) {
|
|
case ContextDescriptorKind::Enum:
|
|
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
|
|
->getInPlaceMetadataInitialization();
|
|
case ContextDescriptorKind::Struct:
|
|
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
|
|
->getInPlaceMetadataInitialization();
|
|
default:
|
|
swift_runtime_unreachable("Not a value type descriptor.");
|
|
}
|
|
}
|
|
|
|
} // end namespace swift
|
|
|
|
#pragma clang diagnostic pop
|
|
|
|
#endif /* SWIFT_ABI_METADATA_H */
|