mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
And clean up code that conditionally works only with certain kinds of archetype along the way.
3835 lines
140 KiB
C++
3835 lines
140 KiB
C++
//===--- ConstraintSystem.h - Constraint-based Type Checking ----*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides the constraint-based type checker, anchored by the
|
|
// \c ConstraintSystem class, which provides type checking and type
|
|
// inference for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef SWIFT_SEMA_CONSTRAINT_SYSTEM_H
|
|
#define SWIFT_SEMA_CONSTRAINT_SYSTEM_H
|
|
|
|
#include "CSFix.h"
|
|
#include "Constraint.h"
|
|
#include "ConstraintGraph.h"
|
|
#include "ConstraintGraphScope.h"
|
|
#include "ConstraintLocator.h"
|
|
#include "OverloadChoice.h"
|
|
#include "TypeChecker.h"
|
|
#include "swift/Basic/LLVM.h"
|
|
#include "swift/Basic/OptionSet.h"
|
|
#include "swift/AST/ASTVisitor.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/TypeCheckerDebugConsumer.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstddef>
|
|
#include <functional>
|
|
|
|
namespace swift {
|
|
|
|
class Expr;
|
|
|
|
namespace constraints {
|
|
|
|
class ConstraintGraph;
|
|
class ConstraintGraphNode;
|
|
class ConstraintSystem;
|
|
|
|
} // end namespace constraints
|
|
|
|
} // end namespace swift
|
|
|
|
/// Allocate memory within the given constraint system.
|
|
void *operator new(size_t bytes, swift::constraints::ConstraintSystem& cs,
|
|
size_t alignment = 8);
|
|
|
|
namespace swift {
|
|
|
|
namespace constraints {
|
|
|
|
/// A handle that holds the saved state of a type variable, which
|
|
/// can be restored.
|
|
class SavedTypeVariableBinding {
|
|
/// The type variable and type variable options.
|
|
llvm::PointerIntPair<TypeVariableType *, 3> TypeVarAndOptions;
|
|
|
|
/// The parent or fixed type.
|
|
llvm::PointerUnion<TypeVariableType *, TypeBase *> ParentOrFixed;
|
|
|
|
public:
|
|
explicit SavedTypeVariableBinding(TypeVariableType *typeVar);
|
|
|
|
/// Restore the state of the type variable to the saved state.
|
|
void restore();
|
|
|
|
TypeVariableType *getTypeVariable() { return TypeVarAndOptions.getPointer(); }
|
|
unsigned getOptions() { return TypeVarAndOptions.getInt(); }
|
|
};
|
|
|
|
/// A set of saved type variable bindings.
|
|
using SavedTypeVariableBindings = SmallVector<SavedTypeVariableBinding, 16>;
|
|
|
|
class ConstraintLocator;
|
|
|
|
/// Describes a conversion restriction or a fix.
|
|
struct RestrictionOrFix {
|
|
union {
|
|
ConversionRestrictionKind Restriction;
|
|
ConstraintFix *TheFix;
|
|
};
|
|
bool IsRestriction;
|
|
|
|
public:
|
|
RestrictionOrFix(ConversionRestrictionKind restriction)
|
|
: Restriction(restriction), IsRestriction(true) { }
|
|
|
|
RestrictionOrFix(ConstraintFix *fix) : TheFix(fix), IsRestriction(false) {}
|
|
|
|
Optional<ConversionRestrictionKind> getRestriction() const {
|
|
if (IsRestriction)
|
|
return Restriction;
|
|
|
|
return None;
|
|
}
|
|
|
|
Optional<ConstraintFix *> getFix() const {
|
|
if (!IsRestriction)
|
|
return TheFix;
|
|
|
|
return None;
|
|
}
|
|
};
|
|
|
|
|
|
class ExpressionTimer {
|
|
Expr* E;
|
|
unsigned WarnLimit;
|
|
ASTContext &Context;
|
|
llvm::TimeRecord StartTime;
|
|
|
|
bool PrintDebugTiming;
|
|
bool PrintWarning;
|
|
|
|
public:
|
|
ExpressionTimer(Expr *E, ConstraintSystem &CS);
|
|
|
|
~ExpressionTimer();
|
|
|
|
llvm::TimeRecord startedAt() const { return StartTime; }
|
|
|
|
/// Return the elapsed process time (including fractional seconds)
|
|
/// as a double.
|
|
double getElapsedProcessTimeInFractionalSeconds() const {
|
|
llvm::TimeRecord endTime = llvm::TimeRecord::getCurrentTime(false);
|
|
|
|
return endTime.getProcessTime() - StartTime.getProcessTime();
|
|
}
|
|
|
|
// Disable emission of warnings about expressions that take longer
|
|
// than the warning threshold.
|
|
void disableWarning() { PrintWarning = false; }
|
|
|
|
bool isExpired(unsigned thresholdInMillis) const {
|
|
auto elapsed = getElapsedProcessTimeInFractionalSeconds();
|
|
return unsigned(elapsed) > thresholdInMillis;
|
|
}
|
|
};
|
|
|
|
} // end namespace constraints
|
|
|
|
/// Options that describe how a type variable can be used.
|
|
enum TypeVariableOptions {
|
|
/// Whether the type variable can be bound to an lvalue type or not.
|
|
TVO_CanBindToLValue = 0x01,
|
|
|
|
/// Whether the type variable can be bound to an inout type or not.
|
|
TVO_CanBindToInOut = 0x02,
|
|
|
|
/// Whether a more specific deduction for this type variable implies a
|
|
/// better solution to the constraint system.
|
|
TVO_PrefersSubtypeBinding = 0x04
|
|
};
|
|
|
|
/// The implementation object for a type variable used within the
|
|
/// constraint-solving type checker.
|
|
///
|
|
/// The implementation object for a type variable contains information about
|
|
/// the type variable, where it was generated, what protocols it must conform
|
|
/// to, what specific types it might be and, eventually, the fixed type to
|
|
/// which it is assigned.
|
|
class TypeVariableType::Implementation {
|
|
/// The locator that describes where this type variable was generated.
|
|
constraints::ConstraintLocator *locator;
|
|
|
|
/// Either the parent of this type variable within an equivalence
|
|
/// class of type variables, or the fixed type to which this type variable
|
|
/// type is bound.
|
|
llvm::PointerUnion<TypeVariableType *, TypeBase *> ParentOrFixed;
|
|
|
|
/// The corresponding node in the constraint graph.
|
|
constraints::ConstraintGraphNode *GraphNode = nullptr;
|
|
|
|
friend class constraints::SavedTypeVariableBinding;
|
|
|
|
public:
|
|
/// Retrieve the type variable associated with this implementation.
|
|
TypeVariableType *getTypeVariable() {
|
|
return reinterpret_cast<TypeVariableType *>(this) - 1;
|
|
}
|
|
|
|
/// Retrieve the type variable associated with this implementation.
|
|
const TypeVariableType *getTypeVariable() const {
|
|
return reinterpret_cast<const TypeVariableType *>(this) - 1;
|
|
}
|
|
|
|
explicit Implementation(constraints::ConstraintLocator *locator,
|
|
unsigned options)
|
|
: locator(locator), ParentOrFixed(getTypeVariable()) {
|
|
getTypeVariable()->Bits.TypeVariableType.Options = options;
|
|
}
|
|
|
|
/// Retrieve the unique ID corresponding to this type variable.
|
|
unsigned getID() const { return getTypeVariable()->getID(); }
|
|
|
|
unsigned getRawOptions() const {
|
|
return getTypeVariable()->Bits.TypeVariableType.Options;
|
|
}
|
|
|
|
void setRawOptions(unsigned bits) {
|
|
getTypeVariable()->Bits.TypeVariableType.Options = bits;
|
|
assert(getTypeVariable()->Bits.TypeVariableType.Options == bits
|
|
&& "Trucation");
|
|
}
|
|
|
|
/// Whether this type variable can bind to an lvalue type.
|
|
bool canBindToLValue() const { return getRawOptions() & TVO_CanBindToLValue; }
|
|
|
|
/// Whether this type variable can bind to an inout type.
|
|
bool canBindToInOut() const { return getRawOptions() & TVO_CanBindToInOut; }
|
|
|
|
/// Whether this type variable prefers a subtype binding over a supertype
|
|
/// binding.
|
|
bool prefersSubtypeBinding() const {
|
|
return getRawOptions() & TVO_PrefersSubtypeBinding;
|
|
}
|
|
|
|
bool mustBeMaterializable() const {
|
|
return !(getRawOptions() & TVO_CanBindToInOut) &&
|
|
!(getRawOptions() & TVO_CanBindToLValue);
|
|
}
|
|
|
|
/// Retrieve the corresponding node in the constraint graph.
|
|
constraints::ConstraintGraphNode *getGraphNode() const { return GraphNode; }
|
|
|
|
/// Set the corresponding node in the constraint graph.
|
|
void setGraphNode(constraints::ConstraintGraphNode *newNode) {
|
|
GraphNode = newNode;
|
|
}
|
|
|
|
/// Retrieve the index into the constraint graph's list of type variables.
|
|
unsigned getGraphIndex() const {
|
|
assert(GraphNode && "Graph node isn't set");
|
|
return getTypeVariable()->Bits.TypeVariableType.GraphIndex;
|
|
}
|
|
|
|
/// Set the index into the constraint graph's list of type variables.
|
|
void setGraphIndex(unsigned newIndex) {
|
|
getTypeVariable()->Bits.TypeVariableType.GraphIndex = newIndex;
|
|
}
|
|
|
|
/// Check whether this type variable either has a representative that
|
|
/// is not itself or has a fixed type binding.
|
|
bool hasRepresentativeOrFixed() const {
|
|
// If we have a fixed type, we're done.
|
|
if (!ParentOrFixed.is<TypeVariableType *>())
|
|
return true;
|
|
|
|
// Check whether the representative is different from our own type
|
|
// variable.
|
|
return ParentOrFixed.get<TypeVariableType *>() != getTypeVariable();
|
|
}
|
|
|
|
/// Record the current type-variable binding.
|
|
void recordBinding(constraints::SavedTypeVariableBindings &record) {
|
|
record.push_back(constraints::SavedTypeVariableBinding(getTypeVariable()));
|
|
}
|
|
|
|
/// Retrieve the locator describing where this type variable was
|
|
/// created.
|
|
constraints::ConstraintLocator *getLocator() const {
|
|
return locator;
|
|
}
|
|
|
|
/// Retrieve the generic parameter opened by this type variable.
|
|
GenericTypeParamType *getGenericParameter() const;
|
|
|
|
/// Retrieve the representative of the equivalence class to which this
|
|
/// type variable belongs.
|
|
///
|
|
/// \param record The record of changes made by retrieving the representative,
|
|
/// which can happen due to path compression. If null, path compression is
|
|
/// not performed.
|
|
TypeVariableType *
|
|
getRepresentative(constraints::SavedTypeVariableBindings *record) {
|
|
// Find the representative type variable.
|
|
auto result = getTypeVariable();
|
|
Implementation *impl = this;
|
|
while (impl->ParentOrFixed.is<TypeVariableType *>()) {
|
|
// Extract the representative.
|
|
auto nextTV = impl->ParentOrFixed.get<TypeVariableType *>();
|
|
if (nextTV == result)
|
|
break;
|
|
|
|
result = nextTV;
|
|
impl = &nextTV->getImpl();
|
|
}
|
|
|
|
if (impl == this || !record)
|
|
return result;
|
|
|
|
// Perform path compression.
|
|
impl = this;
|
|
while (impl->ParentOrFixed.is<TypeVariableType *>()) {
|
|
// Extract the representative.
|
|
auto nextTV = impl->ParentOrFixed.get<TypeVariableType *>();
|
|
if (nextTV == result)
|
|
break;
|
|
|
|
// Record the state change.
|
|
impl->recordBinding(*record);
|
|
|
|
impl->ParentOrFixed = result;
|
|
impl = &nextTV->getImpl();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Merge the equivalence class of this type variable with the
|
|
/// equivalence class of another type variable.
|
|
///
|
|
/// \param other The type variable to merge with.
|
|
///
|
|
/// \param record The record of state changes.
|
|
void mergeEquivalenceClasses(TypeVariableType *other,
|
|
constraints::SavedTypeVariableBindings *record) {
|
|
// Merge the equivalence classes corresponding to these two type
|
|
// variables. Always merge 'up' the constraint stack, because it is simpler.
|
|
if (getID() > other->getImpl().getID()) {
|
|
other->getImpl().mergeEquivalenceClasses(getTypeVariable(), record);
|
|
return;
|
|
}
|
|
|
|
auto otherRep = other->getImpl().getRepresentative(record);
|
|
if (record)
|
|
otherRep->getImpl().recordBinding(*record);
|
|
otherRep->getImpl().ParentOrFixed = getTypeVariable();
|
|
if (!mustBeMaterializable() && otherRep->getImpl().mustBeMaterializable()) {
|
|
if (record)
|
|
recordBinding(*record);
|
|
getTypeVariable()->Bits.TypeVariableType.Options &= ~TVO_CanBindToLValue;
|
|
getTypeVariable()->Bits.TypeVariableType.Options &= ~TVO_CanBindToInOut;
|
|
}
|
|
}
|
|
|
|
/// Retrieve the fixed type that corresponds to this type variable,
|
|
/// if there is one.
|
|
///
|
|
/// \returns the fixed type associated with this type variable, or a null
|
|
/// type if there is no fixed type.
|
|
///
|
|
/// \param record The record of changes made by retrieving the representative,
|
|
/// which can happen due to path compression. If null, path compression is
|
|
/// not performed.
|
|
Type getFixedType(constraints::SavedTypeVariableBindings *record) {
|
|
// Find the representative type variable.
|
|
auto rep = getRepresentative(record);
|
|
Implementation &repImpl = rep->getImpl();
|
|
|
|
// Return the bound type if there is one, otherwise, null.
|
|
return repImpl.ParentOrFixed.dyn_cast<TypeBase *>();
|
|
}
|
|
|
|
/// Assign a fixed type to this equivalence class.
|
|
void assignFixedType(Type type,
|
|
constraints::SavedTypeVariableBindings *record) {
|
|
assert((!getFixedType(0) || getFixedType(0)->isEqual(type)) &&
|
|
"Already has a fixed type!");
|
|
auto rep = getRepresentative(record);
|
|
if (record)
|
|
rep->getImpl().recordBinding(*record);
|
|
rep->getImpl().ParentOrFixed = type.getPointer();
|
|
}
|
|
|
|
void setMustBeMaterializable(constraints::SavedTypeVariableBindings *record) {
|
|
auto rep = getRepresentative(record);
|
|
if (!rep->getImpl().mustBeMaterializable()) {
|
|
if (record)
|
|
rep->getImpl().recordBinding(*record);
|
|
rep->getImpl().getTypeVariable()->Bits.TypeVariableType.Options
|
|
&= ~TVO_CanBindToLValue;
|
|
rep->getImpl().getTypeVariable()->Bits.TypeVariableType.Options
|
|
&= ~TVO_CanBindToInOut;
|
|
}
|
|
}
|
|
|
|
/// Print the type variable to the given output stream.
|
|
void print(llvm::raw_ostream &OS);
|
|
};
|
|
|
|
namespace constraints {
|
|
|
|
struct ResolvedOverloadSetListItem;
|
|
|
|
/// The result of comparing two constraint systems that are a solutions
|
|
/// to the given set of constraints.
|
|
enum class SolutionCompareResult {
|
|
/// The two solutions are incomparable, because, e.g., because one
|
|
/// solution has some better decisions and some worse decisions than the
|
|
/// other.
|
|
Incomparable,
|
|
/// The two solutions are identical.
|
|
Identical,
|
|
/// The first solution is better than the second.
|
|
Better,
|
|
/// The second solution is better than the first.
|
|
Worse
|
|
};
|
|
|
|
/// An overload that has been selected in a particular solution.
|
|
///
|
|
/// A selected overload captures the specific overload choice (e.g., a
|
|
/// particular declaration) as well as the type to which the reference to the
|
|
/// declaration was opened, which may involve type variables.
|
|
struct SelectedOverload {
|
|
/// The overload choice.
|
|
OverloadChoice choice;
|
|
|
|
/// The opened type of the base of the reference to this overload, if
|
|
/// we're referencing a member.
|
|
Type openedFullType;
|
|
|
|
/// The opened type produced by referring to this overload.
|
|
Type openedType;
|
|
};
|
|
|
|
/// Describes an aspect of a solution that affects its overall score, i.e., a
|
|
/// user-defined conversions.
|
|
enum ScoreKind {
|
|
// These values are used as indices into a Score value.
|
|
|
|
/// A fix needs to be applied to the source.
|
|
SK_Fix,
|
|
/// A reference to an @unavailable declaration.
|
|
SK_Unavailable,
|
|
/// An implicit force of an implicitly unwrapped optional value.
|
|
SK_ForceUnchecked,
|
|
/// A user-defined conversion.
|
|
SK_UserConversion,
|
|
/// A non-trivial function conversion.
|
|
SK_FunctionConversion,
|
|
/// A literal expression bound to a non-default literal type.
|
|
SK_NonDefaultLiteral,
|
|
/// An implicit upcast conversion between collection types.
|
|
SK_CollectionUpcastConversion,
|
|
/// A value-to-optional conversion.
|
|
SK_ValueToOptional,
|
|
/// A conversion to an empty existential type ('Any' or '{}').
|
|
SK_EmptyExistentialConversion,
|
|
/// A key path application subscript.
|
|
SK_KeyPathSubscript,
|
|
/// A conversion from a string, array, or inout to a pointer.
|
|
SK_ValueToPointerConversion,
|
|
|
|
SK_LastScoreKind = SK_ValueToPointerConversion,
|
|
};
|
|
|
|
/// The number of score kinds.
|
|
const unsigned NumScoreKinds = SK_LastScoreKind + 1;
|
|
|
|
/// Describes the fixed score of a solution to the constraint system.
|
|
struct Score {
|
|
unsigned Data[NumScoreKinds] = {};
|
|
|
|
friend Score &operator+=(Score &x, const Score &y) {
|
|
for (unsigned i = 0; i != NumScoreKinds; ++i) {
|
|
x.Data[i] += y.Data[i];
|
|
}
|
|
return x;
|
|
}
|
|
|
|
friend Score operator+(const Score &x, const Score &y) {
|
|
Score result;
|
|
for (unsigned i = 0; i != NumScoreKinds; ++i) {
|
|
result.Data[i] = x.Data[i] + y.Data[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
friend Score operator-(const Score &x, const Score &y) {
|
|
Score result;
|
|
for (unsigned i = 0; i != NumScoreKinds; ++i) {
|
|
result.Data[i] = x.Data[i] - y.Data[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
friend Score &operator-=(Score &x, const Score &y) {
|
|
for (unsigned i = 0; i != NumScoreKinds; ++i) {
|
|
x.Data[i] -= y.Data[i];
|
|
}
|
|
return x;
|
|
}
|
|
|
|
friend bool operator==(const Score &x, const Score &y) {
|
|
for (unsigned i = 0; i != NumScoreKinds; ++i) {
|
|
if (x.Data[i] != y.Data[i])
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
friend bool operator!=(const Score &x, const Score &y) {
|
|
return !(x == y);
|
|
}
|
|
|
|
friend bool operator<(const Score &x, const Score &y) {
|
|
for (unsigned i = 0; i != NumScoreKinds; ++i) {
|
|
if (x.Data[i] < y.Data[i])
|
|
return true;
|
|
|
|
if (x.Data[i] > y.Data[i])
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
friend bool operator<=(const Score &x, const Score &y) {
|
|
return !(y < x);
|
|
}
|
|
|
|
friend bool operator>(const Score &x, const Score &y) {
|
|
return y < x;
|
|
}
|
|
|
|
friend bool operator>=(const Score &x, const Score &y) {
|
|
return !(x < y);
|
|
}
|
|
|
|
};
|
|
|
|
/// Display a score.
|
|
llvm::raw_ostream &operator<<(llvm::raw_ostream &out, const Score &score);
|
|
|
|
/// Describes a dependent type that has been opened to a particular type
|
|
/// variable.
|
|
using OpenedType = std::pair<GenericTypeParamType *, TypeVariableType *>;
|
|
|
|
using OpenedTypeMap =
|
|
llvm::DenseMap<GenericTypeParamType *, TypeVariableType *>;
|
|
|
|
/// A complete solution to a constraint system.
|
|
///
|
|
/// A solution to a constraint system consists of type variable bindings to
|
|
/// concrete types for every type variable that is used in the constraint
|
|
/// system along with a set of mappings from each constraint locator
|
|
/// involving an overload set to the selected overload.
|
|
class Solution {
|
|
/// The constraint system this solution solves.
|
|
ConstraintSystem *constraintSystem;
|
|
|
|
/// The fixed score for this solution.
|
|
Score FixedScore;
|
|
|
|
public:
|
|
/// Create a solution for the given constraint system.
|
|
Solution(ConstraintSystem &cs, const Score &score)
|
|
: constraintSystem(&cs), FixedScore(score) {}
|
|
|
|
// Solution is a non-copyable type for performance reasons.
|
|
Solution(const Solution &other) = delete;
|
|
Solution &operator=(const Solution &other) = delete;
|
|
|
|
Solution(Solution &&other) = default;
|
|
Solution &operator=(Solution &&other) = default;
|
|
|
|
size_t getTotalMemory() const;
|
|
|
|
/// Retrieve the constraint system that this solution solves.
|
|
ConstraintSystem &getConstraintSystem() const { return *constraintSystem; }
|
|
|
|
/// The set of type bindings.
|
|
llvm::SmallDenseMap<TypeVariableType *, Type> typeBindings;
|
|
|
|
/// The set of overload choices along with their types.
|
|
llvm::SmallDenseMap<ConstraintLocator *, SelectedOverload> overloadChoices;
|
|
|
|
/// The set of constraint restrictions used to arrive at this restriction,
|
|
/// which informs constraint application.
|
|
llvm::SmallDenseMap<std::pair<CanType, CanType>, ConversionRestrictionKind>
|
|
ConstraintRestrictions;
|
|
|
|
/// The list of fixes that need to be applied to the initial expression
|
|
/// to make the solution work.
|
|
llvm::SmallVector<ConstraintFix *, 4> Fixes;
|
|
|
|
/// The set of disjunction choices used to arrive at this solution,
|
|
/// which informs constraint application.
|
|
llvm::SmallDenseMap<ConstraintLocator *, unsigned> DisjunctionChoices;
|
|
|
|
/// The set of opened types for a given locator.
|
|
llvm::SmallDenseMap<ConstraintLocator *, ArrayRef<OpenedType>> OpenedTypes;
|
|
|
|
/// The opened existential type for a given locator.
|
|
llvm::SmallDenseMap<ConstraintLocator *, OpenedArchetypeType *>
|
|
OpenedExistentialTypes;
|
|
|
|
/// The locators of \c Defaultable constraints whose defaults were used.
|
|
llvm::SmallPtrSet<ConstraintLocator *, 8> DefaultedConstraints;
|
|
|
|
llvm::SmallVector<std::pair<ConstraintLocator *, ProtocolConformanceRef>, 8>
|
|
Conformances;
|
|
|
|
/// Simplify the given type by substituting all occurrences of
|
|
/// type variables for their fixed types.
|
|
Type simplifyType(Type type) const;
|
|
|
|
/// Coerce the given expression to the given type.
|
|
///
|
|
/// This operation cannot fail.
|
|
///
|
|
/// \param expr The expression to coerce.
|
|
/// \param toType The type to coerce the expression to.
|
|
/// \param locator Locator used to describe the location of this expression.
|
|
///
|
|
/// \param ignoreTopLevelInjection Whether to suppress diagnostics
|
|
/// on a suspicious top-level optional injection (because the caller already
|
|
/// diagnosed it).
|
|
///
|
|
/// \param typeFromPattern Optionally, the caller can specify the pattern
|
|
/// from where the toType is derived, so that we can deliver better fixit.
|
|
///
|
|
/// \returns the coerced expression, which will have type \c ToType.
|
|
Expr *coerceToType(Expr *expr, Type toType,
|
|
ConstraintLocator *locator,
|
|
bool ignoreTopLevelInjection = false,
|
|
Optional<Pattern*> typeFromPattern = None) const;
|
|
|
|
/// Convert the given expression to a logic value.
|
|
///
|
|
/// This operation cannot fail.
|
|
///
|
|
/// \param expr The expression to coerce. The type of this expression
|
|
/// must conform to the LogicValue protocol.
|
|
///
|
|
/// \param locator Locator used to describe the location of this expression.
|
|
///
|
|
/// \returns the expression converted to a logic value (Builtin i1).
|
|
Expr *convertBooleanTypeToBuiltinI1(Expr *expr,
|
|
ConstraintLocator *locator) const;
|
|
|
|
/// Convert the given optional-producing expression to a Bool
|
|
/// indicating whether the optional has a value.
|
|
///
|
|
/// This operation cannot fail.
|
|
///
|
|
/// \param expr The expression to coerce. The type of this expression
|
|
/// must be T?.
|
|
///
|
|
/// \param locator Locator used to describe the location of this expression.
|
|
///
|
|
/// \returns a Bool expression indicating whether the optional
|
|
/// contains a value.
|
|
Expr *convertOptionalToBool(Expr *expr, ConstraintLocator *locator) const;
|
|
|
|
/// Compute the set of substitutions for a generic signature opened at the
|
|
/// given locator.
|
|
///
|
|
/// \param sig The generic signature.
|
|
///
|
|
/// \param locator The locator that describes where the substitutions came
|
|
/// from.
|
|
SubstitutionMap computeSubstitutions(GenericSignature *sig,
|
|
ConstraintLocatorBuilder locator) const;
|
|
|
|
/// Return the disjunction choice for the given constraint location.
|
|
unsigned getDisjunctionChoice(ConstraintLocator *locator) const {
|
|
assert(DisjunctionChoices.count(locator));
|
|
return DisjunctionChoices.find(locator)->second;
|
|
}
|
|
|
|
/// Retrieve the fixed score of this solution
|
|
const Score &getFixedScore() const { return FixedScore; }
|
|
|
|
/// Retrieve the fixed score of this solution
|
|
Score &getFixedScore() { return FixedScore; }
|
|
|
|
/// Retrieve the fixed type for the given type variable.
|
|
Type getFixedType(TypeVariableType *typeVar) const;
|
|
|
|
/// Try to resolve the given locator to a declaration within this
|
|
/// solution.
|
|
ConcreteDeclRef resolveLocatorToDecl(ConstraintLocator *locator) const;
|
|
|
|
/// Retrieve the overload choice associated with the given
|
|
/// locator.
|
|
SelectedOverload getOverloadChoice(ConstraintLocator *locator) const {
|
|
return *getOverloadChoiceIfAvailable(locator);
|
|
}
|
|
|
|
/// Retrieve the overload choice associated with the given
|
|
/// locator.
|
|
Optional<SelectedOverload>
|
|
getOverloadChoiceIfAvailable(ConstraintLocator *locator) const {
|
|
auto known = overloadChoices.find(locator);
|
|
if (known != overloadChoices.end())
|
|
return known->second;
|
|
return None;
|
|
}
|
|
|
|
/// Retrieve overload choices associated with given expression.
|
|
void getOverloadChoices(Expr *anchor,
|
|
SmallVectorImpl<SelectedOverload> &overloads) const {
|
|
for (auto &e : overloadChoices) {
|
|
auto *locator = e.first;
|
|
if (locator->getAnchor() == anchor)
|
|
overloads.push_back(e.second);
|
|
}
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_DEPRECATED(
|
|
void dump() const LLVM_ATTRIBUTE_USED,
|
|
"only for use within the debugger");
|
|
|
|
/// Dump this solution.
|
|
void dump(raw_ostream &OS) const LLVM_ATTRIBUTE_USED;
|
|
};
|
|
|
|
/// Describes the differences between several solutions to the same
|
|
/// constraint system.
|
|
class SolutionDiff {
|
|
public:
|
|
/// A difference between two overloads.
|
|
struct OverloadDiff {
|
|
/// The locator that describes where the overload comes from.
|
|
ConstraintLocator *locator;
|
|
|
|
/// The choices that each solution made.
|
|
SmallVector<OverloadChoice, 2> choices;
|
|
};
|
|
|
|
/// A difference between two type variable bindings.
|
|
struct TypeBindingDiff {
|
|
/// The type variable.
|
|
TypeVariableType *typeVar;
|
|
|
|
/// The bindings that each solution made.
|
|
SmallVector<Type, 2> bindings;
|
|
};
|
|
|
|
/// The differences between the overload choices between the
|
|
/// solutions.
|
|
SmallVector<OverloadDiff, 4> overloads;
|
|
|
|
/// The differences between the type variable bindings of the
|
|
/// solutions.
|
|
SmallVector<TypeBindingDiff, 4> typeBindings;
|
|
|
|
/// Compute the differences between the given set of solutions.
|
|
///
|
|
/// \param solutions The set of solutions.
|
|
explicit SolutionDiff(ArrayRef<Solution> solutions);
|
|
};
|
|
|
|
/// Describes one resolved overload set within the list of overload sets
|
|
/// resolved by the solver.
|
|
struct ResolvedOverloadSetListItem {
|
|
/// The previously resolved overload set in the list.
|
|
ResolvedOverloadSetListItem *Previous;
|
|
|
|
/// The type that this overload binds.
|
|
Type BoundType;
|
|
|
|
/// The overload choice.
|
|
OverloadChoice Choice;
|
|
|
|
/// The locator for this choice.
|
|
ConstraintLocator *Locator;
|
|
|
|
/// The type of the fully-opened base, if any.
|
|
Type OpenedFullType;
|
|
|
|
/// The type of the referenced choice.
|
|
Type ImpliedType;
|
|
|
|
// Make vanilla new/delete illegal for overload set items.
|
|
void *operator new(size_t Bytes) = delete;
|
|
void operator delete(void *Data) = delete;
|
|
|
|
// Only allow allocation of list items using the allocator in the
|
|
// constraint system.
|
|
void *operator new(size_t bytes, ConstraintSystem &cs,
|
|
unsigned alignment
|
|
= alignof(ResolvedOverloadSetListItem));
|
|
};
|
|
|
|
|
|
|
|
/// Identifies a specific conversion from
|
|
struct SpecificConstraint {
|
|
CanType First;
|
|
CanType Second;
|
|
ConstraintKind Kind;
|
|
};
|
|
|
|
/// An intrusive, doubly-linked list of constraints.
|
|
using ConstraintList = llvm::ilist<Constraint>;
|
|
|
|
enum class ConstraintSystemFlags {
|
|
/// Whether we allow the solver to attempt fixes to the system.
|
|
AllowFixes = 0x01,
|
|
|
|
/// If set, this is going to prevent constraint system from erasing all
|
|
/// discovered solutions except the best one.
|
|
ReturnAllDiscoveredSolutions = 0x04,
|
|
|
|
/// Set if the client wants diagnostics suppressed.
|
|
SuppressDiagnostics = 0x08,
|
|
|
|
/// If set, the client wants a best-effort solution to the constraint system,
|
|
/// but can tolerate a solution where all of the constraints are solved, but
|
|
/// not all type variables have been determined. In this case, the constraint
|
|
/// system is not applied to the expression AST, but the ConstraintSystem is
|
|
/// left in-tact.
|
|
AllowUnresolvedTypeVariables = 0x10,
|
|
|
|
/// If set, constraint system always reuses type of pre-typechecked
|
|
/// expression, and doesn't dig into its subexpressions.
|
|
ReusePrecheckedType = 0x20,
|
|
};
|
|
|
|
/// Options that affect the constraint system as a whole.
|
|
using ConstraintSystemOptions = OptionSet<ConstraintSystemFlags>;
|
|
|
|
/// This struct represents the results of a member lookup of
|
|
struct MemberLookupResult {
|
|
enum {
|
|
/// This result indicates that we cannot begin to solve this, because the
|
|
/// base expression is a type variable.
|
|
Unsolved,
|
|
|
|
/// This result indicates that the member reference is erroneous, but was
|
|
/// already diagnosed. Don't emit another error.
|
|
ErrorAlreadyDiagnosed,
|
|
|
|
/// This result indicates that the lookup produced candidate lists,
|
|
/// potentially of viable results, potentially of error candidates, and
|
|
/// potentially empty lists, indicating that there were no matches.
|
|
HasResults
|
|
} OverallResult;
|
|
|
|
/// This is a list of viable candidates that were matched.
|
|
///
|
|
SmallVector<OverloadChoice, 4> ViableCandidates;
|
|
|
|
/// If there is a favored candidate in the viable list, this indicates its
|
|
/// index.
|
|
unsigned FavoredChoice = ~0U;
|
|
|
|
|
|
/// This enum tracks reasons why a candidate is not viable.
|
|
enum UnviableReason {
|
|
/// Argument labels don't match.
|
|
UR_LabelMismatch,
|
|
|
|
/// This uses a type like Self in its signature that cannot be used on an
|
|
/// existential box.
|
|
UR_UnavailableInExistential,
|
|
|
|
/// This is an instance member being accessed through something of metatype
|
|
/// type.
|
|
UR_InstanceMemberOnType,
|
|
|
|
/// This is a static/class member being accessed through an instance.
|
|
UR_TypeMemberOnInstance,
|
|
|
|
/// This is a mutating member, being used on an rvalue.
|
|
UR_MutatingMemberOnRValue,
|
|
|
|
/// The getter for this subscript or computed property is mutating and we
|
|
/// only have an rvalue base. This is more specific than the former one.
|
|
UR_MutatingGetterOnRValue,
|
|
|
|
/// The member is inaccessible (e.g. a private member in another file).
|
|
UR_Inaccessible,
|
|
};
|
|
|
|
/// This is a list of considered (but rejected) candidates, along with a
|
|
/// reason for their rejection.
|
|
SmallVector<std::pair<OverloadChoice, UnviableReason>, 4> UnviableCandidates;
|
|
|
|
|
|
/// Mark this as being an already-diagnosed error and return itself.
|
|
MemberLookupResult &markErrorAlreadyDiagnosed() {
|
|
OverallResult = ErrorAlreadyDiagnosed;
|
|
return *this;
|
|
}
|
|
|
|
void addViable(OverloadChoice candidate) {
|
|
ViableCandidates.push_back(candidate);
|
|
}
|
|
|
|
void addUnviable(OverloadChoice candidate, UnviableReason reason) {
|
|
UnviableCandidates.push_back({candidate, reason});
|
|
}
|
|
|
|
OverloadChoice *getFavoredChoice() {
|
|
if (FavoredChoice == ~0U) return nullptr;
|
|
return &ViableCandidates[FavoredChoice];
|
|
}
|
|
|
|
};
|
|
|
|
/// Stores the required methods for @dynamicCallable types.
|
|
struct DynamicCallableMethods {
|
|
llvm::DenseSet<FuncDecl *> argumentsMethods;
|
|
llvm::DenseSet<FuncDecl *> keywordArgumentsMethods;
|
|
|
|
void addArgumentsMethod(FuncDecl *method) {
|
|
argumentsMethods.insert(method);
|
|
}
|
|
|
|
void addKeywordArgumentsMethod(FuncDecl *method) {
|
|
keywordArgumentsMethods.insert(method);
|
|
}
|
|
|
|
/// Returns true if type defines either of the @dynamicCallable
|
|
/// required methods. Returns false iff type does not satisfy @dynamicCallable
|
|
/// requirements.
|
|
bool isValid() const {
|
|
return !argumentsMethods.empty() || !keywordArgumentsMethods.empty();
|
|
}
|
|
};
|
|
|
|
/// Describes a system of constraints on type variables, the
|
|
/// solution of which assigns concrete types to each of the type variables.
|
|
/// Constraint systems are typically generated given an (untyped) expression.
|
|
class ConstraintSystem {
|
|
public:
|
|
TypeChecker &TC;
|
|
DeclContext *DC;
|
|
ConstraintSystemOptions Options;
|
|
Optional<ExpressionTimer> Timer;
|
|
|
|
friend class ConstraintFix;
|
|
friend class OverloadChoice;
|
|
friend class ConstraintGraph;
|
|
friend class DisjunctionChoice;
|
|
friend class Component;
|
|
friend class FailureDiagnostic;
|
|
friend class TypeVarBindingProducer;
|
|
friend class TypeVariableBinding;
|
|
friend class StepScope;
|
|
friend class SolverStep;
|
|
friend class SplitterStep;
|
|
friend class ComponentStep;
|
|
friend class TypeVariableStep;
|
|
|
|
class SolverScope;
|
|
|
|
Constraint *failedConstraint = nullptr;
|
|
|
|
/// Expressions that are known to be unevaluated.
|
|
/// Note: this is only used to support ObjCSelectorExpr at the moment.
|
|
llvm::SmallPtrSet<Expr *, 2> UnevaluatedRootExprs;
|
|
|
|
/// The original CS if this CS was created as a simplification of another CS
|
|
ConstraintSystem *baseCS = nullptr;
|
|
|
|
/// The total number of disjunctions created.
|
|
unsigned CountDisjunctions = 0;
|
|
|
|
private:
|
|
|
|
/// Allocator used for all of the related constraint systems.
|
|
llvm::BumpPtrAllocator Allocator;
|
|
|
|
/// Arena used for memory management of constraint-checker-related
|
|
/// allocations.
|
|
ConstraintCheckerArenaRAII Arena;
|
|
|
|
/// Counter for type variables introduced.
|
|
unsigned TypeCounter = 0;
|
|
|
|
/// The number of scopes created so far during the solution
|
|
/// of this constraint system.
|
|
///
|
|
/// This is a measure of complexity of the solution space. A new
|
|
/// scope is created every time we attempt a type variable binding
|
|
/// or explore an option in a disjunction.
|
|
unsigned CountScopes = 0;
|
|
|
|
/// High-water mark of measured memory usage in any sub-scope we
|
|
/// explored.
|
|
size_t MaxMemory = 0;
|
|
|
|
/// Cached member lookups.
|
|
llvm::DenseMap<std::pair<Type, DeclName>, Optional<LookupResult>>
|
|
MemberLookups;
|
|
|
|
/// Cached sets of "alternative" literal types.
|
|
static const unsigned NumAlternativeLiteralTypes = 13;
|
|
Optional<ArrayRef<Type>> AlternativeLiteralTypes[NumAlternativeLiteralTypes];
|
|
|
|
/// Folding set containing all of the locators used in this
|
|
/// constraint system.
|
|
llvm::FoldingSetVector<ConstraintLocator> ConstraintLocators;
|
|
|
|
/// The overload sets that have been resolved along the current path.
|
|
ResolvedOverloadSetListItem *resolvedOverloadSets = nullptr;
|
|
|
|
/// The current fixed score for this constraint system and the (partial)
|
|
/// solution it represents.
|
|
Score CurrentScore;
|
|
|
|
SmallVector<TypeVariableType *, 16> TypeVariables;
|
|
|
|
/// Maps expressions to types for choosing a favored overload
|
|
/// type in a disjunction constraint.
|
|
llvm::DenseMap<Expr *, TypeBase *> FavoredTypes;
|
|
|
|
/// Maps expression types used within all portions of the constraint
|
|
/// system, instead of directly using the types on the expression
|
|
/// nodes themselves. This allows us to typecheck an expression and
|
|
/// run through various diagnostics passes without actually mutating
|
|
/// the types on the expression nodes.
|
|
llvm::DenseMap<const Expr *, TypeBase *> ExprTypes;
|
|
llvm::DenseMap<const TypeLoc *, TypeBase *> TypeLocTypes;
|
|
llvm::DenseMap<const ParamDecl *, TypeBase *> ParamTypes;
|
|
|
|
/// Maps closure parameters to type variables.
|
|
llvm::DenseMap<const ParamDecl *, TypeVariableType *>
|
|
OpenedParameterTypes;
|
|
|
|
/// There can only be a single contextual type on the root of the expression
|
|
/// being checked. If specified, this holds its type along with the base
|
|
/// expression, and the purpose of it.
|
|
TypeLoc contextualType;
|
|
Expr *contextualTypeNode = nullptr;
|
|
ContextualTypePurpose contextualTypePurpose = CTP_Unused;
|
|
|
|
/// The set of constraint restrictions used to reach the
|
|
/// current constraint system.
|
|
///
|
|
/// Constraint restrictions help describe which path the solver took when
|
|
/// there are multiple ways in which one type could convert to another, e.g.,
|
|
/// given class types A and B, the solver might choose either a superclass
|
|
/// conversion or a user-defined conversion.
|
|
SmallVector<std::tuple<Type, Type, ConversionRestrictionKind>, 32>
|
|
ConstraintRestrictions;
|
|
|
|
/// The set of fixes applied to make the solution work.
|
|
llvm::SmallVector<ConstraintFix *, 4> Fixes;
|
|
|
|
/// The set of remembered disjunction choices used to reach
|
|
/// the current constraint system.
|
|
SmallVector<std::pair<ConstraintLocator*, unsigned>, 32>
|
|
DisjunctionChoices;
|
|
|
|
/// The worklist of "active" constraints that should be revisited
|
|
/// due to a change.
|
|
ConstraintList ActiveConstraints;
|
|
|
|
/// The list of "inactive" constraints that still need to be solved,
|
|
/// but will not be revisited until one of their inputs changes.
|
|
ConstraintList InactiveConstraints;
|
|
|
|
/// The constraint graph.
|
|
ConstraintGraph &CG;
|
|
|
|
/// A mapping from constraint locators to the set of opened types associated
|
|
/// with that locator.
|
|
SmallVector<std::pair<ConstraintLocator *, ArrayRef<OpenedType>>, 4>
|
|
OpenedTypes;
|
|
|
|
/// A mapping from constraint locators to the opened existential archetype
|
|
/// used for the 'self' of an existential type.
|
|
SmallVector<std::pair<ConstraintLocator *, OpenedArchetypeType *>, 4>
|
|
OpenedExistentialTypes;
|
|
|
|
SmallVector<std::pair<ConstraintLocator *, ProtocolConformanceRef>, 8>
|
|
CheckedConformances;
|
|
|
|
public:
|
|
/// The locators of \c Defaultable constraints whose defaults were used.
|
|
SmallVector<ConstraintLocator *, 8> DefaultedConstraints;
|
|
|
|
/// A cache that stores the @dynamicCallable required methods implemented by
|
|
/// types.
|
|
llvm::DenseMap<CanType, DynamicCallableMethods> DynamicCallableCache;
|
|
|
|
/// A cache that stores whether types are valid @dynamicMemberLookup types.
|
|
llvm::DenseMap<CanType, bool> DynamicMemberLookupCache;
|
|
|
|
private:
|
|
/// Describe the candidate expression for partial solving.
|
|
/// This class used by shrink & solve methods which apply
|
|
/// variation of directional path consistency algorithm in attempt
|
|
/// to reduce scopes of the overload sets (disjunctions) in the system.
|
|
class Candidate {
|
|
Expr *E;
|
|
TypeChecker &TC;
|
|
DeclContext *DC;
|
|
llvm::BumpPtrAllocator &Allocator;
|
|
|
|
ConstraintSystem &BaseCS;
|
|
|
|
// Contextual Information.
|
|
Type CT;
|
|
ContextualTypePurpose CTP;
|
|
|
|
public:
|
|
Candidate(ConstraintSystem &cs, Expr *expr, Type ct = Type(),
|
|
ContextualTypePurpose ctp = ContextualTypePurpose::CTP_Unused)
|
|
: E(expr), TC(cs.TC), DC(cs.DC), Allocator(cs.Allocator), BaseCS(cs),
|
|
CT(ct), CTP(ctp) {}
|
|
|
|
/// Return underlying expression.
|
|
Expr *getExpr() const { return E; }
|
|
|
|
/// Try to solve this candidate sub-expression
|
|
/// and re-write it's OSR domains afterwards.
|
|
///
|
|
/// \param shrunkExprs The set of expressions which
|
|
/// domains have been successfully shrunk so far.
|
|
///
|
|
/// \returns true on solver failure, false otherwise.
|
|
bool solve(llvm::SmallDenseSet<OverloadSetRefExpr *> &shrunkExprs);
|
|
|
|
/// Apply solutions found by solver as reduced OSR sets for
|
|
/// for current and all of it's sub-expressions.
|
|
///
|
|
/// \param solutions The solutions found by running solver on the
|
|
/// this candidate expression.
|
|
///
|
|
/// \param shrunkExprs The set of expressions which
|
|
/// domains have been successfully shrunk so far.
|
|
void applySolutions(
|
|
llvm::SmallVectorImpl<Solution> &solutions,
|
|
llvm::SmallDenseSet<OverloadSetRefExpr *> &shrunkExprs) const;
|
|
|
|
/// Check if attempt at solving of the candidate makes sense given
|
|
/// the current conditions - number of shrunk domains which is related
|
|
/// to the given candidate over the total number of disjunctions present.
|
|
static bool
|
|
isTooComplexGiven(ConstraintSystem *const cs,
|
|
llvm::SmallDenseSet<OverloadSetRefExpr *> &shrunkExprs) {
|
|
SmallVector<Constraint *, 8> disjunctions;
|
|
cs->collectDisjunctions(disjunctions);
|
|
|
|
unsigned unsolvedDisjunctions = disjunctions.size();
|
|
for (auto *disjunction : disjunctions) {
|
|
auto *locator = disjunction->getLocator();
|
|
if (!locator)
|
|
continue;
|
|
|
|
if (auto *anchor = locator->getAnchor()) {
|
|
auto *OSR = dyn_cast<OverloadSetRefExpr>(anchor);
|
|
if (!OSR)
|
|
continue;
|
|
|
|
if (shrunkExprs.count(OSR) > 0)
|
|
--unsolvedDisjunctions;
|
|
}
|
|
}
|
|
|
|
unsigned threshold = cs->TC.getLangOpts().SolverShrinkUnsolvedThreshold;
|
|
return unsolvedDisjunctions >= threshold;
|
|
}
|
|
};
|
|
|
|
/// Describes the current solver state.
|
|
struct SolverState {
|
|
SolverState(Expr *const expr, ConstraintSystem &cs,
|
|
FreeTypeVariableBinding allowFreeTypeVariables);
|
|
~SolverState();
|
|
|
|
llvm::DenseMap<Expr *, unsigned> ExprWeights;
|
|
|
|
/// The constraint system.
|
|
ConstraintSystem &CS;
|
|
|
|
FreeTypeVariableBinding AllowFreeTypeVariables;
|
|
|
|
/// Old value of DebugConstraintSolver.
|
|
/// FIXME: Move the "debug constraint solver" bit into the constraint
|
|
/// system itself.
|
|
bool OldDebugConstraintSolver;
|
|
|
|
/// Depth of the solution stack.
|
|
unsigned depth = 0;
|
|
|
|
/// Maximum depth reached so far in exploring solutions.
|
|
unsigned maxDepth = 0;
|
|
|
|
/// Whether to record failures or not.
|
|
bool recordFixes = false;
|
|
|
|
/// The set of type variable bindings that have changed while
|
|
/// processing this constraint system.
|
|
SavedTypeVariableBindings savedBindings;
|
|
|
|
/// The best solution computed so far.
|
|
Optional<Score> BestScore;
|
|
|
|
/// The number of the solution attempt we're looking at.
|
|
unsigned SolutionAttempt;
|
|
|
|
/// Refers to the innermost partial solution scope.
|
|
SolverScope *PartialSolutionScope = nullptr;
|
|
|
|
// Statistics
|
|
#define CS_STATISTIC(Name, Description) unsigned Name = 0;
|
|
#include "ConstraintSolverStats.def"
|
|
|
|
/// Check whether there are any retired constraints present.
|
|
bool hasRetiredConstraints() const {
|
|
return !retiredConstraints.empty();
|
|
}
|
|
|
|
/// Mark given constraint as retired along current solver path.
|
|
///
|
|
/// \param constraint The constraint to retire temporarily.
|
|
void retireConstraint(Constraint *constraint) {
|
|
retiredConstraints.push_front(constraint);
|
|
}
|
|
|
|
/// Iterate over all of the retired constraints registered with
|
|
/// current solver state.
|
|
///
|
|
/// \param processor The processor function to be applied to each of
|
|
/// the constraints retrieved.
|
|
void forEachRetired(llvm::function_ref<void(Constraint &)> processor) {
|
|
for (auto &constraint : retiredConstraints)
|
|
processor(constraint);
|
|
}
|
|
|
|
/// Add new "generated" constraint along the current solver path.
|
|
///
|
|
/// \param constraint The newly generated constraint.
|
|
void addGeneratedConstraint(Constraint *constraint) {
|
|
generatedConstraints.push_back(constraint);
|
|
}
|
|
|
|
/// Erase given constraint from the list of generated constraints
|
|
/// along the current solver path. Note that this operation doesn't
|
|
/// guarantee any ordering of the after it's application.
|
|
///
|
|
/// \param constraint The constraint to erase.
|
|
void removeGeneratedConstraint(Constraint *constraint) {
|
|
for (auto *&generated : generatedConstraints) {
|
|
// When we find the constraint we're erasing, overwrite its
|
|
// value with the last element in the generated constraints
|
|
// vector and then pop that element from the vector.
|
|
if (generated == constraint) {
|
|
generated = generatedConstraints.back();
|
|
generatedConstraints.pop_back();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Register given scope to be tracked by the current solver state,
|
|
/// this helps to make sure that all of the retired/generated constraints
|
|
/// are dealt with correctly when the life time of the scope ends.
|
|
///
|
|
/// \param scope The scope to associate with current solver state.
|
|
void registerScope(SolverScope *scope) {
|
|
++depth;
|
|
maxDepth = std::max(maxDepth, depth);
|
|
scope->scopeNumber = NumStatesExplored++;
|
|
|
|
CS.incrementScopeCounter();
|
|
auto scopeInfo =
|
|
std::make_tuple(scope, retiredConstraints.begin(),
|
|
generatedConstraints.size());
|
|
scopes.push_back(scopeInfo);
|
|
}
|
|
|
|
/// Restore all of the retired/generated constraints to the state
|
|
/// before given scope. This is required because retired constraints have
|
|
/// to be re-introduced to the system in order of arrival (LIFO) and list
|
|
/// of the generated constraints has to be truncated back to the
|
|
/// original size.
|
|
///
|
|
/// \param scope The solver scope to rollback.
|
|
void rollback(SolverScope *scope) {
|
|
--depth;
|
|
|
|
unsigned countScopesExplored = NumStatesExplored - scope->scopeNumber;
|
|
if (countScopesExplored == 1)
|
|
CS.incrementLeafScopes();
|
|
|
|
SolverScope *savedScope;
|
|
// The position of last retired constraint before given scope.
|
|
ConstraintList::iterator lastRetiredPos;
|
|
// The original number of generated constraints before given scope.
|
|
unsigned numGenerated;
|
|
|
|
std::tie(savedScope, lastRetiredPos, numGenerated) =
|
|
scopes.pop_back_val();
|
|
|
|
assert(savedScope == scope && "Scope rollback not in LIFO order!");
|
|
|
|
// Restore all of the retired constraints.
|
|
CS.InactiveConstraints.splice(CS.InactiveConstraints.end(),
|
|
retiredConstraints,
|
|
retiredConstraints.begin(), lastRetiredPos);
|
|
|
|
// And remove all of the generated constraints.
|
|
auto genStart = generatedConstraints.begin() + numGenerated,
|
|
genEnd = generatedConstraints.end();
|
|
for (auto genI = genStart; genI != genEnd; ++genI) {
|
|
CS.InactiveConstraints.erase(ConstraintList::iterator(*genI));
|
|
}
|
|
|
|
generatedConstraints.erase(genStart, genEnd);
|
|
}
|
|
|
|
/// Check whether constraint system is allowed to form solutions
|
|
/// even with unbound type variables present.
|
|
bool allowsFreeTypeVariables() const {
|
|
return AllowFreeTypeVariables != FreeTypeVariableBinding::Disallow;
|
|
}
|
|
|
|
private:
|
|
/// The list of constraints that have been retired along the
|
|
/// current path, this list is used in LIFO fashion when constraints
|
|
/// are added back to the circulation.
|
|
ConstraintList retiredConstraints;
|
|
|
|
/// The set of constraints which were active at the time of this state
|
|
/// creating, it's used to re-activate them on destruction.
|
|
SmallVector<Constraint *, 4> activeConstraints;
|
|
|
|
/// The current set of generated constraints.
|
|
SmallVector<Constraint *, 4> generatedConstraints;
|
|
|
|
/// The collection which holds association between solver scope
|
|
/// and position of the last retired constraint and number of
|
|
/// constraints generated before registration of given scope,
|
|
/// this helps to rollback all of the constraints retired/generated
|
|
/// each of the registered scopes correct (LIFO) order.
|
|
llvm::SmallVector<
|
|
std::tuple<SolverScope *, ConstraintList::iterator, unsigned>, 4> scopes;
|
|
};
|
|
|
|
class CacheExprTypes : public ASTWalker {
|
|
Expr *RootExpr;
|
|
ConstraintSystem &CS;
|
|
bool ExcludeRoot;
|
|
|
|
public:
|
|
CacheExprTypes(Expr *expr, ConstraintSystem &cs, bool excludeRoot)
|
|
: RootExpr(expr), CS(cs), ExcludeRoot(excludeRoot) {}
|
|
|
|
Expr *walkToExprPost(Expr *expr) override {
|
|
if (ExcludeRoot && expr == RootExpr) {
|
|
assert(!expr->getType() && "Unexpected type in root of expression!");
|
|
return expr;
|
|
}
|
|
|
|
if (expr->getType())
|
|
CS.cacheType(expr);
|
|
|
|
return expr;
|
|
}
|
|
|
|
/// Ignore statements.
|
|
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
|
|
return { false, stmt };
|
|
}
|
|
|
|
/// Ignore declarations.
|
|
bool walkToDeclPre(Decl *decl) override { return false; }
|
|
};
|
|
|
|
class SetExprTypes : public ASTWalker {
|
|
Expr *RootExpr;
|
|
ConstraintSystem &CS;
|
|
bool ExcludeRoot;
|
|
|
|
public:
|
|
SetExprTypes(Expr *expr, ConstraintSystem &cs, bool excludeRoot)
|
|
: RootExpr(expr), CS(cs), ExcludeRoot(excludeRoot) {}
|
|
|
|
Expr *walkToExprPost(Expr *expr) override {
|
|
if (ExcludeRoot && expr == RootExpr)
|
|
return expr;
|
|
|
|
//assert((!expr->getType() || CS.getType(expr)->isEqual(expr->getType()))
|
|
// && "Mismatched types!");
|
|
assert(!CS.getType(expr)->hasTypeVariable() &&
|
|
"Should not write type variable into expression!");
|
|
expr->setType(CS.getType(expr));
|
|
|
|
return expr;
|
|
}
|
|
|
|
/// Ignore statements.
|
|
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
|
|
return { false, stmt };
|
|
}
|
|
|
|
/// Ignore declarations.
|
|
bool walkToDeclPre(Decl *decl) override { return false; }
|
|
};
|
|
|
|
public:
|
|
|
|
void setExprTypes(Expr *expr) {
|
|
SetExprTypes SET(expr, *this, /* excludeRoot = */ false);
|
|
expr->walk(SET);
|
|
}
|
|
|
|
void setSubExprTypes(Expr *expr) {
|
|
SetExprTypes SET(expr, *this, /* excludeRoot = */ true);
|
|
expr->walk(SET);
|
|
}
|
|
|
|
/// Cache the types of the given expression and all subexpressions.
|
|
void cacheExprTypes(Expr *expr) {
|
|
bool excludeRoot = false;
|
|
expr->walk(CacheExprTypes(expr, *this, excludeRoot));
|
|
}
|
|
|
|
/// Cache the types of the expressions under the given expression
|
|
/// (but not the type of the given expression).
|
|
void cacheSubExprTypes(Expr *expr) {
|
|
bool excludeRoot = true;
|
|
expr->walk(CacheExprTypes(expr, *this, excludeRoot));
|
|
}
|
|
|
|
/// The current solver state.
|
|
///
|
|
/// This will be non-null when we're actively solving the constraint
|
|
/// system, and carries temporary state related to the current path
|
|
/// we're exploring.
|
|
SolverState *solverState = nullptr;
|
|
|
|
struct ArgumentLabelState {
|
|
ArrayRef<Identifier> Labels;
|
|
bool HasTrailingClosure;
|
|
};
|
|
|
|
/// A mapping from the constraint locators for references to various
|
|
/// names (e.g., member references, normal name references, possible
|
|
/// constructions) to the argument labels provided in the call to
|
|
/// that locator.
|
|
llvm::DenseMap<ConstraintLocator *, ArgumentLabelState> ArgumentLabels;
|
|
|
|
ResolvedOverloadSetListItem *getResolvedOverloadSets() const {
|
|
return resolvedOverloadSets;
|
|
}
|
|
|
|
private:
|
|
unsigned assignTypeVariableID() {
|
|
return TypeCounter++;
|
|
}
|
|
|
|
void incrementScopeCounter();
|
|
void incrementLeafScopes();
|
|
|
|
public:
|
|
/// Introduces a new solver scope, which any changes to the
|
|
/// solver state or constraint system are temporary and will be undone when
|
|
/// this object is destroyed.
|
|
///
|
|
///
|
|
class SolverScope {
|
|
ConstraintSystem &cs;
|
|
|
|
/// The current resolved overload set list.
|
|
ResolvedOverloadSetListItem *resolvedOverloadSets;
|
|
|
|
/// The length of \c TypeVariables.
|
|
unsigned numTypeVariables;
|
|
|
|
/// The length of \c SavedBindings.
|
|
unsigned numSavedBindings;
|
|
|
|
/// The length of \c ConstraintRestrictions.
|
|
unsigned numConstraintRestrictions;
|
|
|
|
/// The length of \c Fixes.
|
|
unsigned numFixes;
|
|
|
|
/// The length of \c DisjunctionChoices.
|
|
unsigned numDisjunctionChoices;
|
|
|
|
/// The length of \c OpenedTypes.
|
|
unsigned numOpenedTypes;
|
|
|
|
/// The length of \c OpenedExistentialTypes.
|
|
unsigned numOpenedExistentialTypes;
|
|
|
|
/// The length of \c DefaultedConstraints.
|
|
unsigned numDefaultedConstraints;
|
|
|
|
unsigned numCheckedConformances;
|
|
|
|
/// The previous score.
|
|
Score PreviousScore;
|
|
|
|
/// The scope number of this scope. Set when the scope is registered.
|
|
unsigned scopeNumber = 0;
|
|
|
|
/// Constraint graph scope associated with this solver scope.
|
|
ConstraintGraphScope CGScope;
|
|
|
|
SolverScope(const SolverScope &) = delete;
|
|
SolverScope &operator=(const SolverScope &) = delete;
|
|
|
|
friend class ConstraintSystem;
|
|
|
|
public:
|
|
explicit SolverScope(ConstraintSystem &cs);
|
|
~SolverScope();
|
|
};
|
|
|
|
ConstraintSystem(TypeChecker &tc, DeclContext *dc,
|
|
ConstraintSystemOptions options);
|
|
~ConstraintSystem();
|
|
|
|
/// Retrieve the type checker associated with this constraint system.
|
|
TypeChecker &getTypeChecker() const { return TC; }
|
|
|
|
/// Retrieve the constraint graph associated with this constraint system.
|
|
ConstraintGraph &getConstraintGraph() const { return CG; }
|
|
|
|
/// Retrieve the AST context.
|
|
ASTContext &getASTContext() const { return TC.Context; }
|
|
|
|
/// Determine whether this constraint system has any free type
|
|
/// variables.
|
|
bool hasFreeTypeVariables();
|
|
|
|
private:
|
|
/// Indicates if the constraint system should retain all of the
|
|
/// solutions it has deduced regardless of their score.
|
|
bool retainAllSolutions() const {
|
|
return Options.contains(
|
|
ConstraintSystemFlags::ReturnAllDiscoveredSolutions);
|
|
}
|
|
|
|
/// Finalize this constraint system; we're done attempting to solve
|
|
/// it.
|
|
///
|
|
/// \returns the solution.
|
|
Solution finalize();
|
|
|
|
/// Apply the given solution to the current constraint system.
|
|
///
|
|
/// This operation is used to take a solution computed based on some
|
|
/// subset of the constraints and then apply it back to the
|
|
/// constraint system for further exploration.
|
|
void applySolution(const Solution &solution);
|
|
|
|
/// Emit the fixes computed as part of the solution, returning true if we were
|
|
/// able to emit an error message, or false if none of the fixits worked out.
|
|
bool applySolutionFixes(Expr *E, const Solution &solution);
|
|
|
|
/// If there is more than one viable solution,
|
|
/// attempt to pick the best solution and remove all of the rest.
|
|
///
|
|
/// \param solutions The set of solutions to filter.
|
|
///
|
|
/// \param minimize The flag which idicates if the
|
|
/// set of solutions should be filtered even if there is
|
|
/// no single best solution, see `findBestSolution` for
|
|
/// more details.
|
|
void filterSolutions(SmallVectorImpl<Solution> &solutions,
|
|
llvm::DenseMap<Expr *, unsigned> &weights,
|
|
bool minimize = false) {
|
|
if (solutions.size() < 2)
|
|
return;
|
|
|
|
if (auto best = findBestSolution(solutions, weights, minimize)) {
|
|
if (*best != 0)
|
|
solutions[0] = std::move(solutions[*best]);
|
|
solutions.erase(solutions.begin() + 1, solutions.end());
|
|
}
|
|
}
|
|
|
|
/// Restore the type variable bindings to what they were before
|
|
/// we attempted to solve this constraint system.
|
|
///
|
|
/// \param numBindings The number of bindings to restore, from the end of
|
|
/// the saved-binding stack.
|
|
void restoreTypeVariableBindings(unsigned numBindings);
|
|
|
|
/// Retrieve the set of saved type variable bindings, if available.
|
|
///
|
|
/// \returns null when we aren't currently solving the system.
|
|
SavedTypeVariableBindings *getSavedBindings() const {
|
|
return solverState ? &solverState->savedBindings : nullptr;
|
|
}
|
|
|
|
/// Add a new type variable that was already created.
|
|
void addTypeVariable(TypeVariableType *typeVar);
|
|
|
|
/// Add a constraint from the subscript base to the root of the key
|
|
/// path literal to the constraint system.
|
|
void addKeyPathApplicationRootConstraint(Type root, ConstraintLocatorBuilder locator);
|
|
|
|
public:
|
|
/// Lookup for a member with the given name in the given base type.
|
|
///
|
|
/// This routine caches the results of member lookups in the top constraint
|
|
/// system, to avoid.
|
|
///
|
|
/// FIXME: This caching should almost certainly be performed at the
|
|
/// module level, since type checking occurs after name binding,
|
|
/// and no new names are introduced after name binding.
|
|
///
|
|
/// \returns A reference to the member-lookup result.
|
|
LookupResult &lookupMember(Type base, DeclName name);
|
|
|
|
/// Retrieve the set of "alternative" literal types that we'll explore
|
|
/// for a given literal protocol kind.
|
|
ArrayRef<Type> getAlternativeLiteralTypes(KnownProtocolKind kind);
|
|
|
|
/// Create a new type variable.
|
|
TypeVariableType *createTypeVariable(ConstraintLocator *locator,
|
|
unsigned options = 0);
|
|
|
|
/// Retrieve the set of active type variables.
|
|
ArrayRef<TypeVariableType *> getTypeVariables() const {
|
|
return TypeVariables;
|
|
}
|
|
|
|
TypeBase* getFavoredType(Expr *E) {
|
|
assert(E != nullptr);
|
|
return this->FavoredTypes[E];
|
|
}
|
|
void setFavoredType(Expr *E, TypeBase *T) {
|
|
assert(E != nullptr);
|
|
this->FavoredTypes[E] = T;
|
|
}
|
|
|
|
/// Set the type in our type map for a given expression. The side
|
|
/// map is used throughout the expression type checker in order to
|
|
/// avoid mutating expressions until we know we have successfully
|
|
/// type-checked them.
|
|
void setType(Expr *E, Type T) {
|
|
assert(E != nullptr && "Expected non-null expression!");
|
|
assert(T && "Expected non-null type!");
|
|
|
|
// FIXME: We sometimes set the type and then later set it to a
|
|
// value that is slightly different, e.g. not an lvalue.
|
|
// assert((ExprTypes.find(E) == ExprTypes.end() ||
|
|
// ExprTypes.find(E)->second->isEqual(T) ||
|
|
// ExprTypes.find(E)->second->hasTypeVariable()) &&
|
|
// "Expected type to be invariant!");
|
|
|
|
ExprTypes[E] = T.getPointer();
|
|
}
|
|
|
|
void setType(TypeLoc &L, Type T) {
|
|
assert(T && "Expected non-null type!");
|
|
TypeLocTypes[&L] = T.getPointer();
|
|
}
|
|
|
|
void setType(ParamDecl *P, Type T) {
|
|
assert(P && "Expected non-null parameter!");
|
|
assert(T && "Expected non-null type!");
|
|
ParamTypes[P] = T.getPointer();
|
|
}
|
|
|
|
/// Check to see if we have a type for an expression.
|
|
bool hasType(const Expr *E) const {
|
|
assert(E != nullptr && "Expected non-null expression!");
|
|
return ExprTypes.find(E) != ExprTypes.end();
|
|
}
|
|
|
|
bool hasType(const TypeLoc &L) const {
|
|
return TypeLocTypes.find(&L) != TypeLocTypes.end();
|
|
}
|
|
|
|
bool hasType(const ParamDecl *P) const {
|
|
assert(P != nullptr && "Expected non-null parameter!");
|
|
return ParamTypes.find(P) != ParamTypes.end();
|
|
}
|
|
|
|
/// Get the type for an expression.
|
|
Type getType(const Expr *E) const {
|
|
assert(hasType(E) && "Expected type to have been set!");
|
|
// FIXME: lvalue differences
|
|
// assert((!E->getType() ||
|
|
// E->getType()->isEqual(ExprTypes.find(E)->second)) &&
|
|
// "Mismatched types!");
|
|
return ExprTypes.find(E)->second;
|
|
}
|
|
|
|
Type getType(const TypeLoc &L) const {
|
|
assert(hasType(L) && "Expected type to have been set!");
|
|
return TypeLocTypes.find(&L)->second;
|
|
}
|
|
|
|
Type getType(const ParamDecl *P) const {
|
|
assert(hasType(P) && "Expected type to have been set!");
|
|
return ParamTypes.find(P)->second;
|
|
}
|
|
|
|
Type getType(const VarDecl *D, bool wantInterfaceType = true) const {
|
|
if (auto *P = dyn_cast<ParamDecl>(D))
|
|
return getType(P);
|
|
|
|
assert(D->hasValidSignature());
|
|
return wantInterfaceType ? D->getInterfaceType() : D->getType();
|
|
}
|
|
|
|
/// Cache the type of the expression argument and return that same
|
|
/// argument.
|
|
template <typename T>
|
|
T *cacheType(T *E) {
|
|
assert(E->getType() && "Expected a type!");
|
|
setType(E, E->getType());
|
|
return E;
|
|
}
|
|
|
|
void setContextualType(Expr *E, TypeLoc T, ContextualTypePurpose purpose) {
|
|
assert(E != nullptr && "Expected non-null expression!");
|
|
contextualTypeNode = E;
|
|
contextualType = T;
|
|
contextualTypePurpose = purpose;
|
|
}
|
|
|
|
Type getContextualType(Expr *E) const {
|
|
assert(E != nullptr && "Expected non-null expression!");
|
|
return E == contextualTypeNode ? contextualType.getType() : Type();
|
|
}
|
|
Type getContextualType() const {
|
|
return contextualType.getType();
|
|
}
|
|
|
|
TypeLoc getContextualTypeLoc() const {
|
|
return contextualType;
|
|
}
|
|
|
|
const Expr *getContextualTypeNode() const {
|
|
return contextualTypeNode;
|
|
}
|
|
|
|
ContextualTypePurpose getContextualTypePurpose() const {
|
|
return contextualTypePurpose;
|
|
}
|
|
|
|
/// Retrieve the constraint locator for the given anchor and
|
|
/// path, uniqued.
|
|
ConstraintLocator *
|
|
getConstraintLocator(Expr *anchor,
|
|
ArrayRef<ConstraintLocator::PathElement> path,
|
|
unsigned summaryFlags);
|
|
|
|
/// Retrieve the constraint locator for the given anchor and
|
|
/// an empty path, uniqued.
|
|
ConstraintLocator *getConstraintLocator(Expr *anchor) {
|
|
return getConstraintLocator(anchor, {}, 0);
|
|
}
|
|
|
|
/// Retrieve the constraint locator for the given anchor and
|
|
/// path element.
|
|
ConstraintLocator *
|
|
getConstraintLocator(Expr *anchor, ConstraintLocator::PathElement pathElt) {
|
|
return getConstraintLocator(anchor, llvm::makeArrayRef(pathElt),
|
|
pathElt.getNewSummaryFlags());
|
|
}
|
|
|
|
/// Extend the given constraint locator with a path element.
|
|
ConstraintLocator *
|
|
getConstraintLocator(ConstraintLocator *locator,
|
|
ConstraintLocator::PathElement pathElt) {
|
|
return getConstraintLocator(ConstraintLocatorBuilder(locator)
|
|
.withPathElement(pathElt));
|
|
}
|
|
|
|
/// Retrieve the constraint locator described by the given
|
|
/// builder.
|
|
ConstraintLocator *
|
|
getConstraintLocator(const ConstraintLocatorBuilder &builder);
|
|
|
|
public:
|
|
|
|
/// Whether we should attempt to fix problems.
|
|
bool shouldAttemptFixes() const {
|
|
if (!(Options & ConstraintSystemFlags::AllowFixes))
|
|
return false;
|
|
|
|
return !solverState || solverState->recordFixes;
|
|
}
|
|
|
|
bool shouldSuppressDiagnostics() const {
|
|
return Options.contains(ConstraintSystemFlags::SuppressDiagnostics);
|
|
}
|
|
|
|
bool shouldReusePrecheckedType() const {
|
|
return Options.contains(ConstraintSystemFlags::ReusePrecheckedType);
|
|
}
|
|
|
|
/// Log and record the application of the fix. Return true iff any
|
|
/// subsequent solution would be worse than the best known solution.
|
|
bool recordFix(ConstraintFix *fix);
|
|
|
|
/// If an UnresolvedDotExpr, SubscriptMember, etc has been resolved by the
|
|
/// constraint system, return the decl that it references.
|
|
ValueDecl *findResolvedMemberRef(ConstraintLocator *locator);
|
|
|
|
/// Try to salvage the constraint system by applying (speculative)
|
|
/// fixes to the underlying expression.
|
|
///
|
|
/// \param viable the set of viable solutions produced by the initial
|
|
/// solution attempt.
|
|
///
|
|
/// \param expr the expression we're trying to salvage.
|
|
///
|
|
/// \returns false if we were able to salvage the system, in which case
|
|
/// \c viable[0] contains the resulting solution. Otherwise, emits a
|
|
/// diagnostic and returns true.
|
|
bool salvage(SmallVectorImpl<Solution> &viable, Expr *expr);
|
|
|
|
/// Mine the active and inactive constraints in the constraint
|
|
/// system to generate a plausible diagnosis of why the system could not be
|
|
/// solved.
|
|
///
|
|
/// \param expr The expression whose constraints we're investigating for a
|
|
/// better diagnostic.
|
|
///
|
|
/// Assuming that this constraint system is actually erroneous, this *always*
|
|
/// emits an error message.
|
|
void diagnoseFailureForExpr(Expr *expr);
|
|
|
|
bool diagnoseAmbiguity(Expr *expr, ArrayRef<Solution> solutions);
|
|
bool diagnoseAmbiguityWithFixes(Expr *expr, ArrayRef<Solution> solutions);
|
|
|
|
/// Give the deprecation warning for referring to a global function
|
|
/// when there's a method from a conditional conformance in a smaller/closer
|
|
/// scope.
|
|
void
|
|
diagnoseDeprecatedConditionalConformanceOuterAccess(UnresolvedDotExpr *UDE,
|
|
ValueDecl *choice);
|
|
|
|
/// Add a constraint to the constraint system.
|
|
void addConstraint(ConstraintKind kind, Type first, Type second,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored = false);
|
|
|
|
/// Add a requirement as a constraint to the constraint system.
|
|
void addConstraint(Requirement req, ConstraintLocatorBuilder locator,
|
|
bool isFavored = false);
|
|
|
|
/// Add a key path application constraint to the constraint system.
|
|
void addKeyPathApplicationConstraint(Type keypath, Type root, Type value,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored = false);
|
|
|
|
/// Add a key path constraint to the constraint system.
|
|
void addKeyPathConstraint(Type keypath, Type root, Type value,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored = false);
|
|
|
|
/// Add a new constraint with a restriction on its application.
|
|
void addRestrictedConstraint(ConstraintKind kind,
|
|
ConversionRestrictionKind restriction,
|
|
Type first, Type second,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Add a constraint that binds an overload set to a specific choice.
|
|
void addBindOverloadConstraint(Type boundTy, OverloadChoice choice,
|
|
ConstraintLocator *locator,
|
|
DeclContext *useDC) {
|
|
resolveOverload(locator, boundTy, choice, useDC);
|
|
}
|
|
|
|
/// Add a value member constraint to the constraint system.
|
|
void addValueMemberConstraint(Type baseTy, DeclName name, Type memberTy,
|
|
DeclContext *useDC,
|
|
FunctionRefKind functionRefKind,
|
|
ArrayRef<OverloadChoice> outerAlternatives,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(baseTy);
|
|
assert(memberTy);
|
|
assert(name);
|
|
assert(useDC);
|
|
switch (simplifyMemberConstraint(
|
|
ConstraintKind::ValueMember, baseTy, name, memberTy, useDC,
|
|
functionRefKind, outerAlternatives, TMF_GenerateConstraints, locator)) {
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("Unsolved result when generating constraints!");
|
|
|
|
case SolutionKind::Solved:
|
|
break;
|
|
|
|
case SolutionKind::Error:
|
|
if (shouldAddNewFailingConstraint()) {
|
|
addNewFailingConstraint(Constraint::createMemberOrOuterDisjunction(
|
|
*this, ConstraintKind::ValueMember, baseTy, memberTy, name, useDC,
|
|
functionRefKind, outerAlternatives, getConstraintLocator(locator)));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Add a value member constraint for an UnresolvedMemberRef
|
|
/// to the constraint system.
|
|
void addUnresolvedValueMemberConstraint(Type baseTy, DeclName name,
|
|
Type memberTy, DeclContext *useDC,
|
|
FunctionRefKind functionRefKind,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(baseTy);
|
|
assert(memberTy);
|
|
assert(name);
|
|
assert(useDC);
|
|
switch (simplifyMemberConstraint(ConstraintKind::UnresolvedValueMember,
|
|
baseTy, name, memberTy,
|
|
useDC, functionRefKind,
|
|
/*outerAlternatives=*/{},
|
|
TMF_GenerateConstraints, locator)) {
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("Unsolved result when generating constraints!");
|
|
|
|
case SolutionKind::Solved:
|
|
break;
|
|
|
|
case SolutionKind::Error:
|
|
if (shouldAddNewFailingConstraint()) {
|
|
addNewFailingConstraint(
|
|
Constraint::createMember(*this, ConstraintKind::UnresolvedValueMember,
|
|
baseTy, memberTy, name,
|
|
useDC, functionRefKind,
|
|
getConstraintLocator(locator)));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Add an explicit conversion constraint (e.g., \c 'x as T').
|
|
void addExplicitConversionConstraint(Type fromType, Type toType,
|
|
bool allowFixes,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Add a disjunction constraint.
|
|
void addDisjunctionConstraint(ArrayRef<Constraint *> constraints,
|
|
ConstraintLocatorBuilder locator,
|
|
RememberChoice_t rememberChoice = ForgetChoice,
|
|
bool isFavored = false) {
|
|
auto constraint =
|
|
Constraint::createDisjunction(*this, constraints,
|
|
getConstraintLocator(locator),
|
|
rememberChoice);
|
|
if (isFavored)
|
|
constraint->setFavored();
|
|
|
|
addUnsolvedConstraint(constraint);
|
|
}
|
|
|
|
/// Whether we should add a new constraint to capture a failure.
|
|
bool shouldAddNewFailingConstraint() const {
|
|
// Only do this at the top level.
|
|
return !failedConstraint;
|
|
}
|
|
|
|
/// Add a new constraint that we know fails.
|
|
void addNewFailingConstraint(Constraint *constraint) {
|
|
assert(shouldAddNewFailingConstraint());
|
|
failedConstraint = constraint;
|
|
failedConstraint->setActive(false);
|
|
|
|
// Record this as a newly-generated constraint.
|
|
if (solverState) {
|
|
solverState->addGeneratedConstraint(constraint);
|
|
solverState->retireConstraint(constraint);
|
|
}
|
|
}
|
|
|
|
/// Add a newly-generated constraint that is known not to be solvable
|
|
/// right now.
|
|
void addUnsolvedConstraint(Constraint *constraint) {
|
|
// We couldn't solve this constraint; add it to the pile.
|
|
InactiveConstraints.push_back(constraint);
|
|
|
|
// Add this constraint to the constraint graph.
|
|
CG.addConstraint(constraint);
|
|
|
|
// Record this as a newly-generated constraint.
|
|
if (solverState)
|
|
solverState->addGeneratedConstraint(constraint);
|
|
}
|
|
|
|
/// Remove an inactive constraint from the current constraint graph.
|
|
void removeInactiveConstraint(Constraint *constraint) {
|
|
CG.removeConstraint(constraint);
|
|
InactiveConstraints.erase(constraint);
|
|
|
|
if (solverState)
|
|
solverState->retireConstraint(constraint);
|
|
}
|
|
|
|
/// Retrieve the list of inactive constraints.
|
|
ConstraintList &getConstraints() { return InactiveConstraints; }
|
|
|
|
/// The worklist of "active" constraints that should be revisited
|
|
/// due to a change.
|
|
ConstraintList &getActiveConstraints() { return ActiveConstraints; }
|
|
|
|
void findConstraints(SmallVectorImpl<Constraint *> &found,
|
|
llvm::function_ref<bool(const Constraint &)> pred) {
|
|
filterConstraints(ActiveConstraints, pred, found);
|
|
filterConstraints(InactiveConstraints, pred, found);
|
|
}
|
|
|
|
/// Retrieve the representative of the equivalence class containing
|
|
/// this type variable.
|
|
TypeVariableType *getRepresentative(TypeVariableType *typeVar) {
|
|
return typeVar->getImpl().getRepresentative(getSavedBindings());
|
|
}
|
|
|
|
/// Merge the equivalence sets of the two type variables.
|
|
///
|
|
/// Note that both \c typeVar1 and \c typeVar2 must be the
|
|
/// representatives of their equivalence classes, and must be
|
|
/// distinct.
|
|
void mergeEquivalenceClasses(TypeVariableType *typeVar1,
|
|
TypeVariableType *typeVar2,
|
|
bool updateWorkList = true);
|
|
|
|
/// Flags that direct type matching.
|
|
enum TypeMatchFlags {
|
|
/// Indicates that we are in a context where we should be
|
|
/// generating constraints for any unsolvable problems.
|
|
///
|
|
/// This flag is automatically introduced when type matching destructures
|
|
/// a type constructor (tuple, function type, etc.), solving that
|
|
/// constraint while potentially generating others.
|
|
TMF_GenerateConstraints = 0x01,
|
|
|
|
/// Indicates that we are applying a fix.
|
|
TMF_ApplyingFix = 0x02,
|
|
};
|
|
|
|
/// Options that govern how type matching should proceed.
|
|
using TypeMatchOptions = OptionSet<TypeMatchFlags>;
|
|
|
|
/// Retrieve the fixed type corresponding to the given type variable,
|
|
/// or a null type if there is no fixed type.
|
|
Type getFixedType(TypeVariableType *typeVar) {
|
|
return typeVar->getImpl().getFixedType(getSavedBindings());
|
|
}
|
|
|
|
/// Retrieve the fixed type corresponding to a given type variable,
|
|
/// recursively, until we hit something that isn't a type variable
|
|
/// or a type variable that doesn't have a fixed type.
|
|
///
|
|
/// \param type The type to simplify.
|
|
///
|
|
/// \param wantRValue Whether this routine should look through
|
|
/// lvalues at each step.
|
|
Type getFixedTypeRecursive(Type type, bool wantRValue) {
|
|
TypeMatchOptions flags = None;
|
|
return getFixedTypeRecursive(type, flags, wantRValue);
|
|
}
|
|
|
|
/// Retrieve the fixed type corresponding to a given type variable,
|
|
/// recursively, until we hit something that isn't a type variable
|
|
/// or a type variable that doesn't have a fixed type.
|
|
///
|
|
/// \param type The type to simplify.
|
|
///
|
|
/// \param flags When simplifying one of the types that is part of a
|
|
/// constraint we are examining, the set of flags that governs the
|
|
/// simplification. The set of flags may be both queried and mutated.
|
|
///
|
|
/// \param wantRValue Whether this routine should look through
|
|
/// lvalues at each step.
|
|
Type getFixedTypeRecursive(Type type, TypeMatchOptions &flags,
|
|
bool wantRValue);
|
|
|
|
/// Determine whether the given type variable occurs within the given type.
|
|
///
|
|
/// This routine assumes that the type has already been fully simplified.
|
|
///
|
|
/// \param involvesOtherTypeVariables if non-null, records whether any other
|
|
/// type variables are present in the type.
|
|
static bool typeVarOccursInType(TypeVariableType *typeVar, Type type,
|
|
bool *involvesOtherTypeVariables = nullptr);
|
|
|
|
/// Assign a fixed type to the given type variable.
|
|
///
|
|
/// \param typeVar The type variable to bind.
|
|
///
|
|
/// \param type The fixed type to which the type variable will be bound.
|
|
///
|
|
/// \param updateState Whether to update the state based on this binding.
|
|
/// False when we're only assigning a type as part of reconstructing
|
|
/// a complete solution from partial solutions.
|
|
void assignFixedType(TypeVariableType *typeVar, Type type,
|
|
bool updateState = true);
|
|
|
|
/// Set the TVO_MustBeMaterializable bit on all type variables
|
|
/// necessary to ensure that the type in question is materializable in a
|
|
/// viable solution.
|
|
void setMustBeMaterializableRecursive(Type type);
|
|
|
|
/// Determine if the type in question is an Array<T> and, if so, provide the
|
|
/// element type of the array.
|
|
static Optional<Type> isArrayType(Type type);
|
|
|
|
/// Determine whether the given type is a dictionary and, if so, provide the
|
|
/// key and value types for the dictionary.
|
|
static Optional<std::pair<Type, Type>> isDictionaryType(Type type);
|
|
|
|
/// Determine if the type in question is a Set<T> and, if so, provide the
|
|
/// element type of the set.
|
|
static Optional<Type> isSetType(Type t);
|
|
|
|
/// Determine if the type in question is one of the known collection types.
|
|
static bool isCollectionType(Type t);
|
|
|
|
/// Determine if the type in question is AnyHashable.
|
|
bool isAnyHashableType(Type t);
|
|
|
|
/// Call Expr::isTypeReference on the given expression, using a
|
|
/// custom accessor for the type on the expression that reads the
|
|
/// type from the ConstraintSystem expression type map.
|
|
bool isTypeReference(const Expr *E);
|
|
|
|
/// Call Expr::isIsStaticallyDerivedMetatype on the given
|
|
/// expression, using a custom accessor for the type on the
|
|
/// expression that reads the type from the ConstraintSystem
|
|
/// expression type map.
|
|
bool isStaticallyDerivedMetatype(const Expr *E);
|
|
|
|
/// Call TypeExpr::getInstanceType on the given expression, using a
|
|
/// custom accessor for the type on the expression that reads the
|
|
/// type from the ConstraintSystem expression type map.
|
|
Type getInstanceType(const TypeExpr *E);
|
|
|
|
/// Call AbstractClosureExpr::getResultType on the given expression,
|
|
/// using a custom accessor for the type on the expression that
|
|
/// reads the type from the ConstraintSystem expression type map.
|
|
Type getResultType(const AbstractClosureExpr *E);
|
|
|
|
private:
|
|
/// Introduce the constraints associated with the given type variable
|
|
/// into the worklist.
|
|
void addTypeVariableConstraintsToWorkList(TypeVariableType *typeVar);
|
|
|
|
static void
|
|
filterConstraints(ConstraintList &constraints,
|
|
llvm::function_ref<bool(const Constraint &)> pred,
|
|
SmallVectorImpl<Constraint *> &found) {
|
|
for (auto &constraint : constraints) {
|
|
if (pred(constraint))
|
|
found.push_back(&constraint);
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
/// Coerce the given expression to an rvalue, if it isn't already.
|
|
Expr *coerceToRValue(Expr *expr);
|
|
|
|
/// "Open" the given unbound type by introducing fresh type
|
|
/// variables for generic parameters and constructing a bound generic
|
|
/// type from these type variables.
|
|
///
|
|
/// \param unbound The type to open.
|
|
///
|
|
/// \returns The opened type.
|
|
Type openUnboundGenericType(UnboundGenericType *unbound,
|
|
ConstraintLocatorBuilder locator,
|
|
OpenedTypeMap &replacements);
|
|
|
|
/// "Open" the given type by replacing any occurrences of unbound
|
|
/// generic types with bound generic types with fresh type variables as
|
|
/// generic arguments.
|
|
///
|
|
/// \param type The type to open.
|
|
///
|
|
/// \returns The opened type.
|
|
Type openUnboundGenericType(Type type, ConstraintLocatorBuilder locator);
|
|
|
|
/// "Open" the given type by replacing any occurrences of generic
|
|
/// parameter types and dependent member types with fresh type variables.
|
|
///
|
|
/// \param type The type to open.
|
|
///
|
|
/// \returns The opened type, or \c type if there are no archetypes in it.
|
|
Type openType(Type type, OpenedTypeMap &replacements);
|
|
|
|
/// "Open" the given function type.
|
|
///
|
|
/// If the function type is non-generic, this is equivalent to calling
|
|
/// openType(). Otherwise, it calls openGeneric() on the generic
|
|
/// function's signature first.
|
|
///
|
|
/// \param funcType The function type to open.
|
|
///
|
|
/// \param replacements The mapping from opened types to the type
|
|
/// variables to which they were opened.
|
|
///
|
|
/// \param innerDC The generic context from which the type originates.
|
|
///
|
|
/// \param outerDC The generic context containing the declaration.
|
|
///
|
|
/// \param skipProtocolSelfConstraint Whether to skip the constraint on a
|
|
/// protocol's 'Self' type.
|
|
///
|
|
/// \returns The opened type, or \c type if there are no archetypes in it.
|
|
Type openFunctionType(
|
|
AnyFunctionType *funcType,
|
|
unsigned numArgumentLabelsToRemove,
|
|
ConstraintLocatorBuilder locator,
|
|
OpenedTypeMap &replacements,
|
|
DeclContext *innerDC,
|
|
DeclContext *outerDC,
|
|
bool skipProtocolSelfConstraint);
|
|
|
|
/// Open the generic parameter list and its requirements, creating
|
|
/// type variables for each of the type parameters.
|
|
void openGeneric(DeclContext *innerDC,
|
|
DeclContext *outerDC,
|
|
GenericSignature *signature,
|
|
bool skipProtocolSelfConstraint,
|
|
ConstraintLocatorBuilder locator,
|
|
OpenedTypeMap &replacements);
|
|
|
|
/// Given generic signature open its generic requirements,
|
|
/// using substitution function, and record them in the
|
|
/// constraint system for further processing.
|
|
void openGenericRequirements(DeclContext *outerDC,
|
|
GenericSignature *signature,
|
|
bool skipProtocolSelfConstraint,
|
|
ConstraintLocatorBuilder locator,
|
|
llvm::function_ref<Type(Type)> subst);
|
|
|
|
/// Record the set of opened types for the given locator.
|
|
void recordOpenedTypes(
|
|
ConstraintLocatorBuilder locator,
|
|
const OpenedTypeMap &replacements);
|
|
|
|
/// Retrieve the type of a reference to the given value declaration.
|
|
///
|
|
/// For references to polymorphic function types, this routine "opens up"
|
|
/// the type by replacing each instance of an archetype with a fresh type
|
|
/// variable.
|
|
///
|
|
/// \param decl The declarations whose type is being computed.
|
|
///
|
|
/// \returns a pair containing the full opened type (if applicable) and
|
|
/// opened type of a reference to declaration.
|
|
std::pair<Type, Type> getTypeOfReference(
|
|
ValueDecl *decl,
|
|
FunctionRefKind functionRefKind,
|
|
ConstraintLocatorBuilder locator,
|
|
DeclContext *useDC,
|
|
const DeclRefExpr *base = nullptr);
|
|
|
|
/// Return the type-of-reference of the given value.
|
|
///
|
|
/// \param baseType if non-null, return the type of a member reference to
|
|
/// this value when the base has the given type
|
|
///
|
|
/// \param UseDC The context of the access. Some variables have different
|
|
/// types depending on where they are used.
|
|
///
|
|
/// \param base The optional base expression of this value reference
|
|
///
|
|
/// \param wantInterfaceType Whether we want the interface type, if available.
|
|
Type getUnopenedTypeOfReference(VarDecl *value, Type baseType,
|
|
DeclContext *UseDC,
|
|
const DeclRefExpr *base = nullptr,
|
|
bool wantInterfaceType = false);
|
|
|
|
/// Retrieve the type of a reference to the given value declaration,
|
|
/// as a member with a base of the given type.
|
|
///
|
|
/// For references to generic function types or members of generic types,
|
|
/// this routine "opens up" the type by replacing each instance of a generic
|
|
/// parameter with a fresh type variable.
|
|
///
|
|
/// \param isDynamicResult Indicates that this declaration was found via
|
|
/// dynamic lookup.
|
|
///
|
|
/// \returns a pair containing the full opened type (which includes the opened
|
|
/// base) and opened type of a reference to this member.
|
|
std::pair<Type, Type> getTypeOfMemberReference(
|
|
Type baseTy, ValueDecl *decl, DeclContext *useDC,
|
|
bool isDynamicResult,
|
|
FunctionRefKind functionRefKind,
|
|
ConstraintLocatorBuilder locator,
|
|
const DeclRefExpr *base = nullptr,
|
|
OpenedTypeMap *replacements = nullptr);
|
|
|
|
/// Add a new overload set to the list of unresolved overload
|
|
/// sets.
|
|
void addOverloadSet(Type boundType, ArrayRef<OverloadChoice> choices,
|
|
DeclContext *useDC, ConstraintLocator *locator,
|
|
OverloadChoice *favored = nullptr,
|
|
ArrayRef<OverloadChoice> outerAlternatives = {});
|
|
|
|
/// Retrieve the allocator used by this constraint system.
|
|
llvm::BumpPtrAllocator &getAllocator() { return Allocator; }
|
|
|
|
template <typename It>
|
|
ArrayRef<typename std::iterator_traits<It>::value_type>
|
|
allocateCopy(It start, It end) {
|
|
using T = typename std::iterator_traits<It>::value_type;
|
|
T *result = (T*)getAllocator().Allocate(sizeof(T)*(end-start), alignof(T));
|
|
unsigned i;
|
|
for (i = 0; start != end; ++start, ++i)
|
|
new (result+i) T(*start);
|
|
return ArrayRef<T>(result, i);
|
|
}
|
|
|
|
template<typename T>
|
|
ArrayRef<T> allocateCopy(ArrayRef<T> array) {
|
|
return allocateCopy(array.begin(), array.end());
|
|
}
|
|
|
|
template<typename T>
|
|
ArrayRef<T> allocateCopy(SmallVectorImpl<T> &vec) {
|
|
return allocateCopy(vec.begin(), vec.end());
|
|
}
|
|
|
|
/// Generate constraints for the given (unchecked) expression.
|
|
///
|
|
/// \returns a possibly-sanitized expression, or null if an error occurred.
|
|
Expr *generateConstraints(Expr *E);
|
|
|
|
/// Generate constraints for binding the given pattern to the
|
|
/// value of the given expression.
|
|
///
|
|
/// \returns a possibly-sanitized initializer, or null if an error occurred.
|
|
Type generateConstraints(Pattern *P, ConstraintLocatorBuilder locator);
|
|
|
|
/// Propagate constraints in an effort to enforce local
|
|
/// consistency to reduce the time to solve the system.
|
|
///
|
|
/// \returns true if the system is known to be inconsistent (have no
|
|
/// solutions).
|
|
bool propagateConstraints();
|
|
|
|
/// The result of attempting to resolve a constraint or set of
|
|
/// constraints.
|
|
enum class SolutionKind : char {
|
|
/// The constraint has been solved completely, and provides no
|
|
/// more information.
|
|
Solved,
|
|
/// The constraint could not be solved at this point.
|
|
Unsolved,
|
|
/// The constraint uncovers an inconsistency in the system.
|
|
Error
|
|
};
|
|
|
|
class TypeMatchResult {
|
|
SolutionKind Kind;
|
|
|
|
public:
|
|
inline bool isSuccess() const { return Kind == SolutionKind::Solved; }
|
|
inline bool isFailure() const { return Kind == SolutionKind::Error; }
|
|
inline bool isAmbiguous() const { return Kind == SolutionKind::Unsolved; }
|
|
|
|
static TypeMatchResult success(ConstraintSystem &cs) {
|
|
return {SolutionKind::Solved};
|
|
}
|
|
|
|
static TypeMatchResult failure(ConstraintSystem &cs,
|
|
ConstraintLocatorBuilder location) {
|
|
return {SolutionKind::Error};
|
|
}
|
|
|
|
static TypeMatchResult ambiguous(ConstraintSystem &cs) {
|
|
return {SolutionKind::Unsolved};
|
|
}
|
|
|
|
operator SolutionKind() { return Kind; }
|
|
private:
|
|
TypeMatchResult(SolutionKind result) : Kind(result) {}
|
|
};
|
|
|
|
/// Subroutine of \c matchTypes(), which matches up two tuple types.
|
|
///
|
|
/// \returns the result of performing the tuple-to-tuple conversion.
|
|
TypeMatchResult matchTupleTypes(TupleType *tuple1, TupleType *tuple2,
|
|
ConstraintKind kind, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Subroutine of \c matchTypes(), which matches a scalar type to
|
|
/// a tuple type.
|
|
///
|
|
/// \returns the result of performing the scalar-to-tuple conversion.
|
|
TypeMatchResult matchScalarToTupleTypes(Type type1, TupleType *tuple2,
|
|
ConstraintKind kind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Subroutine of \c matchTypes(), which matches up two function
|
|
/// types.
|
|
TypeMatchResult matchFunctionTypes(FunctionType *func1, FunctionType *func2,
|
|
ConstraintKind kind, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Subroutine of \c matchTypes(), which matches up a value to a
|
|
/// superclass.
|
|
TypeMatchResult matchSuperclassTypes(Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Subroutine of \c matchTypes(), which matches up two types that
|
|
/// refer to the same declaration via their generic arguments.
|
|
TypeMatchResult matchDeepEqualityTypes(Type type1, Type type2,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Subroutine of \c matchTypes(), which matches up a value to an
|
|
/// existential type.
|
|
///
|
|
/// \param kind Either ConstraintKind::SelfObjectOfProtocol or
|
|
/// ConstraintKind::ConformsTo. Usually this uses SelfObjectOfProtocol,
|
|
/// but when matching the instance type of a metatype with the instance type
|
|
/// of an existential metatype, since we want an actual conformance check.
|
|
TypeMatchResult matchExistentialTypes(Type type1, Type type2,
|
|
ConstraintKind kind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Subroutine of \c matchTypes(), used to bind a type to a
|
|
/// type variable.
|
|
TypeMatchResult matchTypesBindTypeVar(
|
|
TypeVariableType *typeVar, Type type, ConstraintKind kind,
|
|
TypeMatchOptions flags, ConstraintLocatorBuilder locator,
|
|
llvm::function_ref<TypeMatchResult()> formUnsolvedResult);
|
|
|
|
public: // FIXME: public due to statics in CSSimplify.cpp
|
|
/// Attempt to match up types \c type1 and \c type2, which in effect
|
|
/// is solving the given type constraint between these two types.
|
|
///
|
|
/// \param type1 The first type, which is on the left of the type relation.
|
|
///
|
|
/// \param type2 The second type, which is on the right of the type relation.
|
|
///
|
|
/// \param kind The kind of type match being performed, e.g., exact match,
|
|
/// trivial subtyping, subtyping, or conversion.
|
|
///
|
|
/// \param flags A set of flags composed from the TMF_* constants, which
|
|
/// indicates how the constraint should be simplified.
|
|
///
|
|
/// \param locator The locator that will be used to track the location of
|
|
/// the specific types being matched.
|
|
///
|
|
/// \returns the result of attempting to solve this constraint.
|
|
TypeMatchResult matchTypes(Type type1, Type type2, ConstraintKind kind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
TypeMatchResult getTypeMatchSuccess() {
|
|
return TypeMatchResult::success(*this);
|
|
}
|
|
|
|
TypeMatchResult getTypeMatchFailure(ConstraintLocatorBuilder locator) {
|
|
return TypeMatchResult::failure(*this, locator);
|
|
}
|
|
|
|
TypeMatchResult getTypeMatchAmbiguous() {
|
|
return TypeMatchResult::ambiguous(*this);
|
|
}
|
|
|
|
public:
|
|
/// Given a function type where the eventual result type is an optional,
|
|
/// where "eventual result type" is defined as:
|
|
/// 1. The result type is an optional
|
|
/// 2. The result type is a function type with an eventual result
|
|
/// type that is an optional.
|
|
///
|
|
/// return the same function type but with the eventual result type
|
|
/// replaced by its underlying type.
|
|
///
|
|
/// i.e. return (S) -> T for (S) -> T?
|
|
// return (X) -> () -> Y for (X) -> () -> Y?
|
|
Type replaceFinalResultTypeWithUnderlying(AnyFunctionType *fnTy) {
|
|
auto resultTy = fnTy->getResult();
|
|
if (auto *resultFnTy = resultTy->getAs<AnyFunctionType>())
|
|
resultTy = replaceFinalResultTypeWithUnderlying(resultFnTy);
|
|
else
|
|
resultTy = resultTy->getWithoutSpecifierType()->getOptionalObjectType();
|
|
|
|
assert(resultTy);
|
|
|
|
if (auto *genericFn = fnTy->getAs<GenericFunctionType>()) {
|
|
return GenericFunctionType::get(genericFn->getGenericSignature(),
|
|
genericFn->getParams(), resultTy,
|
|
genericFn->getExtInfo());
|
|
}
|
|
|
|
return FunctionType::get(fnTy->getParams(), resultTy, fnTy->getExtInfo());
|
|
}
|
|
|
|
// Build a disjunction that attempts both T? and T for a particular
|
|
// type binding. The choice of T? is preferred, and we will not
|
|
// attempt T if we can type check with T?
|
|
void
|
|
buildDisjunctionForOptionalVsUnderlying(Type boundTy, Type type,
|
|
ConstraintLocator *locator) {
|
|
// NOTE: If we use other locator kinds for these disjunctions, we
|
|
// need to account for it in solution scores for forced-unwraps.
|
|
assert(locator->getPath().back().getKind() ==
|
|
ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice ||
|
|
locator->getPath().back().getKind() ==
|
|
ConstraintLocator::DynamicLookupResult);
|
|
|
|
// Create the constraint to bind to the optional type and make it
|
|
// the favored choice.
|
|
auto *bindToOptional =
|
|
Constraint::create(*this, ConstraintKind::Bind, boundTy, type, locator);
|
|
bindToOptional->setFavored();
|
|
|
|
Type underlyingType;
|
|
if (auto *fnTy = type->getAs<AnyFunctionType>())
|
|
underlyingType = replaceFinalResultTypeWithUnderlying(fnTy);
|
|
else
|
|
underlyingType = type->getWithoutSpecifierType()->getOptionalObjectType();
|
|
|
|
assert(underlyingType);
|
|
|
|
if (type->is<LValueType>())
|
|
underlyingType = LValueType::get(underlyingType);
|
|
assert(!type->is<InOutType>());
|
|
|
|
auto *bindToUnderlying = Constraint::create(
|
|
*this, ConstraintKind::Bind, boundTy, underlyingType, locator);
|
|
|
|
llvm::SmallVector<Constraint *, 2> choices = {bindToOptional,
|
|
bindToUnderlying};
|
|
|
|
// Create the disjunction
|
|
addDisjunctionConstraint(choices, locator, RememberChoice);
|
|
}
|
|
|
|
// Build a disjunction for types declared IUO.
|
|
void
|
|
buildDisjunctionForImplicitlyUnwrappedOptional(Type boundTy, Type type,
|
|
ConstraintLocator *locator) {
|
|
auto *disjunctionLocator = getConstraintLocator(
|
|
locator, ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice);
|
|
buildDisjunctionForOptionalVsUnderlying(boundTy, type, disjunctionLocator);
|
|
}
|
|
|
|
// Build a disjunction for dynamic lookup results, which are
|
|
// implicitly unwrapped if needed.
|
|
void buildDisjunctionForDynamicLookupResult(Type boundTy, Type type,
|
|
ConstraintLocator *locator) {
|
|
auto *dynamicLocator =
|
|
getConstraintLocator(locator, ConstraintLocator::DynamicLookupResult);
|
|
buildDisjunctionForOptionalVsUnderlying(boundTy, type, dynamicLocator);
|
|
}
|
|
|
|
/// Resolve the given overload set to the given choice.
|
|
void resolveOverload(ConstraintLocator *locator, Type boundType,
|
|
OverloadChoice choice, DeclContext *useDC);
|
|
|
|
/// Simplify a type, by replacing type variables with either their
|
|
/// fixed types (if available) or their representatives.
|
|
///
|
|
/// The resulting types can be compared canonically, so long as additional
|
|
/// type equivalence requirements aren't introduced between comparisons.
|
|
Type simplifyType(Type type);
|
|
|
|
/// Simplify a type, by replacing type variables with either their
|
|
/// fixed types (if available) or their representatives.
|
|
///
|
|
/// \param flags If the simplified type has changed, this will be updated
|
|
/// to include \c TMF_GenerateConstraints.
|
|
///
|
|
/// The resulting types can be compared canonically, so long as additional
|
|
/// type equivalence requirements aren't introduced between comparisons.
|
|
Type simplifyType(Type type, TypeMatchOptions &flags) {
|
|
Type result = simplifyType(type);
|
|
if (result.getPointer() != type.getPointer())
|
|
flags |= TMF_GenerateConstraints;
|
|
return result;
|
|
}
|
|
|
|
/// Given a ValueMember, UnresolvedValueMember, or TypeMember constraint,
|
|
/// perform a lookup into the specified base type to find a candidate list.
|
|
/// The list returned includes the viable candidates as well as the unviable
|
|
/// ones (along with reasons why they aren't viable).
|
|
///
|
|
/// If includeInaccessibleMembers is set to true, this burns compile time to
|
|
/// try to identify and classify inaccessible members that may be being
|
|
/// referenced.
|
|
MemberLookupResult performMemberLookup(ConstraintKind constraintKind,
|
|
DeclName memberName, Type baseTy,
|
|
FunctionRefKind functionRefKind,
|
|
ConstraintLocator *memberLocator,
|
|
bool includeInaccessibleMembers);
|
|
|
|
private:
|
|
/// Attempt to simplify the given construction constraint.
|
|
///
|
|
/// \param valueType The type being constructed.
|
|
///
|
|
/// \param fnType The argument type that will be the input to the
|
|
/// valueType initializer and the result type will be the result of
|
|
/// calling that initializer.
|
|
///
|
|
/// \param flags A set of flags composed from the TMF_* constants, which
|
|
/// indicates how the constraint should be simplified.
|
|
///
|
|
/// \param locator Locator describing where this construction
|
|
/// occurred.
|
|
SolutionKind simplifyConstructionConstraint(Type valueType,
|
|
FunctionType *fnType,
|
|
TypeMatchOptions flags,
|
|
DeclContext *DC,
|
|
FunctionRefKind functionRefKind,
|
|
ConstraintLocator *locator);
|
|
|
|
/// Attempt to simplify the given conformance constraint.
|
|
///
|
|
/// \param type The type being tested.
|
|
/// \param protocol The protocol to which the type should conform.
|
|
/// \param kind Either ConstraintKind::SelfObjectOfProtocol or
|
|
/// ConstraintKind::ConformsTo.
|
|
/// \param locator Locator describing where this constraint occurred.
|
|
SolutionKind simplifyConformsToConstraint(Type type, ProtocolDecl *protocol,
|
|
ConstraintKind kind,
|
|
ConstraintLocatorBuilder locator,
|
|
TypeMatchOptions flags);
|
|
|
|
/// Attempt to simplify the given conformance constraint.
|
|
///
|
|
/// \param type The type being tested.
|
|
/// \param protocol The protocol or protocol composition type to which the
|
|
/// type should conform.
|
|
/// \param locator Locator describing where this constraint occurred.
|
|
///
|
|
/// \param kind If this is SelfTypeOfProtocol, we allow an existential type
|
|
/// that contains the protocol but does not conform to it (eg, due to
|
|
/// associated types).
|
|
SolutionKind simplifyConformsToConstraint(Type type, Type protocol,
|
|
ConstraintKind kind,
|
|
ConstraintLocatorBuilder locator,
|
|
TypeMatchOptions flags);
|
|
|
|
/// Attempt to simplify a checked-cast constraint.
|
|
SolutionKind simplifyCheckedCastConstraint(Type fromType, Type toType,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the given member constraint.
|
|
SolutionKind simplifyMemberConstraint(
|
|
ConstraintKind kind, Type baseType, DeclName member, Type memberType,
|
|
DeclContext *useDC, FunctionRefKind functionRefKind,
|
|
ArrayRef<OverloadChoice> outerAlternatives, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the optional object constraint.
|
|
SolutionKind simplifyOptionalObjectConstraint(
|
|
Type first, Type second,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify a function input or result constraint.
|
|
SolutionKind simplifyFunctionComponentConstraint(
|
|
ConstraintKind kind,
|
|
Type first, Type second,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the BridgingConversion constraint.
|
|
SolutionKind simplifyBridgingConstraint(Type type1,
|
|
Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the ApplicableFunction constraint.
|
|
SolutionKind simplifyApplicableFnConstraint(
|
|
Type type1,
|
|
Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the DynamicCallableApplicableFunction constraint.
|
|
SolutionKind simplifyDynamicCallableApplicableFnConstraint(
|
|
Type type1,
|
|
Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the given DynamicTypeOf constraint.
|
|
SolutionKind simplifyDynamicTypeOfConstraint(
|
|
Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the given EscapableFunctionOf constraint.
|
|
SolutionKind simplifyEscapableFunctionOfConstraint(
|
|
Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the given OpenedExistentialOf constraint.
|
|
SolutionKind simplifyOpenedExistentialOfConstraint(
|
|
Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the given KeyPathApplication constraint.
|
|
SolutionKind simplifyKeyPathApplicationConstraint(
|
|
Type keyPath,
|
|
Type root,
|
|
Type value,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the given KeyPath constraint.
|
|
SolutionKind simplifyKeyPathConstraint(Type keyPath,
|
|
Type root,
|
|
Type value,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to simplify the given defaultable constraint.
|
|
SolutionKind simplifyDefaultableConstraint(Type first, Type second,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Simplify a conversion constraint by applying the given
|
|
/// reduction rule, which is known to apply at the outermost level.
|
|
SolutionKind simplifyRestrictedConstraintImpl(
|
|
ConversionRestrictionKind restriction,
|
|
Type type1, Type type2,
|
|
ConstraintKind matchKind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Simplify a conversion constraint by applying the given
|
|
/// reduction rule, which is known to apply at the outermost level.
|
|
SolutionKind simplifyRestrictedConstraint(
|
|
ConversionRestrictionKind restriction,
|
|
Type type1, Type type2,
|
|
ConstraintKind matchKind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
public: // FIXME: Public for use by static functions.
|
|
/// Simplify a conversion constraint with a fix applied to it.
|
|
SolutionKind simplifyFixConstraint(ConstraintFix *fix, Type type1, Type type2,
|
|
ConstraintKind matchKind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
public:
|
|
/// Simplify the system of constraints, by breaking down complex
|
|
/// constraints into simpler constraints.
|
|
///
|
|
/// The result of simplification is a constraint system consisting of
|
|
/// only simple constraints relating type variables to each other or
|
|
/// directly to fixed types. There are no constraints that involve
|
|
/// type constructors on both sides. The simplified constraint system may,
|
|
/// of course, include type variables for which we have constraints but
|
|
/// no fixed type. Such type variables are left to the solver to bind.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool simplify(bool ContinueAfterFailures = false);
|
|
|
|
/// Simplify the given constraint.
|
|
SolutionKind simplifyConstraint(const Constraint &constraint);
|
|
/// Simplify the given disjunction choice.
|
|
void simplifyDisjunctionChoice(Constraint *choice);
|
|
|
|
private:
|
|
/// The kind of bindings that are permitted.
|
|
enum class AllowedBindingKind : uint8_t {
|
|
/// Only the exact type.
|
|
Exact,
|
|
/// Supertypes of the specified type.
|
|
Supertypes,
|
|
/// Subtypes of the specified type.
|
|
Subtypes
|
|
};
|
|
|
|
/// The kind of literal binding found.
|
|
enum class LiteralBindingKind : uint8_t {
|
|
None,
|
|
Collection,
|
|
Float,
|
|
Atom,
|
|
};
|
|
|
|
/// A potential binding from the type variable to a particular type,
|
|
/// along with information that can be used to construct related
|
|
/// bindings, e.g., the supertypes of a given type.
|
|
struct PotentialBinding {
|
|
/// The type to which the type variable can be bound.
|
|
Type BindingType;
|
|
|
|
/// The kind of bindings permitted.
|
|
AllowedBindingKind Kind;
|
|
|
|
/// The kind of the constraint this binding came from.
|
|
ConstraintKind BindingSource;
|
|
|
|
/// The defaulted protocol associated with this binding.
|
|
ProtocolDecl *DefaultedProtocol;
|
|
|
|
/// If this is a binding that comes from a \c Defaultable constraint,
|
|
/// the locator of that constraint.
|
|
ConstraintLocator *DefaultableBinding = nullptr;
|
|
|
|
PotentialBinding(Type type, AllowedBindingKind kind,
|
|
ConstraintKind bindingSource,
|
|
ProtocolDecl *defaultedProtocol = nullptr,
|
|
ConstraintLocator *defaultableBinding = nullptr)
|
|
: BindingType(type->getWithoutParens()), Kind(kind),
|
|
BindingSource(bindingSource), DefaultedProtocol(defaultedProtocol),
|
|
DefaultableBinding(defaultableBinding) {}
|
|
|
|
bool isDefaultableBinding() const { return DefaultableBinding != nullptr; }
|
|
|
|
PotentialBinding withType(Type type) const {
|
|
return {type, Kind, BindingSource, DefaultedProtocol, DefaultableBinding};
|
|
}
|
|
};
|
|
|
|
struct PotentialBindings {
|
|
using BindingScore = std::tuple<bool, bool, bool, bool, unsigned char, int>;
|
|
|
|
TypeVariableType *TypeVar;
|
|
|
|
/// The set of potential bindings.
|
|
SmallVector<PotentialBinding, 4> Bindings;
|
|
|
|
/// Whether this type variable is fully bound by one of its constraints.
|
|
bool FullyBound = false;
|
|
|
|
/// Whether the bindings of this type involve other type variables.
|
|
bool InvolvesTypeVariables = false;
|
|
|
|
/// Whether the bindings represent (potentially) incomplete set,
|
|
/// there is no way to say with absolute certainty if that's the
|
|
/// case, but that could happen when certain constraints like
|
|
/// `bind param` are present in the system.
|
|
bool PotentiallyIncomplete = false;
|
|
|
|
/// Whether this type variable has literal bindings.
|
|
LiteralBindingKind LiteralBinding = LiteralBindingKind::None;
|
|
|
|
/// Whether this type variable is only bound above by existential types.
|
|
bool SubtypeOfExistentialType = false;
|
|
|
|
/// The number of defaultable bindings.
|
|
unsigned NumDefaultableBindings = 0;
|
|
|
|
/// Tracks the position of the last known supertype in the group.
|
|
Optional<unsigned> lastSupertypeIndex;
|
|
|
|
/// A set of all constraints which contribute to pontential bindings.
|
|
llvm::SmallPtrSet<Constraint *, 8> Sources;
|
|
|
|
PotentialBindings(TypeVariableType *typeVar) : TypeVar(typeVar) {}
|
|
|
|
/// Determine whether the set of bindings is non-empty.
|
|
explicit operator bool() const { return !Bindings.empty(); }
|
|
|
|
/// Whether there are any non-defaultable bindings.
|
|
bool hasNonDefaultableBindings() const {
|
|
return Bindings.size() > NumDefaultableBindings;
|
|
}
|
|
|
|
static BindingScore formBindingScore(const PotentialBindings &b) {
|
|
return std::make_tuple(!b.hasNonDefaultableBindings(),
|
|
b.FullyBound,
|
|
b.SubtypeOfExistentialType,
|
|
b.InvolvesTypeVariables,
|
|
static_cast<unsigned char>(b.LiteralBinding),
|
|
-(b.Bindings.size() - b.NumDefaultableBindings));
|
|
}
|
|
|
|
/// Compare two sets of bindings, where \c x < y indicates that
|
|
/// \c x is a better set of bindings that \c y.
|
|
friend bool operator<(const PotentialBindings &x,
|
|
const PotentialBindings &y) {
|
|
if (formBindingScore(x) < formBindingScore(y))
|
|
return true;
|
|
|
|
if (formBindingScore(y) < formBindingScore(x))
|
|
return false;
|
|
|
|
// If there is a difference in number of default types,
|
|
// prioritize bindings with fewer of them.
|
|
if (x.NumDefaultableBindings != y.NumDefaultableBindings)
|
|
return x.NumDefaultableBindings < y.NumDefaultableBindings;
|
|
|
|
// As a last resort, let's check if the bindings are
|
|
// potentially incomplete, and if so, let's de-prioritize them.
|
|
return x.PotentiallyIncomplete < y.PotentiallyIncomplete;
|
|
}
|
|
|
|
void foundLiteralBinding(ProtocolDecl *proto) {
|
|
switch (*proto->getKnownProtocolKind()) {
|
|
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
|
|
case KnownProtocolKind::ExpressibleByArrayLiteral:
|
|
case KnownProtocolKind::ExpressibleByStringInterpolation:
|
|
LiteralBinding = LiteralBindingKind::Collection;
|
|
break;
|
|
|
|
case KnownProtocolKind::ExpressibleByFloatLiteral:
|
|
LiteralBinding = LiteralBindingKind::Float;
|
|
break;
|
|
|
|
default:
|
|
if (LiteralBinding != LiteralBindingKind::Collection)
|
|
LiteralBinding = LiteralBindingKind::Atom;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Add a potential binding to the list of bindings,
|
|
/// coalescing supertype bounds when we are able to compute the meet.
|
|
void addPotentialBinding(PotentialBinding binding,
|
|
bool allowJoinMeet = true);
|
|
|
|
/// Check if this binding is viable for inclusion in the set.
|
|
bool isViable(PotentialBinding &binding) const;
|
|
|
|
void dump(llvm::raw_ostream &out,
|
|
unsigned indent = 0) const LLVM_ATTRIBUTE_USED {
|
|
out.indent(indent);
|
|
if (PotentiallyIncomplete)
|
|
out << "potentially_incomplete ";
|
|
if (FullyBound)
|
|
out << "fully_bound ";
|
|
if (SubtypeOfExistentialType)
|
|
out << "subtype_of_existential ";
|
|
if (LiteralBinding != LiteralBindingKind::None)
|
|
out << "literal=" << static_cast<int>(LiteralBinding) << " ";
|
|
if (InvolvesTypeVariables)
|
|
out << "involves_type_vars ";
|
|
if (NumDefaultableBindings > 0)
|
|
out << "#defaultable_bindings=" << NumDefaultableBindings << " ";
|
|
|
|
out << "bindings={";
|
|
interleave(Bindings,
|
|
[&](const PotentialBinding &binding) {
|
|
auto type = binding.BindingType;
|
|
auto &ctx = type->getASTContext();
|
|
llvm::SaveAndRestore<bool> debugConstraints(
|
|
ctx.LangOpts.DebugConstraintSolver, true);
|
|
switch (binding.Kind) {
|
|
case AllowedBindingKind::Exact:
|
|
break;
|
|
|
|
case AllowedBindingKind::Subtypes:
|
|
out << "(subtypes of) ";
|
|
break;
|
|
|
|
case AllowedBindingKind::Supertypes:
|
|
out << "(supertypes of) ";
|
|
break;
|
|
}
|
|
if (binding.DefaultedProtocol)
|
|
out << "(default from "
|
|
<< binding.DefaultedProtocol->getName() << ") ";
|
|
out << type.getString();
|
|
},
|
|
[&]() { out << "; "; });
|
|
out << "}";
|
|
}
|
|
|
|
void dump(ConstraintSystem *cs,
|
|
unsigned indent = 0) const LLVM_ATTRIBUTE_USED {
|
|
dump(cs->getASTContext().TypeCheckerDebug->getStream());
|
|
}
|
|
|
|
void dump(TypeVariableType *typeVar, llvm::raw_ostream &out,
|
|
unsigned indent = 0) const LLVM_ATTRIBUTE_USED {
|
|
out.indent(indent);
|
|
out << "(";
|
|
if (typeVar)
|
|
out << "$T" << typeVar->getImpl().getID();
|
|
dump(out, 1);
|
|
out << ")\n";
|
|
}
|
|
};
|
|
|
|
Optional<Type> checkTypeOfBinding(TypeVariableType *typeVar, Type type);
|
|
Optional<PotentialBindings> determineBestBindings();
|
|
Optional<ConstraintSystem::PotentialBinding>
|
|
getPotentialBindingForRelationalConstraint(
|
|
PotentialBindings &result, Constraint *constraint,
|
|
bool &hasDependentMemberRelationalConstraints,
|
|
bool &hasNonDependentMemberRelationalConstraints,
|
|
bool &addOptionalSupertypeBindings);
|
|
PotentialBindings getPotentialBindings(TypeVariableType *typeVar);
|
|
|
|
private:
|
|
/// Add a constraint to the constraint system.
|
|
SolutionKind addConstraintImpl(ConstraintKind kind, Type first, Type second,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored);
|
|
|
|
/// Collect the current inactive disjunction constraints.
|
|
void collectDisjunctions(SmallVectorImpl<Constraint *> &disjunctions);
|
|
|
|
/// Solve the system of constraints after it has already been
|
|
/// simplified.
|
|
///
|
|
/// \param solutions The set of solutions to this system of constraints.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool solveSimplified(SmallVectorImpl<Solution> &solutions);
|
|
|
|
/// Find reduced domains of disjunction constraints for given
|
|
/// expression, this is achieved to solving individual sub-expressions
|
|
/// and combining resolving types. Such algorithm is called directional
|
|
/// path consistency because it goes from children to parents for all
|
|
/// related sub-expressions taking union of their domains.
|
|
///
|
|
/// \param expr The expression to find reductions for.
|
|
void shrink(Expr *expr);
|
|
|
|
/// Pick a disjunction from the InactiveConstraints list.
|
|
///
|
|
/// \returns The selected disjunction.
|
|
Constraint *selectDisjunction();
|
|
|
|
Constraint *selectApplyDisjunction();
|
|
|
|
bool simplifyForConstraintPropagation();
|
|
void collectNeighboringBindOverloadDisjunctions(
|
|
llvm::SetVector<Constraint *> &neighbors);
|
|
bool isBindOverloadConsistent(Constraint *bindConstraint,
|
|
llvm::SetVector<Constraint *> &workList);
|
|
void reviseBindOverloadDisjunction(Constraint *disjunction,
|
|
llvm::SetVector<Constraint *> &workList,
|
|
bool *foundConsistent);
|
|
bool areBindPairConsistent(Constraint *first, Constraint *second);
|
|
|
|
/// Solve the system of constraints generated from provided expression.
|
|
///
|
|
/// \param expr The expression to generate constraints from.
|
|
/// \param convertType The expected type of the expression.
|
|
/// \param listener The callback to check solving progress.
|
|
/// \param solutions The set of solutions to the system of constraints.
|
|
/// \param allowFreeTypeVariables How to bind free type variables in
|
|
/// the solution.
|
|
///
|
|
/// \returns Error is an error occurred, Solved is system is consistent
|
|
/// and solutions were found, Unsolved otherwise.
|
|
SolutionKind solveImpl(Expr *&expr,
|
|
Type convertType,
|
|
ExprTypeCheckListener *listener,
|
|
SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables
|
|
= FreeTypeVariableBinding::Disallow);
|
|
|
|
public:
|
|
/// Solve the system of constraints generated from provided expression.
|
|
///
|
|
/// The expression should have already been pre-checked with
|
|
/// preCheckExpression().
|
|
///
|
|
/// \param expr The expression to generate constraints from.
|
|
/// \param convertType The expected type of the expression.
|
|
/// \param listener The callback to check solving progress.
|
|
/// \param solutions The set of solutions to the system of constraints.
|
|
/// \param allowFreeTypeVariables How to bind free type variables in
|
|
/// the solution.
|
|
///
|
|
/// \returns true is an error occurred, false is system is consistent
|
|
/// and solutions were found.
|
|
bool solve(Expr *&expr,
|
|
Type convertType,
|
|
ExprTypeCheckListener *listener,
|
|
SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables
|
|
= FreeTypeVariableBinding::Disallow);
|
|
|
|
/// Solve the system of constraints.
|
|
///
|
|
/// \param solutions The set of solutions to this system of constraints.
|
|
///
|
|
/// \param allowFreeTypeVariables How to bind free type variables in
|
|
/// the solution.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise. Note that multiple
|
|
/// ambiguous solutions for the same constraint system are considered to be
|
|
/// success by this API.
|
|
bool solve(Expr *const expr, SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables =
|
|
FreeTypeVariableBinding::Disallow);
|
|
|
|
/// Solve the system of constraints.
|
|
///
|
|
/// \param allowFreeTypeVariables How to bind free type variables in
|
|
/// the solution.
|
|
///
|
|
/// \param allowFixes Whether to allow fixes in the solution.
|
|
///
|
|
/// \returns a solution if a single unambiguous one could be found, or None if
|
|
/// ambiguous or unsolvable.
|
|
Optional<Solution> solveSingle(FreeTypeVariableBinding allowFreeTypeVariables
|
|
= FreeTypeVariableBinding::Disallow,
|
|
bool allowFixes = false);
|
|
|
|
private:
|
|
/// Solve the system of constraints.
|
|
///
|
|
/// This method responsible for running search/solver algorithm.
|
|
/// It doesn't filter solutions, that's the job of top-level `solve` methods.
|
|
///
|
|
/// \param solutions The set of solutions to this system of constraints.
|
|
void solve(SmallVectorImpl<Solution> &solutions);
|
|
|
|
/// Compare two solutions to the same set of constraints.
|
|
///
|
|
/// \param cs The constraint system.
|
|
/// \param solutions All of the solutions to the system.
|
|
/// \param diff The differences among the solutions.
|
|
/// \param idx1 The index of the first solution.
|
|
/// \param idx2 The index of the second solution.
|
|
/// \param weights The weights of the sub-expressions used for ranking.
|
|
static SolutionCompareResult
|
|
compareSolutions(ConstraintSystem &cs, ArrayRef<Solution> solutions,
|
|
const SolutionDiff &diff, unsigned idx1, unsigned idx2,
|
|
llvm::DenseMap<Expr *, unsigned> &weights);
|
|
|
|
public:
|
|
/// Increase the score of the given kind for the current (partial) solution
|
|
/// along the.
|
|
void increaseScore(ScoreKind kind, unsigned value = 1);
|
|
|
|
/// Determine whether this solution is guaranteed to be worse than the best
|
|
/// solution found so far.
|
|
bool worseThanBestSolution() const;
|
|
|
|
/// Given a set of viable solutions, find the best
|
|
/// solution.
|
|
///
|
|
/// \param solutions The set of viable solutions to consider.
|
|
/// \param weights The weights of the sub-expressions used for ranking.
|
|
///
|
|
/// \param minimize If true, then in the case where there is no single
|
|
/// best solution, minimize the set of solutions by removing any solutions
|
|
/// that are identical to or worse than some other solution. This operation
|
|
/// is quadratic.
|
|
///
|
|
/// \returns The index of the best solution, or nothing if there was no
|
|
/// best solution.
|
|
Optional<unsigned> findBestSolution(SmallVectorImpl<Solution> &solutions,
|
|
llvm::DenseMap<Expr *, unsigned> &weights,
|
|
bool minimize);
|
|
|
|
/// Apply a given solution to the expression, producing a fully
|
|
/// type-checked expression.
|
|
///
|
|
/// \param convertType the contextual type to which the
|
|
/// expression should be converted, if any.
|
|
/// \param discardedExpr if true, the result of the expression
|
|
/// is contextually ignored.
|
|
/// \param skipClosures if true, don't descend into bodies of
|
|
/// non-single expression closures.
|
|
Expr *applySolution(Solution &solution, Expr *expr,
|
|
Type convertType, bool discardedExpr,
|
|
bool skipClosures);
|
|
|
|
/// Reorder the disjunctive clauses for a given expression to
|
|
/// increase the likelihood that a favored constraint will be successfully
|
|
/// resolved before any others.
|
|
void optimizeConstraints(Expr *e);
|
|
|
|
/// Determine if we've already explored too many paths in an
|
|
/// attempt to solve this expression.
|
|
bool isExpressionAlreadyTooComplex = false;
|
|
bool getExpressionTooComplex(SmallVectorImpl<Solution> const &solutions) {
|
|
if (isExpressionAlreadyTooComplex)
|
|
return true;
|
|
|
|
auto used = TC.Context.getSolverMemory();
|
|
for (auto const& s : solutions) {
|
|
used += s.getTotalMemory();
|
|
}
|
|
MaxMemory = std::max(used, MaxMemory);
|
|
auto threshold = TC.Context.LangOpts.SolverMemoryThreshold;
|
|
if (MaxMemory > threshold) {
|
|
return isExpressionAlreadyTooComplex= true;
|
|
}
|
|
|
|
auto timeoutThresholdInMillis = TC.getExpressionTimeoutThresholdInSeconds();
|
|
if (Timer && Timer->isExpired(timeoutThresholdInMillis)) {
|
|
// Disable warnings about expressions that go over the warning
|
|
// threshold since we're arbitrarily ending evaluation and
|
|
// emitting an error.
|
|
Timer->disableWarning();
|
|
|
|
return isExpressionAlreadyTooComplex = true;
|
|
}
|
|
|
|
// Bail out once we've looked at a really large number of
|
|
// choices.
|
|
if (CountScopes > TC.Context.LangOpts.SolverBindingThreshold) {
|
|
return isExpressionAlreadyTooComplex = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Utility class that can collect information about the type of an
|
|
// argument in an apply.
|
|
//
|
|
// For example, when given a type variable type that represents the
|
|
// argument of a function call, it will walk the constraint graph
|
|
// finding any concrete types that are reachable through various
|
|
// subtype constraints and will also collect all the literal types
|
|
// conformed to by the types it finds on the walk.
|
|
//
|
|
// This makes it possible to get an idea of the kinds of literals
|
|
// and types of arguments that are used in the subexpression rooted
|
|
// in this argument, which we can then use to make better choices
|
|
// for how we partition the operators in a disjunction (in order to
|
|
// avoid visiting all the options).
|
|
class ArgumentInfoCollector {
|
|
ConstraintSystem &CS;
|
|
llvm::SetVector<Type> Types;
|
|
llvm::SetVector<ProtocolDecl *> LiteralProtocols;
|
|
|
|
void addType(Type ty) {
|
|
assert(!ty->is<TypeVariableType>());
|
|
Types.insert(ty);
|
|
}
|
|
|
|
void addLiteralProtocol(ProtocolDecl *proto) {
|
|
LiteralProtocols.insert(proto);
|
|
}
|
|
|
|
void walk(Type argType);
|
|
void minimizeLiteralProtocols();
|
|
|
|
public:
|
|
ArgumentInfoCollector(ConstraintSystem &cs, FunctionType *fnTy) : CS(cs) {
|
|
for (auto ¶m : fnTy->getParams())
|
|
walk(param.getPlainType());
|
|
|
|
minimizeLiteralProtocols();
|
|
}
|
|
|
|
ArgumentInfoCollector(ConstraintSystem &cs, AnyFunctionType::Param param)
|
|
: CS(cs) {
|
|
walk(param.getPlainType());
|
|
minimizeLiteralProtocols();
|
|
}
|
|
|
|
const llvm::SetVector<Type> &getTypes() const { return Types; }
|
|
const llvm::SetVector<ProtocolDecl *> &getLiteralProtocols() const {
|
|
return LiteralProtocols;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_DEPRECATED(void dump() const LLVM_ATTRIBUTE_USED,
|
|
"only for use within the debugger");
|
|
};
|
|
|
|
bool haveTypeInformationForAllArguments(FunctionType *fnType);
|
|
|
|
typedef std::function<bool(unsigned index, Constraint *)> ConstraintMatcher;
|
|
typedef std::function<void(ArrayRef<Constraint *>, ConstraintMatcher)>
|
|
ConstraintMatchLoop;
|
|
typedef std::function<void(SmallVectorImpl<unsigned> &options)>
|
|
PartitionAppendCallback;
|
|
|
|
// Attempt to sort nominalTypes based on what we can discover about
|
|
// calls into the overloads in the disjunction that bindOverload is
|
|
// a part of.
|
|
void sortDesignatedTypes(SmallVectorImpl<NominalTypeDecl *> &nominalTypes,
|
|
Constraint *bindOverload);
|
|
|
|
// Partition the choices in a disjunction based on those that match
|
|
// the designated types for the operator that the disjunction was
|
|
// formed for.
|
|
void partitionForDesignatedTypes(ArrayRef<Constraint *> Choices,
|
|
ConstraintMatchLoop forEachChoice,
|
|
PartitionAppendCallback appendPartition);
|
|
|
|
// Partition the choices in the disjunction into groups that we will
|
|
// iterate over in an order appropriate to attempt to stop before we
|
|
// have to visit all of the options.
|
|
void partitionDisjunction(ArrayRef<Constraint *> Choices,
|
|
SmallVectorImpl<unsigned> &Ordering,
|
|
SmallVectorImpl<unsigned> &PartitionBeginning);
|
|
|
|
LLVM_ATTRIBUTE_DEPRECATED(
|
|
void dump() LLVM_ATTRIBUTE_USED,
|
|
"only for use within the debugger");
|
|
LLVM_ATTRIBUTE_DEPRECATED(void dump(Expr *) LLVM_ATTRIBUTE_USED,
|
|
"only for use within the debugger");
|
|
|
|
void print(raw_ostream &out);
|
|
};
|
|
|
|
/// Compute the shuffle required to map from a given tuple type to
|
|
/// another tuple type.
|
|
///
|
|
/// \param fromTuple The tuple type we're converting from, as represented by its
|
|
/// TupleTypeElt members.
|
|
///
|
|
/// \param toTuple The tuple type we're converting to, as represented by its
|
|
/// TupleTypeElt members.
|
|
///
|
|
/// \param sources Will be populated with information about the source of each
|
|
/// of the elements for the result tuple. The indices into this array are the
|
|
/// indices of the tuple type we're converting to, while the values are
|
|
/// either one of the \c TupleShuffleExpr constants or are an index into the
|
|
/// source tuple.
|
|
///
|
|
/// \param variadicArgs Will be populated with all of the variadic arguments
|
|
/// that will be placed into the variadic tuple element (i.e., at the index
|
|
/// \c where \c consumed[i] is \c TupleShuffleExpr::Variadic). The values
|
|
/// are indices into the source tuple.
|
|
///
|
|
/// \returns true if no tuple conversion is possible, false otherwise.
|
|
bool computeTupleShuffle(ArrayRef<TupleTypeElt> fromTuple,
|
|
ArrayRef<TupleTypeElt> toTuple,
|
|
SmallVectorImpl<int> &sources,
|
|
SmallVectorImpl<unsigned> &variadicArgs);
|
|
static inline bool computeTupleShuffle(TupleType *fromTuple,
|
|
TupleType *toTuple,
|
|
SmallVectorImpl<int> &sources,
|
|
SmallVectorImpl<unsigned> &variadicArgs){
|
|
return computeTupleShuffle(fromTuple->getElements(), toTuple->getElements(),
|
|
sources, variadicArgs);
|
|
}
|
|
|
|
/// Describes the arguments to which a parameter binds.
|
|
/// FIXME: This is an awful data structure. We want the equivalent of a
|
|
/// TinyPtrVector for unsigned values.
|
|
using ParamBinding = SmallVector<unsigned, 1>;
|
|
|
|
/// Class used as the base for listeners to the \c matchCallArguments process.
|
|
///
|
|
/// By default, none of the callbacks do anything.
|
|
class MatchCallArgumentListener {
|
|
public:
|
|
virtual ~MatchCallArgumentListener();
|
|
|
|
/// Indicates that the argument at the given index does not match any
|
|
/// parameter.
|
|
///
|
|
/// \param argIdx The index of the extra argument.
|
|
virtual void extraArgument(unsigned argIdx);
|
|
|
|
/// Indicates that no argument was provided for the parameter at the given
|
|
/// indices.
|
|
///
|
|
/// \param paramIdx The index of the parameter that is missing an argument.
|
|
virtual void missingArgument(unsigned paramIdx);
|
|
|
|
/// Indicate that there was no label given when one was expected by parameter.
|
|
///
|
|
/// \param paramIndex The index of the parameter that is missing a label.
|
|
///
|
|
/// \returns true to indicate that this should cause a failure, false
|
|
/// otherwise.
|
|
virtual bool missingLabel(unsigned paramIndex);
|
|
|
|
/// Indicate that there was label given when none was expected by parameter.
|
|
///
|
|
/// \param paramIndex The index of the parameter that wasn't expecting a label.
|
|
///
|
|
/// \returns true to indicate that this should cause a failure, false
|
|
/// otherwise.
|
|
virtual bool extraneousLabel(unsigned paramIndex);
|
|
|
|
/// Indicate that there was a label given with a typo(s) in it.
|
|
///
|
|
/// \param paramIndex The index of the parameter with misspelled label.
|
|
///
|
|
/// \returns true to indicate that this should cause a failure, false
|
|
/// otherwise.
|
|
virtual bool incorrectLabel(unsigned paramIndex);
|
|
|
|
/// Indicates that an argument is out-of-order with respect to a previously-
|
|
/// seen argument.
|
|
///
|
|
/// \param argIdx The argument that came too late in the argument list.
|
|
/// \param prevArgIdx The argument that the \c argIdx should have preceded.
|
|
virtual void outOfOrderArgument(unsigned argIdx, unsigned prevArgIdx);
|
|
|
|
/// Indicates that the arguments need to be relabeled to match the parameters.
|
|
///
|
|
/// \returns true to indicate that this should cause a failure, false
|
|
/// otherwise.
|
|
virtual bool relabelArguments(ArrayRef<Identifier> newNames);
|
|
};
|
|
|
|
/// Match the call arguments (as described by the given argument type) to
|
|
/// the parameters (as described by the given parameter type).
|
|
///
|
|
/// \param args The arguments.
|
|
/// \param params The parameters.
|
|
/// \param defaultMap A map indicating if the parameter at that index has a default value.
|
|
/// \param hasTrailingClosure Whether the last argument is a trailing closure.
|
|
/// \param allowFixes Whether to allow fixes when matching arguments.
|
|
///
|
|
/// \param listener Listener that will be notified when certain problems occur,
|
|
/// e.g., to produce a diagnostic.
|
|
///
|
|
/// \param parameterBindings Will be populated with the arguments that are
|
|
/// bound to each of the parameters.
|
|
/// \returns true if the call arguments could not be matched to the parameters.
|
|
bool matchCallArguments(ArrayRef<AnyFunctionType::Param> args,
|
|
ArrayRef<AnyFunctionType::Param> params,
|
|
const SmallBitVector &defaultMap,
|
|
bool hasTrailingClosure,
|
|
bool allowFixes,
|
|
MatchCallArgumentListener &listener,
|
|
SmallVectorImpl<ParamBinding> ¶meterBindings);
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
matchCallArguments(ConstraintSystem &cs,
|
|
ArrayRef<AnyFunctionType::Param> args,
|
|
ArrayRef<AnyFunctionType::Param> params,
|
|
ConstraintLocatorBuilder locator);
|
|
|
|
/// Attempt to prove that arguments with the given labels at the
|
|
/// given parameter depth cannot be used with the given value.
|
|
/// If this cannot be proven, conservatively returns true.
|
|
bool areConservativelyCompatibleArgumentLabels(ValueDecl *decl,
|
|
bool hasCurriedSelf,
|
|
ArrayRef<Identifier> labels,
|
|
bool hasTrailingClosure);
|
|
|
|
/// Simplify the given locator by zeroing in on the most specific
|
|
/// subexpression described by the locator.
|
|
///
|
|
/// This routine can also find the corresponding "target" locator, which
|
|
/// typically provides the other end of a relational constraint. For example,
|
|
/// if the primary locator refers to a function argument, the target locator
|
|
/// will be set to refer to the corresponding function parameter.
|
|
///
|
|
/// \param cs The constraint system in which the locator will be simplified.
|
|
///
|
|
/// \param locator The locator to simplify.
|
|
///
|
|
/// \param range Will be populated with an "interesting" range.
|
|
///
|
|
/// \param targetLocator If non-null, will be set to a locator that describes
|
|
/// the target of the input locator.
|
|
///
|
|
/// \return the simplified locator.
|
|
ConstraintLocator *simplifyLocator(ConstraintSystem &cs,
|
|
ConstraintLocator *locator,
|
|
SourceRange &range,
|
|
ConstraintLocator **targetLocator = nullptr);
|
|
|
|
void simplifyLocator(Expr *&anchor,
|
|
ArrayRef<LocatorPathElt> &path,
|
|
Expr *&targetAnchor,
|
|
SmallVectorImpl<LocatorPathElt> &targetPath,
|
|
SourceRange &range);
|
|
|
|
/// Simplify the given locator down to a specific anchor expression,
|
|
/// if possible.
|
|
///
|
|
/// \returns the anchor expression if it fully describes the locator, or
|
|
/// null otherwise.
|
|
Expr *simplifyLocatorToAnchor(ConstraintSystem &cs, ConstraintLocator *locator);
|
|
|
|
/// Retrieve argument at specified index from given expression.
|
|
/// The expression could be "application", "subscript" or "member" call.
|
|
///
|
|
/// \returns argument expression or `nullptr` if given "base" expression
|
|
/// wasn't of one of the kinds listed above.
|
|
Expr *getArgumentExpr(Expr *expr, unsigned index);
|
|
|
|
class DisjunctionChoice {
|
|
unsigned Index;
|
|
Constraint *Choice;
|
|
bool ExplicitConversion;
|
|
bool IsBeginningOfPartition;
|
|
|
|
public:
|
|
DisjunctionChoice(unsigned index, Constraint *choice, bool explicitConversion,
|
|
bool isBeginningOfPartition)
|
|
: Index(index), Choice(choice), ExplicitConversion(explicitConversion),
|
|
IsBeginningOfPartition(isBeginningOfPartition) {}
|
|
|
|
unsigned getIndex() const { return Index; }
|
|
|
|
bool attempt(ConstraintSystem &cs) const;
|
|
|
|
bool isDisabled() const { return Choice->isDisabled(); }
|
|
|
|
bool isUnavailable() const {
|
|
if (auto *decl = getDecl(Choice))
|
|
return decl->getAttrs().isUnavailable(decl->getASTContext());
|
|
return false;
|
|
}
|
|
|
|
bool isBeginningOfPartition() const { return IsBeginningOfPartition; }
|
|
|
|
// FIXME: Both of the accessors below are required to support
|
|
// performance optimization hacks in constraint solver.
|
|
|
|
bool isGenericOperator() const;
|
|
bool isSymmetricOperator() const;
|
|
|
|
void print(llvm::raw_ostream &Out, SourceManager *SM) const {
|
|
Out << "disjunction choice ";
|
|
Choice->print(Out, SM);
|
|
}
|
|
|
|
operator Constraint *() { return Choice; }
|
|
operator Constraint *() const { return Choice; }
|
|
|
|
private:
|
|
/// If associated disjunction is an explicit conversion,
|
|
/// let's try to propagate its type early to prune search space.
|
|
void propagateConversionInfo(ConstraintSystem &cs) const;
|
|
|
|
static ValueDecl *getOperatorDecl(Constraint *choice) {
|
|
auto *decl = getDecl(choice);
|
|
if (!decl)
|
|
return nullptr;
|
|
|
|
return decl->isOperator() ? decl : nullptr;
|
|
}
|
|
|
|
static ValueDecl *getDecl(Constraint *constraint) {
|
|
if (constraint->getKind() != ConstraintKind::BindOverload)
|
|
return nullptr;
|
|
|
|
auto choice = constraint->getOverloadChoice();
|
|
if (choice.getKind() != OverloadChoiceKind::Decl)
|
|
return nullptr;
|
|
|
|
return choice.getDecl();
|
|
}
|
|
};
|
|
|
|
class TypeVariableBinding {
|
|
TypeVariableType *TypeVar;
|
|
ConstraintSystem::PotentialBinding Binding;
|
|
|
|
public:
|
|
TypeVariableBinding(TypeVariableType *typeVar,
|
|
ConstraintSystem::PotentialBinding &binding)
|
|
: TypeVar(typeVar), Binding(binding) {}
|
|
|
|
bool isDefaultable() const { return Binding.isDefaultableBinding(); }
|
|
|
|
bool hasDefaultedProtocol() const { return Binding.DefaultedProtocol; }
|
|
|
|
bool attempt(ConstraintSystem &cs) const;
|
|
|
|
void print(llvm::raw_ostream &Out, SourceManager *) const {
|
|
Out << "type variable " << TypeVar->getString()
|
|
<< " := " << Binding.BindingType->getString();
|
|
}
|
|
};
|
|
|
|
template<typename Choice>
|
|
class BindingProducer {
|
|
ConstraintLocator *Locator;
|
|
|
|
protected:
|
|
ConstraintSystem &CS;
|
|
|
|
public:
|
|
BindingProducer(ConstraintSystem &cs, ConstraintLocator *locator)
|
|
: Locator(locator), CS(cs) {}
|
|
|
|
virtual ~BindingProducer() {}
|
|
virtual Optional<Choice> operator()() = 0;
|
|
|
|
ConstraintLocator *getLocator() const { return Locator; }
|
|
|
|
/// Check whether generator would have to compute next
|
|
/// batch of bindings because it freshly ran out of current one.
|
|
/// This is useful to be able to exhaustively attempt bindings
|
|
/// for type variables found at one level, before proceeding to
|
|
/// supertypes or literal defaults etc.
|
|
virtual bool needsToComputeNext() const { return false; }
|
|
};
|
|
|
|
class TypeVarBindingProducer : public BindingProducer<TypeVariableBinding> {
|
|
using BindingKind = ConstraintSystem::AllowedBindingKind;
|
|
using Binding = ConstraintSystem::PotentialBinding;
|
|
|
|
TypeVariableType *TypeVar;
|
|
llvm::SmallVector<Binding, 8> Bindings;
|
|
|
|
// The index pointing to the offset in the bindings
|
|
// generator is currently at, `numTries` represents
|
|
// the number of times bindings have been recomputed.
|
|
unsigned Index = 0, NumTries = 0;
|
|
|
|
llvm::SmallPtrSet<CanType, 4> ExploredTypes;
|
|
llvm::SmallPtrSet<TypeBase *, 4> BoundTypes;
|
|
|
|
public:
|
|
using Element = TypeVariableBinding;
|
|
|
|
TypeVarBindingProducer(ConstraintSystem &cs,
|
|
ConstraintSystem::PotentialBindings &bindings)
|
|
: BindingProducer(cs, bindings.TypeVar->getImpl().getLocator()),
|
|
TypeVar(bindings.TypeVar),
|
|
Bindings(bindings.Bindings.begin(), bindings.Bindings.end()) {}
|
|
|
|
Optional<Element> operator()() override {
|
|
// Once we reach the end of the current bindings
|
|
// let's try to compute new ones, e.g. supertypes,
|
|
// literal defaults, if that fails, we are done.
|
|
if (needsToComputeNext() && !computeNext())
|
|
return None;
|
|
|
|
return TypeVariableBinding(TypeVar, Bindings[Index++]);
|
|
}
|
|
|
|
bool needsToComputeNext() const override { return Index >= Bindings.size(); }
|
|
|
|
private:
|
|
/// Compute next batch of bindings if possible, this could
|
|
/// be supertypes extracted from one of the current bindings
|
|
/// or default literal types etc.
|
|
///
|
|
/// \returns true if some new bindings were sucessfully computed,
|
|
/// false otherwise.
|
|
bool computeNext();
|
|
};
|
|
|
|
/// Iterator over disjunction choices, makes it
|
|
/// easy to work with disjunction and encapsulates
|
|
/// some other important information such as locator.
|
|
class DisjunctionChoiceProducer : public BindingProducer<DisjunctionChoice> {
|
|
// The disjunciton choices that this producer will iterate through.
|
|
ArrayRef<Constraint *> Choices;
|
|
|
|
// The ordering of disjunction choices. We index into Choices
|
|
// through this vector in order to visit the disjunction choices in
|
|
// the order we want to visit them.
|
|
SmallVector<unsigned, 8> Ordering;
|
|
|
|
// The index of the first element in a partition of the disjunction
|
|
// choices. The choices are split into partitions where we will
|
|
// visit all elements within a single partition before moving to the
|
|
// elements of the next partition. If we visit all choices within a
|
|
// single partition and have found a successful solution with one of
|
|
// the choices in that partition, we stop looking for other
|
|
// solutions.
|
|
SmallVector<unsigned, 4> PartitionBeginning;
|
|
|
|
// The index in the current partition of disjunction choices that we
|
|
// are iterating over.
|
|
unsigned PartitionIndex = 0;
|
|
|
|
bool IsExplicitConversion;
|
|
|
|
unsigned Index = 0;
|
|
|
|
public:
|
|
using Element = DisjunctionChoice;
|
|
|
|
DisjunctionChoiceProducer(ConstraintSystem &cs, Constraint *disjunction)
|
|
: BindingProducer(cs, disjunction->shouldRememberChoice()
|
|
? disjunction->getLocator()
|
|
: nullptr),
|
|
Choices(disjunction->getNestedConstraints()),
|
|
IsExplicitConversion(disjunction->isExplicitConversion()) {
|
|
assert(disjunction->getKind() == ConstraintKind::Disjunction);
|
|
assert(!disjunction->shouldRememberChoice() || disjunction->getLocator());
|
|
|
|
// Order and partition the disjunction choices.
|
|
CS.partitionDisjunction(Choices, Ordering, PartitionBeginning);
|
|
}
|
|
|
|
DisjunctionChoiceProducer(ConstraintSystem &cs,
|
|
ArrayRef<Constraint *> choices,
|
|
ConstraintLocator *locator, bool explicitConversion)
|
|
: BindingProducer(cs, locator), Choices(choices),
|
|
IsExplicitConversion(explicitConversion) {
|
|
|
|
// Order and partition the disjunction choices.
|
|
CS.partitionDisjunction(Choices, Ordering, PartitionBeginning);
|
|
}
|
|
|
|
Optional<Element> operator()() override {
|
|
unsigned currIndex = Index;
|
|
if (currIndex >= Choices.size())
|
|
return None;
|
|
|
|
bool isBeginningOfPartition = PartitionIndex < PartitionBeginning.size() &&
|
|
PartitionBeginning[PartitionIndex] == Index;
|
|
if (isBeginningOfPartition)
|
|
++PartitionIndex;
|
|
|
|
++Index;
|
|
|
|
return DisjunctionChoice(currIndex, Choices[Ordering[currIndex]],
|
|
IsExplicitConversion, isBeginningOfPartition);
|
|
}
|
|
};
|
|
} // end namespace constraints
|
|
|
|
template<typename ...Args>
|
|
TypeVariableType *TypeVariableType::getNew(const ASTContext &C, unsigned ID,
|
|
Args &&...args) {
|
|
// Allocate memory
|
|
void *mem = C.Allocate(sizeof(TypeVariableType) + sizeof(Implementation),
|
|
alignof(TypeVariableType),
|
|
AllocationArena::ConstraintSolver);
|
|
|
|
// Construct the type variable.
|
|
auto *result = ::new (mem) TypeVariableType(C, ID);
|
|
|
|
// Construct the implementation object.
|
|
new (result+1) TypeVariableType::Implementation(std::forward<Args>(args)...);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// If the expression has the effect of a forced downcast, find the
|
|
/// underlying forced downcast expression.
|
|
ForcedCheckedCastExpr *findForcedDowncast(ASTContext &ctx, Expr *expr);
|
|
|
|
|
|
// Erases any opened existentials from the given expression.
|
|
// Note: this may update the provided expr pointer.
|
|
void eraseOpenedExistentials(constraints::ConstraintSystem &CS, Expr *&expr);
|
|
|
|
// Count the number of overload sets present
|
|
// in the expression and all of the children.
|
|
class OverloadSetCounter : public ASTWalker {
|
|
unsigned &NumOverloads;
|
|
|
|
public:
|
|
OverloadSetCounter(unsigned &overloads)
|
|
: NumOverloads(overloads)
|
|
{}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
|
|
if (auto applyExpr = dyn_cast<ApplyExpr>(expr)) {
|
|
// If we've found function application and it's
|
|
// function is an overload set, count it.
|
|
if (isa<OverloadSetRefExpr>(applyExpr->getFn()))
|
|
++NumOverloads;
|
|
}
|
|
|
|
// Always recur into the children.
|
|
return { true, expr };
|
|
}
|
|
};
|
|
|
|
/// Matches array of function parameters to candidate inputs,
|
|
/// which can be anything suitable (e.g., parameters, arguments).
|
|
///
|
|
/// It claims inputs sequentially and tries to pair between an input
|
|
/// and the next appropriate parameter. The detailed matching behavior
|
|
/// of each pair is specified by a custom function (i.e., pairMatcher).
|
|
/// It considers variadic and defaulted arguments when forming proper
|
|
/// input-parameter pairs; however, other information like label and
|
|
/// type information is not directly used here. It can be implemented
|
|
/// in the custom function when necessary.
|
|
class InputMatcher {
|
|
size_t NumSkippedParameters;
|
|
const SmallBitVector DefaultValueMap;
|
|
const ArrayRef<AnyFunctionType::Param> Params;
|
|
|
|
public:
|
|
enum Result {
|
|
/// The specified inputs are successfully matched.
|
|
IM_Succeeded,
|
|
/// There are input(s) left unclaimed while all parameters are matched.
|
|
IM_HasUnclaimedInput,
|
|
/// There are parateter(s) left unmatched while all inputs are claimed.
|
|
IM_HasUnmatchedParam,
|
|
/// Custom pair matcher function failure.
|
|
IM_CustomPairMatcherFailed,
|
|
};
|
|
|
|
InputMatcher(const ArrayRef<AnyFunctionType::Param> params,
|
|
const SmallBitVector &defaultValueMap);
|
|
|
|
/// Matching a given array of inputs.
|
|
///
|
|
/// \param numInputs The number of inputs.
|
|
/// \param pairMatcher Custom matching behavior of an input-parameter pair.
|
|
/// \return the matching result.
|
|
Result
|
|
match(int numInputs,
|
|
std::function<bool(unsigned inputIdx, unsigned paramIdx)> pairMatcher);
|
|
|
|
size_t getNumSkippedParameters() const { return NumSkippedParameters; }
|
|
};
|
|
|
|
/// Diagnose an attempt to recover from a member access into a value of
|
|
/// optional type which needed to be unwrapped for the member to be found.
|
|
///
|
|
/// \returns true if a diagnostic was produced.
|
|
bool diagnoseBaseUnwrapForMemberAccess(Expr *baseExpr, Type baseType,
|
|
DeclName memberName, bool resultOptional,
|
|
SourceRange memberRange);
|
|
|
|
// Return true if, when replacing "<expr>" with "<expr> ?? T", parentheses need
|
|
// to be added around <expr> first in order to maintain the correct precedence.
|
|
bool exprNeedsParensBeforeAddingNilCoalescing(TypeChecker &TC,
|
|
DeclContext *DC,
|
|
Expr *expr);
|
|
|
|
// Return true if, when replacing "<expr>" with "<expr> as T", parentheses need
|
|
// to be added around the new expression in order to maintain the correct
|
|
// precedence.
|
|
bool exprNeedsParensAfterAddingNilCoalescing(TypeChecker &TC,
|
|
DeclContext *DC,
|
|
Expr *expr,
|
|
Expr *rootExpr);
|
|
|
|
/// Return true if, when replacing "<expr>" with "<expr> op <something>",
|
|
/// parentheses must be added around "<expr>" to allow the new operator
|
|
/// to bind correctly.
|
|
bool exprNeedsParensInsideFollowingOperator(TypeChecker &TC, DeclContext *DC,
|
|
Expr *expr,
|
|
PrecedenceGroupDecl *followingPG);
|
|
|
|
/// Return true if, when replacing "<expr>" with "<expr> op <something>"
|
|
/// within the given root expression, parentheses must be added around
|
|
/// the new operator to prevent it from binding incorrectly in the
|
|
/// surrounding context.
|
|
bool exprNeedsParensOutsideFollowingOperator(
|
|
TypeChecker &TC, DeclContext *DC, Expr *expr, Expr *rootExpr,
|
|
PrecedenceGroupDecl *followingPG);
|
|
|
|
} // end namespace swift
|
|
|
|
#endif // LLVM_SWIFT_SEMA_CONSTRAINT_SYSTEM_H
|