mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
These bits are orthogonal to each other, so combine them into one, and diagnose attempts to produce a type that's both. Spot-fix a bunch of places this revealed by inspection that we would have crashed in SILGen or IRGen if blocks were be handled. Swift SVN r16088
1547 lines
62 KiB
C++
1547 lines
62 KiB
C++
//===--- SILGenPoly.cpp - Polymorphic Abstraction Difference --------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Routines for manipulating and translating between polymorphic
|
|
// abstraction patterns.
|
|
//
|
|
// The representation of values in Swift can vary according to how
|
|
// their type is abstracted: which is to say, according to the pattern
|
|
// of opaque type variables within their type. The main motivation
|
|
// here is performance: it would be far easier for types to adopt a
|
|
// single representation regardless of their abstraction, but this
|
|
// would force Swift to adopt a very inefficient representation for
|
|
// abstractable values.
|
|
//
|
|
// For example, consider the comparison function on Int:
|
|
// func <(lhs : Int, rhs : Int) -> Bool
|
|
//
|
|
// This function can be used as an opaque value of type
|
|
// (Int,Int)->Bool. An optimal representation of values of that type
|
|
// (ignoring context parameters for the moment) would be a pointer to
|
|
// a function that takes these two arguments directly in registers and
|
|
// returns the result directly in a register.
|
|
//
|
|
// (It's important to remember throughout this discussion that we're
|
|
// talking about abstract values. There's absolutely nothing that
|
|
// requires direct uses of the function to follow the same conventions
|
|
// as abstract uses! A direct use of a declaration --- even one that
|
|
// implies an indirect call, like a class's instance method ---
|
|
// provides a concrete specification for exactly how to interact with
|
|
// value.)
|
|
//
|
|
// However, that representation is problematic in the presence of
|
|
// generics. This function could be passed off to any of the following
|
|
// generic functions:
|
|
// func foo<T>(f : (T, Int) -> Bool)
|
|
// func bar<U,V>(f : (U, V) -> Bool)
|
|
// func baz<W>(f : (Int, Int) -> W)
|
|
//
|
|
// These generic functions all need to be able to call 'f'. But in
|
|
// Swift's implementation model, these functions don't have to be
|
|
// instantiated for different parameter types, which means that (e.g.)
|
|
// the same 'baz' implementation needs to also be able to work when
|
|
// W=String. But the optimal way to pass an Int to a function might
|
|
// well be different from the optimal way to pass a String.
|
|
//
|
|
// And this runs in both directions: a generic function might return
|
|
// a function that the caller would like to use as an (Int,Int)->Bool:
|
|
// func getFalseFunction<T>() -> (T,T)->Bool
|
|
//
|
|
// There are three ways we can deal with this:
|
|
//
|
|
// 1. Give all types in Swift a common representation. The generic
|
|
// implementation can work with both W=String and W=Int because
|
|
// both of those types have the same (direct) storage representation.
|
|
// That's pretty clearly not an acceptable sacrifice.
|
|
//
|
|
// 2. Adopt a most-general representation of function types that is
|
|
// used for opaque values; for example, all parameters and results
|
|
// could be passed indirectly. Concrete values must be coerced to
|
|
// this representation when made abstract. Unfortunately, there
|
|
// are a lot of obvious situations where this is sub-optimal:
|
|
// for example, in totally non-generic code that just passes around
|
|
// a value of type (Int,Int)->Bool. It's particularly bad because
|
|
// Swift functions take multiple arguments as just a tuple, and that
|
|
// tuple is usually abstractable: e.g., '<' above could also be
|
|
// passed to this:
|
|
// func fred<T>(f : T -> Bool)
|
|
//
|
|
// 3. Permit the representation of values to vary by abstraction.
|
|
// Values require coercion when changing abstraction patterns.
|
|
// For example, the argument to 'fred' would be expected to return
|
|
// its Bool result directly but take a single T parameter indirectly.
|
|
// When '<' is passed to this, what must actually be passed is a
|
|
// thunk that expects a tuple of type (Int,Int) to be stored at
|
|
// the input address.
|
|
//
|
|
// There is one major risk with (3): naively implemented, a single
|
|
// function value which undergoes many coercions could build up a
|
|
// linear number of re-abstraction thunks. However, this can be
|
|
// solved dynamically by applying thunks with a runtime functon that
|
|
// can recognize and bypass its own previous handiwork.
|
|
//
|
|
// There is one major exception to what sub-expressions in a type
|
|
// expression can be abstracted with type variables: a type substitution
|
|
// must always be materializable. For example:
|
|
// func f(inout Int, Int) -> Bool
|
|
// 'f' cannot be passed to 'foo' above: T=inout Int is not a legal
|
|
// substitution. Nor can it be passed to 'fred'.
|
|
//
|
|
// In general, abstraction patterns are derived from some explicit
|
|
// type expression, such as the written type of a variable or
|
|
// parameter. This works whenever the expression directly provides
|
|
// structure for the type in question; for example, when the original
|
|
// type is (T,Int)->Bool and we are working with an (Int,Int)->Bool
|
|
// substitution. However, it is inadequate when the expression does
|
|
// not provide structure at the appropriate level, i.e. when that
|
|
// level is substituted in: when the original type is merely T. In
|
|
// these cases, we must devolve to a representation which all legal
|
|
// substitutors will agree upon. In general, this is the
|
|
// representation of the type which replaces all materializable
|
|
// sub-expressions with a fresh type variable.
|
|
//
|
|
// For example, when applying the substitution
|
|
// T=(Int,Int)->Bool
|
|
// values of T are abstracted as if they were of type U->V, i.e.
|
|
// taking one indirect parameter and returning one indirect result.
|
|
//
|
|
// But under the substitution
|
|
// T=(inout Int,Int)->Bool
|
|
// values of T are abstracted as if they were of type (inout U,V)->W,
|
|
// i.e. taking one parameter inout, another indirectly, and returning
|
|
// one indirect result.
|
|
//
|
|
// We generally pass around an original, unsubstituted type as the
|
|
// abstraction pattern. The exact archetypes in this type are
|
|
// irrelevant; only whether or not a position is filled by an
|
|
// archetype matters.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SILGen.h"
|
|
#include "Scope.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/SIL/PrettyStackTrace.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "Initialization.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
namespace {
|
|
/// An abstract class for transforming first-class SIL values.
|
|
class Transform {
|
|
protected:
|
|
SILGenFunction &SGF;
|
|
SILLocation Loc;
|
|
|
|
public:
|
|
Transform(SILGenFunction &SGF, SILLocation loc) : SGF(SGF), Loc(loc) {}
|
|
virtual ~Transform() = default;
|
|
|
|
/// Transform an arbitrary value.
|
|
ManagedValue transform(ManagedValue input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctxt);
|
|
|
|
/// Transform a metatype value.
|
|
virtual ManagedValue transformMetatype(ManagedValue fn,
|
|
AbstractionPattern origType,
|
|
CanAnyMetatypeType substType) = 0;
|
|
|
|
/// Transform a tuple value.
|
|
ManagedValue transformTuple(ManagedValue input,
|
|
AbstractionPattern origType,
|
|
CanTupleType substType,
|
|
SGFContext ctxt);
|
|
|
|
/// Transform a function value.
|
|
virtual ManagedValue transformFunction(ManagedValue fn,
|
|
AbstractionPattern origType,
|
|
CanAnyFunctionType substType) = 0;
|
|
|
|
/// Return the expected type of a lowered value.
|
|
virtual const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
|
|
CanType substType) = 0;
|
|
};
|
|
};
|
|
|
|
/// Apply this transformation to an arbitrary value.
|
|
ManagedValue Transform::transform(ManagedValue v,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType,
|
|
SGFContext ctxt) {
|
|
|
|
// Transformable values are:
|
|
|
|
// - functions
|
|
if (auto substFnType = dyn_cast<AnyFunctionType>(substFormalType)) {
|
|
return transformFunction(v, origFormalType, substFnType);
|
|
}
|
|
|
|
// - tuples of transformable values
|
|
if (auto substTupleType = dyn_cast<TupleType>(substFormalType)) {
|
|
return transformTuple(v, origFormalType, substTupleType, ctxt);
|
|
}
|
|
|
|
// - metatypes
|
|
if (auto substMetaType = dyn_cast<AnyMetatypeType>(substFormalType)) {
|
|
return transformMetatype(v, origFormalType, substMetaType);
|
|
}
|
|
|
|
// Nothing else.
|
|
return v;
|
|
}
|
|
|
|
/// Explode a managed tuple into a bunch of managed elements.
|
|
///
|
|
/// If the tuple is in memory, the result elements will also be in
|
|
/// memory.
|
|
typedef std::pair<ManagedValue, const TypeLowering *> ManagedValueAndType;
|
|
static void explodeTuple(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue managedTuple,
|
|
SmallVectorImpl<ManagedValueAndType> &out) {
|
|
// None of the operations we do here can fail, so we can atomically
|
|
// disable the tuple's cleanup and then create cleanups for all the
|
|
// elements.
|
|
SILValue tuple = managedTuple.forward(gen);
|
|
|
|
auto tupleSILType = tuple.getType();
|
|
auto tupleType = tupleSILType.castTo<TupleType>();
|
|
|
|
out.reserve(tupleType->getNumElements());
|
|
|
|
for (auto index : indices(tupleType.getElementTypes())) {
|
|
// We're starting with a SIL-lowered tuple type, so the elements
|
|
// must also all be SIL-lowered.
|
|
SILType eltType = tupleSILType.getTupleElementType(index);
|
|
|
|
auto &eltTL = gen.getTypeLowering(eltType);
|
|
|
|
ManagedValue elt;
|
|
if (tupleSILType.isAddress()) {
|
|
auto addr = gen.B.createTupleElementAddr(loc, tuple, index, eltType);
|
|
elt = gen.emitManagedBufferWithCleanup(addr, eltTL);
|
|
} else {
|
|
auto value = gen.B.createTupleExtract(loc, tuple, index, eltType);
|
|
elt = gen.emitManagedRValueWithCleanup(value, eltTL);
|
|
}
|
|
|
|
out.push_back(ManagedValueAndType(elt, &eltTL));
|
|
}
|
|
}
|
|
|
|
static ManagedValue emitManagedLoad(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue addr,
|
|
const TypeLowering &addrTL) {
|
|
auto loadedValue = gen.B.createLoad(loc, addr.forward(gen));
|
|
return gen.emitManagedRValueWithCleanup(loadedValue, addrTL);
|
|
}
|
|
|
|
/// Apply this transformation to all the elements of a tuple value,
|
|
/// which just entails mapping over each of its component elements.
|
|
ManagedValue Transform::transformTuple(ManagedValue inputTuple,
|
|
AbstractionPattern origFormalType,
|
|
CanTupleType substFormalType,
|
|
SGFContext ctxt) {
|
|
const TypeLowering &outputTL =
|
|
getExpectedTypeLowering(origFormalType, substFormalType);
|
|
assert(outputTL.isAddressOnly() == inputTuple.getType().isAddress() &&
|
|
"expected loadable inputs to have been loaded");
|
|
|
|
// If there's no representation difference, we're done.
|
|
if (outputTL.getLoweredType() == inputTuple.getType())
|
|
return inputTuple;
|
|
|
|
assert(origFormalType.matchesTuple(substFormalType));
|
|
|
|
auto inputType = inputTuple.getType().castTo<TupleType>();
|
|
assert(substFormalType->getNumElements() == inputType->getNumElements());
|
|
|
|
// If the tuple is address only, we need to do the operation in memory.
|
|
SILValue outputAddr;
|
|
if (outputTL.isAddressOnly())
|
|
outputAddr = SGF.getBufferForExprResult(Loc, outputTL.getLoweredType(),
|
|
ctxt);
|
|
|
|
// Explode the tuple into individual managed values.
|
|
SmallVector<ManagedValueAndType, 4> inputElts;
|
|
explodeTuple(SGF, Loc, inputTuple, inputElts);
|
|
|
|
// Track all the managed elements whether or not we're actually
|
|
// emitting to an address, just so that we can disable them ater.
|
|
SmallVector<ManagedValue, 4> outputElts;
|
|
|
|
for (auto index : indices(inputType->getElementTypes())) {
|
|
auto &inputEltTL = *inputElts[index].second;
|
|
ManagedValue inputElt = inputElts[index].first;
|
|
if (inputElt.getType().isAddress() && !inputEltTL.isAddressOnly()) {
|
|
inputElt = emitManagedLoad(SGF, Loc, inputElt, inputEltTL);
|
|
}
|
|
|
|
auto origEltFormalType = origFormalType.getTupleElementType(index);
|
|
auto substEltFormalType = substFormalType.getElementType(index);
|
|
|
|
// If we're emitting to memory, project out this element in the
|
|
// destination buffer, then wrap that in an Initialization to
|
|
// track the cleanup.
|
|
Optional<TemporaryInitialization> outputEltTemp;
|
|
if (outputAddr) {
|
|
SILValue outputEltAddr =
|
|
SGF.B.createTupleElementAddr(Loc, outputAddr, index);
|
|
auto &outputEltTL = SGF.getTypeLowering(outputEltAddr.getType());
|
|
assert(outputEltTL.isAddressOnly() == inputEltTL.isAddressOnly());
|
|
auto cleanup =
|
|
SGF.enterDormantTemporaryCleanup(outputEltAddr, outputEltTL);
|
|
outputEltTemp.emplace(outputEltAddr, cleanup);
|
|
}
|
|
|
|
SGFContext eltCtxt =
|
|
(outputEltTemp ? SGFContext(&outputEltTemp.getValue()) : SGFContext());
|
|
auto outputElt = transform(inputElt, origEltFormalType, substEltFormalType,
|
|
eltCtxt);
|
|
|
|
// If we're not emitting to memory, remember this element for
|
|
// later assembly into a tuple.
|
|
if (!outputEltTemp) {
|
|
assert(outputElt);
|
|
assert(!inputEltTL.isAddressOnly());
|
|
outputElts.push_back(outputElt);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, make sure we emit into the slot.
|
|
auto &temp = outputEltTemp.getValue();
|
|
auto outputEltAddr = temp.getManagedAddress();
|
|
|
|
// That might involve storing directly.
|
|
if (outputElt) {
|
|
outputElt.forwardInto(SGF, Loc, outputEltAddr.getValue());
|
|
temp.finishInitialization(SGF);
|
|
}
|
|
|
|
outputElts.push_back(outputEltAddr);
|
|
}
|
|
|
|
// Okay, disable all the individual element cleanups and collect
|
|
// the values for a potential tuple aggregate.
|
|
SmallVector<SILValue, 4> outputEltValues;
|
|
for (auto outputElt : outputElts) {
|
|
SILValue value = outputElt.forward(SGF);
|
|
if (!outputAddr) outputEltValues.push_back(value);
|
|
}
|
|
|
|
// If we're emitting to an address, just manage that.
|
|
if (outputAddr)
|
|
return SGF.manageBufferForExprResult(outputAddr, outputTL, ctxt);
|
|
|
|
// Otherwise, assemble the tuple value and manage that.
|
|
auto outputTuple =
|
|
SGF.B.createTuple(Loc, outputTL.getLoweredType(), outputEltValues);
|
|
return SGF.emitManagedRValueWithCleanup(outputTuple, outputTL);
|
|
}
|
|
|
|
static ManagedValue manageParam(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
SILValue paramValue,
|
|
SILParameterInfo info) {
|
|
switch (info.getConvention()) {
|
|
case ParameterConvention::Direct_Unowned:
|
|
case ParameterConvention::Direct_Guaranteed:
|
|
gen.getTypeLowering(paramValue.getType())
|
|
.emitRetainValue(gen.B, loc, paramValue);
|
|
SWIFT_FALLTHROUGH;
|
|
case ParameterConvention::Direct_Owned:
|
|
return gen.emitManagedRValueWithCleanup(paramValue);
|
|
|
|
case ParameterConvention::Indirect_Inout:
|
|
return ManagedValue::forLValue(paramValue);
|
|
case ParameterConvention::Indirect_In:
|
|
return gen.emitManagedBufferWithCleanup(paramValue);
|
|
case ParameterConvention::Indirect_Out:
|
|
llvm_unreachable("shouldn't be handled out-parameters here");
|
|
}
|
|
llvm_unreachable("bad parameter convention");
|
|
}
|
|
|
|
static void collectParams(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
SmallVectorImpl<ManagedValue> ¶ms) {
|
|
auto paramTypes =
|
|
gen.F.getLoweredFunctionType()->getInterfaceParametersWithoutIndirectResult();
|
|
for (auto param : paramTypes) {
|
|
auto paramTy = gen.F.mapTypeIntoContext(param.getSILType());
|
|
auto paramValue = new (gen.SGM.M) SILArgument(paramTy,
|
|
gen.F.begin());
|
|
params.push_back(manageParam(gen, loc, paramValue, param));
|
|
}
|
|
}
|
|
|
|
enum class TranslationKind {
|
|
Generalize, OrigToSubst, SubstToOrig
|
|
};
|
|
|
|
/// Flip the direction of translation.
|
|
static TranslationKind getInverse(TranslationKind kind) {
|
|
switch (kind) {
|
|
case TranslationKind::Generalize:
|
|
// This is a bit odd?
|
|
return TranslationKind::SubstToOrig;
|
|
case TranslationKind::OrigToSubst:
|
|
return TranslationKind::SubstToOrig;
|
|
case TranslationKind::SubstToOrig:
|
|
return TranslationKind::OrigToSubst;
|
|
}
|
|
llvm_unreachable("bad translation kind");
|
|
}
|
|
|
|
static bool isOutputSubstituted(TranslationKind kind) {
|
|
switch (kind) {
|
|
case TranslationKind::Generalize: return true;
|
|
case TranslationKind::OrigToSubst: return true;
|
|
case TranslationKind::SubstToOrig: return false;
|
|
}
|
|
llvm_unreachable("bad translation kind");
|
|
}
|
|
|
|
/// Primitively translate the given value.
|
|
static ManagedValue emitTranslatePrimitive(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
TranslationKind kind,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
ManagedValue input,
|
|
SGFContext context = SGFContext()) {
|
|
// Load if the result isn't address-only. All the translation routines
|
|
// expect this.
|
|
auto inputType = input.getType();
|
|
if (inputType.isAddress()) {
|
|
auto &inputTL = SGF.getTypeLowering(inputType);
|
|
if (!inputTL.isAddressOnly()) {
|
|
input = emitManagedLoad(SGF, loc, input, inputTL);
|
|
}
|
|
}
|
|
|
|
switch (kind) {
|
|
case TranslationKind::Generalize:
|
|
return SGF.emitGeneralizedValue(loc, input, origType, substType, context);
|
|
case TranslationKind::SubstToOrig:
|
|
return SGF.emitSubstToOrigValue(loc, input, origType, substType, context);
|
|
case TranslationKind::OrigToSubst:
|
|
return SGF.emitOrigToSubstValue(loc, input, origType, substType, context);
|
|
}
|
|
llvm_unreachable("bad translation kind");
|
|
}
|
|
|
|
/// Force a ManagedValue to be stored into a temporary initialization
|
|
/// if it wasn't emitted that way directly.
|
|
static void emitForceInto(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue result, TemporaryInitialization &temp) {
|
|
if (!result) return;
|
|
result.forwardInto(SGF, loc, temp.getAddress());
|
|
temp.finishInitialization(SGF);
|
|
}
|
|
|
|
namespace {
|
|
class TranslateArguments {
|
|
SILGenFunction &SGF;
|
|
SILLocation Loc;
|
|
TranslationKind Kind;
|
|
ArrayRef<ManagedValue> Inputs;
|
|
SmallVectorImpl<ManagedValue> &Outputs;
|
|
ArrayRef<SILParameterInfo> OutputTypes;
|
|
public:
|
|
TranslateArguments(SILGenFunction &SGF, SILLocation loc,
|
|
TranslationKind kind,
|
|
ArrayRef<ManagedValue> inputs,
|
|
SmallVectorImpl<ManagedValue> &outputs,
|
|
ArrayRef<SILParameterInfo> outputTypes)
|
|
: SGF(SGF), Loc(loc), Kind(kind), Inputs(inputs), Outputs(outputs),
|
|
OutputTypes(outputTypes) {}
|
|
|
|
void translate(AbstractionPattern origType, CanType substType) {
|
|
// Tuples are exploded recursively.
|
|
if (isa<TupleType>(origType.getAsType())) {
|
|
return translateParallelExploded(origType, cast<TupleType>(substType));
|
|
}
|
|
if (auto substTuple = dyn_cast<TupleType>(substType)) {
|
|
if (!substTuple->isMaterializable())
|
|
return translateParallelExploded(origType, substTuple);
|
|
return translateExplodedIndirect(origType, substTuple);
|
|
}
|
|
|
|
// Okay, we are now working with a single value turning into a
|
|
// single value.
|
|
auto input = claimNextInput();
|
|
auto outputType = claimNextOutputType();
|
|
translateSingle(origType, substType, input, outputType);
|
|
}
|
|
|
|
private:
|
|
/// Handle a tuple that has been exploded in both the input and
|
|
/// the output.
|
|
void translateParallelExploded(AbstractionPattern origType,
|
|
CanTupleType substType) {
|
|
assert(origType.matchesTuple(substType));
|
|
for (auto index : indices(substType.getElementTypes())) {
|
|
translate(origType.getTupleElementType(index),
|
|
substType.getElementType(index));
|
|
}
|
|
}
|
|
|
|
/// Handle a tuple that is exploded only in the substituted type.
|
|
void translateExplodedIndirect(AbstractionPattern origType,
|
|
CanTupleType substType) {
|
|
// It matters at this point whether we're translating into the
|
|
// substitution or out of it.
|
|
if (isOutputSubstituted(Kind)) {
|
|
return translateAndExplodeOutOf(origType, substType, claimNextInput());
|
|
}
|
|
|
|
auto output = claimNextOutputType();
|
|
auto &outputTL = SGF.getTypeLowering(output.getSILType());
|
|
auto temp = SGF.emitTemporary(Loc, outputTL);
|
|
translateAndImplodeInto(origType, substType, *temp.get());
|
|
Outputs.push_back(temp->getManagedAddress());
|
|
}
|
|
|
|
/// Given that a tuple value is being passed indirectly in the
|
|
/// input, explode it and translate the elements.
|
|
void translateAndExplodeOutOf(AbstractionPattern origTupleType,
|
|
CanTupleType substTupleType,
|
|
ManagedValue inputTupleAddr) {
|
|
SmallVector<ManagedValueAndType, 4> inputEltAddrs;
|
|
explodeTuple(SGF, Loc, inputTupleAddr, inputEltAddrs);
|
|
assert(inputEltAddrs.size() == substTupleType->getNumElements());
|
|
|
|
for (auto index : indices(substTupleType.getElementTypes())) {
|
|
auto origEltType = origTupleType.getTupleElementType(index);
|
|
auto substEltType = substTupleType.getElementType(index);
|
|
auto inputEltAddr = inputEltAddrs[index].first;
|
|
assert(inputEltAddr.getType().isAddress());
|
|
|
|
if (auto substEltTupleType = dyn_cast<TupleType>(substEltType)) {
|
|
translateAndExplodeOutOf(origEltType, substEltTupleType, inputEltAddr);
|
|
} else {
|
|
auto outputType = claimNextOutputType();
|
|
translateSingle(origEltType, substEltType, inputEltAddr, outputType);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given that a tuple value is being passed indirectly in the
|
|
/// output, translate the elements and implode it.
|
|
void translateAndImplodeInto(AbstractionPattern origTupleType,
|
|
CanTupleType substTupleType,
|
|
TemporaryInitialization &tupleInit) {
|
|
SmallVector<CleanupHandle, 4> cleanups;
|
|
|
|
for (auto index : indices(substTupleType.getElementTypes())) {
|
|
auto origEltType = origTupleType.getTupleElementType(index);
|
|
auto substEltType = substTupleType.getElementType(index);
|
|
auto eltAddr =
|
|
SGF.B.createTupleElementAddr(Loc, tupleInit.getAddress(), index);
|
|
|
|
auto &outputEltTL = SGF.getTypeLowering(eltAddr->getType());
|
|
CleanupHandle eltCleanup =
|
|
SGF.enterDormantTemporaryCleanup(eltAddr, outputEltTL);
|
|
if (eltCleanup.isValid()) cleanups.push_back(eltCleanup);
|
|
|
|
TemporaryInitialization eltInit(eltAddr, eltCleanup);
|
|
if (auto substEltTupleType = dyn_cast<TupleType>(substEltType)) {
|
|
translateAndImplodeInto(origEltType, substEltTupleType, eltInit);
|
|
} else {
|
|
// Otherwise, we come from a single value.
|
|
auto input = claimNextInput();
|
|
translateSingleInto(origEltType, substEltType, input, eltInit);
|
|
}
|
|
}
|
|
|
|
// Deactivate all the element cleanups and activate the tuple cleanup.
|
|
for (auto cleanup : cleanups)
|
|
SGF.Cleanups.setCleanupState(cleanup, CleanupState::Dead);
|
|
tupleInit.finishInitialization(SGF);
|
|
}
|
|
|
|
/// Translate a single value and add it as an output.
|
|
void translateSingle(AbstractionPattern origType, CanType substType,
|
|
ManagedValue input, SILParameterInfo outputType) {
|
|
// Easy case: we want to pass exactly this value.
|
|
if (input.getType() == outputType.getSILType()) {
|
|
Outputs.push_back(input);
|
|
return;
|
|
}
|
|
|
|
// Direct translation is relatively easy.
|
|
if (!outputType.isIndirect()) {
|
|
auto output = translatePrimitive(origType, substType, input);
|
|
assert(output.getType() == outputType.getSILType());
|
|
Outputs.push_back(output);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we're using one of the indirect conventions.
|
|
|
|
// If it's inout, we need writeback.
|
|
if (outputType.isIndirectInOut()) {
|
|
llvm::errs() << "inout writeback in abstraction difference thunk "
|
|
"not yet implemented\n";
|
|
llvm::errs() << "input value "; input.getValue().dump();
|
|
llvm::errs() << "output type " << outputType.getSILType() << "\n";
|
|
abort();
|
|
}
|
|
|
|
// Otherwise, we need to translate into a temporary.
|
|
assert(outputType.getConvention() == ParameterConvention::Indirect_In);
|
|
auto &outputTL = SGF.getTypeLowering(outputType.getSILType());
|
|
auto temp = SGF.emitTemporary(Loc, outputTL);
|
|
translateSingleInto(origType, substType, input, *temp.get());
|
|
Outputs.push_back(temp->getManagedAddress());
|
|
}
|
|
|
|
/// Translate a single value and initialize the given temporary with it.
|
|
void translateSingleInto(AbstractionPattern origType, CanType substType,
|
|
ManagedValue input,
|
|
TemporaryInitialization &temp) {
|
|
auto output = translatePrimitive(origType, substType, input,
|
|
SGFContext(&temp));
|
|
forceInto(output, temp);
|
|
}
|
|
|
|
/// Apply primitive translation to the given value.
|
|
ManagedValue translatePrimitive(AbstractionPattern origType,
|
|
CanType substType, ManagedValue input,
|
|
SGFContext context = SGFContext()) {
|
|
return emitTranslatePrimitive(SGF, Loc, Kind, origType, substType,
|
|
input, context);
|
|
}
|
|
|
|
/// Force the given result into the given initialization.
|
|
void forceInto(ManagedValue result, TemporaryInitialization &temp) {
|
|
emitForceInto(SGF, Loc, result, temp);
|
|
}
|
|
|
|
ManagedValue claimNextInput() {
|
|
assert(!Inputs.empty());
|
|
auto next = Inputs.front();
|
|
Inputs = Inputs.slice(1);
|
|
return next;
|
|
}
|
|
|
|
SILParameterInfo claimNextOutputType() {
|
|
assert(!OutputTypes.empty());
|
|
auto next = OutputTypes.front();
|
|
OutputTypes = OutputTypes.slice(1);
|
|
return next;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Forward arguments according to a function type's ownership conventions.
|
|
static void forwardFunctionArguments(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
CanSILFunctionType fTy,
|
|
ArrayRef<ManagedValue> managedArgs,
|
|
SmallVectorImpl<SILValue> &forwardedArgs) {
|
|
auto argTypes = fTy->getInterfaceParametersWithoutIndirectResult();
|
|
for (auto index : indices(managedArgs)) {
|
|
auto &arg = managedArgs[index];
|
|
auto argTy = argTypes[index];
|
|
forwardedArgs.push_back(argTy.isConsumed() ? arg.forward(gen)
|
|
: arg.getValue());
|
|
}
|
|
}
|
|
|
|
/// Create a temporary result buffer, reuse an existing result address, or
|
|
/// return null, based on the calling convention of a function type.
|
|
static SILValue getThunkInnerResultAddr(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
CanSILFunctionType fTy,
|
|
SILValue outerResultAddr) {
|
|
if (fTy->hasIndirectResult()) {
|
|
auto resultType = fTy->getIndirectInterfaceResult().getSILType();
|
|
resultType = gen.F.mapTypeIntoContext(resultType);
|
|
|
|
// Re-use the original result if possible.
|
|
if (outerResultAddr && outerResultAddr.getType() == resultType)
|
|
return outerResultAddr;
|
|
else
|
|
return gen.emitTemporaryAllocation(loc, resultType);
|
|
}
|
|
return {};
|
|
}
|
|
|
|
/// Return the result of a function application as the result from a thunk.
|
|
static SILValue getThunkResult(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
TranslationKind kind,
|
|
CanSILFunctionType fTy,
|
|
AbstractionPattern origResultType,
|
|
CanType substResultType,
|
|
SILValue innerResultValue,
|
|
SILValue innerResultAddr,
|
|
SILValue outerResultAddr) {
|
|
// Convert the direct result to +1 if necessary.
|
|
auto resultTy = gen.F.mapTypeIntoContext(fTy->getSemanticInterfaceResultSILType());
|
|
auto &innerResultTL = gen.getTypeLowering(resultTy);
|
|
if (!fTy->hasIndirectResult()) {
|
|
switch (fTy->getInterfaceResult().getConvention()) {
|
|
case ResultConvention::Owned:
|
|
break;
|
|
case ResultConvention::Autoreleased:
|
|
innerResultValue =
|
|
gen.B.createStrongRetainAutoreleased(loc, innerResultValue);
|
|
break;
|
|
case ResultConvention::Unowned:
|
|
innerResultTL.emitRetainValue(gen.B, loc, innerResultValue);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Control the result value. The real result value is in the
|
|
// indirect output if it exists.
|
|
ManagedValue innerResult;
|
|
if (innerResultAddr) {
|
|
innerResult = gen.emitManagedBufferWithCleanup(innerResultAddr,
|
|
innerResultTL);
|
|
} else {
|
|
innerResult = gen.emitManagedRValueWithCleanup(innerResultValue,
|
|
innerResultTL);
|
|
}
|
|
|
|
if (outerResultAddr) {
|
|
// If we emitted directly, there's nothing more to do.
|
|
// Let the caller claim the result.
|
|
if (innerResultAddr == outerResultAddr) {
|
|
innerResult.forwardCleanup(gen);
|
|
innerResult = {};
|
|
// Otherwise we'll have to copy over.
|
|
} else {
|
|
TemporaryInitialization init(outerResultAddr, CleanupHandle::invalid());
|
|
auto translated = emitTranslatePrimitive(gen, loc, kind, origResultType,
|
|
substResultType, innerResult,
|
|
/*emitInto*/ SGFContext(&init));
|
|
emitForceInto(gen, loc, translated, init);
|
|
}
|
|
|
|
// Use the () from the call as the result of the outer function if
|
|
// it's available.
|
|
if (innerResultAddr) {
|
|
return innerResultValue;
|
|
} else {
|
|
auto voidTy = gen.SGM.Types.getEmptyTupleType();
|
|
return gen.B.createTuple(loc, voidTy, {});
|
|
}
|
|
} else {
|
|
auto translated = emitTranslatePrimitive(gen, loc, kind, origResultType,
|
|
substResultType, innerResult);
|
|
return translated.forward(gen);
|
|
}
|
|
}
|
|
|
|
/// Build the body of a transformation thunk.
|
|
static void buildThunkBody(SILGenFunction &gen, SILLocation loc,
|
|
TranslationKind kind,
|
|
AbstractionPattern origFormalType,
|
|
CanAnyFunctionType substFormalType) {
|
|
PrettyStackTraceSILFunction stackTrace("emitting reabstraction thunk in",
|
|
&gen.F);
|
|
auto thunkType = gen.F.getLoweredFunctionType();
|
|
|
|
FullExpr scope(gen.Cleanups, CleanupLocation::getCleanupLocation(loc));
|
|
|
|
SILValue outerResultAddr;
|
|
if (thunkType->hasIndirectResult()) {
|
|
auto resultType = thunkType->getIndirectInterfaceResult().getSILType();
|
|
resultType = gen.F.mapTypeIntoContext(resultType);
|
|
outerResultAddr = new (gen.SGM.M) SILArgument(resultType, gen.F.begin());
|
|
}
|
|
|
|
SmallVector<ManagedValue, 8> params;
|
|
collectParams(gen, loc, params);
|
|
|
|
ManagedValue fnValue = params.pop_back_val();
|
|
auto fnType = fnValue.getType().castTo<SILFunctionType>();
|
|
assert(!fnType->isPolymorphic());
|
|
auto argTypes = fnType->getInterfaceParametersWithoutIndirectResult();
|
|
|
|
// Translate the argument values. Function parameters are
|
|
// contravariant: we want to switch the direction of transformation
|
|
// on them. For example, a subst-to-orig transformation of
|
|
// (Int,Int)->Int to (T,T)->T is one that should take an
|
|
// (Int,Int)->Int value and make it be abstracted like a (T,T)->T
|
|
// value. This must be done with a thunk. Within the thunk body,
|
|
// results need to be subst-to-orig translated (we receive an Int
|
|
// like a T and turn it into a normal Int), but the parameters need
|
|
// to be orig-to-subst translated (we receive an Int like normal,
|
|
// but we need to forward it like we would a T).
|
|
SmallVector<ManagedValue, 8> args;
|
|
TranslateArguments(gen, loc, getInverse(kind), params, args, argTypes)
|
|
.translate(origFormalType.getFunctionInputType(),
|
|
substFormalType.getInput());
|
|
|
|
SmallVector<SILValue, 8> argValues;
|
|
|
|
// Create an indirect result buffer if required.
|
|
SILValue innerResultAddr = getThunkInnerResultAddr(gen, loc,
|
|
fnType, outerResultAddr);
|
|
if (innerResultAddr)
|
|
argValues.push_back(innerResultAddr);
|
|
|
|
// Add the rest of the arguments.
|
|
forwardFunctionArguments(gen, loc, fnType, args, argValues);
|
|
|
|
SILValue innerResultValue =
|
|
gen.B.createApply(loc, fnValue.forward(gen),
|
|
/*substFnType*/ fnValue.getType(),
|
|
fnType->getInterfaceResult().getSILType(),
|
|
/*substitutions*/ {},
|
|
argValues);
|
|
|
|
// Translate the result value.
|
|
auto origResultType = origFormalType.getFunctionResultType();
|
|
auto substResultType = substFormalType.getResult();
|
|
SILValue outerResultValue = getThunkResult(gen, loc, kind, fnType,
|
|
origResultType, substResultType,
|
|
innerResultValue,
|
|
innerResultAddr,
|
|
outerResultAddr);
|
|
scope.pop();
|
|
gen.B.createReturn(loc, outerResultValue);
|
|
}
|
|
|
|
/// Build the type of a transformation thunk.
|
|
static CanSILFunctionType buildThunkType(SILGenFunction &gen,
|
|
ManagedValue fn,
|
|
CanSILFunctionType expectedType,
|
|
CanSILFunctionType &substFnType,
|
|
SmallVectorImpl<Substitution> &subs) {
|
|
auto sourceType = fn.getType().castTo<SILFunctionType>();
|
|
|
|
assert(!expectedType->isPolymorphic());
|
|
assert(!sourceType->isPolymorphic());
|
|
// Can't build a thunk without context, so we require ownership semantics
|
|
// on the result type.
|
|
assert(expectedType->getExtInfo().hasContext());
|
|
|
|
// Just use the generic signature from the context.
|
|
// This isn't necessarily optimal.
|
|
auto generics = gen.F.getContextGenericParams();
|
|
auto genericSig = gen.F.getLoweredFunctionType()->getGenericSignature();
|
|
if (generics) {
|
|
for (auto archetype : generics->getAllNestedArchetypes())
|
|
subs.push_back({ archetype, archetype, { }});
|
|
}
|
|
|
|
// Add the function type as the parameter.
|
|
SmallVector<SILParameterInfo, 4> params;
|
|
params.append(expectedType->getInterfaceParameters().begin(),
|
|
expectedType->getInterfaceParameters().end());
|
|
params.push_back({sourceType,
|
|
sourceType->getExtInfo().hasContext()
|
|
? DefaultThickCalleeConvention
|
|
: ParameterConvention::Direct_Unowned});
|
|
|
|
auto extInfo = expectedType->getExtInfo()
|
|
.withRepresentation(FunctionType::Representation::Thin);
|
|
|
|
// Map the parameter and expected types out of context to get the interface
|
|
// type of the thunk.
|
|
SmallVector<SILParameterInfo, 4> interfaceParams;
|
|
interfaceParams.reserve(params.size());
|
|
auto &Types = gen.SGM.M.Types;
|
|
for (auto ¶m : params) {
|
|
interfaceParams.push_back(
|
|
SILParameterInfo(Types.getInterfaceTypeInContext(param.getType(), generics),
|
|
param.getConvention()));
|
|
}
|
|
|
|
auto interfaceResult = SILResultInfo(
|
|
Types.getInterfaceTypeInContext(expectedType->getInterfaceResult().getType(), generics),
|
|
expectedType->getInterfaceResult().getConvention());
|
|
|
|
// The type of the thunk function.
|
|
auto thunkType = SILFunctionType::get(genericSig, extInfo,
|
|
ParameterConvention::Direct_Unowned,
|
|
interfaceParams, interfaceResult,
|
|
gen.getASTContext());
|
|
|
|
// Define the substituted function type for partial_apply's purposes.
|
|
if (!generics) {
|
|
substFnType = thunkType;
|
|
} else {
|
|
substFnType = SILFunctionType::get(nullptr, extInfo,
|
|
ParameterConvention::Direct_Unowned,
|
|
params,
|
|
expectedType->getInterfaceResult(),
|
|
gen.getASTContext());
|
|
}
|
|
|
|
return thunkType;
|
|
}
|
|
|
|
/// Create a reabstraction thunk.
|
|
static ManagedValue createThunk(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
TranslationKind kind,
|
|
ManagedValue fn,
|
|
AbstractionPattern origFormalType,
|
|
CanAnyFunctionType substFormalType,
|
|
const TypeLowering &expectedTL) {
|
|
auto expectedType = expectedTL.getLoweredType().castTo<SILFunctionType>();
|
|
|
|
// Declare the thunk.
|
|
SmallVector<Substitution, 4> substitutions;
|
|
CanSILFunctionType substFnType;
|
|
auto thunkType = buildThunkType(gen, fn, expectedType,
|
|
substFnType, substitutions);
|
|
auto thunk = gen.SGM.getOrCreateReabstractionThunk(loc,
|
|
gen.F.getContextGenericParams(),
|
|
thunkType,
|
|
fn.getType().castTo<SILFunctionType>(),
|
|
expectedType);
|
|
|
|
// Build it if necessary.
|
|
if (thunk->empty()) {
|
|
// Borrow the context archetypes from the enclosing function.
|
|
thunk->setContextGenericParams(gen.F.getContextGenericParams());
|
|
SILGenFunction thunkSGF(gen.SGM, *thunk);
|
|
buildThunkBody(thunkSGF, loc, kind, origFormalType, substFormalType);
|
|
}
|
|
|
|
// Create it in our current function.
|
|
auto thunkValue = gen.B.createFunctionRef(loc, thunk);
|
|
auto thunkedFn = gen.B.createPartialApply(loc, thunkValue,
|
|
SILType::getPrimitiveObjectType(substFnType),
|
|
substitutions, fn.forward(gen),
|
|
SILType::getPrimitiveObjectType(expectedType));
|
|
return gen.emitManagedRValueWithCleanup(thunkedFn, expectedTL);
|
|
}
|
|
|
|
static ManagedValue
|
|
emitGeneralizeFunctionWithThunk(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue fn,
|
|
AbstractionPattern origFormalType,
|
|
CanAnyFunctionType substFormalType,
|
|
const TypeLowering &expectedTL) {
|
|
return createThunk(gen, loc, TranslationKind::Generalize, fn,
|
|
origFormalType, substFormalType, expectedTL);
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitGeneralizedFunctionValue(SILLocation loc,
|
|
ManagedValue fn,
|
|
AbstractionPattern origFormalType,
|
|
CanAnyFunctionType substFormalType) {
|
|
assert(fn.getType().isObject() &&
|
|
"expected input to emitGeneralizedValue to be loaded");
|
|
|
|
auto &expectedTL = getTypeLowering(substFormalType);
|
|
auto expectedFnType = expectedTL.getLoweredType().castTo<SILFunctionType>();
|
|
|
|
auto fnType = fn.getType().castTo<SILFunctionType>();
|
|
assert(expectedFnType->getExtInfo().hasContext()
|
|
|| !fnType->getExtInfo().hasContext());
|
|
|
|
// If there's no abstraction difference, we're done.
|
|
if (fnType == expectedFnType) {
|
|
return fn;
|
|
}
|
|
|
|
// Any of these changes requires a conversion thunk.
|
|
if (fnType->getInterfaceResult() != expectedFnType->getInterfaceResult() ||
|
|
fnType->getInterfaceParameters() != expectedFnType->getInterfaceParameters() ||
|
|
(fnType->getExtInfo().hasContext() &&
|
|
fnType->getCalleeConvention() != expectedFnType->getCalleeConvention()) ||
|
|
fnType->getAbstractCC() != expectedFnType->getAbstractCC()) {
|
|
assert(expectedFnType->getExtInfo().hasContext()
|
|
&& "conversion thunk will not be thin!");
|
|
return emitGeneralizeFunctionWithThunk(*this, loc, fn,
|
|
origFormalType, substFormalType,
|
|
expectedTL);
|
|
}
|
|
|
|
// Otherwise, we should just have trivial-ish ExtInfo differences.
|
|
auto fnEI = fnType->getExtInfo();
|
|
auto expectedEI = expectedFnType->getExtInfo();
|
|
assert(fnEI != expectedEI && "unhandled difference in function types?");
|
|
assert(adjustFunctionType(fnType, expectedEI,
|
|
expectedFnType->getCalleeConvention())
|
|
== expectedFnType);
|
|
|
|
auto emitConversion = [&](SILFunctionType::ExtInfo newEI,
|
|
ParameterConvention newCalleeConvention,
|
|
ValueKind kind) {
|
|
if (fnEI == newEI) return;
|
|
fnType = adjustFunctionType(fnType, newEI, newCalleeConvention);
|
|
SILType resTy = SILType::getPrimitiveObjectType(fnType);
|
|
SILValue converted;
|
|
if (kind == ValueKind::ConvertFunctionInst) {
|
|
converted = B.createConvertFunction(loc, fn.forward(*this), resTy);
|
|
} else {
|
|
assert(kind == ValueKind::ThinToThickFunctionInst);
|
|
converted = B.createThinToThickFunction(loc, fn.forward(*this), resTy);
|
|
}
|
|
fnEI = newEI;
|
|
fn = emitManagedRValueWithCleanup(converted);
|
|
};
|
|
|
|
// Apply any trivial conversions before doing thin-to-thick.
|
|
emitConversion(expectedEI.withRepresentation(fnEI.getRepresentation()),
|
|
fnType->getCalleeConvention(),
|
|
ValueKind::ConvertFunctionInst);
|
|
|
|
// Now do thin-to-thick if necessary.
|
|
emitConversion(expectedEI, expectedFnType->getCalleeConvention(),
|
|
ValueKind::ThinToThickFunctionInst);
|
|
|
|
return fn;
|
|
}
|
|
|
|
// Convert a metatype to the appropriate representation.
|
|
static ManagedValue emitOrigToSubstMetatype(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue meta,
|
|
AbstractionPattern origType,
|
|
CanAnyMetatypeType substType) {
|
|
assert(!meta.hasCleanup() && "metatype with cleanup?!");
|
|
|
|
auto substSILType = gen.getLoweredLoadableType(substType);
|
|
|
|
auto wasRepr = meta.getType().castTo<AnyMetatypeType>()->getRepresentation();
|
|
auto willBeRepr = substSILType.castTo<AnyMetatypeType>()->getRepresentation();
|
|
|
|
// Convert the representation appropriately.
|
|
switch (wasRepr) {
|
|
case MetatypeRepresentation::Thick:
|
|
switch (willBeRepr) {
|
|
case MetatypeRepresentation::Thin: {
|
|
// Thin -> thick conversion.
|
|
assert(substSILType.is<MetatypeType>());
|
|
auto metaTy = gen.B.createMetatype(loc, substSILType);
|
|
return ManagedValue::forUnmanaged(metaTy);
|
|
}
|
|
|
|
case MetatypeRepresentation::Thick:
|
|
// No conversion necessary.
|
|
return meta;
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
// FIXME: Thick -> ObjC.
|
|
llvm_unreachable("Unhandled thick -> ObjC metatype conversion");
|
|
}
|
|
|
|
case MetatypeRepresentation::Thin:
|
|
switch (willBeRepr) {
|
|
case MetatypeRepresentation::Thin:
|
|
// No conversion necessary.
|
|
return meta;
|
|
|
|
case MetatypeRepresentation::Thick:
|
|
llvm_unreachable("abstracting thick to thin metatype?!");
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
llvm_unreachable("abstracting ObjC to thin metatype?!");
|
|
}
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
switch (willBeRepr) {
|
|
case MetatypeRepresentation::Thin: {
|
|
// Thin -> thick conversion.
|
|
auto metaTy = gen.B.createMetatype(loc, substSILType);
|
|
return ManagedValue::forUnmanaged(metaTy);
|
|
}
|
|
|
|
case MetatypeRepresentation::Thick:
|
|
// FIXME: Thick -> ObjC.
|
|
llvm_unreachable("Unhandled ObjC -> thick metatype conversion");
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
// No conversion necessary.
|
|
return meta;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert a metatype to 'thick' if its abstraction pattern requires it.
|
|
static ManagedValue emitSubstToOrigMetatype(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue meta,
|
|
AbstractionPattern origType,
|
|
CanAnyMetatypeType substType) {
|
|
assert(!meta.hasCleanup() && "metatype with cleanup?!");
|
|
|
|
auto loweredTy = gen.getLoweredType(origType, substType);
|
|
|
|
auto wasRepr = meta.getType().castTo<AnyMetatypeType>()->getRepresentation();
|
|
auto willBeRepr = loweredTy.castTo<AnyMetatypeType>()->getRepresentation();
|
|
|
|
// Convert the representation appropriately.
|
|
switch (wasRepr) {
|
|
case MetatypeRepresentation::Thick:
|
|
switch (willBeRepr) {
|
|
case MetatypeRepresentation::Thin:
|
|
llvm_unreachable("Cannot convert thick to thin metatype");
|
|
|
|
case MetatypeRepresentation::Thick:
|
|
// No conversion necessary.
|
|
return meta;
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
llvm_unreachable("Cannot convert ObjC to thin metatype");
|
|
}
|
|
|
|
case MetatypeRepresentation::Thin:
|
|
switch (willBeRepr) {
|
|
case MetatypeRepresentation::Thin:
|
|
// No conversion necessary.
|
|
return meta;
|
|
|
|
case MetatypeRepresentation::Thick: {
|
|
// Thin -> thick conversion.
|
|
auto metaTy = gen.B.createMetatype(loc, loweredTy);
|
|
return ManagedValue::forUnmanaged(metaTy);
|
|
}
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
// FIXME: Thin -> ObjC.
|
|
llvm_unreachable("Unhandled Thin -> ObjC");
|
|
}
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
switch (willBeRepr) {
|
|
case MetatypeRepresentation::Thin:
|
|
llvm_unreachable("Cannot convert ObjC to thin metatype");
|
|
|
|
case MetatypeRepresentation::Thick:
|
|
// FIXME: Objc -> Thick.
|
|
llvm_unreachable("Unhandled ObjC -> thick");
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
// No conversion necessary.
|
|
return meta;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// A transformation for applying value generalization.
|
|
struct Generalize final : Transform {
|
|
using Transform::Transform;
|
|
ManagedValue transformFunction(ManagedValue fn,
|
|
AbstractionPattern origType,
|
|
CanAnyFunctionType substType) override {
|
|
return SGF.emitGeneralizedFunctionValue(Loc, fn, origType, substType);
|
|
}
|
|
|
|
const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
|
|
CanType substType) override {
|
|
return SGF.getTypeLowering(substType);
|
|
}
|
|
|
|
ManagedValue transformMetatype(ManagedValue meta,
|
|
AbstractionPattern origType,
|
|
CanAnyMetatypeType substType) override {
|
|
return emitOrigToSubstMetatype(SGF, Loc, meta, origType, substType);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Apply value generalization to the given value.
|
|
///
|
|
/// Value generalization is the process of converting specific
|
|
/// representation forms (such as thin functions) into the format
|
|
/// expected by an ordinary swift Type.
|
|
ManagedValue
|
|
SILGenFunction::emitGeneralizedValue(SILLocation loc, ManagedValue v,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType,
|
|
SGFContext ctxt) {
|
|
return Generalize(*this, loc).transform(v, origFormalType,
|
|
substFormalType, ctxt);
|
|
}
|
|
|
|
namespace {
|
|
/// A transformation for applying orig-to-subst re-abstraction.
|
|
struct OrigToSubst final : Transform {
|
|
using Transform::Transform;
|
|
ManagedValue transformFunction(ManagedValue fn,
|
|
AbstractionPattern origType,
|
|
CanAnyFunctionType substType) override;
|
|
|
|
ManagedValue transformMetatype(ManagedValue meta,
|
|
AbstractionPattern origType,
|
|
CanAnyMetatypeType substType) override {
|
|
return emitOrigToSubstMetatype(SGF, Loc, meta, origType, substType);
|
|
}
|
|
|
|
const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
|
|
CanType substType) override {
|
|
return SGF.getTypeLowering(substType);
|
|
}
|
|
};
|
|
}
|
|
|
|
ManagedValue OrigToSubst::transformFunction(ManagedValue fn,
|
|
AbstractionPattern origFormalType,
|
|
CanAnyFunctionType substFormalType) {
|
|
auto &expectedTL = SGF.getTypeLowering(substFormalType);
|
|
if (expectedTL.getLoweredType() == fn.getType()) return fn;
|
|
|
|
return createThunk(SGF, Loc, TranslationKind::OrigToSubst, fn,
|
|
origFormalType, substFormalType, expectedTL);
|
|
}
|
|
|
|
/// Given a value with the abstraction patterns of the original formal
|
|
/// type, give it the abstraction patterns of the substituted formal type.
|
|
ManagedValue
|
|
SILGenFunction::emitOrigToSubstValue(SILLocation loc, ManagedValue v,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType,
|
|
SGFContext ctxt) {
|
|
return OrigToSubst(*this, loc).transform(v, origFormalType,
|
|
substFormalType, ctxt);
|
|
}
|
|
|
|
namespace {
|
|
/// A transformation for applying subst-to-orig reabstraction.
|
|
struct SubstToOrig final : Transform {
|
|
using Transform::Transform;
|
|
ManagedValue transformFunction(ManagedValue fn,
|
|
AbstractionPattern origType,
|
|
CanAnyFunctionType substType) override;
|
|
|
|
const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
|
|
CanType substType) override {
|
|
return SGF.getTypeLowering(origType, substType);
|
|
}
|
|
|
|
ManagedValue transformMetatype(ManagedValue meta,
|
|
AbstractionPattern origType,
|
|
CanAnyMetatypeType substType) override {
|
|
return emitSubstToOrigMetatype(SGF, Loc, meta, origType, substType);
|
|
}
|
|
};
|
|
}
|
|
|
|
ManagedValue SubstToOrig::transformFunction(ManagedValue fn,
|
|
AbstractionPattern origFormalType,
|
|
CanAnyFunctionType substFormalType) {
|
|
auto &expectedTL = SGF.getTypeLowering(origFormalType, substFormalType);
|
|
if (expectedTL.getLoweredType() == fn.getType()) return fn;
|
|
|
|
return createThunk(SGF, Loc, TranslationKind::SubstToOrig, fn,
|
|
origFormalType, substFormalType, expectedTL);
|
|
}
|
|
|
|
/// Given a value with the abstraction patterns of the substituted
|
|
/// formal type, give it the abstraction patterns of the original
|
|
/// formal type.
|
|
ManagedValue
|
|
SILGenFunction::emitSubstToOrigValue(SILLocation loc, ManagedValue v,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType,
|
|
SGFContext ctxt) {
|
|
return SubstToOrig(*this, loc).transform(v, origFormalType,
|
|
substFormalType, ctxt);
|
|
}
|
|
|
|
ManagedValue RValueSource::materialize(SILGenFunction &SGF,
|
|
AbstractionPattern origFormalType,
|
|
SILType destType) && {
|
|
auto substFormalType = CanType(getSubstType()->getInOutObjectType());
|
|
assert(!destType || destType.getObjectType() ==
|
|
SGF.SGM.Types.getLoweredType(origFormalType,
|
|
substFormalType).getObjectType());
|
|
|
|
// Fast path: if the types match exactly, no abstraction difference
|
|
// is possible and we can just materialize as normal.
|
|
if (origFormalType.getAsType() == substFormalType)
|
|
return std::move(*this).materialize(SGF);
|
|
|
|
auto &destTL =
|
|
(destType ? SGF.getTypeLowering(destType)
|
|
: SGF.getTypeLowering(origFormalType, substFormalType));
|
|
if (!destType) destType = destTL.getLoweredType();
|
|
|
|
// If there's no abstraction difference, we can just materialize as normal.
|
|
if (destTL.getLoweredType() == SGF.getLoweredType(substFormalType)) {
|
|
return std::move(*this).materialize(SGF);
|
|
}
|
|
|
|
// Emit a temporary at the given address.
|
|
auto temp = SGF.emitTemporary(getLocation(), destTL);
|
|
|
|
// Forward into it.
|
|
std::move(*this).forwardInto(SGF, origFormalType, temp.get(), destTL);
|
|
|
|
return temp->getManagedAddress();
|
|
}
|
|
|
|
void RValueSource::forwardInto(SILGenFunction &SGF,
|
|
AbstractionPattern origFormalType,
|
|
Initialization *dest,
|
|
const TypeLowering &destTL) && {
|
|
auto substFormalType = getSubstType();
|
|
assert(destTL.getLoweredType() ==
|
|
SGF.getLoweredType(origFormalType, substFormalType));
|
|
|
|
// If there are no abstraction changes, we can just forward
|
|
// normally.
|
|
if (origFormalType.getAsType() == substFormalType ||
|
|
destTL.getLoweredType() == SGF.getLoweredType(substFormalType)) {
|
|
std::move(*this).forwardInto(SGF, dest);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, emit as a single independent value.
|
|
SILLocation loc = getLocation();
|
|
ManagedValue inputValue = std::move(*this).getAsSingleValue(SGF);
|
|
|
|
// Reabstract.
|
|
ManagedValue outputValue =
|
|
SGF.emitSubstToOrigValue(loc, inputValue,
|
|
origFormalType, substFormalType,
|
|
SGFContext(dest));
|
|
if (!outputValue) return;
|
|
|
|
// This potentially causes some pretty silly splitting and
|
|
// re-combining.
|
|
RValue(SGF, loc, substFormalType, outputValue).forwardInto(SGF, dest, loc);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Protocol witnesses
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// FIxME: Witnesses are label-invariant to their requirement, so you end up with
|
|
// the obnoxious corner case:
|
|
//
|
|
// protocol LabeledSelfRequirement {
|
|
// func method(x: Self)
|
|
// }
|
|
//
|
|
// struct UnlabeledSelfWitness : LabeledSelfRequirement {
|
|
// func method(_: UnlabeledSelfWitness) {}
|
|
// }
|
|
//
|
|
// (or vice versa). Deal with this by stripping the labels off of tuple types
|
|
// before using them to reabstract arguments. The keyword arguments overhaul
|
|
// should obviate the need for this hack.
|
|
static CanType stripInputTupleLabels(CanType inputTy) {
|
|
auto tupleTy = dyn_cast<TupleType>(inputTy);
|
|
if (!tupleTy)
|
|
return inputTy;
|
|
auto unlabeled = map<SmallVector<TupleTypeElt, 4>>(tupleTy->getFields(),
|
|
[&](const TupleTypeElt &orig) {
|
|
return TupleTypeElt(stripInputTupleLabels(CanType(orig.getType())));
|
|
});
|
|
return TupleType::get(unlabeled, inputTy->getASTContext())
|
|
->getCanonicalType();
|
|
}
|
|
|
|
static AbstractionPattern stripInputTupleLabels(AbstractionPattern p) {
|
|
return AbstractionPattern(stripInputTupleLabels(p.getAsType()));
|
|
}
|
|
|
|
void SILGenFunction::emitProtocolWitness(ProtocolConformance *conformance,
|
|
SILDeclRef requirement,
|
|
SILDeclRef witness,
|
|
ArrayRef<Substitution> witnessSubs,
|
|
IsFreeFunctionWitness_t isFree,
|
|
HasInOutSelfAbstractionDifference_t inOutSelf) {
|
|
// FIXME: Disable checks that the protocol witness carries debug info.
|
|
// Should we carry debug info for witnesses?
|
|
F.setBare(IsBare);
|
|
|
|
assert((!isFree || !inOutSelf)
|
|
&& "free functions cannot have an inout self abstraction difference");
|
|
|
|
SILLocation loc(witness.getDecl());
|
|
FullExpr scope(Cleanups, CleanupLocation::getCleanupLocation(loc));
|
|
|
|
auto thunkTy = F.getLoweredFunctionType();
|
|
|
|
// Emit the indirect return and arguments.
|
|
SILValue reqtResultAddr;
|
|
if (thunkTy->hasIndirectResult()) {
|
|
auto resultType = thunkTy->getIndirectInterfaceResult().getSILType();
|
|
resultType = F.mapTypeIntoContext(resultType);
|
|
reqtResultAddr = new (SGM.M) SILArgument(resultType, F.begin());
|
|
}
|
|
|
|
SmallVector<ManagedValue, 8> origParams;
|
|
collectParams(*this, loc, origParams);
|
|
|
|
// Handle special abstraction differences in "self".
|
|
// If the witness is a free function, drop it completely.
|
|
// WAY SPECULATIVE TODO: What if 'self' comprised multiple SIL-level params?
|
|
if (isFree)
|
|
origParams.pop_back();
|
|
|
|
// If there is an inout difference in self, load the inout self parameter.
|
|
if (inOutSelf) {
|
|
ManagedValue &selfParam = origParams.back();
|
|
SILValue selfAddr = selfParam.getUnmanagedValue();
|
|
selfParam = emitLoad(loc, selfAddr,
|
|
getTypeLowering(conformance->getType()),
|
|
SGFContext(),
|
|
IsNotTake);
|
|
}
|
|
|
|
// Get the type of the witness.
|
|
auto witnessInfo = getConstantInfo(witness);
|
|
CanAnyFunctionType witnessFormalTy = witnessInfo.LoweredType;
|
|
CanAnyFunctionType witnessSubstTy = witnessFormalTy;
|
|
if (!witnessSubs.empty()) {
|
|
witnessSubstTy = cast<FunctionType>(
|
|
cast<PolymorphicFunctionType>(witnessSubstTy)
|
|
->substGenericArgs(SGM.M.getSwiftModule(), witnessSubs)
|
|
->getCanonicalType());
|
|
}
|
|
|
|
// Get the type of the requirement, so we can use it as an
|
|
// abstraction pattern.
|
|
auto reqtInfo = getConstantInfo(requirement);
|
|
CanAnyFunctionType reqtFormalTy = reqtInfo.LoweredType;
|
|
AbstractionPattern reqtOrigTy(reqtFormalTy);
|
|
AbstractionPattern reqtOrigInputTy = reqtOrigTy.getFunctionInputType();
|
|
// For a free function witness, discard the 'self' parameter of the
|
|
// requirement.
|
|
if (isFree) {
|
|
auto inputTy = cast<TupleType>(reqtOrigInputTy.getAsType());
|
|
auto trimmedInputTy = TupleType::get(
|
|
inputTy->getFields().slice(0, inputTy->getFields().size() - 1),
|
|
getASTContext())->getCanonicalType();
|
|
reqtOrigInputTy = AbstractionPattern(trimmedInputTy);
|
|
}
|
|
|
|
// Translate the argument values from the requirement abstraction level to
|
|
// the substituted signature of the witness.
|
|
SmallVector<ManagedValue, 8> witnessParams;
|
|
auto witnessSubstSILTy
|
|
= SGM.Types.getLoweredType(witnessSubstTy);
|
|
auto witnessSubstFTy = witnessSubstSILTy.castTo<SILFunctionType>();
|
|
auto witnessSubstInputTys = stripInputTupleLabels(witnessSubstTy.getInput());
|
|
|
|
if (!isFree) {
|
|
// Check whether we need to upcast 'self' in order to invoke a base class
|
|
// method.
|
|
ManagedValue &selfOrigParam = origParams.back();
|
|
CanType selfType = selfOrigParam.getType().getSwiftRValueType();
|
|
CanType witnessType
|
|
= witnessSubstFTy->getInterfaceParameters().back().getType();
|
|
CanType selfInstanceType = selfType, witnessInstanceType = witnessType;
|
|
if (auto m = dyn_cast<MetatypeType>(selfType)) {
|
|
selfInstanceType = m.getInstanceType();
|
|
witnessInstanceType = cast<MetatypeType>(witnessType)
|
|
.getInstanceType();
|
|
}
|
|
|
|
if (selfInstanceType.getClassOrBoundGenericClass()) {
|
|
if (selfInstanceType != witnessInstanceType) {
|
|
SILValue upcast = B.createUpcast(loc, selfOrigParam.getValue(),
|
|
SILType::getPrimitiveObjectType(witnessType));
|
|
selfOrigParam = ManagedValue(upcast, selfOrigParam.getCleanup());
|
|
}
|
|
} else {
|
|
assert(selfInstanceType == witnessInstanceType
|
|
&& "only class witnesses should differ in 'self' type from "
|
|
"requirement");
|
|
}
|
|
}
|
|
|
|
TranslateArguments(*this, loc, TranslationKind::OrigToSubst,
|
|
origParams, witnessParams,
|
|
witnessSubstFTy->getInterfaceParametersWithoutIndirectResult())
|
|
.translate(stripInputTupleLabels(reqtOrigInputTy),
|
|
witnessSubstInputTys);
|
|
|
|
// Create an indirect result buffer if needed.
|
|
SILValue witnessSubstResultAddr
|
|
= getThunkInnerResultAddr(*this, loc, witnessSubstFTy, reqtResultAddr);
|
|
|
|
// If the witness is generic, re-abstract to its original signature.
|
|
// TODO: Implement some sort of "abstraction path" mechanism to efficiently
|
|
// compose these two abstraction changes.
|
|
auto witnessSILTy = witnessSubstSILTy;
|
|
auto witnessFTy = witnessSubstFTy;
|
|
auto witnessResultAddr = witnessSubstResultAddr;
|
|
AbstractionPattern witnessOrigTy(witnessFormalTy);
|
|
if (!witnessSubs.empty()) {
|
|
SmallVector<ManagedValue, 8> genParams;
|
|
witnessSILTy
|
|
= SGM.Types.getLoweredType(witnessOrigTy, witnessSubstTy);
|
|
witnessFTy
|
|
= witnessSILTy.castTo<SILFunctionType>();
|
|
|
|
TranslateArguments(*this, loc, TranslationKind::SubstToOrig,
|
|
witnessParams, genParams,
|
|
witnessFTy->getInterfaceParametersWithoutIndirectResult())
|
|
.translate(stripInputTupleLabels(witnessOrigTy.getFunctionInputType()),
|
|
witnessSubstInputTys);
|
|
witnessParams = std::move(genParams);
|
|
|
|
witnessResultAddr
|
|
= getThunkInnerResultAddr(*this, loc, witnessFTy, witnessSubstResultAddr);
|
|
}
|
|
|
|
// Collect the arguments.
|
|
SmallVector<SILValue, 8> args;
|
|
if (witnessResultAddr)
|
|
args.push_back(witnessResultAddr);
|
|
forwardFunctionArguments(*this, loc, witnessFTy, witnessParams, args);
|
|
|
|
// Invoke the witness function.
|
|
// TODO: Collect forwarding substitutions from outer context of method.
|
|
SILFunction *witnessFn = SGM.getFunction(witness, NotForDefinition);
|
|
SILValue witnessFnRef = B.createFunctionRef(loc, witnessFn);
|
|
SILValue witnessResultValue
|
|
= B.createApply(loc, witnessFnRef, witnessSILTy,
|
|
witnessFTy->getInterfaceResult().getSILType(),
|
|
witnessSubs, args);
|
|
|
|
// Reabstract the result value:
|
|
// If the witness is generic, reabstract to the concrete witness signature.
|
|
if (!witnessSubs.empty()) {
|
|
witnessResultValue = getThunkResult(*this, loc,
|
|
TranslationKind::OrigToSubst,
|
|
witnessFTy,
|
|
witnessOrigTy.getFunctionResultType(),
|
|
witnessSubstTy.getResult(),
|
|
witnessResultValue,
|
|
witnessResultAddr,
|
|
witnessSubstResultAddr);
|
|
}
|
|
// Reabstract to the original requirement signature.
|
|
SILValue reqtResultValue = getThunkResult(*this, loc,
|
|
TranslationKind::SubstToOrig,
|
|
witnessSubstFTy,
|
|
reqtOrigTy.getFunctionResultType(),
|
|
witnessSubstTy.getResult(),
|
|
witnessResultValue,
|
|
witnessSubstResultAddr,
|
|
reqtResultAddr);
|
|
|
|
scope.pop();
|
|
B.createReturn(loc, reqtResultValue);
|
|
}
|