mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
1711 lines
61 KiB
C++
1711 lines
61 KiB
C++
//===--- CSSolver.cpp - Constraint Solver ---------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the constraint solver used in the type checker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "ConstraintSystem.h"
|
|
#include "ConstraintGraph.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include <memory>
|
|
#include <tuple>
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Constraint solver statistics
|
|
//===--------------------------------------------------------------------===//
|
|
#define DEBUG_TYPE "Constraint solver overall"
|
|
#define JOIN(X,Y) JOIN2(X,Y)
|
|
#define JOIN2(X,Y) X##Y
|
|
STATISTIC(NumSolutionAttempts, "# of solution attempts");
|
|
|
|
#define CS_STATISTIC(Name, Description) \
|
|
STATISTIC(JOIN2(Overall,Name), Description);
|
|
#include "ConstraintSolverStats.def"
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "Constraint solver largest system"
|
|
#define CS_STATISTIC(Name, Description) \
|
|
STATISTIC(JOIN2(Largest,Name), Description);
|
|
#include "ConstraintSolverStats.def"
|
|
STATISTIC(LargestSolutionAttemptNumber, "# of the largest solution attempt");
|
|
|
|
/// \brief Check whether the given type can be used as a binding for the given
|
|
/// type variable.
|
|
///
|
|
/// \returns the type to bind to, if the binding is okay.
|
|
static Optional<Type> checkTypeOfBinding(ConstraintSystem &cs,
|
|
TypeVariableType *typeVar, Type type) {
|
|
if (!type)
|
|
return None;
|
|
|
|
// Simplify the type.
|
|
type = cs.simplifyType(type);
|
|
|
|
// If the type references the type variable, don't permit the binding.
|
|
SmallVector<TypeVariableType *, 4> referencedTypeVars;
|
|
type->getTypeVariables(referencedTypeVars);
|
|
if (std::count(referencedTypeVars.begin(), referencedTypeVars.end(), typeVar))
|
|
return None;
|
|
|
|
// If the type is a type variable itself, don't permit the binding.
|
|
// FIXME: This is a hack. We need to be smarter about whether there's enough
|
|
// structure in the type to produce an interesting binding, or not.
|
|
if (type->getRValueType()->is<TypeVariableType>())
|
|
return None;
|
|
|
|
// Okay, allow the binding (with the simplified type).
|
|
return type;
|
|
}
|
|
|
|
/// Reconstitute type sugar, e.g., for array types, dictionary
|
|
/// types, optionals, etc.
|
|
static Type reconstituteSugar(Type type) {
|
|
if (auto boundGeneric = dyn_cast<BoundGenericType>(type.getPointer())) {
|
|
auto &ctx = type->getASTContext();
|
|
if (boundGeneric->getDecl() == ctx.getArrayDecl())
|
|
return ArraySliceType::get(boundGeneric->getGenericArgs()[0]);
|
|
if (boundGeneric->getDecl() == ctx.getDictionaryDecl())
|
|
return DictionaryType::get(boundGeneric->getGenericArgs()[0],
|
|
boundGeneric->getGenericArgs()[1]);
|
|
if (boundGeneric->getDecl() == ctx.getOptionalDecl())
|
|
return OptionalType::get(boundGeneric->getGenericArgs()[0]);
|
|
if (boundGeneric->getDecl() == ctx.getImplicitlyUnwrappedOptionalDecl())
|
|
return ImplicitlyUnwrappedOptionalType::get(
|
|
boundGeneric->getGenericArgs()[0]);
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
Solution ConstraintSystem::finalize(
|
|
FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
// Create the solution.
|
|
Solution solution(*this, CurrentScore);
|
|
|
|
// Update the best score we've seen so far.
|
|
if (solverState) {
|
|
assert(!solverState->BestScore || CurrentScore <= *solverState->BestScore);
|
|
solverState->BestScore = CurrentScore;
|
|
}
|
|
|
|
// For any of the type variables that has no associated fixed type, assign a
|
|
// fresh generic type parameters.
|
|
// FIXME: We could gather the requirements on these as well.
|
|
unsigned index = 0;
|
|
for (auto tv : TypeVariables) {
|
|
if (getFixedType(tv))
|
|
continue;
|
|
|
|
switch (allowFreeTypeVariables) {
|
|
case FreeTypeVariableBinding::Disallow:
|
|
llvm_unreachable("Solver left free type variables");
|
|
|
|
case FreeTypeVariableBinding::Allow:
|
|
break;
|
|
|
|
case FreeTypeVariableBinding::GenericParameters:
|
|
assignFixedType(tv, GenericTypeParamType::get(0, index++, TC.Context));
|
|
break;
|
|
|
|
case FreeTypeVariableBinding::UnresolvedType:
|
|
assignFixedType(tv, TC.Context.TheUnresolvedType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// For each of the type variables, get its fixed type.
|
|
for (auto tv : TypeVariables) {
|
|
solution.typeBindings[tv] = reconstituteSugar(simplifyType(tv));
|
|
}
|
|
|
|
// For each of the overload sets, get its overload choice.
|
|
for (auto resolved = resolvedOverloadSets;
|
|
resolved; resolved = resolved->Previous) {
|
|
solution.overloadChoices[resolved->Locator]
|
|
= { resolved->Choice, resolved->OpenedFullType, resolved->ImpliedType };
|
|
}
|
|
|
|
// For each of the constraint restrictions, record it with simplified,
|
|
// canonical types.
|
|
if (solverState) {
|
|
for (auto &restriction : ConstraintRestrictions) {
|
|
using std::get;
|
|
CanType first = simplifyType(get<0>(restriction))->getCanonicalType();
|
|
CanType second = simplifyType(get<1>(restriction))->getCanonicalType();
|
|
solution.ConstraintRestrictions[{first, second}] = get<2>(restriction);
|
|
}
|
|
}
|
|
|
|
// For each of the fixes, record it as an operation on the affected
|
|
// expression.
|
|
unsigned firstFixIndex = 0;
|
|
if (solverState && solverState->PartialSolutionScope) {
|
|
firstFixIndex = solverState->PartialSolutionScope->numFixes;
|
|
}
|
|
solution.Fixes.append(Fixes.begin() + firstFixIndex, Fixes.end());
|
|
|
|
// Remember all the disjunction choices we made.
|
|
for (auto &choice : DisjunctionChoices) {
|
|
// We shouldn't ever register disjunction choices multiple times,
|
|
// but saving and re-applying solutions can cause us to get
|
|
// multiple entries. We should use an optimized PartialSolution
|
|
// structure for that use case, which would optimize a lot of
|
|
// stuff here.
|
|
assert(!solution.DisjunctionChoices.count(choice.first) ||
|
|
solution.DisjunctionChoices[choice.first] == choice.second);
|
|
solution.DisjunctionChoices.insert(choice);
|
|
}
|
|
|
|
// Remember the opened types.
|
|
for (const auto &opened : OpenedTypes) {
|
|
// We shouldn't ever register opened types multiple times,
|
|
// but saving and re-applying solutions can cause us to get
|
|
// multiple entries. We should use an optimized PartialSolution
|
|
// structure for that use case, which would optimize a lot of
|
|
// stuff here.
|
|
assert((solution.OpenedTypes.count(opened.first) == 0 ||
|
|
solution.OpenedTypes[opened.first] == opened.second)
|
|
&& "Already recorded");
|
|
solution.OpenedTypes.insert(opened);
|
|
}
|
|
|
|
// Remember the opened existential types.
|
|
for (const auto &openedExistential : OpenedExistentialTypes) {
|
|
assert(solution.OpenedExistentialTypes.count(openedExistential.first) == 0||
|
|
solution.OpenedExistentialTypes[openedExistential.first]
|
|
== openedExistential.second &&
|
|
"Already recorded");
|
|
solution.OpenedExistentialTypes.insert(openedExistential);
|
|
}
|
|
|
|
return solution;
|
|
}
|
|
|
|
void ConstraintSystem::applySolution(const Solution &solution) {
|
|
// Update the score.
|
|
CurrentScore += solution.getFixedScore();
|
|
|
|
// Assign fixed types to the type variables solved by this solution.
|
|
llvm::SmallPtrSet<TypeVariableType *, 4>
|
|
knownTypeVariables(TypeVariables.begin(), TypeVariables.end());
|
|
for (auto binding : solution.typeBindings) {
|
|
// If we haven't seen this type variable before, record it now.
|
|
if (knownTypeVariables.insert(binding.first).second)
|
|
TypeVariables.push_back(binding.first);
|
|
|
|
// If we don't already have a fixed type for this type variable,
|
|
// assign the fixed type from the solution.
|
|
if (!getFixedType(binding.first) && !binding.second->hasTypeVariable())
|
|
assignFixedType(binding.first, binding.second, /*updateScore=*/false);
|
|
}
|
|
|
|
// Register overload choices.
|
|
// FIXME: Copy these directly into some kind of partial solution?
|
|
for (auto overload : solution.overloadChoices) {
|
|
resolvedOverloadSets
|
|
= new (*this) ResolvedOverloadSetListItem{resolvedOverloadSets,
|
|
Type(),
|
|
overload.second.choice,
|
|
overload.first,
|
|
overload.second.openedFullType,
|
|
overload.second.openedType};
|
|
}
|
|
|
|
// Register constraint restrictions.
|
|
// FIXME: Copy these directly into some kind of partial solution?
|
|
for (auto restriction : solution.ConstraintRestrictions) {
|
|
ConstraintRestrictions.push_back(
|
|
std::make_tuple(restriction.first.first, restriction.first.second,
|
|
restriction.second));
|
|
}
|
|
|
|
// Register the solution's disjunction choices.
|
|
for (auto &choice : solution.DisjunctionChoices) {
|
|
DisjunctionChoices.push_back(choice);
|
|
}
|
|
|
|
// Register the solution's opened types.
|
|
for (const auto &opened : solution.OpenedTypes) {
|
|
OpenedTypes.push_back(opened);
|
|
}
|
|
|
|
// Register the solution's opened existential types.
|
|
for (const auto &openedExistential : solution.OpenedExistentialTypes) {
|
|
OpenedExistentialTypes.push_back(openedExistential);
|
|
}
|
|
|
|
// Register any fixes produced along this path.
|
|
Fixes.append(solution.Fixes.begin(), solution.Fixes.end());
|
|
}
|
|
|
|
/// \brief Restore the type variable bindings to what they were before
|
|
/// we attempted to solve this constraint system.
|
|
void ConstraintSystem::restoreTypeVariableBindings(unsigned numBindings) {
|
|
auto &savedBindings = *getSavedBindings();
|
|
std::for_each(savedBindings.rbegin(), savedBindings.rbegin() + numBindings,
|
|
[](SavedTypeVariableBinding &saved) {
|
|
saved.restore();
|
|
});
|
|
savedBindings.erase(savedBindings.end() - numBindings,
|
|
savedBindings.end());
|
|
}
|
|
|
|
/// \brief Enumerates all of the 'direct' supertypes of the given type.
|
|
///
|
|
/// The direct supertype S of a type T is a supertype of T (e.g., T < S)
|
|
/// such that there is no type U where T < U and U < S.
|
|
static SmallVector<Type, 4>
|
|
enumerateDirectSupertypes(TypeChecker &tc, Type type) {
|
|
SmallVector<Type, 4> result;
|
|
|
|
if (auto tupleTy = type->getAs<TupleType>()) {
|
|
// A tuple that can be constructed from a scalar has a value of that
|
|
// scalar type as its supertype.
|
|
// FIXME: There is a way more general property here, where we can drop
|
|
// one label from the tuple, maintaining the rest.
|
|
int scalarIdx = tupleTy->getElementForScalarInit();
|
|
if (scalarIdx >= 0) {
|
|
auto &elt = tupleTy->getElement(scalarIdx);
|
|
if (elt.isVararg()) // FIXME: Should we keep the name?
|
|
result.push_back(elt.getVarargBaseTy());
|
|
else if (elt.hasName())
|
|
result.push_back(elt.getType());
|
|
}
|
|
}
|
|
|
|
if (auto functionTy = type->getAs<FunctionType>()) {
|
|
// FIXME: Can weaken input type, but we really don't want to get in the
|
|
// business of strengthening the result type.
|
|
|
|
// An [autoclosure] function type can be viewed as scalar of the result
|
|
// type.
|
|
if (functionTy->isAutoClosure())
|
|
result.push_back(functionTy->getResult());
|
|
}
|
|
|
|
if (type->mayHaveSuperclass()) {
|
|
// FIXME: Can also weaken to the set of protocol constraints, but only
|
|
// if there are any protocols that the type conforms to but the superclass
|
|
// does not.
|
|
|
|
// If there is a superclass, it is a direct supertype.
|
|
if (auto superclass = tc.getSuperClassOf(type))
|
|
result.push_back(superclass);
|
|
}
|
|
|
|
if (auto lvalue = type->getAs<LValueType>())
|
|
result.push_back(lvalue->getObjectType());
|
|
if (auto iot = type->getAs<InOutType>())
|
|
result.push_back(iot->getObjectType());
|
|
|
|
// Try to unwrap implicitly unwrapped optional types.
|
|
if (auto objectType = type->getImplicitlyUnwrappedOptionalObjectType())
|
|
result.push_back(objectType);
|
|
|
|
// FIXME: lots of other cases to consider!
|
|
return result;
|
|
}
|
|
|
|
bool ConstraintSystem::simplify(bool ContinueAfterFailures) {
|
|
// While we have a constraint in the worklist, process it.
|
|
while (!ActiveConstraints.empty()) {
|
|
// Grab the next constraint from the worklist.
|
|
auto *constraint = &ActiveConstraints.front();
|
|
ActiveConstraints.pop_front();
|
|
assert(constraint->isActive() && "Worklist constraint is not active?");
|
|
|
|
// Simplify this constraint.
|
|
switch (simplifyConstraint(*constraint)) {
|
|
case SolutionKind::Error:
|
|
if (!failedConstraint) {
|
|
failedConstraint = constraint;
|
|
}
|
|
|
|
if (solverState)
|
|
solverState->retiredConstraints.push_front(constraint);
|
|
|
|
break;
|
|
|
|
case SolutionKind::Solved:
|
|
if (solverState) {
|
|
++solverState->NumSimplifiedConstraints;
|
|
|
|
// This constraint has already been solved; retire it.
|
|
solverState->retiredConstraints.push_front(constraint);
|
|
}
|
|
|
|
// Remove the constraint from the constraint graph.
|
|
CG.removeConstraint(constraint);
|
|
break;
|
|
|
|
case SolutionKind::Unsolved:
|
|
if (solverState)
|
|
++solverState->NumUnsimplifiedConstraints;
|
|
|
|
InactiveConstraints.push_back(constraint);
|
|
break;
|
|
}
|
|
|
|
// This constraint is not active. We delay this operation until
|
|
// after simplification to avoid re-insertion.
|
|
constraint->setActive(false);
|
|
|
|
// Check whether a constraint failed. If so, we're done.
|
|
if (failedConstraint && !ContinueAfterFailures) {
|
|
return true;
|
|
}
|
|
|
|
// If the current score is worse than the best score we've seen so far,
|
|
// there's no point in continuing. So don't.
|
|
if (worseThanBestSolution()) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// \brief Truncate the given small vector to the given new size.
|
|
template<typename T>
|
|
void truncate(SmallVectorImpl<T> &vec, unsigned newSize) {
|
|
assert(newSize <= vec.size() && "Not a truncation!");
|
|
vec.erase(vec.begin() + newSize, vec.end());
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
ConstraintSystem::SolverState::SolverState(ConstraintSystem &cs) : CS(cs) {
|
|
++NumSolutionAttempts;
|
|
SolutionAttempt = NumSolutionAttempts;
|
|
|
|
// If we're supposed to debug a specific constraint solver attempt,
|
|
// turn on debugging now.
|
|
ASTContext &ctx = CS.getTypeChecker().Context;
|
|
LangOptions &langOpts = ctx.LangOpts;
|
|
OldDebugConstraintSolver = langOpts.DebugConstraintSolver;
|
|
if (langOpts.DebugConstraintSolverAttempt &&
|
|
langOpts.DebugConstraintSolverAttempt == SolutionAttempt) {
|
|
langOpts.DebugConstraintSolver = true;
|
|
llvm::raw_ostream &dbgOut = ctx.TypeCheckerDebug->getStream();
|
|
dbgOut << "---Constraint system #" << SolutionAttempt << "---\n";
|
|
CS.print(dbgOut);
|
|
}
|
|
}
|
|
|
|
ConstraintSystem::SolverState::~SolverState() {
|
|
// Restore debugging state.
|
|
LangOptions &langOpts = CS.getTypeChecker().Context.LangOpts;
|
|
langOpts.DebugConstraintSolver = OldDebugConstraintSolver;
|
|
|
|
// Write our local statistics back to the overall statistics.
|
|
#define CS_STATISTIC(Name, Description) JOIN2(Overall,Name) += Name;
|
|
#include "ConstraintSolverStats.def"
|
|
|
|
// Update the "largest" statistics if this system is larger than the
|
|
// previous one.
|
|
// FIXME: This is not at all thread-safe.
|
|
if (NumStatesExplored > LargestNumStatesExplored.Value) {
|
|
LargestSolutionAttemptNumber.Value = SolutionAttempt-1;
|
|
++LargestSolutionAttemptNumber;
|
|
#define CS_STATISTIC(Name, Description) \
|
|
JOIN2(Largest,Name).Value = Name-1; \
|
|
++JOIN2(Largest,Name);
|
|
#include "ConstraintSolverStats.def"
|
|
}
|
|
}
|
|
|
|
ConstraintSystem::SolverScope::SolverScope(ConstraintSystem &cs)
|
|
: cs(cs), CGScope(cs.CG)
|
|
{
|
|
++cs.solverState->depth;
|
|
|
|
resolvedOverloadSets = cs.resolvedOverloadSets;
|
|
numTypeVariables = cs.TypeVariables.size();
|
|
numSavedBindings = cs.solverState->savedBindings.size();
|
|
firstRetired = cs.solverState->retiredConstraints.begin();
|
|
numConstraintRestrictions = cs.ConstraintRestrictions.size();
|
|
numFixes = cs.Fixes.size();
|
|
numDisjunctionChoices = cs.DisjunctionChoices.size();
|
|
numOpenedTypes = cs.OpenedTypes.size();
|
|
numOpenedExistentialTypes = cs.OpenedExistentialTypes.size();
|
|
numGeneratedConstraints = cs.solverState->generatedConstraints.size();
|
|
PreviousScore = cs.CurrentScore;
|
|
|
|
++cs.solverState->NumStatesExplored;
|
|
}
|
|
|
|
ConstraintSystem::SolverScope::~SolverScope() {
|
|
--cs.solverState->depth;
|
|
|
|
// Erase the end of various lists.
|
|
cs.resolvedOverloadSets = resolvedOverloadSets;
|
|
truncate(cs.TypeVariables, numTypeVariables);
|
|
|
|
// Restore bindings.
|
|
cs.restoreTypeVariableBindings(cs.solverState->savedBindings.size() -
|
|
numSavedBindings);
|
|
|
|
// Move any remaining active constraints into the inactive list.
|
|
while (!cs.ActiveConstraints.empty()) {
|
|
for (auto &constraint : cs.ActiveConstraints) {
|
|
constraint.setActive(false);
|
|
}
|
|
cs.InactiveConstraints.splice(cs.InactiveConstraints.end(),
|
|
cs.ActiveConstraints);
|
|
}
|
|
|
|
// Add the retired constraints back into circulation.
|
|
cs.InactiveConstraints.splice(cs.InactiveConstraints.end(),
|
|
cs.solverState->retiredConstraints,
|
|
cs.solverState->retiredConstraints.begin(),
|
|
firstRetired);
|
|
|
|
// Remove any constraints that were generated here.
|
|
auto &generatedConstraints = cs.solverState->generatedConstraints;
|
|
auto genStart = generatedConstraints.begin() + numGeneratedConstraints,
|
|
genEnd = generatedConstraints.end();
|
|
for (auto genI = genStart; genI != genEnd; ++genI) {
|
|
cs.InactiveConstraints.erase(ConstraintList::iterator(*genI));
|
|
}
|
|
generatedConstraints.erase(genStart, genEnd);
|
|
|
|
// Remove any constraint restrictions.
|
|
truncate(cs.ConstraintRestrictions, numConstraintRestrictions);
|
|
|
|
// Remove any fixes.
|
|
truncate(cs.Fixes, numFixes);
|
|
|
|
// Remove any disjunction choices.
|
|
truncate(cs.DisjunctionChoices, numDisjunctionChoices);
|
|
|
|
// Remove any opened types.
|
|
truncate(cs.OpenedTypes, numOpenedTypes);
|
|
|
|
// Remove any opened existential types.
|
|
truncate(cs.OpenedExistentialTypes, numOpenedExistentialTypes);
|
|
|
|
// Reset the previous score.
|
|
cs.CurrentScore = PreviousScore;
|
|
|
|
// Clear out other "failed" state.
|
|
cs.failedConstraint = nullptr;
|
|
}
|
|
|
|
namespace {
|
|
/// The kind of bindings that are permitted.
|
|
enum class AllowedBindingKind : unsigned char {
|
|
/// Only the exact type.
|
|
Exact,
|
|
/// Supertypes of the specified type.
|
|
Supertypes,
|
|
/// Subtypes of the specified type.
|
|
Subtypes
|
|
};
|
|
|
|
/// The kind of literal binding found.
|
|
enum class LiteralBindingKind : unsigned char {
|
|
None,
|
|
Collection,
|
|
Atom,
|
|
};
|
|
|
|
/// A potential binding from the type variable to a particular type,
|
|
/// along with information that can be used to construct related
|
|
/// bindings, e.g., the supertypes of a given type.
|
|
struct PotentialBinding {
|
|
/// The type to which the type variable can be bound.
|
|
Type BindingType;
|
|
|
|
/// The kind of bindings permitted.
|
|
AllowedBindingKind Kind;
|
|
|
|
/// The defaulted protocol associated with this binding.
|
|
Optional<ProtocolDecl *> DefaultedProtocol;
|
|
};
|
|
|
|
struct PotentialBindings {
|
|
/// The set of potential bindings.
|
|
SmallVector<PotentialBinding, 4> Bindings;
|
|
|
|
/// Whether this type variable is fully bound by one of its constraints.
|
|
bool FullyBound = false;
|
|
|
|
/// Whether the bindings of this type involve other type variables.
|
|
bool InvolvesTypeVariables = false;
|
|
|
|
/// Whether this type variable has literal bindings.
|
|
LiteralBindingKind LiteralBinding = LiteralBindingKind::None;
|
|
|
|
/// Whether this type variable is only bound above by existential types.
|
|
bool SubtypeOfExistentialType = false;
|
|
|
|
/// Determine whether the set of bindings is non-empty.
|
|
explicit operator bool() const {
|
|
return !Bindings.empty();
|
|
}
|
|
|
|
/// Compare two sets of bindings, where \c x < y indicates that
|
|
/// \c x is a better set of bindings that \c y.
|
|
friend bool operator<(const PotentialBindings &x,
|
|
const PotentialBindings &y) {
|
|
return std::make_tuple(x.FullyBound,
|
|
x.SubtypeOfExistentialType,
|
|
static_cast<unsigned char>(x.LiteralBinding),
|
|
x.InvolvesTypeVariables,
|
|
-x.Bindings.size())
|
|
< std::make_tuple(y.FullyBound,
|
|
y.SubtypeOfExistentialType,
|
|
static_cast<unsigned char>(y.LiteralBinding),
|
|
y.InvolvesTypeVariables,
|
|
-y.Bindings.size());
|
|
}
|
|
|
|
void foundLiteralBinding(ProtocolDecl *proto) {
|
|
switch (*proto->getKnownProtocolKind()) {
|
|
case KnownProtocolKind::DictionaryLiteralConvertible:
|
|
case KnownProtocolKind::ArrayLiteralConvertible:
|
|
case KnownProtocolKind::StringInterpolationConvertible:
|
|
LiteralBinding = LiteralBindingKind::Collection;
|
|
break;
|
|
|
|
default:
|
|
if (LiteralBinding != LiteralBindingKind::Collection)
|
|
LiteralBinding = LiteralBindingKind::Atom;
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Determine whether the given type variables occurs in the given type.
|
|
static bool typeVarOccursInType(ConstraintSystem &cs, TypeVariableType *typeVar,
|
|
Type type, bool &involvesOtherTypeVariables) {
|
|
SmallVector<TypeVariableType *, 4> typeVars;
|
|
type->getTypeVariables(typeVars);
|
|
bool result = false;
|
|
for (auto referencedTypeVar : typeVars) {
|
|
if (cs.getRepresentative(referencedTypeVar) == typeVar) {
|
|
result = true;
|
|
if (involvesOtherTypeVariables)
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
involvesOtherTypeVariables = true;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// \brief Return whether a relational constraint between a type variable and a
|
|
/// trivial wrapper type (autoclosure, unary tuple) should result in the type
|
|
/// variable being potentially bound to the value type, as opposed to the
|
|
/// wrapper type.
|
|
static bool shouldBindToValueType(Constraint *constraint)
|
|
{
|
|
switch (constraint->getKind()) {
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentTupleConversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::ArgumentTupleConversion:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ExplicitConversion:
|
|
case ConstraintKind::Subtype:
|
|
return true;
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::CheckedCast:
|
|
case ConstraintKind::SelfObjectOfProtocol:
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::OptionalObject:
|
|
return false;
|
|
case ConstraintKind::DynamicTypeOf:
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::TypeMember:
|
|
case ConstraintKind::Archetype:
|
|
case ConstraintKind::Class:
|
|
case ConstraintKind::BridgedToObjectiveC:
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::Disjunction:
|
|
llvm_unreachable("shouldBindToValueType() may only be called on "
|
|
"relational constraints");
|
|
}
|
|
}
|
|
|
|
/// \brief Retrieve the set of potential type bindings for the given
|
|
/// representative type variable, along with flags indicating whether
|
|
/// those types should be opened.
|
|
static PotentialBindings getPotentialBindings(ConstraintSystem &cs,
|
|
TypeVariableType *typeVar) {
|
|
assert(typeVar->getImpl().getRepresentative(nullptr) == typeVar &&
|
|
"not a representative");
|
|
assert(!typeVar->getImpl().getFixedType(nullptr) && "has a fixed type");
|
|
|
|
// Gather the constraints associated with this type variable.
|
|
SmallVector<Constraint *, 8> constraints;
|
|
llvm::SmallPtrSet<Constraint *, 4> visitedConstraints;
|
|
cs.getConstraintGraph().gatherConstraints(typeVar, constraints);
|
|
|
|
// Consider each of the constraints related to this type variable.
|
|
PotentialBindings result;
|
|
llvm::SmallPtrSet<CanType, 4> exactTypes;
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> literalProtocols;
|
|
bool hasDefaultableConstraint = false;
|
|
auto &tc = cs.getTypeChecker();
|
|
for (auto constraint : constraints) {
|
|
// Only visit each constraint once.
|
|
if (!visitedConstraints.insert(constraint).second)
|
|
continue;
|
|
|
|
switch (constraint->getKind()) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ExplicitConversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::ArgumentTupleConversion:
|
|
case ConstraintKind::OperatorArgumentTupleConversion:
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
case ConstraintKind::OptionalObject:
|
|
// Relational constraints: break out to look for types above/below.
|
|
break;
|
|
|
|
case ConstraintKind::CheckedCast:
|
|
// FIXME: Relational constraints for which we could perhaps do better
|
|
// than the default.
|
|
break;
|
|
|
|
case ConstraintKind::DynamicTypeOf:
|
|
case ConstraintKind::Archetype:
|
|
case ConstraintKind::Class:
|
|
case ConstraintKind::BridgedToObjectiveC:
|
|
// Constraints from which we can't do anything.
|
|
// FIXME: Record this somehow?
|
|
continue;
|
|
|
|
case ConstraintKind::Defaultable:
|
|
// Do these in a separate pass.
|
|
hasDefaultableConstraint = true;
|
|
continue;
|
|
|
|
case ConstraintKind::Disjunction:
|
|
// FIXME: Recurse into these constraints to see whether this
|
|
// type variable is fully bound by any of them.
|
|
result.InvolvesTypeVariables = true;
|
|
continue;
|
|
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::SelfObjectOfProtocol: {
|
|
// FIXME: Can we always assume that the type variable is the lower bound?
|
|
TypeVariableType *lowerTypeVar = nullptr;
|
|
cs.getFixedTypeRecursive(constraint->getFirstType(), lowerTypeVar,
|
|
/*wantRValue=*/false);
|
|
if (lowerTypeVar != typeVar) {
|
|
continue;
|
|
}
|
|
|
|
// If there is a default literal type for this protocol, it's a
|
|
// potential binding.
|
|
auto defaultType = tc.getDefaultType(constraint->getProtocol(), cs.DC);
|
|
if (!defaultType)
|
|
continue;
|
|
|
|
// Note that we have a literal constraint with this protocol.
|
|
literalProtocols.insert(constraint->getProtocol());
|
|
|
|
// Handle unspecialized types directly.
|
|
if (!defaultType->isUnspecializedGeneric()) {
|
|
if (!exactTypes.insert(defaultType->getCanonicalType()).second)
|
|
continue;
|
|
|
|
result.foundLiteralBinding(constraint->getProtocol());
|
|
result.Bindings.push_back({defaultType, AllowedBindingKind::Subtypes,
|
|
constraint->getProtocol()});
|
|
continue;
|
|
}
|
|
|
|
// For generic literal types, check whether we already have a
|
|
// specialization of this generic within our list.
|
|
// FIXME: This assumes that, e.g., the default literal
|
|
// int/float/char/string types are never generic.
|
|
auto nominal = defaultType->getAnyNominal();
|
|
if (!nominal)
|
|
continue;
|
|
|
|
bool matched = false;
|
|
for (auto exactType : exactTypes) {
|
|
if (auto exactNominal = exactType->getAnyNominal()) {
|
|
// FIXME: Check parents?
|
|
if (nominal == exactNominal) {
|
|
matched = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!matched) {
|
|
result.foundLiteralBinding(constraint->getProtocol());
|
|
exactTypes.insert(defaultType->getCanonicalType());
|
|
result.Bindings.push_back({defaultType, AllowedBindingKind::Subtypes,
|
|
constraint->getProtocol()});
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::BindOverload: {
|
|
// If this variable is in the left-hand side, it is fully bound.
|
|
// FIXME: Can we avoid simplification here by walking the graph? Is it
|
|
// worthwhile?
|
|
if (typeVarOccursInType(cs, typeVar,
|
|
cs.simplifyType(constraint->getFirstType()),
|
|
result.InvolvesTypeVariables)) {
|
|
result.FullyBound = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::TypeMember:
|
|
// If our type variable shows up in the base type, there's
|
|
// nothing to do.
|
|
// FIXME: Can we avoid simplification here?
|
|
if (typeVarOccursInType(cs, typeVar,
|
|
cs.simplifyType(constraint->getFirstType()),
|
|
result.InvolvesTypeVariables)) {
|
|
continue;
|
|
}
|
|
|
|
// If the type variable is in the list of member type
|
|
// variables, it is fully bound.
|
|
// FIXME: Can we avoid simplification here?
|
|
if (typeVarOccursInType(cs, typeVar,
|
|
cs.simplifyType(constraint->getSecondType()),
|
|
result.InvolvesTypeVariables)) {
|
|
result.FullyBound = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Handle relational constraints.
|
|
assert(constraint->getClassification()
|
|
== ConstraintClassification::Relational &&
|
|
"only relational constraints handled here");
|
|
|
|
auto first = cs.simplifyType(constraint->getFirstType());
|
|
auto second = cs.simplifyType(constraint->getSecondType());
|
|
|
|
Type type;
|
|
AllowedBindingKind kind;
|
|
if (first->getAs<TypeVariableType>() == typeVar) {
|
|
// Upper bound for this type variable.
|
|
type = second;
|
|
kind = AllowedBindingKind::Subtypes;
|
|
} else if (second->getAs<TypeVariableType>() == typeVar) {
|
|
// Lower bound for this type variable.
|
|
type = first;
|
|
kind = AllowedBindingKind::Supertypes;
|
|
} else {
|
|
// Can't infer anything.
|
|
if (!result.InvolvesTypeVariables)
|
|
typeVarOccursInType(cs, typeVar, first, result.InvolvesTypeVariables);
|
|
if (!result.InvolvesTypeVariables)
|
|
typeVarOccursInType(cs, typeVar, second, result.InvolvesTypeVariables);
|
|
continue;
|
|
}
|
|
|
|
// Check whether we can perform this binding.
|
|
// FIXME: this has a super-inefficient extraneous simplifyType() in it.
|
|
if (auto boundType = checkTypeOfBinding(cs, typeVar, type)) {
|
|
type = *boundType;
|
|
if (type->hasTypeVariable())
|
|
result.InvolvesTypeVariables = true;
|
|
} else {
|
|
result.InvolvesTypeVariables = true;
|
|
continue;
|
|
}
|
|
|
|
// Don't deduce autoclosure types or single-element, non-variadic
|
|
// tuples.
|
|
if (shouldBindToValueType(constraint)) {
|
|
if (auto funcTy = type->getAs<FunctionType>()) {
|
|
if (funcTy->isAutoClosure())
|
|
type = funcTy->getResult();
|
|
}
|
|
|
|
if (auto tupleTy = type->getAs<TupleType>()) {
|
|
if (tupleTy->getNumElements() == 1 &&
|
|
!tupleTy->getElement(0).isVararg())
|
|
type = tupleTy->getElementType(0);
|
|
}
|
|
}
|
|
|
|
// Make sure we aren't trying to equate type variables with different
|
|
// lvalue-binding rules.
|
|
if (auto otherTypeVar = type->getAs<TypeVariableType>()) {
|
|
if (typeVar->getImpl().canBindToLValue() !=
|
|
otherTypeVar->getImpl().canBindToLValue())
|
|
continue;
|
|
}
|
|
|
|
// BindParam constraints are not reflexive and must be treated specially.
|
|
if (constraint->getKind() == ConstraintKind::BindParam) {
|
|
if (kind == AllowedBindingKind::Subtypes) {
|
|
if (auto *lvt = type->getAs<LValueType>()) {
|
|
type = InOutType::get(lvt->getObjectType());
|
|
}
|
|
} else if (kind == AllowedBindingKind::Supertypes) {
|
|
if (auto *iot = type->getAs<InOutType>()) {
|
|
type = LValueType::get(iot->getObjectType());
|
|
}
|
|
}
|
|
kind = AllowedBindingKind::Exact;
|
|
}
|
|
|
|
if (exactTypes.insert(type->getCanonicalType()).second)
|
|
result.Bindings.push_back({type, kind, None});
|
|
}
|
|
|
|
// If we have any literal constraints, check whether there is already a
|
|
// binding that provides a type that conforms to that literal protocol. In
|
|
// such cases, remove the default binding suggestion because the existing
|
|
// suggestion is better.
|
|
if (!literalProtocols.empty()) {
|
|
SmallPtrSet<ProtocolDecl *, 5> coveredLiteralProtocols;
|
|
for (auto &binding : result.Bindings) {
|
|
// Skip defaulted-protocol constraints.
|
|
if (binding.DefaultedProtocol)
|
|
continue;
|
|
|
|
Type testType;
|
|
switch (binding.Kind) {
|
|
case AllowedBindingKind::Exact:
|
|
testType = binding.BindingType;
|
|
break;
|
|
|
|
case AllowedBindingKind::Subtypes:
|
|
case AllowedBindingKind::Supertypes:
|
|
testType = binding.BindingType->getRValueType();
|
|
break;
|
|
}
|
|
|
|
// Check each non-covered literal protocol to determine which ones
|
|
bool updatedBindingType = false;
|
|
for (auto proto : literalProtocols) {
|
|
do {
|
|
// If the type conforms to this protocol, we're covered.
|
|
if (tc.conformsToProtocol(testType, proto, cs.DC,
|
|
ConformanceCheckFlags::InExpression)) {
|
|
coveredLiteralProtocols.insert(proto);
|
|
break;
|
|
}
|
|
|
|
// If we're allowed to bind to subtypes, look through optionals.
|
|
// FIXME: This is really crappy special case of computing a reasonable
|
|
// result based on the given constraints.
|
|
if (binding.Kind == AllowedBindingKind::Subtypes) {
|
|
if (auto objTy = testType->getAnyOptionalObjectType()) {
|
|
updatedBindingType = true;
|
|
testType = objTy;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
updatedBindingType = false;
|
|
break;
|
|
} while (true);
|
|
}
|
|
|
|
if (updatedBindingType)
|
|
binding.BindingType = testType;
|
|
}
|
|
|
|
// For any literal type that has been covered, remove the default literal
|
|
// type.
|
|
if (!coveredLiteralProtocols.empty()) {
|
|
result.Bindings.erase(
|
|
std::remove_if(result.Bindings.begin(),
|
|
result.Bindings.end(),
|
|
[&](PotentialBinding &binding) {
|
|
return binding.DefaultedProtocol &&
|
|
coveredLiteralProtocols.count(*binding.DefaultedProtocol) > 0;
|
|
}),
|
|
result.Bindings.end());
|
|
}
|
|
}
|
|
|
|
// If we haven't found any other bindings yet, go ahead and consider
|
|
// the defaulting constraints.
|
|
if (result.Bindings.empty() && hasDefaultableConstraint) {
|
|
for (Constraint *constraint : constraints) {
|
|
if (constraint->getKind() != ConstraintKind::Defaultable)
|
|
continue;
|
|
|
|
result.Bindings.push_back({constraint->getSecondType(),
|
|
AllowedBindingKind::Exact,
|
|
None});
|
|
}
|
|
}
|
|
|
|
// Determine if the bindings only constrain the type variable from above with
|
|
// an existential type; such a binding is not very helpful because it's
|
|
// impossible to enumerate the existential type's subtypes.
|
|
result.SubtypeOfExistentialType =
|
|
std::all_of(result.Bindings.begin(), result.Bindings.end(),
|
|
[](const PotentialBinding &binding) {
|
|
return binding.BindingType->isExistentialType() &&
|
|
binding.Kind == AllowedBindingKind::Subtypes;
|
|
});
|
|
|
|
return result;
|
|
}
|
|
|
|
void ConstraintSystem::getComputedBindings(TypeVariableType *tvt,
|
|
SmallVectorImpl<Type> &bindings) {
|
|
// If the type variable is fixed, look no further.
|
|
if (auto fixedType = tvt->getImpl().getFixedType(nullptr)) {
|
|
bindings.push_back(fixedType);
|
|
return;
|
|
}
|
|
|
|
PotentialBindings potentialBindings = getPotentialBindings(*this, tvt);
|
|
|
|
for (auto binding : potentialBindings.Bindings) {
|
|
bindings.push_back(binding.BindingType);
|
|
}
|
|
}
|
|
|
|
/// \brief Try each of the given type variable bindings to find solutions
|
|
/// to the given constraint system.
|
|
///
|
|
/// \param cs The constraint system we're solving in.
|
|
/// \param depth The depth of the solution stack.
|
|
/// \param typeVar The type variable we're binding.
|
|
/// \param bindings The initial set of bindings to explore.
|
|
/// \param solutions The set of solutions.
|
|
///
|
|
/// \returns true if there are no solutions.
|
|
static bool tryTypeVariableBindings(
|
|
ConstraintSystem &cs,
|
|
unsigned depth,
|
|
TypeVariableType *typeVar,
|
|
ArrayRef<PotentialBinding> bindings,
|
|
SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
bool anySolved = false;
|
|
llvm::SmallPtrSet<CanType, 4> exploredTypes;
|
|
|
|
SmallVector<PotentialBinding, 4> storedBindings;
|
|
auto &tc = cs.getTypeChecker();
|
|
++cs.solverState->NumTypeVariablesBound;
|
|
|
|
// If the solver has allocated an excessive amount of memory when solving for
|
|
// this expression, short-circuit the binding operation and mark the parent
|
|
// expression as "too complex".
|
|
if (cs.TC.Context.getSolverMemory() >
|
|
cs.TC.Context.LangOpts.SolverMemoryThreshold) {
|
|
cs.setExpressionTooComplex(true);
|
|
return true;
|
|
}
|
|
|
|
for (unsigned tryCount = 0; !anySolved && !bindings.empty(); ++tryCount) {
|
|
// Try each of the bindings in turn.
|
|
++cs.solverState->NumTypeVariableBindings;
|
|
bool sawFirstLiteralConstraint = false;
|
|
for (auto binding : bindings) {
|
|
auto type = binding.BindingType;
|
|
|
|
// If the type variable can't bind to an lvalue, make sure the
|
|
// type we pick isn't an lvalue.
|
|
if (!typeVar->getImpl().canBindToLValue())
|
|
type = type->getRValueType();
|
|
|
|
// Remove parentheses. They're insignificant here.
|
|
type = type->getWithoutParens();
|
|
|
|
if (tc.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = cs.getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(depth * 2)
|
|
<< "(trying " << typeVar->getString()
|
|
<< " := " << type->getString() << "\n";
|
|
}
|
|
|
|
// Try to solve the system with typeVar := type
|
|
ConstraintSystem::SolverScope scope(cs);
|
|
if (binding.DefaultedProtocol) {
|
|
// If we were able to solve this without considering
|
|
// default literals, don't bother looking at default literals.
|
|
if (!sawFirstLiteralConstraint) {
|
|
sawFirstLiteralConstraint = true;
|
|
if (anySolved)
|
|
break;
|
|
}
|
|
type = cs.openBindingType(type, typeVar->getImpl().getLocator());
|
|
}
|
|
|
|
// FIXME: We want the locator that indicates where the binding came
|
|
// from.
|
|
cs.addConstraint(ConstraintKind::Bind,
|
|
typeVar,
|
|
type,
|
|
typeVar->getImpl().getLocator());
|
|
if (!cs.solveRec(solutions, allowFreeTypeVariables))
|
|
anySolved = true;
|
|
|
|
if (tc.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = cs.getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(depth * 2) << ")\n";
|
|
}
|
|
}
|
|
|
|
// If we found any solution, we're done.
|
|
if (anySolved)
|
|
break;
|
|
|
|
// None of the children had solutions, enumerate supertypes and
|
|
// try again.
|
|
SmallVector<PotentialBinding, 4> newBindings;
|
|
|
|
// Enumerate the supertypes of each of the types we tried.
|
|
for (auto binding : bindings) {
|
|
auto type = binding.BindingType;
|
|
|
|
// After our first pass, note that that we've explored these
|
|
// types.
|
|
if (tryCount == 0)
|
|
exploredTypes.insert(type->getCanonicalType());
|
|
|
|
// If we have a protocol with a default type, look for alternative
|
|
// types to the default.
|
|
if (tryCount == 0 && binding.DefaultedProtocol) {
|
|
KnownProtocolKind knownKind
|
|
= *((*binding.DefaultedProtocol)->getKnownProtocolKind());
|
|
for (auto altType : cs.getAlternativeLiteralTypes(knownKind)) {
|
|
if (exploredTypes.insert(altType->getCanonicalType()).second)
|
|
newBindings.push_back({altType, AllowedBindingKind::Subtypes,
|
|
binding.DefaultedProtocol});
|
|
}
|
|
}
|
|
|
|
// Handle simple subtype bindings.
|
|
if (binding.Kind == AllowedBindingKind::Subtypes &&
|
|
typeVar->getImpl().canBindToLValue() &&
|
|
!type->isLValueType() &&
|
|
!type->is<InOutType>()) {
|
|
// Try lvalue qualification in addition to rvalue qualification.
|
|
auto subtype = LValueType::get(type);
|
|
if (exploredTypes.insert(subtype->getCanonicalType()).second)
|
|
newBindings.push_back({subtype, binding.Kind, None});
|
|
}
|
|
|
|
if (binding.Kind == AllowedBindingKind::Subtypes) {
|
|
if (auto tupleTy = type->getAs<TupleType>()) {
|
|
int scalarIdx = tupleTy->getElementForScalarInit();
|
|
if (scalarIdx >= 0) {
|
|
auto eltType = tupleTy->getElementType(scalarIdx);
|
|
if (exploredTypes.insert(eltType->getCanonicalType()).second)
|
|
newBindings.push_back({eltType, binding.Kind, None});
|
|
}
|
|
}
|
|
}
|
|
|
|
if (binding.Kind != AllowedBindingKind::Supertypes)
|
|
continue;
|
|
|
|
for (auto supertype : enumerateDirectSupertypes(cs.getTypeChecker(),
|
|
type)) {
|
|
// If we're not allowed to try this binding, skip it.
|
|
auto simpleSuper = checkTypeOfBinding(cs, typeVar, supertype);
|
|
if (!simpleSuper)
|
|
continue;
|
|
|
|
// If we haven't seen this supertype, add it.
|
|
if (exploredTypes.insert((*simpleSuper)->getCanonicalType()).second)
|
|
newBindings.push_back({*simpleSuper, binding.Kind, None});
|
|
}
|
|
}
|
|
|
|
// If we didn't compute any new bindings, we're done.
|
|
if (newBindings.empty())
|
|
break;
|
|
|
|
// We have a new set of bindings; use them for our next loop.
|
|
storedBindings = std::move(newBindings);
|
|
bindings = storedBindings;
|
|
}
|
|
|
|
return !anySolved;
|
|
}
|
|
|
|
/// \brief Solve the system of constraints.
|
|
///
|
|
/// \param allowFreeTypeVariables How to bind free type variables in
|
|
/// the solution.
|
|
///
|
|
/// \returns a solution if a single unambiguous one could be found, or None if
|
|
/// ambiguous or unsolvable.
|
|
Optional<Solution>
|
|
ConstraintSystem::solveSingle(FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
SmallVector<Solution, 4> solutions;
|
|
if (solve(solutions, allowFreeTypeVariables) ||
|
|
solutions.size() != 1)
|
|
return Optional<Solution>();
|
|
|
|
return std::move(solutions[0]);
|
|
}
|
|
|
|
bool ConstraintSystem::solve(SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
assert(!solverState && "use solveRec for recursive calls");
|
|
// Set up solver state.
|
|
SolverState state(*this);
|
|
this->solverState = &state;
|
|
|
|
// Solve the system.
|
|
solveRec(solutions, allowFreeTypeVariables);
|
|
|
|
// If there is more than one viable system, attempt to pick the best
|
|
// solution.
|
|
if (solutions.size() > 1) {
|
|
if (auto best = findBestSolution(solutions, /*minimize=*/false)) {
|
|
if (*best != 0)
|
|
solutions[0] = std::move(solutions[*best]);
|
|
solutions.erase(solutions.begin() + 1, solutions.end());
|
|
}
|
|
}
|
|
|
|
// Remove the solver state.
|
|
this->solverState = nullptr;
|
|
|
|
// We fail if there is no solution.
|
|
return solutions.empty();
|
|
}
|
|
|
|
bool ConstraintSystem::solveRec(SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables){
|
|
// If we already failed, or simplification fails, we're done.
|
|
if (failedConstraint || simplify()) {
|
|
return true;
|
|
} else {
|
|
assert(ActiveConstraints.empty() && "Active constraints remain?");
|
|
}
|
|
|
|
// If there are no constraints remaining, we're done. Save this solution.
|
|
if (InactiveConstraints.empty()) {
|
|
// If this solution is worse than the best solution we've seen so far,
|
|
// skip it.
|
|
if (worseThanBestSolution())
|
|
return true;
|
|
|
|
// If any free type variables remain and we're not allowed to have them,
|
|
// fail.
|
|
if (allowFreeTypeVariables == FreeTypeVariableBinding::Disallow &&
|
|
hasFreeTypeVariables())
|
|
return true;
|
|
|
|
auto solution = finalize(allowFreeTypeVariables);
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2)
|
|
<< "(found solution " << CurrentScore << ")\n";
|
|
}
|
|
|
|
solutions.push_back(std::move(solution));
|
|
return false;
|
|
}
|
|
|
|
// Compute the connected components of the constraint graph.
|
|
// FIXME: We're seeding typeVars with TypeVariables so that the
|
|
// connected-components algorithm only considers those type variables within
|
|
// our component. There are clearly better ways to do this.
|
|
SmallVector<TypeVariableType *, 16> typeVars(TypeVariables);
|
|
SmallVector<unsigned, 16> components;
|
|
unsigned numComponents = CG.computeConnectedComponents(typeVars, components);
|
|
|
|
// If we don't have more than one component, just solve the whole
|
|
// system.
|
|
if (numComponents < 2) {
|
|
return solveSimplified(solutions, allowFreeTypeVariables);
|
|
}
|
|
|
|
if (TC.Context.LangOpts.DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
|
|
// Verify that the constraint graph is valid.
|
|
CG.verify();
|
|
|
|
log << "---Constraint graph---\n";
|
|
CG.print(log);
|
|
|
|
log << "---Connected components---\n";
|
|
CG.printConnectedComponents(log);
|
|
}
|
|
|
|
// Construct a mapping from type variables and constraints to their
|
|
// owning component.
|
|
llvm::DenseMap<TypeVariableType *, unsigned> typeVarComponent;
|
|
llvm::DenseMap<Constraint *, unsigned> constraintComponent;
|
|
for (unsigned i = 0, n = typeVars.size(); i != n; ++i) {
|
|
// Record the component of this type variable.
|
|
typeVarComponent[typeVars[i]] = components[i];
|
|
|
|
// Record the component of each of the constraints.
|
|
for (auto constraint : CG[typeVars[i]].getConstraints())
|
|
constraintComponent[constraint] = components[i];
|
|
}
|
|
|
|
// Sort the constraints into buckets based on component number.
|
|
std::unique_ptr<ConstraintList[]> constraintBuckets(
|
|
new ConstraintList[numComponents]);
|
|
while (!InactiveConstraints.empty()) {
|
|
auto *constraint = &InactiveConstraints.front();
|
|
InactiveConstraints.pop_front();
|
|
constraintBuckets[constraintComponent[constraint]].push_back(constraint);
|
|
}
|
|
|
|
// Function object that returns all constraints placed into buckets
|
|
// back to the list of constraints.
|
|
auto returnAllConstraints = [&] {
|
|
assert(InactiveConstraints.empty() && "Already have constraints?");
|
|
for (unsigned component = 0; component != numComponents; ++component) {
|
|
InactiveConstraints.splice(InactiveConstraints.end(),
|
|
constraintBuckets[component]);
|
|
}
|
|
};
|
|
|
|
// Compute the partial solutions produced for each connected component.
|
|
std::unique_ptr<SmallVector<Solution, 4>[]>
|
|
partialSolutions(new SmallVector<Solution, 4>[numComponents]);
|
|
Optional<Score> PreviousBestScore = solverState->BestScore;
|
|
for (unsigned component = 0; component != numComponents; ++component) {
|
|
assert(InactiveConstraints.empty() &&
|
|
"Some constraints were not transferred?");
|
|
++solverState->NumComponentsSplit;
|
|
|
|
// Collect the constraints for this component.
|
|
InactiveConstraints.splice(InactiveConstraints.end(),
|
|
constraintBuckets[component]);
|
|
|
|
// Collect the type variables that are not part of a different
|
|
// component; this includes type variables that are part of the
|
|
// component as well as already-resolved type variables.
|
|
// FIXME: The latter could be avoided if we had already
|
|
// substituted all of those other type variables through.
|
|
llvm::SmallVector<TypeVariableType *, 16> allTypeVariables
|
|
= std::move(TypeVariables);
|
|
for (auto typeVar : allTypeVariables) {
|
|
auto known = typeVarComponent.find(typeVar);
|
|
if (known != typeVarComponent.end() && known->second != component)
|
|
continue;
|
|
|
|
TypeVariables.push_back(typeVar);
|
|
}
|
|
|
|
// Solve for this component. If it fails, we're done.
|
|
bool failed;
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2) << "(solving component #"
|
|
<< component << "\n";
|
|
}
|
|
{
|
|
// Introduce a scope for this partial solution.
|
|
SolverScope scope(*this);
|
|
llvm::SaveAndRestore<SolverScope *>
|
|
partialSolutionScope(solverState->PartialSolutionScope, &scope);
|
|
|
|
failed = solveSimplified(partialSolutions[component],
|
|
allowFreeTypeVariables);
|
|
}
|
|
|
|
// Put the constraints back into their original bucket.
|
|
auto &bucket = constraintBuckets[component];
|
|
bucket.splice(bucket.end(), InactiveConstraints);
|
|
|
|
if (failed) {
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2) << "failed component #"
|
|
<< component << ")\n";
|
|
}
|
|
|
|
TypeVariables = std::move(allTypeVariables);
|
|
returnAllConstraints();
|
|
return true;
|
|
}
|
|
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2) << "finished component #"
|
|
<< component << ")\n";
|
|
}
|
|
|
|
assert(!partialSolutions[component].empty() &&" No solutions?");
|
|
|
|
// Move the type variables back, clear out constraints; we're
|
|
// ready for the next component.
|
|
TypeVariables = std::move(allTypeVariables);
|
|
|
|
// For each of the partial solutions, subtract off the current score.
|
|
// It doesn't contribute.
|
|
for (auto &solution : partialSolutions[component])
|
|
solution.getFixedScore() -= CurrentScore;
|
|
|
|
// Restore the previous best score.
|
|
solverState->BestScore = PreviousBestScore;
|
|
}
|
|
|
|
// Move the constraints back. The system is back in a normal state.
|
|
returnAllConstraints();
|
|
|
|
// When there are multiple partial solutions for a given connected component,
|
|
// rank those solutions to pick the best ones. This limits the number of
|
|
// combinations we need to produce; in the common case, down to a single
|
|
// combination.
|
|
for (unsigned component = 0; component != numComponents; ++component) {
|
|
auto &solutions = partialSolutions[component];
|
|
// If there's a single best solution, keep only that one.
|
|
// Otherwise, the set of solutions will at least have been minimized.
|
|
if (auto best = findBestSolution(solutions, /*minimize=*/true)) {
|
|
if (*best > 0)
|
|
solutions[0] = std::move(solutions[*best]);
|
|
solutions.erase(solutions.begin() + 1, solutions.end());
|
|
}
|
|
}
|
|
|
|
// Produce all combinations of partial solutions.
|
|
SmallVector<unsigned, 2> indices(numComponents, 0);
|
|
bool done = false;
|
|
bool anySolutions = false;
|
|
do {
|
|
// Create a new solver scope in which we apply all of the partial
|
|
// solutions.
|
|
SolverScope scope(*this);
|
|
for (unsigned i = 0; i != numComponents; ++i)
|
|
applySolution(partialSolutions[i][indices[i]]);
|
|
|
|
// This solution might be worse than the best solution found so far. If so,
|
|
// skip it.
|
|
if (!worseThanBestSolution()) {
|
|
// Finalize this solution.
|
|
auto solution = finalize(allowFreeTypeVariables);
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2)
|
|
<< "(composed solution " << CurrentScore << ")\n";
|
|
}
|
|
|
|
// Save this solution.
|
|
solutions.push_back(std::move(solution));
|
|
|
|
anySolutions = true;
|
|
}
|
|
|
|
// Find the next combination.
|
|
for (unsigned n = numComponents; n > 0; --n) {
|
|
++indices[n-1];
|
|
|
|
// If we haven't run out of solutions yet, we're done.
|
|
if (indices[n-1] < partialSolutions[n-1].size())
|
|
break;
|
|
|
|
// If we ran out of solutions at the first position, we're done.
|
|
if (n == 1) {
|
|
done = true;
|
|
break;
|
|
}
|
|
|
|
// Zero out the indices from here to the end.
|
|
for (unsigned i = n-1; i != numComponents; ++i)
|
|
indices[i] = 0;
|
|
}
|
|
} while (!done);
|
|
|
|
return !anySolutions;
|
|
}
|
|
|
|
/// Whether we should short-circuit a disjunction that already has a
|
|
/// solution when we encounter the given constraint.
|
|
static bool shortCircuitDisjunctionAt(Constraint *constraint,
|
|
Constraint *successfulConstraint) {
|
|
|
|
// If the successfully applied constraint is favored, we'll consider that to
|
|
// be the "best".
|
|
if (successfulConstraint->isFavored() && !constraint->isFavored()) {
|
|
return true;
|
|
}
|
|
|
|
// Anything without a fix is better than anything with a fix.
|
|
if (constraint->getFix() && !successfulConstraint->getFix())
|
|
return true;
|
|
|
|
if (auto restriction = constraint->getRestriction()) {
|
|
// Non-optional conversions are better than optional-to-optional
|
|
// conversions.
|
|
if (*restriction == ConversionRestrictionKind::OptionalToOptional ||
|
|
*restriction
|
|
== ConversionRestrictionKind::ImplicitlyUnwrappedOptionalToOptional ||
|
|
*restriction
|
|
== ConversionRestrictionKind::OptionalToImplicitlyUnwrappedOptional)
|
|
return true;
|
|
|
|
// Array-to-pointer conversions are better than inout-to-pointer conversions.
|
|
if (auto successfulRestriction = successfulConstraint->getRestriction()) {
|
|
if (*successfulRestriction == ConversionRestrictionKind::ArrayToPointer
|
|
&& *restriction == ConversionRestrictionKind::InoutToPointer)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Implicit conversions are better than checked casts.
|
|
if (constraint->getKind() == ConstraintKind::CheckedCast)
|
|
return true;
|
|
|
|
// Binding an operator overloading to a generic operator is weaker than
|
|
// binding to a non-generic operator, always.
|
|
// Note: this is a hack to improve performance when we're dealing with
|
|
// overloaded operators.
|
|
if (constraint->getKind() == ConstraintKind::BindOverload &&
|
|
constraint->getOverloadChoice().getKind() == OverloadChoiceKind::Decl &&
|
|
constraint->getOverloadChoice().getDecl()->getName().isOperator() &&
|
|
successfulConstraint->getKind() == ConstraintKind::BindOverload &&
|
|
successfulConstraint->getOverloadChoice().getKind()
|
|
== OverloadChoiceKind::Decl &&
|
|
successfulConstraint->getOverloadChoice().getDecl()->getName()
|
|
.isOperator() &&
|
|
constraint->getOverloadChoice().getDecl()->getInterfaceType()
|
|
->is<GenericFunctionType>() &&
|
|
!successfulConstraint->getOverloadChoice().getDecl()->getInterfaceType()
|
|
->is<GenericFunctionType>()) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ConstraintSystem::solveSimplified(
|
|
SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
// Collect disjunctions.
|
|
SmallVector<Constraint *, 4> disjunctions;
|
|
for (auto &constraint : InactiveConstraints) {
|
|
if (constraint.getKind() == ConstraintKind::Disjunction)
|
|
disjunctions.push_back(&constraint);
|
|
}
|
|
|
|
// Look for potential type variable bindings.
|
|
TypeVariableType *bestTypeVar = nullptr;
|
|
PotentialBindings bestBindings;
|
|
for (auto typeVar : TypeVariables) {
|
|
// Skip any type variables that are bound.
|
|
if (typeVar->getImpl().hasRepresentativeOrFixed())
|
|
continue;
|
|
|
|
// Get potential bindings.
|
|
auto bindings = getPotentialBindings(*this, typeVar);
|
|
if (!bindings)
|
|
continue;
|
|
|
|
// If these are the first bindings, or they are better than what
|
|
// we saw before, use them instead.
|
|
if (!bestTypeVar || bindings < bestBindings) {
|
|
bestBindings = std::move(bindings);
|
|
bestTypeVar = typeVar;
|
|
}
|
|
}
|
|
|
|
// If we have a binding that does not involve type variables, or we have
|
|
// no other option, go ahead and try the bindings for this type variable.
|
|
if (bestBindings &&
|
|
(disjunctions.empty() ||
|
|
(!bestBindings.InvolvesTypeVariables && !bestBindings.FullyBound &&
|
|
bestBindings.LiteralBinding == LiteralBindingKind::None))) {
|
|
return tryTypeVariableBindings(*this, solverState->depth, bestTypeVar,
|
|
bestBindings.Bindings, solutions,
|
|
allowFreeTypeVariables);
|
|
}
|
|
|
|
// If there are no disjunctions, we can't solve this system.
|
|
if (disjunctions.empty()) {
|
|
// If the only remaining constraints are conformance constraints
|
|
// or member equality constraints, and we're allowed to have free
|
|
// variables, we still have a solution. FIXME: It seems like this
|
|
// should be easier to detect. Aren't there other kinds of
|
|
// constraints that could show up here?
|
|
if (allowFreeTypeVariables != FreeTypeVariableBinding::Disallow &&
|
|
hasFreeTypeVariables()) {
|
|
bool anyNonConformanceConstraints = false;
|
|
for (auto &constraint : InactiveConstraints) {
|
|
if (constraint.getKind() == ConstraintKind::ConformsTo ||
|
|
constraint.getKind() == ConstraintKind::SelfObjectOfProtocol ||
|
|
constraint.getKind() == ConstraintKind::TypeMember)
|
|
continue;
|
|
|
|
anyNonConformanceConstraints = true;
|
|
break;
|
|
}
|
|
|
|
// If this solution is worse than the best solution we've seen so far,
|
|
// skip it.
|
|
if (worseThanBestSolution())
|
|
return true;
|
|
|
|
if (!anyNonConformanceConstraints) {
|
|
auto solution = finalize(allowFreeTypeVariables);
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2) << "(found solution)\n";
|
|
}
|
|
|
|
solutions.push_back(std::move(solution));
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Pick the smallest disjunction.
|
|
// FIXME: This heuristic isn't great, but it helped somewhat for
|
|
// overload sets.
|
|
auto disjunction = disjunctions[0];
|
|
auto bestSize = disjunction->getNestedConstraints().size();
|
|
if (bestSize > 2) {
|
|
for (auto contender : llvm::makeArrayRef(disjunctions).slice(1)) {
|
|
unsigned newSize = contender->getNestedConstraints().size();
|
|
if (newSize < bestSize) {
|
|
bestSize = newSize;
|
|
disjunction = contender;
|
|
|
|
if (bestSize == 2)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove this disjunction constraint from the list.
|
|
auto afterDisjunction = InactiveConstraints.erase(disjunction);
|
|
CG.removeConstraint(disjunction);
|
|
|
|
// Try each of the constraints within the disjunction.
|
|
Constraint *firstSolvedConstraint = nullptr;
|
|
++solverState->NumDisjunctions;
|
|
auto constraints = disjunction->getNestedConstraints();
|
|
for (auto index : indices(constraints)) {
|
|
auto constraint = constraints[index];
|
|
|
|
// We already have a solution; check whether we should
|
|
// short-circuit the disjunction.
|
|
if (firstSolvedConstraint &&
|
|
shortCircuitDisjunctionAt(constraint, firstSolvedConstraint))
|
|
break;
|
|
|
|
// If the expression was deemed "too complex", stop now and salvage.
|
|
if (getExpressionTooComplex())
|
|
break;
|
|
|
|
// Try to solve the system with this option in the disjunction.
|
|
SolverScope scope(*this);
|
|
++solverState->NumDisjunctionTerms;
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2)
|
|
<< "(assuming ";
|
|
constraint->print(log, &TC.Context.SourceMgr);
|
|
log << '\n';
|
|
}
|
|
|
|
// If the disjunction requested us to, remember which choice we
|
|
// took for it.
|
|
if (disjunction->shouldRememberChoice()) {
|
|
auto locator = disjunction->getLocator();
|
|
assert(locator && "remembered disjunction doesn't have a locator?");
|
|
DisjunctionChoices.push_back({locator, index});
|
|
}
|
|
|
|
// Determine whether we're handling a favored constraint in subsystem.
|
|
const bool willBeHandlingFavoredConstraint
|
|
= constraint->isFavored() || HandlingFavoredConstraint;
|
|
llvm::SaveAndRestore<bool> handlingFavoredConstraint(
|
|
HandlingFavoredConstraint,
|
|
willBeHandlingFavoredConstraint);
|
|
|
|
// Simplify this term in the disjunction.
|
|
switch (simplifyConstraint(*constraint)) {
|
|
case SolutionKind::Error:
|
|
if (!failedConstraint)
|
|
failedConstraint = constraint;
|
|
solverState->retiredConstraints.push_back(constraint);
|
|
break;
|
|
|
|
case SolutionKind::Solved:
|
|
solverState->retiredConstraints.push_back(constraint);
|
|
break;
|
|
|
|
case SolutionKind::Unsolved:
|
|
InactiveConstraints.push_back(constraint);
|
|
CG.addConstraint(constraint);
|
|
break;
|
|
}
|
|
|
|
// Record this as a generated constraint.
|
|
solverState->generatedConstraints.push_back(constraint);
|
|
|
|
if (!solveRec(solutions, allowFreeTypeVariables)) {
|
|
firstSolvedConstraint = constraint;
|
|
|
|
// If we see a tuple-to-tuple conversion that succeeded, we're done.
|
|
// FIXME: This should be more general.
|
|
if (auto restriction = constraint->getRestriction()) {
|
|
if (*restriction == ConversionRestrictionKind::TupleToTuple)
|
|
break;
|
|
}
|
|
|
|
// Or, if we see a conversion successfully applied to a string
|
|
// interpolation argument, we're done.
|
|
// FIXME: Probably should be more general, as mentioned above.
|
|
if (auto locator = disjunction->getLocator()) {
|
|
if (!locator->getPath().empty() &&
|
|
locator->getPath().back().getKind()
|
|
== ConstraintLocator::InterpolationArgument &&
|
|
constraint->getKind() == ConstraintKind::Conversion)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (TC.getLangOpts().DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState->depth * 2) << ")\n";
|
|
}
|
|
}
|
|
|
|
// Put the disjunction constraint back in its place.
|
|
InactiveConstraints.insert(afterDisjunction, disjunction);
|
|
CG.addConstraint(disjunction);
|
|
|
|
return !firstSolvedConstraint;
|
|
}
|