mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
pass the index as a separate argument. This makes it much easier to work with these things generically. Swift SVN r2616
2894 lines
103 KiB
C++
2894 lines
103 KiB
C++
//===--- GenFunc.cpp - Swift IR Generation for Function Types -------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for function types in Swift. This
|
|
// includes creating the IR type as well as capturing variables and
|
|
// performing calls.
|
|
//
|
|
// Swift function types are always expanded as a struct containing
|
|
// two opaque pointers. The first pointer is to a function (should
|
|
// this be a descriptor?) to which the second pointer is passed,
|
|
// along with the formal arguments. The function pointer is opaque
|
|
// because the alternative would require infinite types to faithfully
|
|
// represent, since aggregates containing function types can be
|
|
// passed and returned by value, not necessary as first-class
|
|
// aggregates.
|
|
//
|
|
// There are several considerations for whether to pass the data
|
|
// pointer as the first argument or the last:
|
|
// - On CCs that pass anything in registers, dropping the last
|
|
// argument is significantly more efficient than dropping the
|
|
// first, and it's not that unlikely that the data might
|
|
// be ignored.
|
|
// - A specific instance of that: we can use the address of a
|
|
// global "data-free" function directly when taking an
|
|
// address-of-function.
|
|
// - Replacing a pointer argument with a different pointer is
|
|
// quite efficient with pretty much any CC.
|
|
// - Later arguments can be less efficient to access if they
|
|
// actually get passed on the stack, but there's some leeway
|
|
// with a decent CC.
|
|
// - Passing the data pointer last inteferes with native variadic
|
|
// arguments, but we probably don't ever want to use native
|
|
// variadic arguments.
|
|
// This works out to a pretty convincing argument for passing the
|
|
// data pointer as the last argument.
|
|
//
|
|
// On the other hand, it is not compatible with blocks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/Builtins.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Optional.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "ASTVisitor.h"
|
|
#include "CallingConvention.h"
|
|
#include "CallEmission.h"
|
|
#include "Explosion.h"
|
|
#include "GenHeap.h"
|
|
#include "GenInit.h"
|
|
#include "GenPoly.h"
|
|
#include "GenProto.h"
|
|
#include "GenType.h"
|
|
#include "IRGenFunction.h"
|
|
#include "IRGenModule.h"
|
|
#include "LValue.h"
|
|
#include "Condition.h"
|
|
#include "FixedTypeInfo.h"
|
|
#include "ScalarTypeInfo.h"
|
|
#include "Scope.h"
|
|
|
|
#include "GenFunc.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
/// Return the number of potential curries of this function type.
|
|
/// This is equal to the number of "straight-line" arrows in the type.
|
|
static unsigned getNumCurries(AnyFunctionType *type) {
|
|
unsigned count = 0;
|
|
do {
|
|
count++;
|
|
type = type->getResult()->getAs<AnyFunctionType>();
|
|
} while (type);
|
|
|
|
return count;
|
|
}
|
|
|
|
/// Return the natural level at which to uncurry this function. This
|
|
/// is the number of additional parameter clauses that are uncurried
|
|
/// in the function body.
|
|
static unsigned getNaturalUncurryLevel(ValueDecl *val) {
|
|
if (FuncDecl *func = dyn_cast<FuncDecl>(val)) {
|
|
return func->getBody()->getParamPatterns().size() - 1;
|
|
}
|
|
if (isa<ConstructorDecl>(val) || isa<OneOfElementDecl>(val)) {
|
|
return 1;
|
|
}
|
|
llvm_unreachable("Unexpected ValueDecl");
|
|
}
|
|
|
|
/// Given a function type, return the formal result type at the given
|
|
/// uncurrying level. For 'a -> b -> c', this is 'b' at 0 and 'c' at 1.
|
|
static Type getResultType(Type type, unsigned uncurryLevel) {
|
|
do {
|
|
type = type->castTo<AnyFunctionType>()->getResult();
|
|
} while (uncurryLevel--);
|
|
return type;
|
|
}
|
|
|
|
const TypeInfo &IRGenFunction::getResultTypeInfo() const {
|
|
Type resultType = getResultType(CurFuncType, CurUncurryLevel);
|
|
return IGM.getFragileTypeInfo(resultType);
|
|
}
|
|
|
|
static llvm::CallingConv::ID getFreestandingConvention(IRGenModule &IGM) {
|
|
// TODO: use a custom CC that returns three scalars efficiently
|
|
return llvm::CallingConv::C;
|
|
}
|
|
|
|
/// Expand the requirements of the given abstract calling convention
|
|
/// into a "physical" calling convention and a set of attributes.
|
|
llvm::CallingConv::ID irgen::expandAbstractCC(IRGenModule &IGM,
|
|
AbstractCC convention,
|
|
bool hasIndirectResult,
|
|
SmallVectorImpl<llvm::AttributeWithIndex> &attrs) {
|
|
// If we have an indirect result, add the appropriate attributes.
|
|
if (hasIndirectResult) {
|
|
attrs.push_back(llvm::AttributeWithIndex::get(1,
|
|
llvm::Attribute::StructRet |
|
|
llvm::Attribute::NoAlias));
|
|
}
|
|
|
|
switch (convention) {
|
|
case AbstractCC::C:
|
|
return llvm::CallingConv::C;
|
|
|
|
case AbstractCC::Method:
|
|
// TODO: maybe add 'inreg' to the first non-result argument.
|
|
// fallthrough
|
|
case AbstractCC::Freestanding:
|
|
return getFreestandingConvention(IGM);
|
|
}
|
|
llvm_unreachable("bad calling convention!");
|
|
}
|
|
|
|
namespace {
|
|
/// The natural form of the result of performing a call. A call
|
|
/// result may be indirect, in which case it is returned in memory
|
|
/// whose address is passed as an implicit first argument, or it may
|
|
/// be direct.
|
|
class CallResult {
|
|
union Value {
|
|
/// The buffer for the set of direct values produced by the call.
|
|
/// This can be greater than the normal cap on scalar values if
|
|
/// the actual call is inlined or builtin.
|
|
///
|
|
/// FIXME: when we commit to a proper C++11 compiler, this can just
|
|
/// be "Explosion Direct;".
|
|
char Direct[sizeof(Explosion)];
|
|
|
|
Explosion &getDirect() { return *reinterpret_cast<Explosion*>(Direct); }
|
|
|
|
/// The address into which to emit an indirect call. If this is
|
|
/// set, the call will be evaluated (as an initialization) into
|
|
/// this address; otherwise, memory will be allocated on the stack.
|
|
Address Indirect;
|
|
|
|
Value() {}
|
|
~Value() {}
|
|
};
|
|
|
|
enum class State {
|
|
Invalid, Indirect, Direct
|
|
};
|
|
|
|
Value CurValue;
|
|
State CurState;
|
|
|
|
public:
|
|
CallResult() : CurState(State::Invalid) {}
|
|
~CallResult() { reset(); }
|
|
|
|
/// Configure this result to carry a number of direct values at
|
|
/// the given explosion level.
|
|
Explosion &initForDirectValues(ExplosionKind level) {
|
|
assert(CurState == State::Invalid);
|
|
CurState = State::Direct;
|
|
return *new (&CurValue.getDirect()) Explosion(level);
|
|
}
|
|
|
|
/// As a potential efficiency, set that this is a direct result
|
|
/// with no values.
|
|
void setAsEmptyDirect() {
|
|
initForDirectValues(ExplosionKind::Maximal);
|
|
}
|
|
|
|
/// Set this result so that it carries a single directly-returned
|
|
/// maximally-fragile value without management.
|
|
void setAsSingleDirectUnmanagedFragileValue(llvm::Value *value) {
|
|
initForDirectValues(ExplosionKind::Maximal).addUnmanaged(value);
|
|
}
|
|
|
|
void setAsIndirectAddress(Address address) {
|
|
assert(CurState == State::Invalid);
|
|
CurState = State::Indirect;
|
|
CurValue.Indirect = address;
|
|
}
|
|
|
|
bool isInvalid() const { return CurState == State::Invalid; }
|
|
bool isDirect() const { return CurState == State::Direct; }
|
|
bool isIndirect() const { return CurState == State::Indirect; }
|
|
|
|
Callee getDirectValuesAsIndirectCallee(Type origFormalType,
|
|
Type substResultType,
|
|
ArrayRef<Substitution> subs) {
|
|
assert(isDirect());
|
|
Explosion &values = getDirectValues();
|
|
assert(values.size() == 2);
|
|
llvm::Value *fn = values.claimUnmanagedNext();
|
|
ManagedValue data = values.claimNext();
|
|
return Callee::forIndirectCall(origFormalType, substResultType, subs,
|
|
fn, data);
|
|
}
|
|
|
|
Explosion &getDirectValues() {
|
|
assert(isDirect());
|
|
return CurValue.getDirect();
|
|
}
|
|
|
|
Address getIndirectAddress() const {
|
|
assert(isIndirect());
|
|
return CurValue.Indirect;
|
|
}
|
|
|
|
void reset() {
|
|
if (CurState == State::Direct)
|
|
CurValue.getDirect().~Explosion();
|
|
CurState = State::Invalid;
|
|
}
|
|
};
|
|
|
|
/// A signature represents something which can actually be called.
|
|
class Signature {
|
|
llvm::PointerIntPair<llvm::FunctionType*, 1, bool> TypeAndHasIndirectReturn;
|
|
|
|
public:
|
|
bool isValid() const {
|
|
return TypeAndHasIndirectReturn.getPointer() != nullptr;
|
|
}
|
|
|
|
void set(llvm::FunctionType *type, bool hasIndirectReturn) {
|
|
TypeAndHasIndirectReturn.setPointer(type);
|
|
TypeAndHasIndirectReturn.setInt(hasIndirectReturn);
|
|
assert(isValid());
|
|
}
|
|
|
|
llvm::FunctionType *getType() const {
|
|
assert(isValid());
|
|
return TypeAndHasIndirectReturn.getPointer();
|
|
}
|
|
|
|
bool hasIndirectReturn() const {
|
|
assert(isValid());
|
|
return TypeAndHasIndirectReturn.getInt();
|
|
}
|
|
};
|
|
|
|
/// The type-info class.
|
|
class FuncTypeInfo : public ScalarTypeInfo<FuncTypeInfo, FixedTypeInfo> {
|
|
/// Each possible currying of a function type has different function
|
|
/// type variants along each of two orthogonal axes:
|
|
/// - the explosion kind desired
|
|
/// - whether a data pointer argument is required
|
|
struct Currying {
|
|
Signature Signatures[2][2];
|
|
|
|
Signature &select(ExplosionKind kind, bool needsData) {
|
|
return Signatures[unsigned(kind)][unsigned(needsData)];
|
|
}
|
|
};
|
|
|
|
/// The Swift function type being represented.
|
|
AnyFunctionType * const FormalType;
|
|
|
|
/// An array of Curryings is stored immediately after the FuncTypeInfo.
|
|
/// A Currying is a cache, so the entire thing is effective mutable.
|
|
Currying *getCurryingsBuffer() const {
|
|
return const_cast<Currying*>(reinterpret_cast<const Currying*>(this+1));
|
|
}
|
|
|
|
FuncTypeInfo(AnyFunctionType *formalType, llvm::StructType *storageType,
|
|
Size size, Alignment align, unsigned numCurries)
|
|
: ScalarTypeInfo(storageType, size, align, IsNotPOD),
|
|
FormalType(formalType) {
|
|
|
|
// Initialize the curryings.
|
|
for (unsigned i = 0; i != numCurries; ++i) {
|
|
new (&getCurryingsBuffer()[i]) Currying();
|
|
}
|
|
}
|
|
|
|
public:
|
|
static const FuncTypeInfo *create(AnyFunctionType *formalType,
|
|
llvm::StructType *storageType,
|
|
Size size, Alignment align) {
|
|
unsigned numCurries = getNumCurries(formalType);
|
|
void *buffer = new char[sizeof(FuncTypeInfo)
|
|
+ numCurries * sizeof(Currying)];
|
|
return new (buffer) FuncTypeInfo(formalType, storageType, size, align,
|
|
numCurries);
|
|
}
|
|
|
|
/// The storage type of a function is always just a pair of i8*s:
|
|
/// a function pointer and a retainable pointer. We have to use
|
|
/// i8* instead of an appropriate function-pointer type because we
|
|
/// might be in the midst of recursively defining one of the types
|
|
/// used as a parameter.
|
|
llvm::StructType *getStorageType() const {
|
|
return cast<llvm::StructType>(TypeInfo::getStorageType());
|
|
}
|
|
|
|
Signature getSignature(IRGenModule &IGM, ExplosionKind explosionKind,
|
|
unsigned currying, bool needsData) const;
|
|
|
|
unsigned getExplosionSize(ExplosionKind kind) const {
|
|
return 2;
|
|
}
|
|
|
|
void getSchema(ExplosionSchema &schema) const {
|
|
llvm::StructType *Ty = getStorageType();
|
|
assert(Ty->getNumElements() == 2);
|
|
schema.add(ExplosionSchema::Element::forScalar(Ty->getElementType(0)));
|
|
schema.add(ExplosionSchema::Element::forScalar(Ty->getElementType(1)));
|
|
}
|
|
|
|
static Address projectFunction(IRGenFunction &IGF, Address address) {
|
|
return IGF.Builder.CreateStructGEP(address, 0, Size(0),
|
|
address->getName() + ".fn");
|
|
}
|
|
|
|
static Address projectData(IRGenFunction &IGF, Address address) {
|
|
return IGF.Builder.CreateStructGEP(address, 1, IGF.IGM.getPointerSize(),
|
|
address->getName() + ".data");
|
|
}
|
|
|
|
static void doLoad(IRGenFunction &IGF, Address address, Explosion &e) {
|
|
// Load the function.
|
|
Address fnAddr = projectFunction(IGF, address);
|
|
e.addUnmanaged(IGF.Builder.CreateLoad(fnAddr, fnAddr->getName()+".load"));
|
|
|
|
// Load the data.
|
|
Address dataAddr = projectData(IGF, address);
|
|
IGF.emitLoadAndRetain(dataAddr, e);
|
|
}
|
|
|
|
void load(IRGenFunction &IGF, Address address, Explosion &e) const {
|
|
doLoad(IGF, address, e);
|
|
}
|
|
|
|
static void doLoadAsTake(IRGenFunction &IGF, Address addr, Explosion &e) {
|
|
// Load the function.
|
|
Address fnAddr = projectFunction(IGF, addr);
|
|
e.addUnmanaged(IGF.Builder.CreateLoad(fnAddr));
|
|
|
|
// Load the data.
|
|
Address dataAddr = projectData(IGF, addr);
|
|
e.add(IGF.enterReleaseCleanup(IGF.Builder.CreateLoad(dataAddr)));
|
|
}
|
|
|
|
void loadAsTake(IRGenFunction &IGF, Address address, Explosion &e) const {
|
|
doLoadAsTake(IGF, address, e);
|
|
}
|
|
|
|
void assign(IRGenFunction &IGF, Explosion &e, Address address) const {
|
|
// Store the function pointer.
|
|
Address fnAddr = projectFunction(IGF, address);
|
|
IGF.Builder.CreateStore(e.claimUnmanagedNext(), fnAddr);
|
|
|
|
// Store the data pointer.
|
|
Address dataAddr = projectData(IGF, address);
|
|
IGF.emitAssignRetained(e.forwardNext(IGF), dataAddr);
|
|
}
|
|
|
|
void initialize(IRGenFunction &IGF, Explosion &e, Address address) const {
|
|
// Store the function pointer.
|
|
Address fnAddr = projectFunction(IGF, address);
|
|
IGF.Builder.CreateStore(e.claimUnmanagedNext(), fnAddr);
|
|
|
|
// Store the data pointer, transferring the +1.
|
|
Address dataAddr = projectData(IGF, address);
|
|
IGF.emitInitializeRetained(e.forwardNext(IGF), dataAddr);
|
|
}
|
|
|
|
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest) const {
|
|
src.transferInto(dest, 1);
|
|
IGF.emitRetain(src.claimNext().getValue(), dest);
|
|
}
|
|
|
|
void manage(IRGenFunction &IGF, Explosion &src, Explosion &dest) const {
|
|
src.transferInto(dest, 1);
|
|
dest.add(IGF.enterReleaseCleanup(src.claimUnmanagedNext()));
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address addr) const {
|
|
IGF.emitRelease(IGF.Builder.CreateLoad(projectData(IGF, addr)));
|
|
}
|
|
};
|
|
}
|
|
|
|
const TypeInfo *TypeConverter::convertFunctionType(AnyFunctionType *T) {
|
|
return FuncTypeInfo::create(T, IGM.FunctionPairTy,
|
|
IGM.getPointerSize() * 2,
|
|
IGM.getPointerAlignment());
|
|
}
|
|
|
|
/// Decompose a function type into its exploded parameter types
|
|
/// and its formal result type.
|
|
///
|
|
/// When dealing with non-trivial uncurryings, parameter clusters
|
|
/// are added in reverse order. For example:
|
|
/// formal type: (A, B) -> (C, D, E) -> F -> G
|
|
/// curry 0: (A, B) -> ((C, D, E) -> F -> G)
|
|
/// curry 1: (C, D, E, A, B) -> (F -> G)
|
|
/// curry 2: (F, C, D, E, A, B) -> G
|
|
/// This is so that currying stubs can load their stored arguments
|
|
/// into position without disturbing their formal arguments.
|
|
/// This also interacts well with closures that save a single
|
|
/// retainable pointer which becomes the only curried argument
|
|
/// (and therefore the final argument) to a method call.
|
|
///
|
|
/// Generic arguments come last in a clause, also in order to make it
|
|
/// easier to drop or ignore them.
|
|
///
|
|
/// This is all somewhat optimized for register-passing CCs; it
|
|
/// probably makes extra work when the stack gets involved.
|
|
static Type decomposeFunctionType(IRGenModule &IGM, AnyFunctionType *fn,
|
|
ExplosionKind explosionKind,
|
|
unsigned uncurryLevel,
|
|
SmallVectorImpl<llvm::Type*> &argTypes) {
|
|
// Save up the formal parameter types in reverse order.
|
|
llvm::SmallVector<AnyFunctionType*, 8> formalFnTypes(uncurryLevel + 1);
|
|
formalFnTypes[uncurryLevel] = fn;
|
|
while (uncurryLevel--) {
|
|
fn = fn->getResult()->castTo<AnyFunctionType>();
|
|
formalFnTypes[uncurryLevel] = fn;
|
|
}
|
|
|
|
// Explode the argument clusters in that reversed order.
|
|
for (AnyFunctionType *fnTy : formalFnTypes) {
|
|
ExplosionSchema schema(explosionKind);
|
|
IGM.getSchema(fnTy->getInput(), schema);
|
|
|
|
for (ExplosionSchema::Element &elt : schema) {
|
|
if (elt.isAggregate())
|
|
argTypes.push_back(elt.getAggregateType()->getPointerTo());
|
|
else
|
|
argTypes.push_back(elt.getScalarType());
|
|
}
|
|
|
|
if (auto polyTy = dyn_cast<PolymorphicFunctionType>(fnTy))
|
|
expandPolymorphicSignature(IGM, polyTy->getGenericParams(), argTypes);
|
|
}
|
|
|
|
return fn->getResult();
|
|
}
|
|
|
|
Signature FuncTypeInfo::getSignature(IRGenModule &IGM,
|
|
ExplosionKind explosionKind,
|
|
unsigned uncurryLevel,
|
|
bool needsData) const {
|
|
// Compute a reference to the appropriate signature cache.
|
|
assert(uncurryLevel < getNumCurries(FormalType));
|
|
Currying &currying = getCurryingsBuffer()[uncurryLevel];
|
|
Signature &signature = currying.select(explosionKind, needsData);
|
|
|
|
// If it's already been filled in, we're done.
|
|
if (signature.isValid())
|
|
return signature;
|
|
|
|
// The argument types.
|
|
// Save a slot for the aggregate return.
|
|
SmallVector<llvm::Type*, 16> argTypes;
|
|
argTypes.push_back(nullptr);
|
|
|
|
Type formalResultType = decomposeFunctionType(IGM, FormalType, explosionKind,
|
|
uncurryLevel, argTypes);
|
|
|
|
// Compute the result type.
|
|
llvm::Type *resultType;
|
|
bool hasAggregateResult;
|
|
{
|
|
ExplosionSchema schema(explosionKind);
|
|
IGM.getSchema(formalResultType, schema);
|
|
|
|
hasAggregateResult = schema.requiresIndirectResult();
|
|
if (hasAggregateResult) {
|
|
const TypeInfo &info = IGM.getFragileTypeInfo(formalResultType);
|
|
argTypes[0] = info.StorageType->getPointerTo();
|
|
resultType = IGM.VoidTy;
|
|
} else if (schema.size() == 0) {
|
|
resultType = IGM.VoidTy;
|
|
} else if (schema.size() == 1) {
|
|
resultType = schema.begin()->getScalarType();
|
|
} else {
|
|
llvm::SmallVector<llvm::Type*,
|
|
ExplosionSchema::MaxScalarsForDirectResult> elts;
|
|
for (auto &elt : schema) elts.push_back(elt.getScalarType());
|
|
resultType = llvm::StructType::get(IGM.getLLVMContext(), elts);
|
|
}
|
|
}
|
|
|
|
// Data arguments are last.
|
|
// See the comment in this file's header comment.
|
|
if (needsData)
|
|
argTypes.push_back(IGM.RefCountedPtrTy);
|
|
|
|
// Ignore the first element of the array unless we have an aggregate result.
|
|
llvm::ArrayRef<llvm::Type*> realArgTypes = argTypes;
|
|
if (!hasAggregateResult)
|
|
realArgTypes = realArgTypes.slice(1);
|
|
|
|
// Create the appropriate LLVM type.
|
|
llvm::FunctionType *llvmType =
|
|
llvm::FunctionType::get(resultType, realArgTypes, /*variadic*/ false);
|
|
|
|
// Update the cache and return.
|
|
signature.set(llvmType, hasAggregateResult);
|
|
return signature;
|
|
}
|
|
|
|
llvm::FunctionType *
|
|
IRGenModule::getFunctionType(Type type, ExplosionKind explosionKind,
|
|
unsigned curryingLevel, bool withData) {
|
|
assert(type->is<AnyFunctionType>());
|
|
const FuncTypeInfo &fnTypeInfo = getFragileTypeInfo(type).as<FuncTypeInfo>();
|
|
Signature sig = fnTypeInfo.getSignature(*this, explosionKind,
|
|
curryingLevel, withData);
|
|
return sig.getType();
|
|
}
|
|
|
|
AbstractCC irgen::getAbstractCC(ValueDecl *fn) {
|
|
if (fn->isInstanceMember())
|
|
return AbstractCC::Method;
|
|
return AbstractCC::Freestanding;
|
|
}
|
|
|
|
/// Construct the best known limits on how we can call the given function.
|
|
static AbstractCallee getAbstractDirectCallee(IRGenFunction &IGF,
|
|
ValueDecl *val) {
|
|
bool isLocal = val->getDeclContext()->isLocalContext();
|
|
|
|
// FIXME: be more aggressive about all this.
|
|
ExplosionKind level;
|
|
if (isLocal) {
|
|
level = ExplosionKind::Maximal;
|
|
} else {
|
|
level = ExplosionKind::Minimal;
|
|
}
|
|
|
|
unsigned minUncurry = 0;
|
|
if (val->getDeclContext()->isTypeContext())
|
|
minUncurry = 1;
|
|
unsigned maxUncurry = getNaturalUncurryLevel(val);
|
|
|
|
bool needsData = false;
|
|
if (FuncDecl *fn = dyn_cast<FuncDecl>(val)) {
|
|
needsData =
|
|
(isLocal && !isa<llvm::ConstantPointerNull>(IGF.getLocalFuncData(fn)));
|
|
}
|
|
AbstractCC convention = getAbstractCC(val);
|
|
|
|
return AbstractCallee(convention, level, minUncurry, maxUncurry, needsData);
|
|
}
|
|
|
|
/// Return this function pointer, bitcasted to an i8*.
|
|
llvm::Value *Callee::getOpaqueFunctionPointer(IRGenFunction &IGF) const {
|
|
if (FnPtr->getType() == IGF.IGM.Int8PtrTy)
|
|
return FnPtr;
|
|
return IGF.Builder.CreateBitCast(FnPtr, IGF.IGM.Int8PtrTy);
|
|
}
|
|
|
|
/// Return this data pointer.
|
|
ManagedValue Callee::getDataPointer(IRGenFunction &IGF) const {
|
|
if (hasDataPointer()) return DataPtr;
|
|
return ManagedValue(IGF.IGM.RefCountedNull);
|
|
}
|
|
|
|
static llvm::Value *emitCastOfIndirectFunction(IRGenFunction &IGF,
|
|
llvm::Value *fnPtr,
|
|
ManagedValue dataPtr,
|
|
Type origFnType) {
|
|
bool hasData = !isa<llvm::ConstantPointerNull>(dataPtr.getValue());
|
|
auto fnPtrTy = IGF.IGM.getFunctionType(origFnType, ExplosionKind::Minimal,
|
|
0, hasData)->getPointerTo();
|
|
return IGF.Builder.CreateBitCast(fnPtr, fnPtrTy);
|
|
}
|
|
|
|
/// Given a function pointer derived from an indirect source,
|
|
/// construct a callee appropriately.
|
|
static Callee emitIndirectCallee(IRGenFunction &IGF,
|
|
llvm::Value *fnPtr,
|
|
ManagedValue dataPtr,
|
|
ArrayRef<Substitution> subs,
|
|
Type origFnType,
|
|
Type substResultType) {
|
|
// Cast the function pointer appropriately.
|
|
fnPtr = emitCastOfIndirectFunction(IGF, fnPtr, dataPtr, origFnType);
|
|
|
|
return Callee::forIndirectCall(origFnType, substResultType, subs,
|
|
fnPtr, dataPtr);
|
|
}
|
|
|
|
/// Emit a reference to a function, using the best parameters possible
|
|
/// up to given limits.
|
|
static Callee emitDirectCallee(IRGenFunction &IGF, ValueDecl *val,
|
|
Type substResultType,
|
|
ArrayRef<Substitution> subs,
|
|
ExplosionKind bestExplosion,
|
|
unsigned bestUncurry) {
|
|
if (bestUncurry != 0 || bestExplosion != ExplosionKind::Minimal) {
|
|
AbstractCallee absCallee = getAbstractDirectCallee(IGF, val);
|
|
bestUncurry = std::min(bestUncurry, absCallee.getMaxUncurryLevel());
|
|
bestExplosion = absCallee.getBestExplosionLevel();
|
|
}
|
|
|
|
if (ConstructorDecl *ctor = dyn_cast<ConstructorDecl>(val)) {
|
|
llvm::Constant *fnPtr;
|
|
if (bestUncurry != 1) {
|
|
IGF.unimplemented(val->getLoc(), "uncurried reference to constructor");
|
|
fnPtr = llvm::UndefValue::get(
|
|
IGF.IGM.getFunctionType(val->getType(), bestExplosion,
|
|
bestUncurry, /*needsData*/false));
|
|
} else {
|
|
fnPtr = IGF.IGM.getAddrOfConstructor(ctor, bestExplosion);
|
|
}
|
|
return Callee::forFreestandingFunction(ctor->getType(), substResultType,
|
|
subs, fnPtr,
|
|
bestExplosion, bestUncurry);
|
|
}
|
|
|
|
if (OneOfElementDecl *oneofelt = dyn_cast<OneOfElementDecl>(val)) {
|
|
llvm::Constant *fnPtr;
|
|
if (bestUncurry != oneofelt->hasArgumentType() ? 1 : 0) {
|
|
IGF.unimplemented(val->getLoc(), "uncurried reference to oneof element");
|
|
fnPtr = llvm::UndefValue::get(
|
|
IGF.IGM.getFunctionType(val->getType(), bestExplosion,
|
|
bestUncurry, /*needsData*/false));
|
|
} else {
|
|
fnPtr = IGF.IGM.getAddrOfInjectionFunction(oneofelt);
|
|
}
|
|
return Callee::forFreestandingFunction(oneofelt->getType(), substResultType,
|
|
subs, fnPtr,
|
|
bestExplosion, bestUncurry);
|
|
}
|
|
|
|
FuncDecl *fn = cast<FuncDecl>(val);
|
|
if (!fn->getDeclContext()->isLocalContext()) {
|
|
llvm::Constant *fnPtr =
|
|
IGF.IGM.getAddrOfFunction(fn, bestExplosion, bestUncurry, /*data*/ false);
|
|
if (fn->isInstanceMember()) {
|
|
return Callee::forMethod(fn->getType(), substResultType, subs, fnPtr,
|
|
bestExplosion, bestUncurry);
|
|
} else {
|
|
return Callee::forFreestandingFunction(fn->getType(), substResultType,
|
|
subs, fnPtr,
|
|
bestExplosion, bestUncurry);
|
|
}
|
|
}
|
|
|
|
auto fnPtr = IGF.getAddrOfLocalFunction(fn, bestExplosion, bestUncurry);
|
|
Explosion e(ExplosionKind::Maximal);
|
|
IGF.emitRetain(IGF.getLocalFuncData(fn), e);
|
|
ManagedValue data = e.claimNext();
|
|
if (isa<llvm::ConstantPointerNull>(data.getValue()))
|
|
data = ManagedValue(nullptr);
|
|
return Callee::forKnownFunction(AbstractCC::Freestanding,
|
|
fn->getType(), substResultType, subs,
|
|
fnPtr, data,
|
|
bestExplosion, bestUncurry);
|
|
}
|
|
|
|
namespace {
|
|
/// A single call site, with argument expression and the type of
|
|
/// function being applied.
|
|
struct CallSite {
|
|
CallSite(ApplyExpr *apply)
|
|
: Apply(apply), FnType(apply->getFn()->getType()) {}
|
|
|
|
ApplyExpr *Apply;
|
|
|
|
/// The function type that we're actually calling. This is
|
|
/// "un-substituted" if necessary.
|
|
Type FnType;
|
|
|
|
Expr *getArg() const { return Apply->getArg(); }
|
|
Type getSubstResultType() const { return Apply->getType(); }
|
|
|
|
void emit(IRGenFunction &IGF, ArrayRef<Substitution> subs,
|
|
Explosion &out) const {
|
|
assert(!subs.empty() || !FnType->is<PolymorphicFunctionType>());
|
|
|
|
// If we have substitutions, then (1) it's possible for this to
|
|
// be a polymorphic function type that we need to expand and
|
|
// (2) we might need to evaluate the r-value differently.
|
|
if (!subs.empty()) {
|
|
auto fnType = FnType->castTo<AnyFunctionType>();
|
|
IGF.emitRValueUnderSubstitutions(getArg(), fnType->getInput(),
|
|
subs, out);
|
|
if (auto polyFn = dyn_cast<PolymorphicFunctionType>(fnType))
|
|
emitPolymorphicArguments(IGF, polyFn->getGenericParams(), subs, out);
|
|
} else {
|
|
IGF.emitRValue(getArg(), out);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct CalleeSource {
|
|
public:
|
|
enum class Kind {
|
|
Indirect, IndirectLiteral,
|
|
Direct, DirectWithSideEffects,
|
|
Existential, Archetype
|
|
};
|
|
|
|
private:
|
|
union {
|
|
struct {
|
|
Expr *Fn;
|
|
} Indirect;
|
|
struct {
|
|
llvm::Value *Fn;
|
|
ManagedValue Data;
|
|
TypeBase *OrigFormalType;
|
|
TypeBase *SubstResultType;
|
|
} IndirectLiteral;
|
|
struct {
|
|
ValueDecl *Fn;
|
|
Expr *SideEffects;
|
|
} Direct;
|
|
struct {
|
|
ExistentialMemberRefExpr *Fn;
|
|
} Existential;
|
|
struct {
|
|
ArchetypeMemberRefExpr *Fn;
|
|
} Archetype;
|
|
};
|
|
Kind TheKind;
|
|
Type SubstResultType;
|
|
ArrayRef<Substitution> Substitutions;
|
|
SmallVector<CallSite, 4> CallSites;
|
|
|
|
public:
|
|
static CalleeSource decompose(Expr *fn);
|
|
|
|
static CalleeSource forIndirect(Expr *fn) {
|
|
CalleeSource result;
|
|
result.TheKind = Kind::Indirect;
|
|
result.Indirect.Fn = fn;
|
|
return result;
|
|
}
|
|
|
|
static CalleeSource forDirect(ValueDecl *fn) {
|
|
CalleeSource result;
|
|
result.TheKind = Kind::Direct;
|
|
result.Direct.Fn = fn;
|
|
return result;
|
|
}
|
|
|
|
static CalleeSource forDirectWithSideEffects(FuncDecl *fn,
|
|
Expr *sideEffects) {
|
|
CalleeSource result;
|
|
result.TheKind = Kind::DirectWithSideEffects;
|
|
result.Direct.Fn = fn;
|
|
result.Direct.SideEffects = sideEffects;
|
|
return result;
|
|
}
|
|
|
|
static CalleeSource forExistential(ExistentialMemberRefExpr *fn) {
|
|
CalleeSource result;
|
|
result.TheKind = Kind::Existential;
|
|
result.Existential.Fn = fn;
|
|
return result;
|
|
}
|
|
|
|
static CalleeSource forArchetype(ArchetypeMemberRefExpr *fn) {
|
|
CalleeSource result;
|
|
result.TheKind = Kind::Archetype;
|
|
result.Archetype.Fn = fn;
|
|
return result;
|
|
}
|
|
|
|
Kind getKind() const { return TheKind; }
|
|
|
|
bool isDirect() const {
|
|
return (getKind() == Kind::Direct ||
|
|
getKind() == Kind::DirectWithSideEffects);
|
|
}
|
|
|
|
ValueDecl *getDirectFunction() const {
|
|
assert(isDirect());
|
|
return Direct.Fn;
|
|
}
|
|
|
|
Expr *getDirectSideEffects() const {
|
|
assert(getKind() == Kind::DirectWithSideEffects);
|
|
return Direct.SideEffects;
|
|
}
|
|
|
|
Expr *getIndirectFunction() const {
|
|
assert(getKind() == Kind::Indirect);
|
|
return Indirect.Fn;
|
|
}
|
|
|
|
ExistentialMemberRefExpr *getExistentialFunction() const {
|
|
assert(getKind() == Kind::Existential);
|
|
return Existential.Fn;
|
|
}
|
|
|
|
ArchetypeMemberRefExpr *getArchetypeFunction() const {
|
|
assert(getKind() == Kind::Archetype);
|
|
return Archetype.Fn;
|
|
}
|
|
|
|
/// Return the abstract base callee. The base callee is the
|
|
/// deepest thing being called.
|
|
AbstractCallee getAbstractBaseCallee(IRGenFunction &IGF) const {
|
|
switch (getKind()) {
|
|
case Kind::Indirect:
|
|
case Kind::IndirectLiteral:
|
|
return AbstractCallee::forIndirect();
|
|
|
|
case Kind::Direct:
|
|
case Kind::DirectWithSideEffects:
|
|
return getAbstractDirectCallee(IGF, Direct.Fn);
|
|
|
|
case Kind::Existential:
|
|
return getAbstractProtocolCallee(IGF,
|
|
cast<FuncDecl>(Existential.Fn->getDecl()));
|
|
|
|
case Kind::Archetype:
|
|
return getAbstractProtocolCallee(IGF,
|
|
cast<FuncDecl>(Archetype.Fn->getDecl()));
|
|
}
|
|
llvm_unreachable("bad source kind!");
|
|
}
|
|
|
|
void addSubstitutions(ArrayRef<Substitution> subs) {
|
|
// FIXME: collect these through multiple layers
|
|
assert(Substitutions.empty());
|
|
Substitutions = subs;
|
|
}
|
|
|
|
void setSubstResultType(Type type) {
|
|
SubstResultType = type;
|
|
}
|
|
|
|
ArrayRef<Substitution> getSubstitutions() const { return Substitutions; }
|
|
bool hasSubstitutions() const { return !Substitutions.empty(); }
|
|
|
|
void addCallSite(CallSite site) {
|
|
CallSites.push_back(site);
|
|
}
|
|
|
|
ArrayRef<CallSite> getCallSites() const {
|
|
return CallSites;
|
|
}
|
|
|
|
CallEmission prepareCall(IRGenFunction &IGF,
|
|
unsigned numExtraArgs = 0,
|
|
ExplosionKind maxExplosion
|
|
= ExplosionKind::Maximal);
|
|
|
|
bool trySpecializeToExplosion(IRGenFunction &IGF, Explosion &out);
|
|
bool trySpecializeToMemory(IRGenFunction &IGF,
|
|
Address resultAddr,
|
|
const TypeInfo &resultTI);
|
|
|
|
/// Change this to use a literal indirect source.
|
|
void updateToIndirect(unsigned numCallSitesToDrop,
|
|
Type origFormalType,
|
|
Type substResultType,
|
|
llvm::Value *fnPtr,
|
|
ManagedValue dataPtr) {
|
|
// Drop the requested number of call sites.
|
|
assert(numCallSitesToDrop < CallSites.size());
|
|
CallSites.erase(CallSites.begin(),
|
|
CallSites.begin() + numCallSitesToDrop);
|
|
|
|
TheKind = Kind::IndirectLiteral;
|
|
IndirectLiteral.Fn = fnPtr;
|
|
IndirectLiteral.Data = dataPtr;
|
|
IndirectLiteral.OrigFormalType = origFormalType.getPointer();
|
|
IndirectLiteral.SubstResultType = substResultType.getPointer();
|
|
}
|
|
|
|
/// getFinalResultExplosionLevel - Returns the explosion level at
|
|
/// which we will naturally emit the last call.
|
|
ExplosionKind getFinalResultExplosionLevel(IRGenFunction &IGF) const {
|
|
AbstractCallee absCallee = getAbstractBaseCallee(IGF);
|
|
unsigned numArgs = getCallSites().size();
|
|
|
|
// If there are more arguments than the base callee can take,
|
|
// then the final call uses indirect call rules.
|
|
if (numArgs > absCallee.getMaxUncurryLevel() + 1)
|
|
return ExplosionKind::Minimal;
|
|
|
|
// If there are fewer arguments than the base callee can take,
|
|
// then the call is to a thunk and can use maximal rules.
|
|
if (numArgs < absCallee.getMinUncurryLevel() + 1)
|
|
return ExplosionKind::Minimal;
|
|
|
|
// Otherwise, we can use the best rules that the callee can dish out.
|
|
return absCallee.getBestExplosionLevel();
|
|
}
|
|
|
|
private:
|
|
CallEmission prepareRootCall(IRGenFunction &IGF, unsigned numArgs,
|
|
ExplosionKind maxExplosion);
|
|
};
|
|
}
|
|
|
|
/// Emit a reference to the given function as a generic function pointer.
|
|
void irgen::emitRValueForFunction(IRGenFunction &IGF, FuncDecl *fn,
|
|
Explosion &explosion) {
|
|
// Function pointers are always fully curried and use ExplosionKind::Minimal.
|
|
Type resultType = fn->getType()->castTo<AnyFunctionType>()->getResult();
|
|
Callee callee = emitDirectCallee(IGF, fn, resultType,
|
|
ArrayRef<Substitution>(),
|
|
ExplosionKind::Minimal, 0);
|
|
assert(callee.getExplosionLevel() == ExplosionKind::Minimal);
|
|
assert(callee.getUncurryLevel() == 0);
|
|
explosion.addUnmanaged(callee.getOpaqueFunctionPointer(IGF));
|
|
explosion.add(callee.getDataPointer(IGF));
|
|
}
|
|
|
|
static void extractUnmanagedScalarResults(IRGenFunction &IGF,
|
|
llvm::Value *call,
|
|
Explosion &out) {
|
|
if (llvm::StructType *structType
|
|
= dyn_cast<llvm::StructType>(call->getType())) {
|
|
for (unsigned i = 0, e = structType->getNumElements(); i != e; ++i) {
|
|
llvm::Value *scalar = IGF.Builder.CreateExtractValue(call, i);
|
|
out.addUnmanaged(scalar);
|
|
}
|
|
} else {
|
|
assert(!call->getType()->isVoidTy());
|
|
out.addUnmanaged(call);
|
|
}
|
|
}
|
|
|
|
/// Extract the direct scalar results of a call instruction into an
|
|
/// explosion, registering cleanups as appropriate for the type.
|
|
static void extractScalarResults(IRGenFunction &IGF, llvm::Value *call,
|
|
const TypeInfo &resultTI, Explosion &out) {
|
|
// We need to make a temporary explosion to hold the values as we
|
|
// tag them with cleanups.
|
|
Explosion tempExplosion(out.getKind());
|
|
|
|
// Extract the values.
|
|
extractUnmanagedScalarResults(IGF, call, tempExplosion);
|
|
|
|
// Take ownership.
|
|
resultTI.manage(IGF, tempExplosion, out);
|
|
}
|
|
|
|
namespace {
|
|
class SpecializedCallEmission {
|
|
protected:
|
|
IRGenFunction &IGF;
|
|
CalleeSource &Source;
|
|
|
|
private:
|
|
/// The substituted result type. Only valid after claiming.
|
|
Type SubstResultType;
|
|
|
|
/// A temporary for when we have intermediate results.
|
|
union FnTemp_t {
|
|
FnTemp_t() {}
|
|
~FnTemp_t() {}
|
|
|
|
Explosion TempExplosion;
|
|
Address TempAddress;
|
|
} FnTemp;
|
|
|
|
/// The number of arguments claimed.
|
|
unsigned ArgsClaimed = 0;
|
|
|
|
enum class FnTempKind : unsigned char {
|
|
None, Explosion, Address
|
|
} FnTempState = FnTempKind::None;
|
|
|
|
bool Completed = false;
|
|
|
|
protected:
|
|
SpecializedCallEmission(IRGenFunction &IGF, CalleeSource &source)
|
|
: IGF(IGF), Source(source) {}
|
|
|
|
~SpecializedCallEmission() {
|
|
assert(ArgsClaimed == 0 || Completed);
|
|
assert(FnTempState == FnTempKind::None);
|
|
}
|
|
|
|
virtual Explosion &getFinalSubstExplosion() = 0;
|
|
virtual Address getFinalSubstResultAddress() = 0;
|
|
virtual void completeFinal() = 0;
|
|
|
|
public:
|
|
/// Try to specialize this emission. Returns true if the
|
|
/// specialization was complete and there's no more calling to be
|
|
/// done.
|
|
bool trySpecialize();
|
|
|
|
/// Try to claim N argument clauses and place them in the array.
|
|
/// This should be called before fetching a result. It cannot
|
|
/// fail for N=1.
|
|
///
|
|
/// Once arguments are claimed, the call must be specialized.
|
|
///
|
|
/// Returns true on success.
|
|
bool tryClaimArgs(MutableArrayRef<Expr*> args);
|
|
|
|
Expr *claimArg() {
|
|
Expr *result;
|
|
bool ok = tryClaimArgs(MutableArrayRef<Expr*>(&result, 1));
|
|
assert(ok); (void) ok;
|
|
return result;
|
|
}
|
|
|
|
Type getSubstResultType() const {
|
|
assert(ArgsClaimed && "arguments not yet claimed!");
|
|
return SubstResultType;
|
|
}
|
|
|
|
ArrayRef<Substitution> getSubstitutions() const {
|
|
return Source.getSubstitutions();
|
|
}
|
|
|
|
/// Is this emission naturally to memory? Emitters don't need to
|
|
/// use this, but if they can emit specialized code for it, all
|
|
/// the better.
|
|
virtual bool isNaturallyToMemory() const = 0;
|
|
|
|
// The client should use exactly one of these after claiming:
|
|
|
|
/// Produce an address into which to emit substituted data.
|
|
Address getSubstResultAddress() {
|
|
assert(ArgsClaimed != 0);
|
|
|
|
// Fast case: we've claimed all the arguments.
|
|
if (ArgsClaimed == Source.getCallSites().size())
|
|
return getFinalSubstResultAddress();
|
|
|
|
// Otherwise, we need a function temporary.
|
|
Address temp = IGF.createAlloca(IGF.IGM.FunctionPairTy,
|
|
IGF.IGM.getPointerAlignment(),
|
|
"specialized.uncurry.temp");
|
|
FnTempState = FnTempKind::Address;
|
|
FnTemp.TempAddress = temp;
|
|
return temp;
|
|
}
|
|
|
|
/// Returns an explosion into which to add substituted values.
|
|
Explosion &getSubstExplosion() {
|
|
assert(ArgsClaimed != 0);
|
|
|
|
// Fast case: we've claimed all the arguments.
|
|
if (ArgsClaimed == Source.getCallSites().size())
|
|
return getFinalSubstExplosion();
|
|
|
|
// Otherwise, we need an explosion into which to emit the
|
|
// function value.
|
|
assert(FnTempState == FnTempKind::None);
|
|
FnTempState = FnTempKind::Explosion;
|
|
return *new (&FnTemp.TempExplosion) Explosion(ExplosionKind::Maximal);
|
|
}
|
|
|
|
/// Indicates that the substituted result was void.
|
|
void setVoidResult() {
|
|
// This can only be the final call.
|
|
assert(ArgsClaimed != 0);
|
|
assert(ArgsClaimed == Source.getCallSites().size());
|
|
}
|
|
|
|
/// Indicates that the result is a single scalar value.
|
|
void setScalarUnmanagedSubstResult(llvm::Value *value) {
|
|
// This can only be the final call.
|
|
assert(ArgsClaimed != 0);
|
|
assert(ArgsClaimed == Source.getCallSites().size());
|
|
getFinalSubstExplosion().addUnmanaged(value);
|
|
}
|
|
|
|
private:
|
|
void completeAsIndirect(Explosion &out);
|
|
};
|
|
}
|
|
|
|
/// Attempt to claim a number of arguments for the current specialized
|
|
/// emission.
|
|
bool SpecializedCallEmission::tryClaimArgs(llvm::MutableArrayRef<Expr*> args) {
|
|
assert(!ArgsClaimed && "arguments have already been claimed");
|
|
assert(args.size() >= 1);
|
|
|
|
// If we want more arguments than there are call sites, we're done.
|
|
auto n = args.size();
|
|
auto callSites = Source.getCallSites();
|
|
if (n > callSites.size()) return false;
|
|
|
|
// Otherwise, fill in the array and set the approproiate state.
|
|
for (unsigned i = 0; i != n; ++i) {
|
|
args[i] = callSites[i].getArg();
|
|
}
|
|
SubstResultType = callSites[n-1].getSubstResultType();
|
|
ArgsClaimed = n;
|
|
return true;
|
|
}
|
|
|
|
/// Given an address representing an unsafe pointer to the given type,
|
|
/// turn it into a valid Address.
|
|
static Address getAddressForUnsafePointer(IRGenFunction &IGF,
|
|
const TypeInfo &type,
|
|
llvm::Value *addr) {
|
|
llvm::Value *castAddr =
|
|
IGF.Builder.CreateBitCast(addr, type.getStorageType()->getPointerTo());
|
|
return Address(castAddr, type.StorageAlignment);
|
|
}
|
|
|
|
|
|
static void emitCastBuiltin(IRGenFunction &IGF, FuncDecl *fn,
|
|
SpecializedCallEmission &emission,
|
|
Explosion &args,
|
|
llvm::Instruction::CastOps opcode) {
|
|
llvm::Value *input = args.claimUnmanagedNext();
|
|
Type DestType = fn->getType()->castTo<AnyFunctionType>()->getResult();
|
|
llvm::Type *destTy = IGF.IGM.getFragileTypeInfo(DestType).getStorageType();
|
|
assert(args.empty() && "wrong operands to cast operation");
|
|
llvm::Value *output = IGF.Builder.CreateCast(opcode, input, destTy);
|
|
emission.setScalarUnmanagedSubstResult(output);
|
|
}
|
|
|
|
static void emitCompareBuiltin(IRGenFunction &IGF, FuncDecl *fn,
|
|
SpecializedCallEmission &emission,
|
|
Explosion &args,
|
|
llvm::CmpInst::Predicate pred) {
|
|
llvm::Value *lhs = args.claimUnmanagedNext();
|
|
llvm::Value *rhs = args.claimUnmanagedNext();
|
|
|
|
llvm::Value *v;
|
|
if (lhs->getType()->isFPOrFPVectorTy())
|
|
v = IGF.Builder.CreateFCmp(pred, lhs, rhs);
|
|
else
|
|
v = IGF.Builder.CreateICmp(pred, lhs, rhs);
|
|
|
|
emission.setScalarUnmanagedSubstResult(v);
|
|
}
|
|
|
|
/// emitBuiltinCall - Emit a call to a builtin function.
|
|
static void emitBuiltinCall(IRGenFunction &IGF, FuncDecl *fn,
|
|
SpecializedCallEmission &emission) {
|
|
// Emit the arguments. Maybe we'll get builtins that are more
|
|
// complex than this.
|
|
Expr *argExpr = emission.claimArg();
|
|
Explosion args(ExplosionKind::Maximal);
|
|
IGF.emitRValue(argExpr, args);
|
|
|
|
// Decompose the function's name into a builtin name and type list.
|
|
SmallVector<Type, 4> Types;
|
|
StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context,
|
|
fn->getName().str(), Types);
|
|
|
|
// If this is an LLVM IR intrinsic, lower it to an intrinsic call.
|
|
if (unsigned IID = getLLVMIntrinsicID(BuiltinName, !Types.empty())) {
|
|
SmallVector<llvm::Type*, 4> ArgTys;
|
|
for (auto T : Types)
|
|
ArgTys.push_back(IGF.IGM.getFragileTypeInfo(T).getStorageType());
|
|
|
|
auto F = llvm::Intrinsic::getDeclaration(&IGF.IGM.Module,
|
|
(llvm::Intrinsic::ID)IID, ArgTys);
|
|
llvm::FunctionType *FT = F->getFunctionType();
|
|
SmallVector<llvm::Value*, 8> IRArgs;
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
|
|
IRArgs.push_back(args.claimUnmanagedNext());
|
|
llvm::Value *TheCall = IGF.Builder.CreateCall(F, IRArgs);
|
|
|
|
if (TheCall->getType()->isVoidTy()) {
|
|
emission.setVoidResult();
|
|
} else {
|
|
extractUnmanagedScalarResults(IGF, TheCall, emission.getSubstExplosion());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// TODO: A linear series of if's is suboptimal.
|
|
#define BUILTIN_CAST_OPERATION(id, name) \
|
|
if (BuiltinName == name) \
|
|
return emitCastBuiltin(IGF, fn, emission, args, llvm::Instruction::id);
|
|
|
|
#define BUILTIN_BINARY_OPERATION(id, name, overload) \
|
|
if (BuiltinName == name) { \
|
|
llvm::Value *lhs = args.claimUnmanagedNext(); \
|
|
llvm::Value *rhs = args.claimUnmanagedNext(); \
|
|
llvm::Value *v = IGF.Builder.Create##id(lhs, rhs); \
|
|
return emission.setScalarUnmanagedSubstResult(v); \
|
|
}
|
|
|
|
#define BUILTIN_BINARY_PREDICATE(id, name, overload) \
|
|
if (BuiltinName == name) \
|
|
return emitCompareBuiltin(IGF, fn, emission, args, llvm::CmpInst::id);
|
|
#define BUILTIN(ID, Name) // Ignore the rest.
|
|
#include "swift/AST/Builtins.def"
|
|
|
|
|
|
if (BuiltinName == "gep") {
|
|
llvm::Value *lhs = args.claimUnmanagedNext();
|
|
llvm::Value *rhs = args.claimUnmanagedNext();
|
|
assert(args.empty() && "wrong operands to gep operation");
|
|
|
|
// We don't expose a non-inbounds GEP operation.
|
|
llvm::Value *gep = IGF.Builder.CreateInBoundsGEP(lhs, rhs);
|
|
return emission.setScalarUnmanagedSubstResult(gep);
|
|
}
|
|
|
|
if (BuiltinName == "load" || BuiltinName == "move") {
|
|
// The type of the operation is the result type of the load function.
|
|
Type valueTy = emission.getSubstResultType();
|
|
const TypeInfo &valueTI = IGF.IGM.getFragileTypeInfo(valueTy);
|
|
|
|
// Treat the raw pointer as a physical l-value of that type.
|
|
// FIXME: remapping
|
|
llvm::Value *addrValue = args.claimUnmanagedNext();
|
|
Address addr = getAddressForUnsafePointer(IGF, valueTI, addrValue);
|
|
|
|
// Perform the load.
|
|
|
|
// Use a more efficient operation if we're doing an initialization.
|
|
if (emission.isNaturallyToMemory()) {
|
|
Address out = emission.getSubstResultAddress();
|
|
if (BuiltinName == "move")
|
|
return valueTI.initializeWithTake(IGF, out, addr);
|
|
return valueTI.initializeWithCopy(IGF, out, addr);
|
|
} else {
|
|
Explosion &out = emission.getSubstExplosion();
|
|
if (BuiltinName == "move")
|
|
return valueTI.loadAsTake(IGF, addr, out);
|
|
return valueTI.load(IGF, addr, out);
|
|
}
|
|
}
|
|
|
|
if (BuiltinName == "assign") {
|
|
// The type of the operation is the type of the first argument of
|
|
// the store function.
|
|
Type valueTy = argExpr->getType()->castTo<TupleType>()->getElementType(0);
|
|
const TypeInfo &valueTI = IGF.IGM.getFragileTypeInfo(valueTy);
|
|
|
|
// Treat the raw pointer as a physical l-value of that type.
|
|
llvm::Value *addrValue = args.takeLast().getUnmanagedValue();
|
|
Address addr = getAddressForUnsafePointer(IGF, valueTI, addrValue);
|
|
|
|
// Mark that we're not returning anything.
|
|
emission.setVoidResult();
|
|
|
|
// Perform the assignment operation.
|
|
return valueTI.assign(IGF, args, addr);
|
|
}
|
|
|
|
if (BuiltinName == "init") {
|
|
// The type of the operation is the type of the first argument of
|
|
// the store function.
|
|
Type valueTy = argExpr->getType()->castTo<TupleType>()->getElementType(0);
|
|
const TypeInfo &valueTI = IGF.IGM.getFragileTypeInfo(valueTy);
|
|
|
|
// Treat the raw pointer as a physical l-value of that type.
|
|
llvm::Value *addrValue = args.takeLast().getUnmanagedValue();
|
|
Address addr = getAddressForUnsafePointer(IGF, valueTI, addrValue);
|
|
|
|
// Mark that we're not returning anything.
|
|
emission.setVoidResult();
|
|
|
|
// Perform the init operation.
|
|
return valueTI.initialize(IGF, args, addr);
|
|
}
|
|
|
|
if (BuiltinName == "sizeof") {
|
|
Type valueTy = emission.getSubstitutions()[0].Replacement;
|
|
const TypeInfo &valueTI = IGF.IGM.getFragileTypeInfo(valueTy);
|
|
emission.setScalarUnmanagedSubstResult(valueTI.getSizeOnly(IGF));
|
|
return;
|
|
}
|
|
|
|
if (BuiltinName == "alignof") {
|
|
Type valueTy = emission.getSubstitutions()[0].Replacement;
|
|
const TypeInfo &valueTI = IGF.IGM.getFragileTypeInfo(valueTy);
|
|
emission.setScalarUnmanagedSubstResult(valueTI.getAlignmentOnly(IGF));
|
|
return;
|
|
}
|
|
|
|
if (BuiltinName == "castToObjectPointer" ||
|
|
BuiltinName == "castFromObjectPointer" ||
|
|
BuiltinName == "bridgeToRawPointer" ||
|
|
BuiltinName == "bridgeFromRawPointer") {
|
|
Type valueTy = emission.getSubstitutions()[0].Replacement;
|
|
const TypeInfo &valueTI = IGF.IGM.getFragileTypeInfo(valueTy);
|
|
if (!valueTI.isSingleRetainablePointer(ResilienceScope::Local)) {
|
|
IGF.unimplemented(SourceLoc(), "builtin pointer cast on invalid type");
|
|
IGF.emitFakeExplosion(valueTI, emission.getSubstExplosion());
|
|
return;
|
|
}
|
|
|
|
if (BuiltinName == "castToObjectPointer") {
|
|
// Just bitcast and rebuild the cleanup.
|
|
llvm::Value *value = args.forwardNext(IGF);
|
|
value = IGF.Builder.CreateBitCast(value, IGF.IGM.RefCountedPtrTy);
|
|
emission.getSubstExplosion().add(IGF.enterReleaseCleanup(value));
|
|
} else if (BuiltinName == "castFromObjectPointer") {
|
|
// Just bitcast and rebuild the cleanup.
|
|
llvm::Value *value = args.forwardNext(IGF);
|
|
value = IGF.Builder.CreateBitCast(value, valueTI.StorageType);
|
|
emission.getSubstExplosion().add(IGF.enterReleaseCleanup(value));
|
|
} else if (BuiltinName == "bridgeToRawPointer") {
|
|
// Bitcast and immediately release the operand.
|
|
llvm::Value *value = args.forwardNext(IGF);
|
|
IGF.emitRelease(value);
|
|
value = IGF.Builder.CreateBitCast(value, IGF.IGM.Int8PtrTy);
|
|
emission.getSubstExplosion().addUnmanaged(value);
|
|
} else if (BuiltinName == "bridgeFromRawPointer") {
|
|
// Bitcast, and immediately retain (and introduce a release cleanup).
|
|
llvm::Value *value = args.claimUnmanagedNext();
|
|
value = IGF.Builder.CreateBitCast(value, valueTI.StorageType);
|
|
IGF.emitRetain(value, emission.getSubstExplosion());
|
|
}
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("IRGen unimplemented for this builtin!");
|
|
}
|
|
|
|
/// Prepare a CallEmission for this callee source. All the arguments
|
|
/// will have been streamed into it.
|
|
CallEmission CalleeSource::prepareCall(IRGenFunction &IGF,
|
|
unsigned numExtraArgs,
|
|
ExplosionKind maxExplosion) {
|
|
// Prepare the root.
|
|
unsigned numArgs = getCallSites().size() + numExtraArgs;
|
|
CallEmission emission = prepareRootCall(IGF, numArgs, maxExplosion);
|
|
|
|
// Collect call sites.
|
|
for (auto site : getCallSites())
|
|
emission.addArg(site.getArg());
|
|
|
|
return emission;
|
|
}
|
|
|
|
/// Prepare a CallEmission for the root callee, i.e. the one that's
|
|
/// not necessarily indirect.
|
|
CallEmission CalleeSource::prepareRootCall(IRGenFunction &IGF,
|
|
unsigned numArgs,
|
|
ExplosionKind maxExplosion) {
|
|
unsigned bestUncurry = numArgs - 1;
|
|
assert(bestUncurry != -1U);
|
|
|
|
switch (getKind()) {
|
|
case Kind::DirectWithSideEffects:
|
|
case Kind::Direct:
|
|
return CallEmission(IGF, emitDirectCallee(IGF, getDirectFunction(),
|
|
SubstResultType,
|
|
getSubstitutions(),
|
|
maxExplosion, bestUncurry));
|
|
|
|
case Kind::IndirectLiteral:
|
|
return CallEmission(IGF, Callee::forIndirectCall(
|
|
IndirectLiteral.OrigFormalType,
|
|
IndirectLiteral.SubstResultType,
|
|
getSubstitutions(),
|
|
IndirectLiteral.Fn,
|
|
IndirectLiteral.Data));
|
|
|
|
case Kind::Indirect: {
|
|
Explosion fnValues(ExplosionKind::Maximal);
|
|
Expr *fn = getIndirectFunction();
|
|
IGF.emitRValue(fn, fnValues);
|
|
|
|
llvm::Value *fnPtr = fnValues.claimUnmanagedNext();
|
|
ManagedValue dataPtr = fnValues.claimNext();
|
|
return CallEmission(IGF, emitIndirectCallee(IGF, fnPtr, dataPtr,
|
|
getSubstitutions(),
|
|
fn->getType(),
|
|
SubstResultType));
|
|
}
|
|
|
|
case Kind::Existential:
|
|
return prepareExistentialMemberRefCall(IGF, getExistentialFunction(),
|
|
SubstResultType,
|
|
getSubstitutions(),
|
|
maxExplosion, bestUncurry);
|
|
|
|
case Kind::Archetype:
|
|
return prepareArchetypeMemberRefCall(IGF, getArchetypeFunction(),
|
|
SubstResultType,
|
|
getSubstitutions(),
|
|
maxExplosion, bestUncurry);
|
|
}
|
|
llvm_unreachable("bad CalleeSource kind");
|
|
}
|
|
|
|
namespace {
|
|
/// A class for decomposing an expression into a function reference
|
|
/// which can, hopefully, be called more efficiently.
|
|
struct FunctionDecomposer :
|
|
irgen::ExprVisitor<FunctionDecomposer, CalleeSource> {
|
|
CalleeSource visitDeclRefExpr(DeclRefExpr *E) {
|
|
if (FuncDecl *fn = dyn_cast<FuncDecl>(E->getDecl()))
|
|
return CalleeSource::forDirect(fn);
|
|
if (ConstructorDecl *ctor = dyn_cast<ConstructorDecl>(E->getDecl()))
|
|
return CalleeSource::forDirect(ctor);
|
|
if (OneOfElementDecl *ctor = dyn_cast<OneOfElementDecl>(E->getDecl()))
|
|
return CalleeSource::forDirect(ctor);
|
|
return CalleeSource::forIndirect(E);
|
|
}
|
|
|
|
CalleeSource visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E) {
|
|
Expr *rhs = E->getRHS();
|
|
if (SpecializeExpr *specialize = dyn_cast<SpecializeExpr>(rhs)) {
|
|
// FIXME: We should generalize forDirectWithSideEffects.
|
|
Expr *subExpr = specialize->getSubExpr();
|
|
if (DeclRefExpr *dre = dyn_cast<DeclRefExpr>(subExpr)) {
|
|
if (FuncDecl *fn = dyn_cast<FuncDecl>(dre->getDecl())) {
|
|
CalleeSource src = CalleeSource::forDirectWithSideEffects(fn, E);
|
|
src.addSubstitutions(specialize->getSubstitutions());
|
|
return src;
|
|
}
|
|
}
|
|
}
|
|
if (DeclRefExpr *dre = dyn_cast<DeclRefExpr>(rhs)) {
|
|
if (FuncDecl *fn = dyn_cast<FuncDecl>(dre->getDecl()))
|
|
return CalleeSource::forDirectWithSideEffects(fn, E);
|
|
}
|
|
return CalleeSource::forIndirect(E);
|
|
}
|
|
|
|
CalleeSource visitExistentialMemberRefExpr(ExistentialMemberRefExpr *E) {
|
|
return CalleeSource::forExistential(E);
|
|
}
|
|
|
|
CalleeSource visitArchetypeMemberRefExpr(ArchetypeMemberRefExpr *E) {
|
|
return CalleeSource::forArchetype(E);
|
|
}
|
|
|
|
CalleeSource visitSpecializeExpr(SpecializeExpr *E) {
|
|
CalleeSource src = visit(E->getSubExpr());
|
|
src.addSubstitutions(E->getSubstitutions());
|
|
return src;
|
|
}
|
|
|
|
CalleeSource visitApplyExpr(ApplyExpr *E) {
|
|
CalleeSource source = visit(E->getFn());
|
|
source.addCallSite(CallSite(E));
|
|
return source;
|
|
}
|
|
|
|
CalleeSource visitFunctionConversionExpr(FunctionConversionExpr *E) {
|
|
return visit(E->getSubExpr());
|
|
}
|
|
|
|
CalleeSource visitExpr(Expr *E) {
|
|
return CalleeSource::forIndirect(E);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Try to decompose a function reference into a known function
|
|
/// declaration.
|
|
CalleeSource CalleeSource::decompose(Expr *E) {
|
|
// Do the basic decomposition.
|
|
CalleeSource source = FunctionDecomposer().visit(E);
|
|
|
|
// Remember the substituted result type, which is to say, the type
|
|
// of the original expression.
|
|
source.setSubstResultType(E->getType());
|
|
|
|
return source;
|
|
}
|
|
|
|
/// Emit an expression as a callee.
|
|
CallEmission irgen::prepareCall(IRGenFunction &IGF, Expr *fn,
|
|
ExplosionKind bestExplosion,
|
|
unsigned numExtraArgs,
|
|
Type substResultType) {
|
|
CalleeSource source = CalleeSource::decompose(fn);
|
|
source.setSubstResultType(substResultType);
|
|
return source.prepareCall(IGF, numExtraArgs, bestExplosion);
|
|
}
|
|
|
|
/// Emit the unsubstituted result of this call into the given explosion.
|
|
/// The unsubstituted result must be naturally returned directly.
|
|
void CallEmission::emitToUnmappedExplosion(Explosion &out) {
|
|
assert(RemainingArgsForCallee == 0);
|
|
assert(LastArgWritten == 0 && "emitting unnaturally to explosion");
|
|
assert(out.getKind() == getCallee().getExplosionLevel());
|
|
|
|
auto call = emitCallSite(false);
|
|
|
|
// Bail out immediately on a void result.
|
|
llvm::Instruction *result = call.getInstruction();
|
|
if (result->getType()->isVoidTy()) return;
|
|
|
|
// Extract out the scalar results.
|
|
auto &origResultTI = IGF.getFragileTypeInfo(CurOrigType);
|
|
extractScalarResults(IGF, result, origResultTI, out);
|
|
}
|
|
|
|
/// Emit the unsubstituted result of this call to the given address.
|
|
/// The unsubstituted result must be naturally returned indirectly.
|
|
void CallEmission::emitToUnmappedMemory(Address result) {
|
|
assert(RemainingArgsForCallee == 0);
|
|
assert(LastArgWritten == 1 && "emitting unnaturally to indirect result");
|
|
|
|
Args[0] = result.getAddress();
|
|
#ifndef NDEBUG
|
|
LastArgWritten = 0; // appease an assert
|
|
#endif
|
|
|
|
emitCallSite(true);
|
|
}
|
|
|
|
/// The private routine to ultimately emit a call or invoke instruction.
|
|
llvm::CallSite CallEmission::emitCallSite(bool hasIndirectResult) {
|
|
assert(RemainingArgsForCallee == 0);
|
|
assert(LastArgWritten == 0);
|
|
assert(!EmittedCall);
|
|
EmittedCall = true;
|
|
|
|
// Deactivate all the cleanups.
|
|
for (auto cleanup : Cleanups)
|
|
IGF.setCleanupState(cleanup, CleanupState::Dead);
|
|
Cleanups.clear();
|
|
|
|
// Determine the calling convention.
|
|
llvm::SmallVector<llvm::AttributeWithIndex, 4> attrs;
|
|
auto cc = expandAbstractCC(IGF.IGM, getCallee().getConvention(),
|
|
hasIndirectResult, attrs);
|
|
|
|
// Make the call and clear the arguments array.
|
|
auto fnPtr = getCallee().getFunctionPointer();
|
|
llvm::CallSite call = IGF.emitInvoke(cc, fnPtr, Args,
|
|
llvm::AttrListPtr::get(attrs));
|
|
Args.clear();
|
|
|
|
// Return.
|
|
return call;
|
|
}
|
|
|
|
enum class ResultDifference {
|
|
/// The substituted result type is the same as the original result type.
|
|
Identical,
|
|
|
|
/// The substituted result type is a different formal type from, but
|
|
/// has the same layout and interpretation as, the original result type.
|
|
Aliasable,
|
|
|
|
/// The substitued result type has the same layout as the original
|
|
/// result type, but may differ in interpretation.
|
|
// Reinterpretable,
|
|
|
|
/// The substituted result type differs not just in interpretation,
|
|
/// but in layout, from the original result type.
|
|
Divergent
|
|
};
|
|
|
|
static ResultDifference computeResultDifference(IRGenModule &IGM,
|
|
CanType origResultType,
|
|
CanType substResultType) {
|
|
if (origResultType == substResultType)
|
|
return ResultDifference::Identical;
|
|
|
|
if (differsByAbstraction(IGM, origResultType, substResultType,
|
|
AbstractionDifference::Memory))
|
|
return ResultDifference::Divergent;
|
|
|
|
return ResultDifference::Aliasable;
|
|
}
|
|
|
|
/// Emit the result of this call to memory.
|
|
void CallEmission::emitToMemory(Address addr, const TypeInfo &substResultTI) {
|
|
assert(RemainingArgsForCallee == 0);
|
|
assert(LastArgWritten <= 1);
|
|
|
|
// If the call is naturally to an explosion, emit it that way and
|
|
// then initialize the temporary.
|
|
if (LastArgWritten == 0) {
|
|
Explosion result(getCallee().getExplosionLevel());
|
|
emitToExplosion(result);
|
|
substResultTI.initialize(IGF, result, addr);
|
|
return;
|
|
}
|
|
|
|
// Okay, we're naturally emitting to memory.
|
|
Address origAddr = addr;
|
|
|
|
// Figure out how the substituted result differs from the original.
|
|
auto resultDiff = computeResultDifference(IGF.IGM, CurOrigType,
|
|
getCallee().getSubstResultType()->getCanonicalType());
|
|
switch (resultDiff) {
|
|
|
|
// For aliasable types, just bitcast the output address.
|
|
case ResultDifference::Aliasable: {
|
|
auto origTy = IGF.IGM.getFragileType(CurOrigType)->getPointerTo();
|
|
origAddr = IGF.Builder.CreateBitCast(origAddr, origTy);
|
|
// fallthrough to Identical
|
|
}
|
|
|
|
case ResultDifference::Identical:
|
|
emitToUnmappedMemory(origAddr);
|
|
return;
|
|
|
|
case ResultDifference::Divergent:
|
|
// We need to do layout+allocation under substitution rules.
|
|
return IGF.unimplemented(SourceLoc(), "divergent emission to memory");
|
|
}
|
|
|
|
llvm_unreachable("bad difference kind");
|
|
}
|
|
|
|
/// Emit a call, whose result is known to be void.
|
|
void CallEmission::emitVoid() {
|
|
Explosion out(getCallee().getExplosionLevel());
|
|
emitToExplosion(out);
|
|
}
|
|
|
|
/// Emit the result of this call to an explosion.
|
|
void CallEmission::emitToExplosion(Explosion &out) {
|
|
assert(RemainingArgsForCallee == 0);
|
|
assert(LastArgWritten <= 1);
|
|
|
|
// If the call is naturally to memory, emit it that way and then
|
|
// explode that temporary.
|
|
if (LastArgWritten == 1) {
|
|
Type substResultType = getCallee().getSubstResultType();
|
|
const TypeInfo &substResultTI = IGF.getFragileTypeInfo(substResultType);
|
|
|
|
Initialization init;
|
|
InitializedObject obj = init.getObjectForTemporary();
|
|
auto cleanup = init.registerObject(IGF, obj, NotOnHeap, substResultTI);
|
|
Address temp = init.emitLocalAllocation(IGF, obj, NotOnHeap, substResultTI,
|
|
"call.aggresult");
|
|
emitToMemory(temp, substResultTI);
|
|
init.markInitialized(IGF, obj);
|
|
|
|
substResultTI.loadAsTake(IGF, temp, out);
|
|
if (cleanup.isValid())
|
|
IGF.setCleanupState(cleanup, CleanupState::Dead);
|
|
return;
|
|
}
|
|
|
|
// Okay, we're naturally emitting to an explosion.
|
|
// Figure out how the substituted result differs from the original.
|
|
auto resultDiff = computeResultDifference(IGF.IGM, CurOrigType,
|
|
getCallee().getSubstResultType()->getCanonicalType());
|
|
switch (resultDiff) {
|
|
// If they don't differ at all, we're good.
|
|
case ResultDifference::Identical:
|
|
case ResultDifference::Aliasable:
|
|
// We can emit directly if the explosion levels match.
|
|
if (out.getKind() == getCallee().getExplosionLevel()) {
|
|
emitToUnmappedExplosion(out);
|
|
|
|
// Otherwise we have to re-explode.
|
|
} else {
|
|
Explosion temp(getCallee().getExplosionLevel());
|
|
emitToUnmappedExplosion(temp);
|
|
|
|
const TypeInfo &substResultTI =
|
|
IGF.getFragileTypeInfo(getCallee().getSubstResultType());
|
|
substResultTI.reexplode(IGF, temp, out);
|
|
}
|
|
return;
|
|
|
|
// If they do differ, we need to remap.
|
|
case ResultDifference::Divergent:
|
|
// There's a related FIXME in the Builtin.load/move code.
|
|
IGF.unimplemented(SourceLoc(), "remapping explosion");
|
|
const TypeInfo &substResultTI =
|
|
IGF.getFragileTypeInfo(getCallee().getSubstResultType());
|
|
IGF.emitFakeExplosion(substResultTI, out);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("bad difference kind");
|
|
}
|
|
|
|
CallEmission::~CallEmission() {
|
|
assert(LastArgWritten == 0);
|
|
assert(RemainingArgsForCallee == 0);
|
|
assert(EmittedCall);
|
|
}
|
|
|
|
static bool isInSwiftModule(Decl *D) {
|
|
if (Module *M = dyn_cast<Module>(D->getDeclContext()))
|
|
return M->Name.str() == "swift";
|
|
return false;
|
|
}
|
|
|
|
static bool isBoolType(Type type) {
|
|
if (auto oneof = type->getAs<OneOfType>()) {
|
|
return (oneof->getDecl()->getName().str() == "Bool" &&
|
|
isInSwiftModule(oneof->getDecl()));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isBoolType(DeclContext *DC) {
|
|
ExtensionDecl *ED = dyn_cast<ExtensionDecl>(DC);
|
|
return (ED && isBoolType(ED->getExtendedType()));
|
|
}
|
|
|
|
/// emitKnownCall - Emit a call to a known function.
|
|
// FIXME: This is a rather ugly, but it's the best way I can think
|
|
// of to avoid emitting calls to getLogicValue as external calls.
|
|
static bool emitKnownCall(IRGenFunction &IGF, ValueDecl *fn,
|
|
SpecializedCallEmission &emission) {
|
|
if (fn->getName().str() == "getLogicValue") {
|
|
if (!isBoolType(fn->getDeclContext())) return false;
|
|
|
|
Expr *args[2];
|
|
if (!emission.tryClaimArgs(args)) return false;
|
|
|
|
Explosion &out = emission.getSubstExplosion();
|
|
Type boolTy = args[0]->getType()->castTo<LValueType>()->getObjectType();
|
|
auto &boolTI = IGF.IGM.getFragileTypeInfo(boolTy);
|
|
IGF.emitLoad(IGF.emitLValue(args[0]), boolTI, out);
|
|
return true;
|
|
}
|
|
|
|
bool isOr = false;
|
|
if (fn->getName().str() == "&&" || (isOr = fn->getName().str() == "||")) {
|
|
if (!isInSwiftModule(fn))
|
|
return false;
|
|
|
|
TupleExpr *arg = cast<TupleExpr>(emission.claimArg());
|
|
|
|
// We invert the condition if this is ||, so that we always end up
|
|
// in the "true" block if we need to evaluate the second argument.
|
|
Condition cond = IGF.emitCondition(arg->getElement(0), true, isOr);
|
|
Address CondBool = IGF.createAlloca(IGF.Builder.getInt1Ty(), Alignment(1),
|
|
"logical.cond");
|
|
|
|
if (cond.hasTrue()) {
|
|
cond.enterTrue(IGF);
|
|
Scope condScope(IGF);
|
|
Expr *body = cast<ImplicitClosureExpr>(arg->getElement(1))->getBody();
|
|
llvm::Value *val = IGF.emitAsPrimitiveScalar(body);
|
|
IGF.Builder.CreateStore(val, CondBool);
|
|
condScope.pop();
|
|
cond.exitTrue(IGF);
|
|
}
|
|
if (cond.hasFalse()) {
|
|
cond.enterFalse(IGF);
|
|
IGF.Builder.CreateStore(IGF.Builder.getInt1(isOr), CondBool);
|
|
cond.exitFalse(IGF);
|
|
}
|
|
cond.complete(IGF);
|
|
Explosion &out = emission.getSubstExplosion();
|
|
out.addUnmanaged(IGF.Builder.CreateLoad(CondBool));
|
|
return true;
|
|
}
|
|
|
|
// Integer / floating-point literals.
|
|
if (fn->getName().str() == "convertFromIntegerLiteral") {
|
|
// Do this only for the standard integer and floating-point types.
|
|
auto decl = dyn_cast<StructDecl>(fn->getDeclContext());
|
|
if (!decl || !isInSwiftModule(decl))
|
|
return false;
|
|
StringRef name = decl->getName().str();
|
|
if (!name.startswith("Int") && !name.startswith("UInt") &&
|
|
name != "Float" && name != "Double")
|
|
return false;
|
|
|
|
Expr *args[2];
|
|
if (!emission.tryClaimArgs(args)) return false;
|
|
|
|
IGF.emitIgnored(args[0]);
|
|
|
|
Expr *arg = args[1];
|
|
Explosion &out = emission.getSubstExplosion();
|
|
ExplosionSchema schema =
|
|
IGF.IGM.getSchema(emission.getSubstResultType(), out.getKind());
|
|
assert(schema.size() == 1);
|
|
llvm::Type *outTy = schema.begin()->getScalarType();
|
|
if (isa<llvm::IntegerType>(outTy)) {
|
|
IGF.emitRValue(arg, out);
|
|
} else {
|
|
assert(outTy->isFloatingPointTy());
|
|
Explosion temp(ExplosionKind::Maximal);
|
|
IGF.emitRValue(arg, temp);
|
|
llvm::Value *value = temp.claimUnmanagedNext();
|
|
value = IGF.Builder.CreateUIToFP(value, outTy);
|
|
out.addUnmanaged(value);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Floating-point literals.
|
|
if (fn->getName().str() == "convertFromFloatLiteral") {
|
|
// Do this only for the standard floating-point types.
|
|
auto decl = dyn_cast<StructDecl>(fn->getDeclContext());
|
|
if (!decl || !isInSwiftModule(decl))
|
|
return false;
|
|
StringRef name = decl->getName().str();
|
|
if (name != "Float" && name != "Double")
|
|
return false;
|
|
|
|
Expr *args[2];
|
|
if (!emission.tryClaimArgs(args)) return false;
|
|
|
|
Explosion &out = emission.getSubstExplosion();
|
|
IGF.emitRValue(args[1], out);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Try to emit a callee source as a specialized call.
|
|
bool SpecializedCallEmission::trySpecialize() {
|
|
assert(Source.isDirect() && "trying to specialize a non-direct call");
|
|
ValueDecl *fn = Source.getDirectFunction();
|
|
|
|
// If it's in the builtin module, do the builtin emission.
|
|
if (isa<BuiltinModule>(fn->getDeclContext())) {
|
|
emitBuiltinCall(IGF, cast<FuncDecl>(fn), *this);
|
|
|
|
// Otherwise, try to emit some manually specialized functions.
|
|
} else if (!emitKnownCall(IGF, fn, *this)) {
|
|
// If that failed, just return immediately.
|
|
return false;
|
|
}
|
|
|
|
// Okay, we emitted a specialized call. Complete it.
|
|
assert(ArgsClaimed != 0);
|
|
assert((ArgsClaimed == Source.getCallSites().size())
|
|
== (FnTempState == FnTempKind::None));
|
|
Completed = true;
|
|
|
|
switch (FnTempState) {
|
|
case FnTempKind::None:
|
|
completeFinal();
|
|
return true;
|
|
|
|
case FnTempKind::Address: {
|
|
// Clean up the address for assert purposes.
|
|
FnTempState = FnTempKind::None;
|
|
|
|
Explosion temp(ExplosionKind::Maximal);
|
|
FuncTypeInfo::doLoadAsTake(IGF, FnTemp.TempAddress, temp);
|
|
completeAsIndirect(temp);
|
|
return false;
|
|
}
|
|
|
|
case FnTempKind::Explosion:
|
|
completeAsIndirect(FnTemp.TempExplosion);
|
|
FnTemp.TempExplosion.~Explosion();
|
|
FnTempState = FnTempKind::None;
|
|
return false;
|
|
}
|
|
llvm_unreachable("bad function temp state");
|
|
}
|
|
|
|
void SpecializedCallEmission::completeAsIndirect(Explosion &fn) {
|
|
assert(fn.size() == 2);
|
|
llvm::Value *fnPtr = fn.claimUnmanagedNext();
|
|
ManagedValue dataPtr = fn.claimNext();
|
|
|
|
// The function pointer we've got here should be totally substituted.
|
|
// That's not necessarily optimal, but it's what we've got.
|
|
Type origFnType = getSubstResultType();
|
|
fnPtr = emitCastOfIndirectFunction(IGF, fnPtr, dataPtr, origFnType);
|
|
|
|
// Update the CalleeSource.
|
|
Type substResultType = origFnType->castTo<FunctionType>()->getResult();
|
|
Source.updateToIndirect(ArgsClaimed, origFnType, substResultType,
|
|
fnPtr, dataPtr);
|
|
|
|
// We didn't actually do anything final, so don't completeFinal().
|
|
}
|
|
|
|
namespace {
|
|
/// An implement of SpecializedCallEmission for ultimately emitting
|
|
/// to an explosion.
|
|
class ExplosionSpecializedCallEmission : public SpecializedCallEmission {
|
|
Explosion &Out;
|
|
|
|
Initialization Init;
|
|
InitializedObject TempObject;
|
|
public:
|
|
ExplosionSpecializedCallEmission(IRGenFunction &IGF, CalleeSource &source,
|
|
Explosion &out)
|
|
: SpecializedCallEmission(IGF, source), Out(out),
|
|
TempObject(InitializedObject::invalid()) {}
|
|
|
|
private:
|
|
bool hasTemporary() const { return TempObject.isValid(); }
|
|
|
|
bool isNaturallyToMemory() const { return false; }
|
|
|
|
Explosion &getFinalSubstExplosion() {
|
|
assert(!hasTemporary());
|
|
return Out;
|
|
}
|
|
|
|
Address getFinalSubstResultAddress() {
|
|
assert(!hasTemporary());
|
|
TempObject = Init.getObjectForTemporary();
|
|
|
|
auto &substResultTI = IGF.getFragileTypeInfo(getSubstResultType());
|
|
return Init.emitLocalAllocation(IGF, TempObject, NotOnHeap,
|
|
substResultTI, "specialized.temp")
|
|
.getAddress();
|
|
}
|
|
|
|
void completeFinal() {
|
|
if (!hasTemporary()) return;
|
|
Init.markInitialized(IGF, TempObject);
|
|
}
|
|
};
|
|
}
|
|
|
|
bool CalleeSource::trySpecializeToExplosion(IRGenFunction &IGF,
|
|
Explosion &out) {
|
|
if (!isDirect()) return false;
|
|
|
|
ExplosionSpecializedCallEmission emission(IGF, *this, out);
|
|
return emission.trySpecialize();
|
|
}
|
|
|
|
namespace {
|
|
/// An implement of SpecializedCallEmission for ultimately emitting
|
|
/// to memory.
|
|
class MemorySpecializedCallEmission : public SpecializedCallEmission {
|
|
Address ResultAddress;
|
|
const TypeInfo &SubstResultTI;
|
|
|
|
Explosion TempExplosion;
|
|
public:
|
|
MemorySpecializedCallEmission(IRGenFunction &IGF, CalleeSource &source,
|
|
Address addr, const TypeInfo &substResultTI)
|
|
: SpecializedCallEmission(IGF, source),
|
|
ResultAddress(addr), SubstResultTI(substResultTI),
|
|
TempExplosion(ExplosionKind::Maximal) {}
|
|
|
|
private:
|
|
bool isNaturallyToMemory() const { return true; }
|
|
|
|
Explosion &getFinalSubstExplosion() {
|
|
return TempExplosion;
|
|
}
|
|
|
|
Address getFinalSubstResultAddress() {
|
|
return ResultAddress;
|
|
}
|
|
|
|
void completeFinal() {
|
|
if (TempExplosion.empty()) return;
|
|
SubstResultTI.initialize(IGF, TempExplosion, ResultAddress);
|
|
}
|
|
};
|
|
}
|
|
|
|
bool CalleeSource::trySpecializeToMemory(IRGenFunction &IGF,
|
|
Address resultAddress,
|
|
const TypeInfo &substResultTI) {
|
|
if (!isDirect()) return false;
|
|
|
|
MemorySpecializedCallEmission emission(IGF, *this, resultAddress,
|
|
substResultTI);
|
|
return emission.trySpecialize();
|
|
}
|
|
|
|
/// Set up this emitter afresh from the current callee specs.
|
|
void CallEmission::setFromCallee() {
|
|
RemainingArgsForCallee = CurCallee.getUncurryLevel() + 1;
|
|
CurOrigType = CurCallee.getOrigFormalType()->getCanonicalType();
|
|
EmittedCall = false;
|
|
|
|
llvm::Type *fnType = CurCallee.getFunction()->getType();
|
|
fnType = cast<llvm::PointerType>(fnType)->getElementType();
|
|
unsigned numArgs = cast<llvm::FunctionType>(fnType)->getNumParams();
|
|
|
|
// Set up the args array.
|
|
assert(Args.empty());
|
|
Args.reserve(numArgs);
|
|
Args.set_size(numArgs);
|
|
LastArgWritten = numArgs;
|
|
|
|
// We should not have any cleanups at this point.
|
|
assert(Cleanups.empty());
|
|
|
|
// Add the data pointer if we have one.
|
|
if (CurCallee.hasDataPointer()) {
|
|
assert(LastArgWritten > 0);
|
|
Args[--LastArgWritten] = CurCallee.getDataPointer(IGF).split(Cleanups);
|
|
}
|
|
}
|
|
|
|
/// Drill down to the result type of the original function type.
|
|
static void drillIntoOrigFnType(Type &origFnType) {
|
|
if (auto fnType = origFnType->getAs<AnyFunctionType>()) {
|
|
origFnType = fnType->getResult();
|
|
} else {
|
|
// This can happen if we're substituting a function type in.
|
|
// In this case, we should interpret arguments using a
|
|
// fully-abstracted function type, i.e. T -> U. We don't
|
|
// really need U to be any *specific* archetype, though,
|
|
// so we just leave it as the original archetype.
|
|
assert(origFnType->is<ArchetypeType>());
|
|
}
|
|
}
|
|
|
|
/// We're about to pass arguments to something. Force the current
|
|
/// callee to ensure that we're calling something with arguments.
|
|
void CallEmission::forceCallee() {
|
|
// Nothing to do if there are args remaining for the callee.
|
|
if (RemainingArgsForCallee--) return;
|
|
RemainingArgsForCallee = 0; // 1 minus the one we're about to add
|
|
|
|
// Otherwise, we need to compute the new, indirect callee.
|
|
Explosion fn(CurCallee.getExplosionLevel());
|
|
|
|
// If the original function is formally typed to return a function,
|
|
// then we just emit to that (unmapped).
|
|
assert(LastArgWritten <= 1);
|
|
if (LastArgWritten == 0) {
|
|
assert(CurOrigType->is<AnyFunctionType>());
|
|
emitToUnmappedExplosion(fn);
|
|
} else {
|
|
assert(CurOrigType->is<ArchetypeType>());
|
|
// Use the substituted function type to create a temporary. This
|
|
// isn't actually the right type --- that would be a T -> U type
|
|
// with the corresponding generic arguments from the substitued
|
|
// type --- but it's good enough for our work here, which is just
|
|
// copying back and forth.
|
|
auto &substTI = IGF.getFragileTypeInfo(CurCallee.getSubstResultType());
|
|
|
|
// Allocate the temporary.
|
|
Initialization init;
|
|
auto object = init.getObjectForTemporary();
|
|
init.registerObjectWithoutDestroy(object);
|
|
Address addr = init.emitLocalAllocation(IGF, object, NotOnHeap, substTI,
|
|
"polymorphic-currying-temp")
|
|
.getUnownedAddress();
|
|
|
|
// Emit the current call into that temporary.
|
|
Address castAddr = IGF.Builder.CreateBitCast(addr, IGF.IGM.OpaquePtrTy);
|
|
emitToUnmappedMemory(castAddr);
|
|
|
|
// Claim the values from the temporary.
|
|
substTI.loadAsTake(IGF, addr, fn);
|
|
}
|
|
|
|
// Grab the values.
|
|
llvm::Value *fnPtr = fn.claimUnmanagedNext();
|
|
ManagedValue dataPtr = fn.claimNext();
|
|
|
|
// Set up for an indirect call.
|
|
auto substFnType = CurCallee.getSubstResultType()->castTo<AnyFunctionType>();
|
|
Type substResultType = substFnType->getResult();
|
|
CurCallee = emitIndirectCallee(IGF, fnPtr, dataPtr,
|
|
CurCallee.getSubstitutions(),
|
|
CurOrigType, substResultType);
|
|
}
|
|
|
|
/// Add a new, empty argument to the function.
|
|
void CallEmission::addEmptyArg() {
|
|
Explosion temp(getCurExplosionLevel());
|
|
addArg(temp);
|
|
}
|
|
|
|
/// Add a new set of arguments to the function.
|
|
void CallEmission::addArg(Explosion &arg) {
|
|
forceCallee();
|
|
|
|
// Add the given number of ar
|
|
assert(getCallee().getExplosionLevel() == arg.getKind());
|
|
assert(LastArgWritten >= arg.size());
|
|
LastArgWritten -= arg.size();
|
|
|
|
auto argIterator = Args.begin() + LastArgWritten;
|
|
for (auto value : arg.claimAll()) {
|
|
*argIterator++ = value.split(Cleanups);
|
|
}
|
|
|
|
// Walk into the original function type.
|
|
drillIntoOrigFnType(CurOrigType);
|
|
}
|
|
|
|
/// Evaluate the given expression as a new set of arguments to the
|
|
/// function.
|
|
void CallEmission::addArg(Expr *arg) {
|
|
// If we're calling something with polymorphic type, we'd better have
|
|
// substitutions.
|
|
auto subs = getSubstitutions();
|
|
assert(!subs.empty() || !isa<PolymorphicFunctionType>(CurOrigType));
|
|
|
|
Explosion argE(CurCallee.getExplosionLevel());
|
|
|
|
// If we have substitutions, then (1) it's possible for this to
|
|
// be a polymorphic function type that we need to expand and
|
|
// (2) we might need to evaluate the r-value differently.
|
|
if (!subs.empty()) {
|
|
CanType origInputType;
|
|
auto fnType = dyn_cast<AnyFunctionType>(CurOrigType);
|
|
if (fnType) {
|
|
origInputType = CanType(fnType->getInput());
|
|
} else {
|
|
assert(isa<ArchetypeType>(CurOrigType));
|
|
origInputType = CurOrigType;
|
|
}
|
|
|
|
IGF.emitRValueUnderSubstitutions(arg, origInputType, subs, argE);
|
|
|
|
// FIXME: this doesn't handle instantiating at a generic type.
|
|
if (auto polyFn = dyn_cast_or_null<PolymorphicFunctionType>(fnType))
|
|
emitPolymorphicArguments(IGF, polyFn->getGenericParams(), subs, argE);
|
|
|
|
} else {
|
|
IGF.emitRValue(arg, argE);
|
|
}
|
|
|
|
addArg(argE);
|
|
}
|
|
|
|
/// Create a CallEmission for an arbitrary expression.
|
|
/// Note that this currently bypasses specialization and builtin
|
|
/// emission, so don't attempt to emit such things.
|
|
CallEmission CallEmission::forExpr(IRGenFunction &IGF, Expr *E,
|
|
ExplosionKind outputLevel,
|
|
unsigned numExtraArgs) {
|
|
CalleeSource source = CalleeSource::decompose(E);
|
|
return source.prepareCall(IGF, numExtraArgs, outputLevel);
|
|
}
|
|
|
|
/// Emit a call for its exploded results.
|
|
void irgen::emitApplyExpr(IRGenFunction &IGF, ApplyExpr *E, Explosion &out) {
|
|
CalleeSource source = CalleeSource::decompose(E);
|
|
if (source.trySpecializeToExplosion(IGF, out))
|
|
return;
|
|
|
|
CallEmission emission = source.prepareCall(IGF, 0, out.getKind());
|
|
emission.emitToExplosion(out);
|
|
}
|
|
|
|
/// Emit a call as the initializer for an object in memory.
|
|
static void emitCalleeToMemory(IRGenFunction &IGF, CalleeSource &source,
|
|
Address addr, const TypeInfo &substResultTI) {
|
|
CallEmission emission = source.prepareCall(IGF, 0, ExplosionKind::Maximal);
|
|
emission.emitToMemory(addr, substResultTI);
|
|
}
|
|
|
|
/// Emit a call as the initializer for an object in memory.
|
|
void irgen::emitApplyExprToMemory(IRGenFunction &IGF, ApplyExpr *E,
|
|
Address resultAddress,
|
|
const TypeInfo &substResultTI) {
|
|
CalleeSource source = CalleeSource::decompose(E);
|
|
if (source.trySpecializeToMemory(IGF, resultAddress, substResultTI))
|
|
return;
|
|
|
|
emitCalleeToMemory(IGF, source, resultAddress, substResultTI);
|
|
}
|
|
|
|
/// See whether we can emit the result of the given call as an object
|
|
/// naturally located in memory.
|
|
Optional<Address>
|
|
irgen::tryEmitApplyAsAddress(IRGenFunction &IGF, ApplyExpr *E,
|
|
const TypeInfo &substResultTI) {
|
|
// Decompose the expression. Vitally, this doesn't change any state.
|
|
CalleeSource source = CalleeSource::decompose(E);
|
|
|
|
// Give up if the call won't be returned indirectly.
|
|
// FIXME: this is suboptimal; we might have something returned
|
|
// indirectly due to abstraction.
|
|
ExplosionSchema schema(source.getFinalResultExplosionLevel(IGF));
|
|
substResultTI.getSchema(schema);
|
|
if (!schema.requiresIndirectResult())
|
|
return Nothing;
|
|
|
|
// Create a temporary.
|
|
Initialization init;
|
|
InitializedObject obj = init.getObjectForTemporary();
|
|
init.registerObject(IGF, obj, NotOnHeap, substResultTI);
|
|
Address temp = init.emitLocalAllocation(IGF, obj, NotOnHeap, substResultTI,
|
|
"call.as-address");
|
|
|
|
// Emit to memory.
|
|
emitCalleeToMemory(IGF, source, temp, substResultTI);
|
|
init.markInitialized(IGF, obj);
|
|
|
|
// Leave the cleanup active.
|
|
return temp;
|
|
}
|
|
|
|
/// Emit a nullary call to the given monomorphic function, using the
|
|
/// standard calling-convention and so on, and explode the result.
|
|
void IRGenFunction::emitNullaryCall(llvm::Value *fnPtr,
|
|
Type resultType,
|
|
Explosion &resultExplosion) {
|
|
Type formalType = TupleType::getEmpty(IGM.Context);
|
|
formalType = FunctionType::get(formalType, resultType, IGM.Context);
|
|
|
|
Callee callee =
|
|
Callee::forKnownFunction(AbstractCC::Freestanding,
|
|
formalType, resultType,
|
|
ArrayRef<Substitution>(),
|
|
fnPtr, ManagedValue(nullptr),
|
|
resultExplosion.getKind(),
|
|
/*uncurry level*/ 0);
|
|
|
|
CallEmission emission(*this, callee);
|
|
emission.addEmptyArg();
|
|
emission.emitToExplosion(resultExplosion);
|
|
}
|
|
|
|
/// Initialize an Explosion with the parameters of the current
|
|
/// function. All of the objects will be added unmanaged. This is
|
|
/// really only useful when writing prologue code.
|
|
Explosion IRGenFunction::collectParameters() {
|
|
Explosion params(CurExplosionLevel);
|
|
for (auto i = CurFn->arg_begin(), e = CurFn->arg_end(); i != e; ++i)
|
|
params.addUnmanaged(i);
|
|
return params;
|
|
}
|
|
|
|
OwnedAddress IRGenFunction::getAddrForParameter(VarDecl *param,
|
|
Explosion ¶mValues) {
|
|
const TypeInfo ¶mType = IGM.getFragileTypeInfo(param->getType());
|
|
|
|
ExplosionSchema paramSchema(paramValues.getKind());
|
|
paramType.getSchema(paramSchema);
|
|
|
|
Twine name = param->getName().str();
|
|
|
|
// If the parameter is byref, the next parameter is the value we
|
|
// should use.
|
|
if (param->getType()->is<LValueType>()) {
|
|
llvm::Value *addr = paramValues.claimUnmanagedNext();
|
|
addr->setName(name);
|
|
|
|
llvm::Value *owner = IGM.RefCountedNull;
|
|
if (param->getType()->castTo<LValueType>()->isHeap()) {
|
|
owner = paramValues.claimUnmanagedNext();
|
|
owner->setName(name + ".owner");
|
|
enterReleaseCleanup(owner);
|
|
}
|
|
|
|
return OwnedAddress(Address(addr, paramType.StorageAlignment), owner);
|
|
}
|
|
|
|
OnHeap_t onHeap = param->hasFixedLifetime() ? NotOnHeap : OnHeap;
|
|
|
|
// If the schema contains a single aggregate, assume we can
|
|
// just treat the next parameter as that type.
|
|
if (paramSchema.size() == 1 && paramSchema.begin()->isAggregate()) {
|
|
llvm::Value *addr = paramValues.claimUnmanagedNext();
|
|
addr->setName(name);
|
|
addr = Builder.CreateBitCast(addr,
|
|
paramSchema.begin()->getAggregateType()->getPointerTo());
|
|
Address paramAddr(addr, paramType.StorageAlignment);
|
|
|
|
// If we don't locally need the variable on the heap, just use the
|
|
// original address.
|
|
if (!onHeap) {
|
|
// Enter a cleanup to destroy the element.
|
|
if (!paramType.isPOD(ResilienceScope::Local))
|
|
enterDestroyCleanup(paramAddr, paramType);
|
|
|
|
return OwnedAddress(paramAddr, IGM.RefCountedNull);
|
|
}
|
|
|
|
// Otherwise, we have to move it to the heap.
|
|
Initialization paramInit;
|
|
InitializedObject paramObj = paramInit.getObjectForDecl(param);
|
|
paramInit.registerObject(*this, paramObj, OnHeap, paramType);
|
|
|
|
OwnedAddress paramHeapAddr =
|
|
paramInit.emitLocalAllocation(*this, paramObj, OnHeap, paramType,
|
|
name + ".heap");
|
|
|
|
// Do a 'take' initialization to directly transfer responsibility.
|
|
paramType.initializeWithTake(*this, paramHeapAddr, paramAddr);
|
|
paramInit.markInitialized(*this, paramObj);
|
|
|
|
return paramHeapAddr;
|
|
}
|
|
|
|
// Otherwise, make an alloca and load into it.
|
|
Initialization paramInit;
|
|
InitializedObject paramObj = paramInit.getObjectForDecl(param);
|
|
paramInit.registerObject(*this, paramObj, onHeap, paramType);
|
|
|
|
OwnedAddress paramAddr =
|
|
paramInit.emitLocalAllocation(*this, paramObj, onHeap, paramType,
|
|
name + ".addr");
|
|
|
|
// FIXME: This way of getting a list of arguments claimed by storeExplosion
|
|
// is really ugly.
|
|
auto storedStart = paramValues.begin();
|
|
|
|
paramType.initialize(*this, paramValues, paramAddr);
|
|
paramInit.markInitialized(*this, paramObj);
|
|
|
|
// Set names for argument(s)
|
|
for (auto i = storedStart, e = paramValues.begin(); i != e; ++i) {
|
|
if (e - storedStart == 1)
|
|
i->getValue()->setName(name);
|
|
else
|
|
i->getValue()->setName(name + "." + Twine(i - storedStart));
|
|
}
|
|
|
|
return paramAddr;
|
|
}
|
|
|
|
namespace {
|
|
/// A recursive emitter for parameter patterns.
|
|
class ParamPatternEmitter :
|
|
public irgen::PatternVisitor<ParamPatternEmitter> {
|
|
IRGenFunction &IGF;
|
|
Explosion &Args;
|
|
|
|
public:
|
|
ParamPatternEmitter(IRGenFunction &IGF, Explosion &args)
|
|
: IGF(IGF), Args(args) {}
|
|
|
|
void visitTuplePattern(TuplePattern *tuple) {
|
|
for (auto &field : tuple->getFields())
|
|
visit(field.getPattern());
|
|
}
|
|
|
|
void visitNamedPattern(NamedPattern *pattern) {
|
|
VarDecl *decl = pattern->getDecl();
|
|
OwnedAddress addr = IGF.getAddrForParameter(decl, Args);
|
|
|
|
// FIXME: heap byrefs.
|
|
IGF.setLocalVar(decl, addr);
|
|
}
|
|
|
|
void visitAnyPattern(AnyPattern *pattern) {
|
|
unsigned numIgnored =
|
|
IGF.IGM.getExplosionSize(pattern->getType(), Args.getKind());
|
|
Args.claim(numIgnored);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Emit a specific parameter clause.
|
|
static void emitParameterClause(IRGenFunction &IGF, AnyFunctionType *fnType,
|
|
Pattern *param, Explosion &args) {
|
|
assert(param->getType()->isEqual(fnType->getInput()));
|
|
|
|
// Emit the pattern.
|
|
ParamPatternEmitter(IGF, args).visit(param);
|
|
|
|
// If the function type at this level is polymorphic, bind all the
|
|
// archetypes.
|
|
if (auto polyFn = dyn_cast<PolymorphicFunctionType>(fnType))
|
|
emitPolymorphicParameters(IGF, polyFn->getGenericParams(), args);
|
|
}
|
|
|
|
/// Emit all the parameter clauses of the given function type. This
|
|
/// is basically making sure that we have mappings for all the
|
|
/// VarDecls bound by the pattern.
|
|
static void emitParameterClauses(IRGenFunction &IGF,
|
|
Type type,
|
|
llvm::ArrayRef<Pattern*> paramClauses,
|
|
Explosion &args) {
|
|
assert(!paramClauses.empty());
|
|
|
|
AnyFunctionType *fnType = type->castTo<AnyFunctionType>();
|
|
|
|
// When uncurrying, later argument clauses are emitted first.
|
|
if (paramClauses.size() != 1)
|
|
emitParameterClauses(IGF, fnType->getResult(), paramClauses.slice(1), args);
|
|
|
|
// Finally, emit this clause.
|
|
emitParameterClause(IGF, fnType, paramClauses[0], args);
|
|
}
|
|
|
|
/// Emit the prologue for the function.
|
|
void IRGenFunction::emitPrologue() {
|
|
// Set up the IRBuilder.
|
|
llvm::BasicBlock *EntryBB = createBasicBlock("entry");
|
|
assert(CurFn->getBasicBlockList().empty() && "prologue already emitted?");
|
|
CurFn->getBasicBlockList().push_back(EntryBB);
|
|
Builder.SetInsertPoint(EntryBB);
|
|
|
|
// Set up the alloca insertion point.
|
|
AllocaIP = Builder.CreateAlloca(IGM.Int1Ty, /*array size*/ nullptr,
|
|
"alloca point");
|
|
|
|
// That's it for the 'bare' prologue.
|
|
if (CurPrologue == Prologue::Bare)
|
|
return;
|
|
|
|
// Set up the return block and insert it. This creates a second
|
|
// insertion point that most blocks should be inserted before.
|
|
ReturnBB = createBasicBlock("return");
|
|
CurFn->getBasicBlockList().push_back(ReturnBB);
|
|
|
|
// List out the parameter values in an Explosion.
|
|
Explosion values = collectParameters();
|
|
|
|
// Set up the return slot, stealing the first argument if necessary.
|
|
{
|
|
// Find the 'code' result type of this function.
|
|
const TypeInfo &resultType = getResultTypeInfo();
|
|
|
|
ExplosionSchema resultSchema(CurExplosionLevel);
|
|
resultType.getSchema(resultSchema);
|
|
|
|
if (resultSchema.requiresIndirectResult()) {
|
|
ReturnSlot = Address(values.claimUnmanagedNext(),
|
|
resultType.StorageAlignment);
|
|
} else if (resultSchema.empty()) {
|
|
assert(!ReturnSlot.isValid());
|
|
} else {
|
|
// Prepare the return slot. We intentionally do not create
|
|
// a destroy cleanup, because the return slot doesn't really
|
|
// work in the normal way.
|
|
Initialization returnInit;
|
|
auto returnObject = returnInit.getObjectForTemporary();
|
|
returnInit.registerObjectWithoutDestroy(returnObject);
|
|
|
|
// Allocate the slot and leave its allocation cleanup hanging
|
|
// around.
|
|
ReturnSlot = returnInit.emitLocalAllocation(*this, returnObject,
|
|
NotOnHeap, resultType,
|
|
"return_value");
|
|
}
|
|
}
|
|
|
|
// Set up the parameters.
|
|
auto params = CurFuncParamPatterns.slice(0, CurUncurryLevel + 1);
|
|
emitParameterClauses(*this, CurFuncType, params, values);
|
|
|
|
if (CurPrologue == Prologue::StandardWithContext) {
|
|
ContextPtr = values.claimUnmanagedNext();
|
|
ContextPtr->setName(".context");
|
|
enterReleaseCleanup(ContextPtr);
|
|
}
|
|
|
|
assert(values.empty() && "didn't exhaust all parameters?");
|
|
}
|
|
|
|
/// Given an alloca, destroy it if its uses are all stores.
|
|
static void eraseAllocaIfOnlyStoredTo(llvm::AllocaInst *alloca) {
|
|
for (auto i = alloca->use_begin(), e = alloca->use_end(); i != e; ++i) {
|
|
// Check if this use is a store.
|
|
llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(*i);
|
|
if (!store) return;
|
|
assert(i.getOperandNo() == 1 && "address of alloca was taken");
|
|
}
|
|
|
|
// If we got here, all the uses are stores; kill them.
|
|
for (auto i = alloca->use_begin(), e = alloca->use_end(); i != e; ) {
|
|
llvm::StoreInst *store = cast<llvm::StoreInst>(*i);
|
|
++i; // advance now to avoid being invalidated
|
|
|
|
// TODO: maybe clean up the stored value?
|
|
store->eraseFromParent();
|
|
}
|
|
|
|
alloca->eraseFromParent();
|
|
}
|
|
|
|
/// Emit the epilogue for the function.
|
|
void IRGenFunction::emitEpilogue() {
|
|
// Leave the cleanups created for the parameters if we've got a full
|
|
// prologue.
|
|
if (CurPrologue != Prologue::Bare)
|
|
endScope(Cleanups.stable_end());
|
|
|
|
// Destroy the alloca insertion point.
|
|
AllocaIP->eraseFromParent();
|
|
|
|
// That's it for the 'bare' epilogue.
|
|
if (CurPrologue == Prologue::Bare)
|
|
return;
|
|
|
|
// If there are no edges to the return block, we never want to emit it.
|
|
if (ReturnBB->use_empty()) {
|
|
ReturnBB->eraseFromParent();
|
|
|
|
// Normally this means that we'll just insert the epilogue in the
|
|
// current block, but if the current IP is unreachable then so is
|
|
// the entire epilogue.
|
|
if (!Builder.hasValidIP()) return;
|
|
|
|
// Otherwise, branch to it if the current IP is reachable.
|
|
} else if (Builder.hasValidIP()) {
|
|
Builder.CreateBr(ReturnBB);
|
|
Builder.SetInsertPoint(ReturnBB);
|
|
|
|
// Otherwise, if there is exactly one use of the return block, merge
|
|
// it into its predecessor.
|
|
} else if (ReturnBB->hasOneUse()) {
|
|
// return statements are never emitted as conditional branches.
|
|
llvm::BranchInst *Br = cast<llvm::BranchInst>(*ReturnBB->use_begin());
|
|
assert(Br->isUnconditional());
|
|
Builder.SetInsertPoint(Br->getParent());
|
|
Br->eraseFromParent();
|
|
ReturnBB->eraseFromParent();
|
|
|
|
// Otherwise, just move the IP to the return block.
|
|
} else {
|
|
Builder.SetInsertPoint(ReturnBB);
|
|
}
|
|
|
|
const TypeInfo &resultType = getResultTypeInfo();
|
|
ExplosionSchema resultSchema(CurExplosionLevel);
|
|
resultType.getSchema(resultSchema);
|
|
|
|
if (resultSchema.requiresIndirectResult()) {
|
|
assert(isa<llvm::Argument>(ReturnSlot.getAddress()));
|
|
Builder.CreateRetVoid();
|
|
} else if (resultSchema.empty()) {
|
|
assert(!ReturnSlot.isValid());
|
|
Builder.CreateRetVoid();
|
|
} else {
|
|
Explosion result(CurExplosionLevel);
|
|
resultType.loadAsTake(*this, ReturnSlot, result);
|
|
emitScalarReturn(result);
|
|
}
|
|
|
|
// Destroy the unreachable block if it's unused.
|
|
if (UnreachableBB && UnreachableBB->use_empty())
|
|
UnreachableBB->eraseFromParent();
|
|
|
|
// Destroy the jump-destination slot if it's unused.
|
|
// TODO: also destroy it if it's only used for stores.
|
|
if (JumpDestSlot)
|
|
eraseAllocaIfOnlyStoredTo(cast<llvm::AllocaInst>(JumpDestSlot));
|
|
}
|
|
|
|
void IRGenFunction::emitScalarReturn(Explosion &result) {
|
|
if (result.size() == 0) {
|
|
Builder.CreateRetVoid();
|
|
} else if (result.size() == 1) {
|
|
Builder.CreateRet(result.forwardNext(*this));
|
|
} else {
|
|
assert(cast<llvm::StructType>(CurFn->getReturnType())->getNumElements()
|
|
== result.size());
|
|
llvm::Value *resultAgg = llvm::UndefValue::get(CurFn->getReturnType());
|
|
for (unsigned i = 0, e = result.size(); i != e; ++i) {
|
|
llvm::Value *elt = result.forwardNext(*this);
|
|
resultAgg = Builder.CreateInsertValue(resultAgg, elt, i);
|
|
}
|
|
Builder.CreateRet(resultAgg);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class CurriedData {
|
|
IRGenModule &IGM;
|
|
FuncExpr *Func;
|
|
ExplosionKind ExplosionLevel;
|
|
unsigned CurClause;
|
|
|
|
/// The TypeInfos for all the parameters, in the standard
|
|
/// reversed-clause order. To make certain optimizations easier,
|
|
/// only non-empty types are listed. Concatenating the explosion
|
|
/// schemas of these types would give us the signature of the
|
|
/// function.
|
|
llvm::SmallVector<const TypeInfo *, 8> AllDataTypes;
|
|
|
|
struct Clause {
|
|
unsigned DataTypesBeginIndex;
|
|
Type ForwardingFnType;
|
|
};
|
|
|
|
/// The clauses of the function that we're actually going to curry.
|
|
llvm::SmallVector<Clause, 4> Clauses;
|
|
|
|
public:
|
|
CurriedData(IRGenModule &IGM, FuncExpr *funcExpr,
|
|
ExplosionKind explosionLevel,
|
|
unsigned minUncurryLevel,
|
|
unsigned maxUncurryLevel)
|
|
: IGM(IGM), Func(funcExpr), ExplosionLevel(explosionLevel),
|
|
CurClause(minUncurryLevel) {
|
|
accumulateClauses(funcExpr->getType(), maxUncurryLevel);
|
|
}
|
|
|
|
void emitCurriedEntrypoint(llvm::Function *entrypoint,
|
|
llvm::Function *nextEntrypoint) {
|
|
// We need to fill in a function of this type:
|
|
// (A) -> (B -> C)
|
|
// Therefore we need to store all the values in A (no matter how
|
|
// many uncurried arguments they came from) and return a pointer
|
|
// to a function which will expand them back out.
|
|
|
|
// TODO: future optimization: if we have an intermediate
|
|
// currying which adds no data, re-use the old data pointer
|
|
// instead of unpacking and repacking.
|
|
|
|
// TODO: future optimization: if the only data value is a a
|
|
// single retainable object pointer, don't do a layout.
|
|
|
|
// Compute the layout of the data we have now.
|
|
llvm::ArrayRef<const TypeInfo *> dataTypes = AllDataTypes;
|
|
dataTypes = dataTypes.slice(Clauses[CurClause].DataTypesBeginIndex);
|
|
HeapLayout layout(IGM, LayoutStrategy::Optimal, dataTypes);
|
|
|
|
// Create an internal function to serve as the forwarding
|
|
// function (B -> C).
|
|
llvm::Function *forwarder =
|
|
getAddrOfForwardingStub(nextEntrypoint, /*hasData*/ !layout.empty());
|
|
|
|
// Emit the curried entrypoint.
|
|
emitCurriedEntrypointBody(entrypoint, forwarder, layout);
|
|
|
|
// Emit the forwarding stub.
|
|
emitCurriedForwarderBody(forwarder, nextEntrypoint, layout);
|
|
|
|
CurClause++;
|
|
}
|
|
|
|
private:
|
|
/// Decompose all the argument types in the proper order.
|
|
/// This leaves AllDataTypes containing all the types in
|
|
/// the fully-uncurried function type in clause-reversed
|
|
/// order and DataTypesStart containing a reversed stack of
|
|
/// indexes at which to start.
|
|
///
|
|
/// For example, for these inputs:
|
|
/// fnType = (A, B) -> (C, D) -> (E) -> (F) -> G
|
|
/// maxUncurryLevel = 2
|
|
/// we will have these results:
|
|
/// AllDataTypes = [E, C, D, A, B]
|
|
/// DataTypesStart = [ 0, 2, 3 ]
|
|
void accumulateClauses(Type fnType, unsigned maxUncurryLevel) {
|
|
if (maxUncurryLevel == 0) return;
|
|
|
|
unsigned clauseIndex = Clauses.size();
|
|
Clauses.push_back(Clause());
|
|
|
|
AnyFunctionType *fn = cast<AnyFunctionType>(fnType);
|
|
accumulateClauses(fn->getResult(), maxUncurryLevel - 1);
|
|
|
|
Clauses[clauseIndex].DataTypesBeginIndex = AllDataTypes.size();
|
|
Clauses[clauseIndex].ForwardingFnType = fn->getResult();
|
|
|
|
if (auto polyFn = dyn_cast<PolymorphicFunctionType>(fn))
|
|
accumulatePolymorphicSignatureTypes(polyFn);
|
|
accumulateParameterDataTypes(fn->getInput());
|
|
}
|
|
|
|
/// Accumulate the given parameter type.
|
|
void accumulateParameterDataTypes(Type ty) {
|
|
// As an optimization, expand tuples instead of grabbing their TypeInfo.
|
|
if (TupleType *tuple = ty->getAs<TupleType>()) {
|
|
for (const TupleTypeElt &field : tuple->getFields())
|
|
accumulateParameterDataTypes(field.getType());
|
|
return;
|
|
}
|
|
|
|
// Add data for an individual type unless it's known to be empty.
|
|
// This is for layout local to this tunit, so we can use our
|
|
// full knowledge.
|
|
const TypeInfo &type = IGM.getFragileTypeInfo(ty);
|
|
if (!type.isEmpty(ResilienceScope::Local))
|
|
AllDataTypes.push_back(&type);
|
|
}
|
|
|
|
/// Accumulate the polymorphic signature of a function.
|
|
void accumulatePolymorphicSignatureTypes(PolymorphicFunctionType *fn) {
|
|
SmallVector<llvm::Type*, 4> types;
|
|
expandPolymorphicSignature(IGM, fn->getGenericParams(), types);
|
|
assert(!types.empty());
|
|
auto &witnessTablePtrTI = IGM.getWitnessTablePtrTypeInfo();
|
|
for (auto type : types) {
|
|
assert(type == IGM.WitnessTablePtrTy); (void) type;
|
|
AllDataTypes.push_back(&witnessTablePtrTI);
|
|
}
|
|
}
|
|
|
|
/// Create a forwarding stub.
|
|
llvm::Function *getAddrOfForwardingStub(llvm::Function *nextEntrypoint,
|
|
bool hasData) {
|
|
llvm::FunctionType *fnType =
|
|
IGM.getFunctionType(Clauses[CurClause].ForwardingFnType,
|
|
ExplosionLevel, /*uncurry*/ 0, hasData);
|
|
|
|
// Create the function and place it immediately before the next stub.
|
|
llvm::Function *forwarder =
|
|
llvm::Function::Create(fnType, llvm::GlobalValue::InternalLinkage,
|
|
nextEntrypoint->getName() + ".curry");
|
|
forwarder->setCallingConv(getFreestandingConvention(IGM));
|
|
IGM.Module.getFunctionList().insert(nextEntrypoint, forwarder);
|
|
|
|
return forwarder;
|
|
}
|
|
|
|
/// Emit the body of a curried entrypoint, a function of type:
|
|
/// (A, B) -> (C -> D)
|
|
/// which returns a function of type (C -> D) by allocating
|
|
/// an AB_stored_t, copying its parameters into that, and returning
|
|
/// a function value consisting of the pointer to the forwarder
|
|
/// stub and the allocated data.
|
|
void emitCurriedEntrypointBody(llvm::Function *entrypoint,
|
|
llvm::Function *forwarder,
|
|
const HeapLayout &layout) {
|
|
PrettyStackTraceExpr stackTrace(IGM.Context,
|
|
"emitting IR for curried entrypoint to",
|
|
Func);
|
|
|
|
IRGenFunction IGF(IGM, Func->getType(), Func->getParamPatterns(),
|
|
ExplosionLevel, CurClause, entrypoint, Prologue::Bare);
|
|
|
|
Explosion params = IGF.collectParameters();
|
|
|
|
// We're returning a function, so no need to worry about an
|
|
// aggregate return slot.
|
|
|
|
// Compute a data object.
|
|
llvm::Value *data;
|
|
if (layout.empty()) {
|
|
data = IGM.RefCountedNull;
|
|
} else {
|
|
// Allocate a new object. FIXME: if this can throw, we need to
|
|
// do a lot of setup beforehand.
|
|
data = IGF.emitUnmanagedAlloc(layout, "data");
|
|
|
|
Address dataAddr = layout.emitCastOfAlloc(IGF, data);
|
|
|
|
// Perform the store.
|
|
for (auto &fieldLayout : layout.getElements()) {
|
|
Address fieldAddr = fieldLayout.project(IGF, dataAddr);
|
|
fieldLayout.Type->initialize(IGF, params, fieldAddr);
|
|
}
|
|
}
|
|
|
|
// Build the function result.
|
|
llvm::Value *result = llvm::UndefValue::get(IGM.FunctionPairTy);
|
|
result = IGF.Builder.CreateInsertValue(result,
|
|
llvm::ConstantExpr::getBitCast(forwarder, IGM.Int8PtrTy),
|
|
0);
|
|
result = IGF.Builder.CreateInsertValue(result, data, 1);
|
|
|
|
// Return that.
|
|
IGF.Builder.CreateRet(result);
|
|
}
|
|
|
|
/// Emit the body of a forwarder stub, a function of type:
|
|
/// (C -> D)
|
|
/// which accepts an implicit extra data parameter holding
|
|
/// all the previous parameters, and which produces a D by
|
|
/// adding all those parameters to the C parameters just
|
|
/// receiver, then tail-calling the next entrypoint in
|
|
/// the sequence.
|
|
void emitCurriedForwarderBody(llvm::Function *forwarder,
|
|
llvm::Function *nextEntrypoint,
|
|
const HeapLayout &layout) {
|
|
PrettyStackTraceExpr stackTrace(IGM.Context,
|
|
"emitting IR for currying forwarder of",
|
|
Func);
|
|
|
|
IRGenFunction IGF(IGM, Func->getType(), Func->getParamPatterns(),
|
|
ExplosionLevel, CurClause, forwarder, Prologue::Bare);
|
|
|
|
// Accumulate the function's immediate parameters.
|
|
Explosion params = IGF.collectParameters();
|
|
|
|
// If there's a data pointer required, grab it (it's always the
|
|
// last parameter) and load out the extra, previously-curried
|
|
// parameters.
|
|
if (!layout.empty()) {
|
|
llvm::Value *rawData = params.takeLast().getUnmanagedValue();
|
|
Address data = layout.emitCastOfAlloc(IGF, rawData);
|
|
|
|
// Perform the loads.
|
|
for (auto &fieldLayout : layout.getElements()) {
|
|
Address fieldAddr = fieldLayout.project(IGF, data);
|
|
fieldLayout.Type->load(IGF, fieldAddr, params);
|
|
}
|
|
|
|
// Kill the allocated data pointer immediately. The safety of
|
|
// this assumes that neither this release nor any of the loads
|
|
// can throw.
|
|
IGF.emitRelease(rawData);
|
|
}
|
|
|
|
llvm::SmallVector<llvm::Value*, 8> args;
|
|
params.forward(IGF, params.size(), args);
|
|
|
|
llvm::CallSite callSite =
|
|
IGF.emitInvoke(nextEntrypoint->getCallingConv(), nextEntrypoint, args,
|
|
forwarder->getAttributes());
|
|
|
|
llvm::CallInst *call = cast<llvm::CallInst>(callSite.getInstruction());
|
|
call->setTailCall();
|
|
|
|
if (call->getType()->isVoidTy()) {
|
|
IGF.Builder.CreateRetVoid();
|
|
} else {
|
|
IGF.Builder.CreateRet(call);
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Emit a function declaration, starting at the given uncurry level.
|
|
static void emitFunction(IRGenModule &IGM, FuncDecl *func,
|
|
unsigned startingUncurryLevel) {
|
|
// Nothing to do if the function has no body.
|
|
if (!func->getBody()->getBody()) return;
|
|
FuncExpr *funcExpr = func->getBody();
|
|
|
|
// FIXME: support defining currying entrypoints for local functions.
|
|
bool needsData = false;
|
|
|
|
// FIXME: variant currying levels!
|
|
// FIXME: also emit entrypoints with maximal explosion when all types are known!
|
|
unsigned naturalUncurryLevel = getNaturalUncurryLevel(func);
|
|
assert(startingUncurryLevel <= naturalUncurryLevel);
|
|
|
|
ExplosionKind explosionLevel = ExplosionKind::Minimal;
|
|
|
|
// Get the address of the first entrypoint we're going to emit.
|
|
llvm::Function *entrypoint;
|
|
if (Decl *var = func->getGetterDecl()) {
|
|
entrypoint = IGM.getAddrOfGetter(cast<ValueDecl>(var), explosionLevel);
|
|
} else if (Decl *var = func->getSetterDecl()) {
|
|
entrypoint = IGM.getAddrOfSetter(cast<ValueDecl>(var), explosionLevel);
|
|
} else {
|
|
entrypoint = IGM.getAddrOfFunction(func, explosionLevel,
|
|
startingUncurryLevel, needsData);
|
|
}
|
|
|
|
CurriedData curriedData(IGM, funcExpr, explosionLevel,
|
|
startingUncurryLevel, naturalUncurryLevel);
|
|
|
|
// Emit the curried entrypoints. At the end of each iteration,
|
|
// fnAddr will point to the next entrypoint in the currying sequence.
|
|
for (unsigned uncurryLevel = startingUncurryLevel;
|
|
uncurryLevel != naturalUncurryLevel; ++uncurryLevel) {
|
|
llvm::Function *nextEntrypoint =
|
|
IGM.getAddrOfFunction(func, explosionLevel, uncurryLevel + 1,
|
|
needsData);
|
|
|
|
curriedData.emitCurriedEntrypoint(entrypoint, nextEntrypoint);
|
|
|
|
entrypoint = nextEntrypoint;
|
|
}
|
|
|
|
// Finally, emit the uncurried entrypoint.
|
|
PrettyStackTraceDecl stackTrace("emitting IR for", func);
|
|
IRGenFunction(IGM, funcExpr->getType(), funcExpr->getParamPatterns(),
|
|
explosionLevel, naturalUncurryLevel, entrypoint)
|
|
.emitFunctionTopLevel(funcExpr->getBody());
|
|
}
|
|
|
|
/// Emit the definition for the given instance method.
|
|
void IRGenModule::emitInstanceMethod(FuncDecl *func) {
|
|
assert(!func->isStatic());
|
|
unsigned startingUncurry = 1;
|
|
if (dyn_cast_or_null<SubscriptDecl>(func->getGetterOrSetterDecl()))
|
|
startingUncurry++;
|
|
emitFunction(*this, func, startingUncurry);
|
|
}
|
|
|
|
/// Emit the definition for the given static method.
|
|
void IRGenModule::emitStaticMethod(FuncDecl *func) {
|
|
assert(func->isStatic());
|
|
emitFunction(*this, func, 0);
|
|
}
|
|
|
|
/// Emit the definition for the given global function.
|
|
void IRGenModule::emitGlobalFunction(FuncDecl *func) {
|
|
emitFunction(*this, func, 0);
|
|
}
|
|
|
|
/// Emit the code for the top-level of a function.
|
|
void IRGenFunction::emitFunctionTopLevel(BraceStmt *S) {
|
|
emitBraceStmt(S);
|
|
}
|