Files
swift-mirror/stdlib/core/FloatingPoint.swift.gyb
Chris Lattner 8991456ff2 Switch infix/postfix/prefix to be declaration modifiers instead of attributes,
eliminating the @'s from them when used on func's.  This is progress towards
<rdar://problem/17527000> change operator declarations from "operator prefix" to "prefix operator" & make operator a keyword

This also consolidates rejection of custom operator definitions into one
place and makes it consistent, and adds postfix "?" to the list of rejected
operators.

This also changes the demangler to demangle weak/inout/postfix and related things
without the @.



Swift SVN r19929
2014-07-14 15:51:49 +00:00

514 lines
13 KiB
Swift

//===--- FloatingPoint.swift.gyb ------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
%{
#
# Utility code for later in this template
#
# // Bit counts for all floating point types.
# // 80-bit floating point types are only permitted on x86 architectures. This
# // restriction is handled via #if's in the generated code.
allFloatBits = [32, 64, 80]
# Bit counts for all int types
allIntBits = [8, 16, 32, 64, 'Int']
# Number of bits in integer literals.
builtinIntLiteralBits = 2048
# Number of bits in floating point literals.
builtinFloatLiteralBits = 64
def allInts():
for bits in allIntBits:
for signed in False, True:
yield bits,signed
def baseIntName(name):
return 'Int' if name == 'Int' else 'Int' + str(name)
def builtinIntName(name):
return 'Word' if name == 'Int' else 'Int' + str(name)
def intName(name, signed):
return ('' if signed else 'U') + baseIntName(name)
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
def llvmIntrinsicSuffix(bits):
if bits == 32:
return 'f32'
if bits == 64:
return 'f64'
if bits == 80:
return 'f80'
def getInfBitPattern(bits):
if bits == 32:
return '0x7f800000'
if bits == 64:
return '0x7ff0000000000000'
return 'error'
def getQuietNaNBitPattern(bits):
if bits == 32:
return '0x7fc00000'
if bits == 64:
return '0x7ff8000000000000'
return 'error'
def getSignalingNanBitPattern(bits):
if bits == 32:
return '0x7fa00000'
if bits == 64:
return '0x7ff4000000000000'
return 'error'
def getMinNormalBitPattern(bits):
if bits == 32:
return '0x00800000'
if bits == 64:
return '0x0010000000000000'
return 'error'
def getExponentBitCount(bits):
if bits == 32:
return '8'
if bits == 64:
return '11'
return 'error'
def getSignificantBitCount(bits):
if bits == 32:
return '23'
if bits == 64:
return '52'
return 'error'
def getInfinityExponent(bits):
if bits == 32:
return '0xff'
if bits == 64:
return '0x7ff'
return 'error'
}%
% for bits in allFloatBits:
% Self = floatName(bits)
% if bits == 80:
#if arch(i386) || arch(x86_64)
% end
public struct ${Self} {
public var value: Builtin.FPIEEE${bits}
@transparent public
init() {
var zero: Int64 = 0
value = Builtin.uitofp_Int64_FPIEEE${bits}(zero.value)
}
@transparent
init(_ v: Builtin.FPIEEE${bits}) {
value = v
}
@transparent public
init(_ value: ${Self}) { self = value }
}
extension ${Self} : Printable {
public var description: String {
% if bits == 64:
return _doubleToString(self)
% else:
return _doubleToString(Double(self))
% end
}
}
% if bits in allIntBits:
// Not transparent because the compiler crashes in that case.
//@transparent
extension ${Self} : FloatingPointType {
public typealias _BitsType = UInt${bits}
public static func _fromBitPattern(bits: _BitsType) -> ${Self} {
return ${Self}(Builtin.bitcast_Int${bits}_FPIEEE${bits}(bits.value))
}
public func _toBitPattern() -> _BitsType {
return _BitsType(Builtin.bitcast_FPIEEE${bits}_Int${bits}(value))
}
func __getSignBit() -> Int {
return Int(_toBitPattern() >> ${bits - 1}) & 1
}
func __getBiasedExponent() -> _BitsType {
return (_toBitPattern() >> ${getSignificantBitCount(bits)}) & ${getInfinityExponent(bits)}
}
func __getSignificand() -> _BitsType {
var mask: _BitsType = (1 << ${getSignificantBitCount(bits)}) - 1
return _toBitPattern() & mask
}
public static var infinity: ${Self} {
return _fromBitPattern(${getInfBitPattern(bits)})
}
public static var NaN: ${Self} {
return quietNaN
}
public static var quietNaN: ${Self} {
return _fromBitPattern(${getQuietNaNBitPattern(bits)})
}
public var isSignMinus: Bool {
return __getSignBit() == 1
}
public var isNormal: Bool {
var biasedExponent = __getBiasedExponent()
return biasedExponent != ${getInfinityExponent(bits)} &&
biasedExponent != 0
}
public var isFinite: Bool {
return __getBiasedExponent() != ${getInfinityExponent(bits)}
}
public var isZero: Bool {
// Mask out the sign bit.
var mask: _BitsType = (1 << (${bits} - 1)) - 1
return (_toBitPattern() & mask) == 0
}
public var isSubnormal: Bool {
if __getBiasedExponent() == 0 {
return __getSignificand() != 0
}
return false
// Alternative implementation:
// return !isNan() &&
// abs(self) < ${Self}._fromBitPattern(${getMinNormalBitPattern(bits)})
//
// But because we need to check for !isNan(), and do it safely in case of
// SNaN, we need to go down to the bit level, so open-coding the combined
// condition is going to be faster.
}
public var isInfinite: Bool {
if __getBiasedExponent() == ${getInfinityExponent(bits)} {
return __getSignificand() == 0
}
return false
// Alternative implementation that is not safe in case of SNaN:
// return abs(self) == ${Self}.infinity()
}
public var isNaN: Bool {
if __getBiasedExponent() == ${getInfinityExponent(bits)} {
return __getSignificand() != 0
}
return false
// Alternative implementation that is not safe in case of SNaN:
// return self != self
}
public var isSignaling: Bool {
if __getBiasedExponent() == ${getInfinityExponent(bits)} {
// IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded
// with the first bit of the trailing significand being 0. If the first
// bit of the trailing significand field is 0, some other bit of the
// trailing significand field must be non-zero to distinguish the NaN
// from infinity.
var significand = __getSignificand()
if significand != 0 {
return (significand >> (${getSignificantBitCount(bits)} - 1)) == 0
}
}
return false
}
}
// Not @transparent because the function is too complex.
extension ${Self} /* : FloatingPointType */ {
public var floatingPointClass: FloatingPointClassification {
get {
var biasedExponent = __getBiasedExponent()
if biasedExponent == ${getInfinityExponent(bits)} {
var significand = __getSignificand()
// This is either +/-inf or NaN.
if significand == 0 {
return isSignMinus ? .NegativeInfinity : .PositiveInfinity
}
var isQNaN = (significand >> (${getSignificantBitCount(bits)} - 1)) == 1
return isQNaN ? .QuietNaN : .SignalingNaN
}
// OK, the number is finite.
var isMinus = isSignMinus
if biasedExponent != 0 {
return isMinus ? .NegativeNormal : .PositiveNormal
}
// Exponent is zero.
if __getSignificand() == 0 {
return isMinus ? .NegativeZero : .PositiveZero
}
return isMinus ? .NegativeSubnormal : .PositiveSubnormal
}
}
}
% end
@transparent
extension ${Self} : _BuiltinIntegerLiteralConvertible, IntegerLiteralConvertible {
public
static func _convertFromBuiltinIntegerLiteral(value: Builtin.Int${builtinIntLiteralBits}) -> ${Self} {
return ${Self}(Builtin.itofp_with_overflow_Int${builtinIntLiteralBits}_FPIEEE${bits}(value))
}
public static func convertFromIntegerLiteral(value: Int64) -> ${Self} {
return ${Self}(Builtin.uitofp_Int64_FPIEEE${bits}(value.value))
}
}
@transparent
extension ${Self} : _BuiltinFloatLiteralConvertible {
public
static func _convertFromBuiltinFloatLiteral(value: Builtin.FPIEEE${builtinFloatLiteralBits}) -> ${Self} {
% if bits == builtinFloatLiteralBits:
return ${Self}(value)
% elif bits < builtinFloatLiteralBits:
return ${Self}(Builtin.fptrunc_FPIEEE${builtinFloatLiteralBits}_FPIEEE${bits}(value))
% else:
// FIXME: This is actually losing precision <rdar://problem/14073102>.
return ${Self}(Builtin.fpext_FPIEEE${builtinFloatLiteralBits}_FPIEEE${bits}(value))
% end
}
}
@transparent
extension ${Self} : FloatLiteralConvertible {
public static func convertFromFloatLiteral(value: ${Self}) -> ${Self} {
return value
}
}
@transparent public
func ==(lhs: ${Self}, rhs: ${Self}) -> Bool {
return Bool(Builtin.fcmp_oeq_FPIEEE${bits}(lhs.value, rhs.value))
}
@transparent public
func <(lhs: ${Self}, rhs: ${Self}) -> Bool {
return Bool(Builtin.fcmp_olt_FPIEEE${bits}(lhs.value, rhs.value))
}
@transparent
extension ${Self} : Comparable {
}
extension ${Self} : Hashable {
public var hashValue: Int {
var asBuiltinInt = Builtin.bitcast_FPIEEE${bits}_Int${bits}(value)
% if bits >= 64:
return Int(Builtin.truncOrBitCast_Int${bits}_Word(asBuiltinInt))
% elif bits <= 32:
return Int(Builtin.sextOrBitCast_Int${bits}_Word(asBuiltinInt))
% else:
error unhandled float size ${bits}
% end
}
}
@transparent
extension ${Self} : AbsoluteValuable {
@transparent
public static func abs(x: ${Self}) -> ${Self} {
return ${Self}(Builtin.int_fabs_FPIEEE${bits}(x.value))
}
}
@transparent public
prefix func -(x: ${Self}) -> ${Self} {
return ${Self}(Builtin.fneg_FPIEEE${bits}(x.value))
}
//===----------------------------------------------------------------------===//
// Explicit conversions between types.
//===----------------------------------------------------------------------===//
// Construction from integers.
@transparent
extension ${Self} {
% for (srcBits, srcSigned) in allInts():
% That = intName(srcBits, srcSigned)
% ThatBuiltinName = builtinIntName(srcBits)
% sign = 's' if srcSigned else 'u'
public init(_ v: ${That}) {
value = Builtin.${sign}itofp_${ThatBuiltinName}_FPIEEE${bits}(v.value)
}
% end
}
// Construction from other floating point numbers.
@transparent
extension ${Self} {
% for srcBits in allFloatBits:
% That = floatName(srcBits)
% if Self != That:
% if srcBits == 80:
#if arch(i386) || arch(x86_64)
% end
public init(_ v: ${That}) {
% if srcBits > bits:
value = Builtin.fptrunc_FPIEEE${srcBits}_FPIEEE${bits}(v.value)
% else:
value = Builtin.fpext_FPIEEE${srcBits}_FPIEEE${bits}(v.value)
% end
}
% if srcBits == 80:
#endif
% end
% end
% end
}
//===----------------------------------------------------------------------===//
// Standard Operator Table
//===----------------------------------------------------------------------===//
// Unary plus
@transparent public
prefix func + (rhs: ${Self}) -> ${Self} { return rhs }
@transparent @assignment public
prefix func ++ (inout rhs: ${Self}) -> ${Self} { rhs += 1.0; return rhs }
@transparent @assignment public
prefix func -- (inout rhs: ${Self}) -> ${Self} { rhs -= 1.0; return rhs }
@transparent @assignment public
postfix func ++ (inout lhs: ${Self}) -> ${Self} { let tmp = lhs; lhs += 1.0; return tmp }
@transparent @assignment public
postfix func -- (inout lhs: ${Self}) -> ${Self} { let tmp = lhs; lhs -= 1.0; return tmp }
@transparent
extension ${Self} : Strideable {
@transparent public
func distanceTo(other: ${Self}) -> ${Self} {
return other - self
}
@transparent public
func advancedBy(amount: ${Self}) -> ${Self} {
return self + amount
}
}
% for op, name in ('+','fadd'), ('-','fsub'),('*','fmul'), ('/','fdiv'):
@transparent public
func ${op} (lhs: ${Self}, rhs: ${Self}) -> ${Self} {
return ${Self}(Builtin.${name}_FPIEEE${bits}(lhs.value, rhs.value))
}
% end
// Binary Remainder.
// The sign of the result matches the sign of the dividend.
// 1) This is consistent with '%' in C#, D, Java, and JavaScript
// 2) C99 requires this behavior for fmod*()
// 3) C++11 requires this behavior for std::fmod*()
@asmname("_swift_fmod${cFuncSuffix(bits)}") public
func % (lhs: ${Self}, rhs: ${Self}) -> ${Self}
// See Bool.swift for && and ||
// In C, 120 is &&
// In C, 110 is ||
// In C, 100 is ?:
// In C, 90 is =, *=, += etc.
% for op in '+', '-', '*', '/', '%':
@transparent @assignment public
func ${op}= (inout lhs: ${Self}, rhs: ${Self}) { lhs = lhs ${op} rhs }
% end
% if bits == 80:
#endif
% end
% end # for bits in allFloatBits
// Construction of integers from floating point numbers.
% for (bits, signed) in allInts():
% sign = 's' if signed else 'u'
% Self = intName(bits, signed)
% BuiltinName = builtinIntName(bits)
@transparent
extension ${Self} {
% for srcBits in allFloatBits:
% That = floatName(srcBits)
% if srcBits == 80:
#if arch(i386) || arch(x86_64)
% end
public init(_ v: ${That}) {
_precondition(v >= ${That}(${Self}.min),
"floating point value can not be converted to ${Self} because it is greater than ${Self}.min")
_precondition(v <= ${That}(${Self}.max),
"floating point value can not be converted to ${Self} because it is less than ${Self}.min")
value = Builtin.fpto${sign}i_FPIEEE${srcBits}_${BuiltinName}(v.value)
}
% if srcBits == 80:
#endif
% end
% end
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: