mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
When a specialization is created, in the original function, releases are added in two different places: (1) `ClosureSpecCloner::populateCloned` (2) `rewriteApplyInst` In the former, releases are added for closures which are guaranteed or trivial noescape (but with owned convention). In the latter, releases are added for closures that are owned. Previously, when emitting releases at (2), whether the closure was trivial noescape wasn't considered. The result was inserting the releases twice, an overrelease. Here, fix (2) to recognize trivial noescape as not +1. rdar://110115795
1469 lines
59 KiB
C++
1469 lines
59 KiB
C++
//===--- ClosureSpecializer.cpp - Performs Closure Specialization ---------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
///
|
|
/// Closure Specialization
|
|
/// ----------------------
|
|
///
|
|
/// The purpose of the algorithm in this file is to perform the following
|
|
/// transformation: given a closure passed into a function which the closure is
|
|
/// then invoked in, clone the function and create a copy of the closure inside
|
|
/// the function. This closure will be able to be eliminated easily and the
|
|
/// overhead is gone. We then try to remove the original closure.
|
|
///
|
|
/// There are some complications. They are listed below and how we work around
|
|
/// them:
|
|
///
|
|
/// 1. If we support the specialization of closures with multiple user callsites
|
|
/// that can be specialized, we need to ensure that any captured values have
|
|
/// their reference counts adjusted properly. This implies for every
|
|
/// specialized call site, we insert an additional retain for each captured
|
|
/// argument with reference semantics. We will pass them in as extra @owned
|
|
/// to the specialized function. This @owned will be consumed by the "copy"
|
|
/// partial apply that is in the specialized function. Now the partial apply
|
|
/// will own those ref counts. This is unapplicable to thin_to_thick_function
|
|
/// since they do not have any captured args.
|
|
///
|
|
/// 2. If the closure was passed in @owned vs if the closure was passed in
|
|
/// @guaranteed. If the original closure was passed in @owned, then we know
|
|
/// that there is a balancing release for the new "copy" partial apply. But
|
|
/// since the original partial apply no longer will have that corresponding
|
|
/// -1, we need to insert a release for the old partial apply. We do this
|
|
/// right after the old call site where the original partial apply was
|
|
/// called. This ensures we do not shrink the lifetime of the old partial
|
|
/// apply. In the case where the old partial_apply was passed in at +0, we
|
|
/// know that the old partial_apply does not need to have any ref count
|
|
/// adjustments. On the other hand, the new "copy" partial apply in the
|
|
/// specialized function now needs to be balanced lest we leak. Thus we
|
|
/// insert a release right before any exit from the function. This ensures
|
|
/// that the release occurs in the epilog after any retains associated with
|
|
/// @owned return values.
|
|
///
|
|
/// 3. In !useLoweredAddresses mode, we do not support specialization of closures
|
|
/// with arguments passed using any indirect calling conventions besides
|
|
/// @inout and @inout_aliasable. This is a temporary limitation that goes
|
|
/// away with sil-opaque-values.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "closure-specialization"
|
|
#include "swift/Basic/Range.h"
|
|
#include "swift/Demangling/Demangler.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/SILCloner.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/FunctionOrder.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/SILInliner.h"
|
|
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
|
|
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
|
|
#include "swift/SILOptimizer/Utils/StackNesting.h"
|
|
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumClosureSpecialized,
|
|
"Number of functions with closures specialized");
|
|
STATISTIC(NumPropagatedClosuresEliminated,
|
|
"Number of closures propagated and then eliminated");
|
|
STATISTIC(NumPropagatedClosuresNotEliminated,
|
|
"Number of closures propagated but not eliminated");
|
|
|
|
llvm::cl::opt<bool> EliminateDeadClosures(
|
|
"closure-specialize-eliminate-dead-closures", llvm::cl::init(true),
|
|
llvm::cl::desc("Do not eliminate dead closures after closure "
|
|
"specialization. This is meant ot be used when testing."));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isSupportedClosureKind(const SILInstruction *I) {
|
|
return isa<ThinToThickFunctionInst>(I) || isa<PartialApplyInst>(I);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Closure Spec Cloner Interface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class CallSiteDescriptor;
|
|
|
|
/// A SILCloner subclass which clones a function that takes a closure
|
|
/// argument. We update the parameter list to remove the parameter for the
|
|
/// closure argument and to append the variables captured in the closure.
|
|
/// We also need to replace the closure parameter with the partial apply
|
|
/// on the closure. We need to update the callsite to pass in the correct
|
|
/// arguments.
|
|
class ClosureSpecCloner : public SILClonerWithScopes<ClosureSpecCloner> {
|
|
public:
|
|
using SuperTy = SILClonerWithScopes<ClosureSpecCloner>;
|
|
friend class SILInstructionVisitor<ClosureSpecCloner>;
|
|
friend class SILCloner<ClosureSpecCloner>;
|
|
|
|
ClosureSpecCloner(SILOptFunctionBuilder &FunctionBuilder,
|
|
const CallSiteDescriptor &CallSiteDesc,
|
|
StringRef ClonedName)
|
|
: SuperTy(*initCloned(FunctionBuilder, CallSiteDesc, ClonedName)),
|
|
CallSiteDesc(CallSiteDesc) {}
|
|
|
|
void populateCloned();
|
|
|
|
SILValue
|
|
cloneCalleeConversion(SILValue calleeValue, SILValue NewClosure,
|
|
SILBuilder &Builder,
|
|
SmallVectorImpl<PartialApplyInst *> &NeedsRelease,
|
|
llvm::DenseMap<SILValue, SILValue> &CapturedMap);
|
|
|
|
SILFunction *getCloned() { return &getBuilder().getFunction(); }
|
|
static SILFunction *cloneFunction(SILOptFunctionBuilder &FunctionBuilder,
|
|
const CallSiteDescriptor &CallSiteDesc,
|
|
StringRef NewName) {
|
|
ClosureSpecCloner C(FunctionBuilder, CallSiteDesc, NewName);
|
|
C.populateCloned();
|
|
++NumClosureSpecialized;
|
|
return C.getCloned();
|
|
};
|
|
|
|
private:
|
|
static SILFunction *initCloned(SILOptFunctionBuilder &FunctionBuilder,
|
|
const CallSiteDescriptor &CallSiteDesc,
|
|
StringRef ClonedName);
|
|
const CallSiteDescriptor &CallSiteDesc;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Call Site Descriptor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct ClosureInfo;
|
|
|
|
static SILFunction *getClosureCallee(SILInstruction *inst) {
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(inst))
|
|
return cast<FunctionRefInst>(PAI->getCallee())->getReferencedFunction();
|
|
|
|
auto *TTTFI = cast<ThinToThickFunctionInst>(inst);
|
|
return cast<FunctionRefInst>(TTTFI->getCallee())->getReferencedFunction();
|
|
}
|
|
|
|
class CallSiteDescriptor {
|
|
ClosureInfo *CInfo;
|
|
FullApplySite AI;
|
|
unsigned ClosureIndex;
|
|
SILParameterInfo ClosureParamInfo;
|
|
|
|
// This is only needed if we have guaranteed parameters. In most cases it will
|
|
// have only one element, a return inst.
|
|
llvm::TinyPtrVector<SILBasicBlock *> NonFailureExitBBs;
|
|
|
|
public:
|
|
CallSiteDescriptor(ClosureInfo *CInfo, FullApplySite AI,
|
|
unsigned ClosureIndex, SILParameterInfo ClosureParamInfo,
|
|
llvm::TinyPtrVector<SILBasicBlock *> &&NonFailureExitBBs)
|
|
: CInfo(CInfo), AI(AI), ClosureIndex(ClosureIndex),
|
|
ClosureParamInfo(ClosureParamInfo),
|
|
NonFailureExitBBs(NonFailureExitBBs) {}
|
|
|
|
CallSiteDescriptor(CallSiteDescriptor&&) =default;
|
|
CallSiteDescriptor &operator=(CallSiteDescriptor &&) =default;
|
|
|
|
SILFunction *getApplyCallee() const {
|
|
return cast<FunctionRefInst>(AI.getCallee())->getReferencedFunction();
|
|
}
|
|
|
|
SILFunction *getClosureCallee() const {
|
|
return ::getClosureCallee(getClosure());
|
|
}
|
|
|
|
bool closureHasRefSemanticContext() const {
|
|
return isa<PartialApplyInst>(getClosure()) &&
|
|
!cast<PartialApplyInst>(getClosure())->isOnStack();
|
|
}
|
|
|
|
bool destroyIfPartialApplyStack(SILBuilder &B,
|
|
SingleValueInstruction *newClosure) const {
|
|
auto *PA = dyn_cast<PartialApplyInst>(newClosure);
|
|
if (!PA || !PA->isOnStack())
|
|
return false;
|
|
|
|
if (B.getFunction().hasOwnership()) {
|
|
// Under OSSA, the closure acts as an owned value whose lifetime is a
|
|
// borrow scope for the captures, so we need to end the borrow scope
|
|
// before ending the lifetimes of the captures themselves.
|
|
B.createDestroyValue(getClosure()->getLoc(), PA);
|
|
insertDestroyOfCapturedArguments(PA, B);
|
|
// The stack slot for the partial_apply doesn't get reified until after
|
|
// OSSA.
|
|
return false;
|
|
} else {
|
|
insertDestroyOfCapturedArguments(PA, B);
|
|
B.createDeallocStack(getClosure()->getLoc(), PA);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
unsigned getClosureIndex() const { return ClosureIndex; }
|
|
|
|
// Get the closure value passed to the apply (on the caller side).
|
|
SILValue getClosureCallerArg() const {
|
|
return getApplyInst().getArgument(ClosureIndex);
|
|
}
|
|
|
|
SILParameterInfo getClosureParameterInfo() const { return ClosureParamInfo; }
|
|
|
|
SingleValueInstruction *
|
|
createNewClosure(SILBuilder &B, SILValue V,
|
|
llvm::SmallVectorImpl<SILValue> &Args) const {
|
|
if (auto *PA = dyn_cast<PartialApplyInst>(getClosure()))
|
|
return B.createPartialApply(getClosure()->getLoc(), V, {}, Args,
|
|
getClosure()
|
|
->getType()
|
|
.getAs<SILFunctionType>()
|
|
->getCalleeConvention(),
|
|
PA->isOnStack());
|
|
|
|
assert(isa<ThinToThickFunctionInst>(getClosure()) &&
|
|
"We only support partial_apply and thin_to_thick_function");
|
|
return B.createThinToThickFunction(getClosure()->getLoc(), V,
|
|
getClosure()->getType());
|
|
}
|
|
|
|
FullApplySite getApplyInst() const { return AI; }
|
|
|
|
IsSerialized_t isSerialized() const;
|
|
|
|
std::string createName() const;
|
|
|
|
OperandValueArrayRef getArguments() const {
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(getClosure()))
|
|
return PAI->getArguments();
|
|
|
|
// Thin to thick function has no non-callee arguments.
|
|
assert(isa<ThinToThickFunctionInst>(getClosure()) &&
|
|
"We only support partial_apply and thin_to_thick_function");
|
|
return OperandValueArrayRef(ArrayRef<Operand>());
|
|
}
|
|
|
|
inline SingleValueInstruction *getClosure() const;
|
|
|
|
unsigned getNumArguments() const {
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(getClosure()))
|
|
return PAI->getNumArguments();
|
|
|
|
// Thin to thick function has no non-callee arguments.
|
|
assert(isa<ThinToThickFunctionInst>(getClosure()) &&
|
|
"We only support partial_apply and thin_to_thick_function");
|
|
return 0;
|
|
}
|
|
|
|
bool isClosureGuaranteed() const {
|
|
return getClosureParameterInfo().isGuaranteed();
|
|
}
|
|
|
|
bool isClosureConsumed() const {
|
|
return getClosureParameterInfo().isConsumed();
|
|
}
|
|
|
|
bool isClosureOnStack() const {
|
|
auto *PA = dyn_cast<PartialApplyInst>(getClosure());
|
|
if (!PA)
|
|
return false;
|
|
return PA->isOnStack();
|
|
}
|
|
|
|
bool isTrivialNoEscapeParameter() const {
|
|
auto ClosureParmFnTy =
|
|
getClosureParameterInfo().getInterfaceType()->getAs<SILFunctionType>();
|
|
return ClosureParmFnTy->isTrivialNoEscape();
|
|
}
|
|
|
|
SILLocation getLoc() const { return getClosure()->getLoc(); }
|
|
|
|
SILModule &getModule() const { return AI.getModule(); }
|
|
|
|
ArrayRef<SILBasicBlock *> getNonFailureExitBBs() const {
|
|
return NonFailureExitBBs;
|
|
}
|
|
|
|
/// Extend the lifetime of 'Arg' to the lifetime of the closure.
|
|
void extendArgumentLifetime(SILValue Arg,
|
|
SILArgumentConvention ArgConvention) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
struct ClosureInfo {
|
|
SingleValueInstruction *Closure;
|
|
ValueLifetimeAnalysis::Frontier LifetimeFrontier;
|
|
llvm::SmallVector<CallSiteDescriptor, 8> CallSites;
|
|
|
|
ClosureInfo(SingleValueInstruction *Closure) : Closure(Closure) {}
|
|
|
|
ClosureInfo(ClosureInfo &&) =default;
|
|
ClosureInfo &operator=(ClosureInfo &&) =default;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SingleValueInstruction *CallSiteDescriptor::getClosure() const {
|
|
return CInfo->Closure;
|
|
}
|
|
|
|
static bool isNonInoutIndirectSILArgument(SILValue Arg,
|
|
SILArgumentConvention ArgConvention) {
|
|
return !Arg->getType().isObject() && ArgConvention.isIndirectConvention() &&
|
|
ArgConvention != SILArgumentConvention::Indirect_Inout &&
|
|
ArgConvention != SILArgumentConvention::Indirect_InoutAliasable;
|
|
}
|
|
|
|
/// Update the callsite to pass in the correct arguments.
|
|
static void rewriteApplyInst(const CallSiteDescriptor &CSDesc,
|
|
SILFunction *NewF) {
|
|
FullApplySite AI = CSDesc.getApplyInst();
|
|
SingleValueInstruction *Closure = CSDesc.getClosure();
|
|
SILBuilderWithScope Builder(Closure);
|
|
FunctionRefInst *FRI = Builder.createFunctionRef(AI.getLoc(), NewF);
|
|
|
|
// Create the args for the new apply by removing the closure argument...
|
|
llvm::SmallVector<SILValue, 8> NewArgs;
|
|
unsigned Index = 0;
|
|
for (auto Arg : AI.getArguments()) {
|
|
if (Index != CSDesc.getClosureIndex())
|
|
NewArgs.push_back(Arg);
|
|
++Index;
|
|
}
|
|
|
|
// ... and appending the captured arguments. We also insert retains here at
|
|
// the location of the original closure. This is needed to balance the
|
|
// implicit release of all captured arguments that occurs when the partial
|
|
// apply is destroyed.
|
|
auto ClosureCalleeConv = CSDesc.getClosureCallee()->getConventions();
|
|
unsigned ClosureArgIdx =
|
|
ClosureCalleeConv.getNumSILArguments() - CSDesc.getNumArguments();
|
|
for (auto Arg : CSDesc.getArguments()) {
|
|
SILType ArgTy = Arg->getType();
|
|
|
|
// If our argument is of trivial type, continue...
|
|
if (ArgTy.isTrivial(*NewF)) {
|
|
NewArgs.push_back(Arg);
|
|
++ClosureArgIdx;
|
|
continue;
|
|
}
|
|
|
|
auto ArgConvention =
|
|
ClosureCalleeConv.getSILArgumentConvention(ClosureArgIdx);
|
|
|
|
// Non-inout indirect arguments are not supported yet.
|
|
assert(ArgTy.isObject() ||
|
|
!isNonInoutIndirectSILArgument(Arg, ArgConvention));
|
|
|
|
// If argument is not an object and it is an inout parameter,
|
|
// continue...
|
|
if (!ArgTy.isObject() &&
|
|
!isNonInoutIndirectSILArgument(Arg, ArgConvention)) {
|
|
NewArgs.push_back(Arg);
|
|
++ClosureArgIdx;
|
|
continue;
|
|
}
|
|
|
|
// TODO: When we support address types, this code path will need to be
|
|
// updated.
|
|
|
|
// We need to balance the consumed argument of the new partial_apply in the
|
|
// specialized callee by a retain. If both the original partial_apply and
|
|
// the apply of the callee are in the same basic block we can assume they
|
|
// are executed the same number of times. Therefore it is sufficient to just
|
|
// retain the argument at the site of the original partial_apply.
|
|
//
|
|
// %closure = partial_apply (%arg)
|
|
// = apply %callee(%closure)
|
|
// =>
|
|
// retain %arg
|
|
// %closure = partial_apply (%arg)
|
|
// apply %specialized_callee(..., %arg)
|
|
//
|
|
// However, if they are not in the same basic block the callee might be
|
|
// executed more frequently than the closure (for example, if the closure is
|
|
// created in a loop preheader and the callee taking the closure is executed
|
|
// in the loop). In such a case we must keep the argument live across the
|
|
// call site of the callee and emit a matching retain for every invocation
|
|
// of the callee.
|
|
//
|
|
// %closure = partial_apply (%arg)
|
|
//
|
|
// while () {
|
|
// = %callee(%closure)
|
|
// }
|
|
// =>
|
|
// retain %arg
|
|
// %closure = partial_apply (%arg)
|
|
//
|
|
// while () {
|
|
// retain %arg
|
|
// apply %specialized_callee(.., %arg)
|
|
// }
|
|
// release %arg
|
|
//
|
|
if (AI.getParent() != Closure->getParent()) {
|
|
// Emit the retain and release that keeps the argument life across the
|
|
// callee using the closure.
|
|
CSDesc.extendArgumentLifetime(Arg, ArgConvention);
|
|
|
|
// Emit the retain that matches the captured argument by the
|
|
// partial_apply
|
|
// in the callee that is consumed by the partial_apply.
|
|
Builder.setInsertionPoint(AI.getInstruction());
|
|
Builder.createRetainValue(Closure->getLoc(), Arg,
|
|
Builder.getDefaultAtomicity());
|
|
} else {
|
|
Builder.createRetainValue(Closure->getLoc(), Arg,
|
|
Builder.getDefaultAtomicity());
|
|
}
|
|
|
|
NewArgs.push_back(Arg);
|
|
++ClosureArgIdx;
|
|
}
|
|
|
|
Builder.setInsertionPoint(AI.getInstruction());
|
|
FullApplySite NewAI;
|
|
switch (AI.getKind()) {
|
|
case FullApplySiteKind::TryApplyInst: {
|
|
auto *TAI = cast<TryApplyInst>(AI);
|
|
NewAI = Builder.createTryApply(AI.getLoc(), FRI,
|
|
SubstitutionMap(), NewArgs,
|
|
TAI->getNormalBB(), TAI->getErrorBB(),
|
|
TAI->getApplyOptions());
|
|
// If we passed in the original closure as @owned, then insert a release
|
|
// right after NewAI. This is to balance the +1 from being an @owned
|
|
// argument to AI.
|
|
if (!CSDesc.isClosureConsumed() || CSDesc.isTrivialNoEscapeParameter() ||
|
|
!CSDesc.closureHasRefSemanticContext()) {
|
|
break;
|
|
}
|
|
|
|
Builder.setInsertionPoint(TAI->getNormalBB()->begin());
|
|
Builder.createReleaseValue(Closure->getLoc(), Closure,
|
|
Builder.getDefaultAtomicity());
|
|
Builder.setInsertionPoint(TAI->getErrorBB()->begin());
|
|
Builder.createReleaseValue(Closure->getLoc(), Closure,
|
|
Builder.getDefaultAtomicity());
|
|
Builder.setInsertionPoint(AI.getInstruction());
|
|
break;
|
|
}
|
|
case FullApplySiteKind::ApplyInst: {
|
|
auto oldApply = cast<ApplyInst>(AI);
|
|
auto newApply = Builder.createApply(oldApply->getLoc(), FRI,
|
|
SubstitutionMap(), NewArgs,
|
|
oldApply->getApplyOptions());
|
|
// If we passed in the original closure as @owned, then insert a release
|
|
// right after NewAI. This is to balance the +1 from being an @owned
|
|
// argument to AI.
|
|
if (CSDesc.isClosureConsumed() && !CSDesc.isTrivialNoEscapeParameter() &&
|
|
CSDesc.closureHasRefSemanticContext())
|
|
Builder.createReleaseValue(Closure->getLoc(), Closure,
|
|
Builder.getDefaultAtomicity());
|
|
|
|
// Replace all uses of the old apply with the new apply.
|
|
oldApply->replaceAllUsesWith(newApply);
|
|
break;
|
|
}
|
|
case FullApplySiteKind::BeginApplyInst:
|
|
llvm_unreachable("Unhandled case");
|
|
}
|
|
|
|
// Erase the old apply.
|
|
AI.getInstruction()->eraseFromParent();
|
|
|
|
// TODO: Maybe include invalidation code for CallSiteDescriptor after we erase
|
|
// AI from parent?
|
|
}
|
|
|
|
IsSerialized_t CallSiteDescriptor::isSerialized() const {
|
|
if (getClosure()->getFunction()->isSerialized())
|
|
return IsSerialized;
|
|
return IsNotSerialized;
|
|
}
|
|
|
|
std::string CallSiteDescriptor::createName() const {
|
|
auto P = Demangle::SpecializationPass::ClosureSpecializer;
|
|
Mangle::FunctionSignatureSpecializationMangler Mangler(P, isSerialized(),
|
|
getApplyCallee());
|
|
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(getClosure())) {
|
|
Mangler.setArgumentClosureProp(getClosureIndex(), PAI);
|
|
} else {
|
|
auto *TTTFI = cast<ThinToThickFunctionInst>(getClosure());
|
|
Mangler.setArgumentClosureProp(getClosureIndex(), TTTFI);
|
|
}
|
|
return Mangler.mangle();
|
|
}
|
|
|
|
void CallSiteDescriptor::extendArgumentLifetime(
|
|
SILValue Arg, SILArgumentConvention ArgConvention) const {
|
|
assert(!CInfo->LifetimeFrontier.empty() &&
|
|
"Need a post-dominating release(s)");
|
|
|
|
auto ArgTy = Arg->getType();
|
|
|
|
// Extend the lifetime of a captured argument to cover the callee.
|
|
SILBuilderWithScope Builder(getClosure());
|
|
|
|
// Indirect non-inout arguments are not supported yet.
|
|
assert(!isNonInoutIndirectSILArgument(Arg, ArgConvention));
|
|
|
|
if (ArgTy.isObject()) {
|
|
Builder.createRetainValue(getClosure()->getLoc(), Arg,
|
|
Builder.getDefaultAtomicity());
|
|
for (auto *I : CInfo->LifetimeFrontier) {
|
|
Builder.setInsertionPoint(I);
|
|
Builder.createReleaseValue(getClosure()->getLoc(), Arg,
|
|
Builder.getDefaultAtomicity());
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isSupportedClosure(const SILInstruction *Closure) {
|
|
if (!isSupportedClosureKind(Closure))
|
|
return false;
|
|
|
|
// We only support simple closures where a partial_apply or
|
|
// thin_to_thick_function is passed a function_ref. This will be stored here
|
|
// so the checking of the Callee can use the same code in both cases.
|
|
SILValue Callee;
|
|
|
|
// If Closure is a partial apply...
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(Closure)) {
|
|
// And it has substitutions, return false.
|
|
if (PAI->hasSubstitutions())
|
|
return false;
|
|
|
|
// Ok, it is a closure we support, set Callee.
|
|
Callee = PAI->getCallee();
|
|
|
|
} else {
|
|
// Otherwise closure must be a thin_to_thick_function.
|
|
Callee = cast<ThinToThickFunctionInst>(Closure)->getCallee();
|
|
}
|
|
|
|
// Make sure that it is a simple partial apply (i.e. its callee is a
|
|
// function_ref).
|
|
//
|
|
// TODO: We can probably handle other partial applies here.
|
|
auto *FRI = dyn_cast_or_null<FunctionRefInst>(Callee);
|
|
if (!FRI)
|
|
return false;
|
|
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(Closure)) {
|
|
// Bail if any of the arguments are passed by address and
|
|
// are not @inout.
|
|
// This is a temporary limitation.
|
|
auto ClosureCallee = FRI->getReferencedFunction();
|
|
auto ClosureCalleeConv = ClosureCallee->getConventions();
|
|
unsigned ClosureArgIdx =
|
|
ClosureCalleeConv.getNumSILArguments() - PAI->getNumArguments();
|
|
for (auto Arg : PAI->getArguments()) {
|
|
SILType ArgTy = Arg->getType();
|
|
// If our argument is an object, continue...
|
|
if (ArgTy.isObject()) {
|
|
++ClosureArgIdx;
|
|
continue;
|
|
}
|
|
auto ArgConvention =
|
|
ClosureCalleeConv.getSILArgumentConvention(ClosureArgIdx);
|
|
if (ArgConvention != SILArgumentConvention::Indirect_Inout &&
|
|
ArgConvention != SILArgumentConvention::Indirect_InoutAliasable)
|
|
return false;
|
|
++ClosureArgIdx;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we do support specializing this closure.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Closure Spec Cloner Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// In this function we create the actual cloned function and its proper cloned
|
|
/// type. But we do not create any body. This implies that the creation of the
|
|
/// actual arguments in the function is in populateCloned.
|
|
///
|
|
/// \arg PAUser The function that is being passed the partial apply.
|
|
/// \arg PAI The partial apply that is being passed to PAUser.
|
|
/// \arg ClosureIndex The index of the partial apply in PAUser's function
|
|
/// signature.
|
|
/// \arg ClonedName The name of the cloned function that we will create.
|
|
SILFunction *
|
|
ClosureSpecCloner::initCloned(SILOptFunctionBuilder &FunctionBuilder,
|
|
const CallSiteDescriptor &CallSiteDesc,
|
|
StringRef ClonedName) {
|
|
SILFunction *ClosureUser = CallSiteDesc.getApplyCallee();
|
|
|
|
// This is the list of new interface parameters of the cloned function.
|
|
llvm::SmallVector<SILParameterInfo, 4> NewParameterInfoList;
|
|
|
|
// First add to NewParameterInfoList all of the SILParameterInfo in the
|
|
// original function except for the closure.
|
|
CanSILFunctionType ClosureUserFunTy = ClosureUser->getLoweredFunctionType();
|
|
auto ClosureUserConv = ClosureUser->getConventions();
|
|
unsigned Index = ClosureUserConv.getSILArgIndexOfFirstParam();
|
|
for (auto ¶m : ClosureUserConv.getParameters()) {
|
|
if (Index != CallSiteDesc.getClosureIndex())
|
|
NewParameterInfoList.push_back(param);
|
|
++Index;
|
|
}
|
|
|
|
// Then add any arguments that are captured in the closure to the function's
|
|
// argument type. Since they are captured, we need to pass them directly into
|
|
// the new specialized function.
|
|
SILFunction *ClosedOverFun = CallSiteDesc.getClosureCallee();
|
|
auto ClosedOverFunConv = ClosedOverFun->getConventions();
|
|
SILModule &M = ClosureUser->getModule();
|
|
|
|
// Captured parameters are always appended to the function signature. If the
|
|
// type of the captured argument is:
|
|
// - direct and trivial, pass the argument as Direct_Unowned.
|
|
// - direct and non-trivial, pass the argument as Direct_Owned.
|
|
// - indirect, pass the argument using the same parameter convention as in the
|
|
// original closure.
|
|
//
|
|
// We use the type of the closure here since we allow for the closure to be an
|
|
// external declaration.
|
|
unsigned NumTotalParams = ClosedOverFunConv.getNumParameters();
|
|
unsigned NumNotCaptured = NumTotalParams - CallSiteDesc.getNumArguments();
|
|
for (auto &PInfo : ClosedOverFunConv.getParameters().slice(NumNotCaptured)) {
|
|
ParameterConvention ParamConv;
|
|
if (PInfo.isFormalIndirect()) {
|
|
ParamConv = PInfo.getConvention();
|
|
assert(!SILModuleConventions(M).useLoweredAddresses()
|
|
|| ParamConv == ParameterConvention::Indirect_Inout
|
|
|| ParamConv == ParameterConvention::Indirect_InoutAliasable);
|
|
} else {
|
|
ParamConv = ClosedOverFunConv
|
|
.getSILType(PInfo, CallSiteDesc.getApplyInst()
|
|
.getFunction()
|
|
->getTypeExpansionContext())
|
|
.isTrivial(*ClosureUser)
|
|
? ParameterConvention::Direct_Unowned
|
|
: ParameterConvention::Direct_Owned;
|
|
}
|
|
|
|
SILParameterInfo NewPInfo(PInfo.getInterfaceType(), ParamConv);
|
|
NewParameterInfoList.push_back(NewPInfo);
|
|
}
|
|
|
|
// The specialized function is always a thin function. This is important
|
|
// because we may add additional parameters after the Self parameter of
|
|
// witness methods. In this case the new function is not a method anymore.
|
|
auto ExtInfo = ClosureUserFunTy->getExtInfo();
|
|
ExtInfo = ExtInfo.withRepresentation(SILFunctionTypeRepresentation::Thin);
|
|
|
|
auto ClonedTy = SILFunctionType::get(
|
|
ClosureUserFunTy->getInvocationGenericSignature(), ExtInfo,
|
|
ClosureUserFunTy->getCoroutineKind(),
|
|
ClosureUserFunTy->getCalleeConvention(), NewParameterInfoList,
|
|
ClosureUserFunTy->getYields(), ClosureUserFunTy->getResults(),
|
|
ClosureUserFunTy->getOptionalErrorResult(),
|
|
ClosureUserFunTy->getPatternSubstitutions(),
|
|
ClosureUserFunTy->getInvocationSubstitutions(),
|
|
M.getASTContext());
|
|
|
|
// We make this function bare so we don't have to worry about decls in the
|
|
// SILArgument.
|
|
auto *Fn = FunctionBuilder.createFunction(
|
|
// It's important to use a shared linkage for the specialized function
|
|
// and not the original linkage.
|
|
// Otherwise the new function could have an external linkage (in case the
|
|
// original function was de-serialized) and would not be code-gen'd.
|
|
// It's also important to disconnect this specialized function from any
|
|
// classes (the classSubclassScope), because that may incorrectly
|
|
// influence the linkage.
|
|
getSpecializedLinkage(ClosureUser, ClosureUser->getLinkage()), ClonedName,
|
|
ClonedTy, ClosureUser->getGenericEnvironment(),
|
|
ClosureUser->getLocation(), IsBare, ClosureUser->isTransparent(),
|
|
CallSiteDesc.isSerialized(), IsNotDynamic, IsNotDistributed,
|
|
IsNotRuntimeAccessible, ClosureUser->getEntryCount(),
|
|
ClosureUser->isThunk(),
|
|
/*classSubclassScope=*/SubclassScope::NotApplicable,
|
|
ClosureUser->getInlineStrategy(), ClosureUser->getEffectsKind(),
|
|
ClosureUser, ClosureUser->getDebugScope());
|
|
if (!ClosureUser->hasOwnership()) {
|
|
Fn->setOwnershipEliminated();
|
|
}
|
|
for (auto &Attr : ClosureUser->getSemanticsAttrs())
|
|
Fn->addSemanticsAttr(Attr);
|
|
return Fn;
|
|
}
|
|
|
|
// Clone a chain of ConvertFunctionInsts.
|
|
SILValue ClosureSpecCloner::cloneCalleeConversion(
|
|
SILValue calleeValue, SILValue NewClosure, SILBuilder &Builder,
|
|
SmallVectorImpl<PartialApplyInst *> &NeedsRelease,
|
|
llvm::DenseMap<SILValue, SILValue> &CapturedMap) {
|
|
|
|
// There might be a mark dependence on a previous closure value. Therefore, we
|
|
// add all closure values to the map.
|
|
auto addToOldToNewClosureMap = [&](SILValue origValue,
|
|
SILValue newValue) -> SILValue {
|
|
assert(!CapturedMap.count(origValue));
|
|
CapturedMap[origValue] = newValue;
|
|
return newValue;
|
|
};
|
|
|
|
if (calleeValue == CallSiteDesc.getClosure())
|
|
return addToOldToNewClosureMap(calleeValue, NewClosure);
|
|
|
|
if (auto *CFI = dyn_cast<ConvertFunctionInst>(calleeValue)) {
|
|
SILValue origCalleeValue = calleeValue;
|
|
calleeValue = cloneCalleeConversion(CFI->getOperand(), NewClosure, Builder,
|
|
NeedsRelease, CapturedMap);
|
|
return addToOldToNewClosureMap(
|
|
origCalleeValue, Builder.createConvertFunction(
|
|
CallSiteDesc.getLoc(), calleeValue, CFI->getType(),
|
|
CFI->withoutActuallyEscaping()));
|
|
}
|
|
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(calleeValue)) {
|
|
assert(isPartialApplyOfReabstractionThunk(PAI) && isSupportedClosure(PAI) &&
|
|
PAI->getArgument(0)
|
|
->getType()
|
|
.getAs<SILFunctionType>()
|
|
->isTrivialNoEscape());
|
|
SILValue origCalleeValue = calleeValue;
|
|
calleeValue = cloneCalleeConversion(PAI->getArgument(0), NewClosure,
|
|
Builder, NeedsRelease, CapturedMap);
|
|
auto origRef = PAI->getReferencedFunctionOrNull();
|
|
assert(origRef);
|
|
auto FunRef = Builder.createFunctionRef(CallSiteDesc.getLoc(), origRef);
|
|
auto NewPA = Builder.createPartialApply(
|
|
CallSiteDesc.getLoc(), FunRef, {}, {calleeValue},
|
|
PAI->getType().getAs<SILFunctionType>()->getCalleeConvention(),
|
|
PAI->isOnStack());
|
|
// If the partial_apply is on stack we will emit a dealloc_stack in the
|
|
// epilog.
|
|
NeedsRelease.push_back(NewPA);
|
|
return addToOldToNewClosureMap(origCalleeValue, NewPA);
|
|
}
|
|
|
|
if (auto *MD = dyn_cast<MarkDependenceInst>(calleeValue)) {
|
|
SILValue origCalleeValue = calleeValue;
|
|
calleeValue = cloneCalleeConversion(MD->getValue(), NewClosure, Builder,
|
|
NeedsRelease, CapturedMap);
|
|
if (!CapturedMap.count(MD->getBase())) {
|
|
CallSiteDesc.getClosure()->dump();
|
|
MD->dump();
|
|
MD->getFunction()->dump();
|
|
}
|
|
assert(CapturedMap.count(MD->getBase()));
|
|
return addToOldToNewClosureMap(
|
|
origCalleeValue,
|
|
Builder.createMarkDependence(CallSiteDesc.getLoc(), calleeValue,
|
|
CapturedMap[MD->getBase()]));
|
|
}
|
|
|
|
|
|
auto *Cvt = cast<ConvertEscapeToNoEscapeInst>(calleeValue);
|
|
SILValue origCalleeValue = calleeValue;
|
|
calleeValue = cloneCalleeConversion(Cvt->getOperand(), NewClosure, Builder,
|
|
NeedsRelease, CapturedMap);
|
|
return addToOldToNewClosureMap(
|
|
origCalleeValue,
|
|
Builder.createConvertEscapeToNoEscape(CallSiteDesc.getLoc(), calleeValue,
|
|
Cvt->getType(), true));
|
|
}
|
|
|
|
/// Populate the body of the cloned closure, modifying instructions as
|
|
/// necessary. This is where we create the actual specialized BB Arguments
|
|
void ClosureSpecCloner::populateCloned() {
|
|
bool invalidatedStackNesting = false;
|
|
SILFunction *Cloned = getCloned();
|
|
SILFunction *ClosureUser = CallSiteDesc.getApplyCallee();
|
|
|
|
// Create arguments for the entry block.
|
|
SILBasicBlock *ClosureUserEntryBB = &*ClosureUser->begin();
|
|
SILBasicBlock *ClonedEntryBB = Cloned->createBasicBlock();
|
|
|
|
SmallVector<SILValue, 4> entryArgs;
|
|
entryArgs.reserve(ClosureUserEntryBB->getArguments().size());
|
|
|
|
// Remove the closure argument.
|
|
for (size_t i = 0, e = ClosureUserEntryBB->args_size(); i != e; ++i) {
|
|
SILArgument *Arg = ClosureUserEntryBB->getArgument(i);
|
|
if (i == CallSiteDesc.getClosureIndex()) {
|
|
entryArgs.push_back(SILValue());
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, create a new argument which copies the original argument
|
|
auto typeInContext = Cloned->getLoweredType(Arg->getType());
|
|
auto *MappedValue =
|
|
ClonedEntryBB->createFunctionArgument(typeInContext, Arg->getDecl());
|
|
MappedValue->copyFlags(cast<SILFunctionArgument>(Arg));
|
|
entryArgs.push_back(MappedValue);
|
|
}
|
|
|
|
// Next we need to add in any arguments that are not captured as arguments to
|
|
// the cloned function.
|
|
//
|
|
// We do not insert the new mapped arguments into the value map since there by
|
|
// definition is nothing in the partial apply user function that references
|
|
// such arguments. After this pass is done the only thing that will reference
|
|
// the arguments is the partial apply that we will create.
|
|
SILFunction *ClosedOverFun = CallSiteDesc.getClosureCallee();
|
|
SILBuilder &Builder = getBuilder();
|
|
auto ClosedOverFunConv = ClosedOverFun->getConventions();
|
|
unsigned NumTotalParams = ClosedOverFunConv.getNumParameters();
|
|
unsigned NumNotCaptured = NumTotalParams - CallSiteDesc.getNumArguments();
|
|
llvm::SmallVector<SILValue, 4> NewPAIArgs;
|
|
llvm::DenseMap<SILValue, SILValue> CapturedMap;
|
|
unsigned idx = 0;
|
|
for (auto &PInfo : ClosedOverFunConv.getParameters().slice(NumNotCaptured)) {
|
|
auto paramTy =
|
|
ClosedOverFunConv.getSILType(PInfo, Builder.getTypeExpansionContext());
|
|
// Get the type in context of the new function.
|
|
paramTy = Cloned->getLoweredType(paramTy);
|
|
SILValue MappedValue = ClonedEntryBB->createFunctionArgument(paramTy);
|
|
NewPAIArgs.push_back(MappedValue);
|
|
auto CapturedVal =
|
|
cast<PartialApplyInst>(CallSiteDesc.getClosure())->getArgument(idx++);
|
|
CapturedMap[CapturedVal] = MappedValue;
|
|
}
|
|
|
|
Builder.setInsertionPoint(ClonedEntryBB);
|
|
|
|
// Clone FRI and PAI, and replace usage of the removed closure argument
|
|
// with result of cloned PAI.
|
|
SILValue FnVal =
|
|
Builder.createFunctionRef(CallSiteDesc.getLoc(), ClosedOverFun);
|
|
auto *NewClosure = CallSiteDesc.createNewClosure(Builder, FnVal, NewPAIArgs);
|
|
|
|
// Clone a chain of ConvertFunctionInsts. This can create further
|
|
// reabstraction partial_apply instructions.
|
|
SmallVector<PartialApplyInst*, 4> NeedsRelease;
|
|
SILValue ConvertedCallee =
|
|
cloneCalleeConversion(CallSiteDesc.getClosureCallerArg(), NewClosure,
|
|
Builder, NeedsRelease, CapturedMap);
|
|
|
|
// Make sure that we actually emit the releases for reabstraction thunks. We
|
|
// have guaranteed earlier that we only allow reabstraction thunks if the
|
|
// closure was passed trivial.
|
|
assert(NeedsRelease.empty() || CallSiteDesc.isTrivialNoEscapeParameter());
|
|
|
|
entryArgs[CallSiteDesc.getClosureIndex()] = ConvertedCallee;
|
|
|
|
// Visit original BBs in depth-first preorder, starting with the
|
|
// entry block, cloning all instructions and terminators.
|
|
cloneFunctionBody(ClosureUser, ClonedEntryBB, entryArgs);
|
|
|
|
// Then insert a release in all non failure exit BBs if our partial apply was
|
|
// guaranteed. This is b/c it was passed at +0 originally and we need to
|
|
// balance the initial increment of the newly created closure(s).
|
|
bool ClosureHasRefSemantics = CallSiteDesc.closureHasRefSemanticContext();
|
|
if ((CallSiteDesc.isClosureGuaranteed() ||
|
|
CallSiteDesc.isTrivialNoEscapeParameter()) &&
|
|
(ClosureHasRefSemantics || !NeedsRelease.empty() ||
|
|
CallSiteDesc.isClosureOnStack())) {
|
|
for (SILBasicBlock *BB : CallSiteDesc.getNonFailureExitBBs()) {
|
|
SILBasicBlock *OpBB = getOpBasicBlock(BB);
|
|
|
|
TermInst *TI = OpBB->getTerminator();
|
|
auto Loc = CleanupLocation(NewClosure->getLoc());
|
|
|
|
// If we have an exit, we place the release right before it so we know
|
|
// that it will be executed at the end of the epilogue.
|
|
if (TI->isFunctionExiting()) {
|
|
Builder.setInsertionPoint(TI);
|
|
if (ClosureHasRefSemantics)
|
|
Builder.createReleaseValue(Loc, SILValue(NewClosure),
|
|
Builder.getDefaultAtomicity());
|
|
else
|
|
invalidatedStackNesting |=
|
|
CallSiteDesc.destroyIfPartialApplyStack(Builder, NewClosure);
|
|
for (auto PAI : NeedsRelease) {
|
|
if (PAI->isOnStack())
|
|
invalidatedStackNesting |=
|
|
CallSiteDesc.destroyIfPartialApplyStack(Builder, PAI);
|
|
else
|
|
Builder.createReleaseValue(Loc, SILValue(PAI),
|
|
Builder.getDefaultAtomicity());
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// We use casts where findAllNonFailureExitBBs should have made sure that
|
|
// this is true. This will ensure that the code is updated when we hit the
|
|
// cast failure in debug builds.
|
|
auto *Unreachable = cast<UnreachableInst>(TI);
|
|
auto PrevIter = std::prev(SILBasicBlock::iterator(Unreachable));
|
|
auto NoReturnApply = FullApplySite::isa(&*PrevIter);
|
|
|
|
// We insert the release value right before the no return apply so that if
|
|
// the partial apply is passed into the no-return function as an @owned
|
|
// value, we will retain the partial apply before we release it and
|
|
// potentially eliminate it.
|
|
Builder.setInsertionPoint(NoReturnApply.getInstruction());
|
|
if (ClosureHasRefSemantics)
|
|
Builder.createReleaseValue(Loc, SILValue(NewClosure),
|
|
Builder.getDefaultAtomicity());
|
|
else
|
|
invalidatedStackNesting |=
|
|
CallSiteDesc.destroyIfPartialApplyStack(Builder, NewClosure);
|
|
for (auto PAI : NeedsRelease) {
|
|
if (PAI->isOnStack())
|
|
invalidatedStackNesting |=
|
|
CallSiteDesc.destroyIfPartialApplyStack(Builder, PAI);
|
|
else
|
|
Builder.createReleaseValue(Loc, SILValue(PAI),
|
|
Builder.getDefaultAtomicity());
|
|
}
|
|
}
|
|
}
|
|
if (invalidatedStackNesting) {
|
|
StackNesting::fixNesting(Cloned);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Closure Specializer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class SILClosureSpecializerTransform : public SILFunctionTransform {
|
|
bool gatherCallSites(
|
|
SILFunction *Caller,
|
|
llvm::SmallVectorImpl<std::unique_ptr<ClosureInfo>> &ClosureCandidates,
|
|
llvm::DenseSet<FullApplySite> &MultipleClosureAI);
|
|
bool specialize(SILFunction *Caller,
|
|
std::vector<SingleValueInstruction *> &PropagatedClosures);
|
|
|
|
public:
|
|
SILClosureSpecializerTransform() {}
|
|
|
|
void run() override;
|
|
|
|
};
|
|
|
|
void SILClosureSpecializerTransform::run() {
|
|
SILFunction *F = getFunction();
|
|
|
|
// Don't optimize functions that are marked with the opt.never
|
|
// attribute.
|
|
if (!F->shouldOptimize())
|
|
return;
|
|
|
|
// If F is an external declaration, there is nothing to specialize.
|
|
if (F->isExternalDeclaration())
|
|
return;
|
|
|
|
std::vector<SingleValueInstruction *> PropagatedClosures;
|
|
|
|
if (!specialize(F, PropagatedClosures))
|
|
return;
|
|
|
|
// If for testing purposes we were asked to not eliminate dead closures,
|
|
// return.
|
|
if (EliminateDeadClosures) {
|
|
// Otherwise, remove any local dead closures that are now dead since we
|
|
// specialized all of their uses.
|
|
LLVM_DEBUG(llvm::dbgs() << "Trying to remove dead closures!\n");
|
|
sortUnique(PropagatedClosures);
|
|
bool invalidatedStackNesting = false;
|
|
|
|
for (auto *Closure : PropagatedClosures) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << *Closure);
|
|
if (!tryDeleteDeadClosure(Closure)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Failed to delete closure!\n");
|
|
++NumPropagatedClosuresNotEliminated;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Deleted closure!\n");
|
|
++NumPropagatedClosuresEliminated;
|
|
invalidatedStackNesting = true;
|
|
}
|
|
|
|
if (invalidatedStackNesting) {
|
|
StackNesting::fixNesting(F);
|
|
}
|
|
}
|
|
|
|
// Invalidate everything since we delete calls as well as add new
|
|
// calls and branches.
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
|
|
static void markReabstractionPartialApplyAsUsed(
|
|
SILValue FirstClosure, SILValue Current,
|
|
llvm::DenseSet<SingleValueInstruction *> &UsedReabstractionClosure) {
|
|
if (Current == FirstClosure)
|
|
return;
|
|
if (auto PA = dyn_cast<PartialApplyInst>(Current)) {
|
|
UsedReabstractionClosure.insert(PA);
|
|
return markReabstractionPartialApplyAsUsed(FirstClosure, PA->getArgument(0),
|
|
UsedReabstractionClosure);
|
|
}
|
|
if (auto Cvt = dyn_cast<ConvertFunctionInst>(Current)) {
|
|
return markReabstractionPartialApplyAsUsed(FirstClosure, Cvt->getOperand(),
|
|
UsedReabstractionClosure);
|
|
}
|
|
if (auto Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(Current)) {
|
|
return markReabstractionPartialApplyAsUsed(FirstClosure, Cvt->getOperand(),
|
|
UsedReabstractionClosure);
|
|
}
|
|
if (auto MD = dyn_cast<MarkDependenceInst>(Current)) {
|
|
return markReabstractionPartialApplyAsUsed(FirstClosure, MD->getValue(),
|
|
UsedReabstractionClosure);
|
|
}
|
|
llvm_unreachable("Unexpect instruction");
|
|
}
|
|
|
|
/// Returns true if the \p closureArgIdx argument of \p callee is called in
|
|
/// \p callee or any function called by callee.
|
|
static bool isClosureAppliedIn(SILFunction *Callee, unsigned closureArgIdx,
|
|
SmallPtrSetImpl<SILFunction *> &HandledFuncs) {
|
|
// Limit the number of recursive calls to not go into exponential behavior in
|
|
// corner cases.
|
|
const int RecursionBudget = 8;
|
|
|
|
SILValue Arg = Callee->getArgument(closureArgIdx);
|
|
for (Operand *ArgUse : Arg->getUses()) {
|
|
if (auto UserAI = FullApplySite::isa(ArgUse->getUser())) {
|
|
if (UserAI.getCallee() == Arg)
|
|
return true;
|
|
|
|
assert(UserAI.isArgumentOperand(*ArgUse) &&
|
|
"any other non-argument operands than the callee?");
|
|
|
|
SILFunction *ApplyCallee = UserAI.getReferencedFunctionOrNull();
|
|
if (ApplyCallee && !ApplyCallee->isExternalDeclaration() &&
|
|
HandledFuncs.count(ApplyCallee) == 0 &&
|
|
HandledFuncs.size() < RecursionBudget) {
|
|
HandledFuncs.insert(ApplyCallee);
|
|
if (isClosureAppliedIn(UserAI.getReferencedFunctionOrNull(),
|
|
UserAI.getCalleeArgIndex(*ArgUse), HandledFuncs))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool canSpecializeFullApplySite(FullApplySiteKind kind) {
|
|
switch (kind) {
|
|
case FullApplySiteKind::TryApplyInst:
|
|
case FullApplySiteKind::ApplyInst:
|
|
return true;
|
|
case FullApplySiteKind::BeginApplyInst:
|
|
return false;
|
|
}
|
|
llvm_unreachable("covered switch");
|
|
}
|
|
|
|
const int SpecializationLevelLimit = 2;
|
|
|
|
static int getSpecializationLevelRecursive(StringRef funcName, Demangler &parent) {
|
|
using namespace Demangle;
|
|
|
|
Demangler demangler;
|
|
demangler.providePreallocatedMemory(parent);
|
|
|
|
// Check for this kind of node tree:
|
|
//
|
|
// kind=Global
|
|
// kind=FunctionSignatureSpecialization
|
|
// kind=SpecializationPassID, index=1
|
|
// kind=FunctionSignatureSpecializationParam
|
|
// kind=FunctionSignatureSpecializationParamKind, index=5
|
|
// kind=FunctionSignatureSpecializationParamPayload, text="..."
|
|
//
|
|
Node *root = demangler.demangleSymbol(funcName);
|
|
if (!root)
|
|
return 0;
|
|
if (root->getKind() != Node::Kind::Global)
|
|
return 0;
|
|
Node *funcSpec = root->getFirstChild();
|
|
if (!funcSpec || funcSpec->getNumChildren() < 2)
|
|
return 0;
|
|
if (funcSpec->getKind() != Node::Kind::FunctionSignatureSpecialization)
|
|
return 0;
|
|
|
|
// Match any function specialization. We check for constant propagation at the
|
|
// parameter level.
|
|
Node *param = funcSpec->getChild(0);
|
|
if (param->getKind() != Node::Kind::SpecializationPassID)
|
|
return SpecializationLevelLimit + 1; // unrecognized format
|
|
|
|
unsigned maxParamLevel = 0;
|
|
for (unsigned paramIdx = 1; paramIdx < funcSpec->getNumChildren();
|
|
++paramIdx) {
|
|
Node *param = funcSpec->getChild(paramIdx);
|
|
if (param->getKind() != Node::Kind::FunctionSignatureSpecializationParam)
|
|
return SpecializationLevelLimit + 1; // unrecognized format
|
|
|
|
// A parameter is recursive if it has a kind with index and type payload
|
|
if (param->getNumChildren() < 2)
|
|
continue;
|
|
|
|
Node *kindNd = param->getChild(0);
|
|
if (kindNd->getKind()
|
|
!= Node::Kind::FunctionSignatureSpecializationParamKind) {
|
|
return SpecializationLevelLimit + 1; // unrecognized format
|
|
}
|
|
auto kind = FunctionSigSpecializationParamKind(kindNd->getIndex());
|
|
if (kind != FunctionSigSpecializationParamKind::ConstantPropFunction)
|
|
continue;
|
|
Node *payload = param->getChild(1);
|
|
if (payload->getKind()
|
|
!= Node::Kind::FunctionSignatureSpecializationParamPayload) {
|
|
return SpecializationLevelLimit + 1; // unrecognized format
|
|
}
|
|
// Check if the specialized function is a specialization itself.
|
|
unsigned paramLevel =
|
|
1 + getSpecializationLevelRecursive(payload->getText(), demangler);
|
|
if (paramLevel > maxParamLevel)
|
|
maxParamLevel = paramLevel;
|
|
}
|
|
return maxParamLevel;
|
|
}
|
|
|
|
/// If \p function is a function-signature specialization for a constant-
|
|
/// propagated function argument, returns 1.
|
|
/// If \p function is a specialization of such a specialization, returns 2.
|
|
/// And so on.
|
|
static int getSpecializationLevel(SILFunction *f) {
|
|
Demangle::StackAllocatedDemangler<1024> demangler;
|
|
return getSpecializationLevelRecursive(f->getName(), demangler);
|
|
}
|
|
|
|
bool SILClosureSpecializerTransform::gatherCallSites(
|
|
SILFunction *Caller,
|
|
llvm::SmallVectorImpl<std::unique_ptr<ClosureInfo>> &ClosureCandidates,
|
|
llvm::DenseSet<FullApplySite> &MultipleClosureAI) {
|
|
|
|
// A set of apply inst that we have associated with a closure. We use this to
|
|
// make sure that we do not handle call sites with multiple closure arguments.
|
|
llvm::DenseSet<FullApplySite> VisitedAI;
|
|
|
|
// We should not look at reabstraction closure twice who we ultimately ended
|
|
// up using as an argument that we specialize on.
|
|
llvm::DenseSet<SingleValueInstruction *> UsedReabstractionClosure;
|
|
|
|
bool CFGChanged = false;
|
|
|
|
// For each basic block BB in Caller...
|
|
for (auto &BB : *Caller) {
|
|
|
|
// For each instruction II in BB...
|
|
for (auto &II : BB) {
|
|
// If II is not a closure that we support specializing, skip it...
|
|
if (!isSupportedClosure(&II))
|
|
continue;
|
|
auto ClosureInst = cast<SingleValueInstruction>(&II);
|
|
if (UsedReabstractionClosure.count(ClosureInst))
|
|
continue;
|
|
|
|
std::unique_ptr<ClosureInfo> CInfo;
|
|
|
|
// Go through all uses of our closure.
|
|
|
|
// Worklist of operands.
|
|
SmallVector<Operand *, 8> Uses(ClosureInst->getUses());
|
|
|
|
// Live range end points.
|
|
SmallVector<SILInstruction *, 8> UsePoints;
|
|
|
|
// Set of possible arguments for mark_dependence. The base of a
|
|
// mark_dependence we copy must be available in the specialized function.
|
|
llvm::SmallSet<SILValue, 16> PossibleMarkDependenceBases;
|
|
if (auto *PA = dyn_cast<PartialApplyInst>(ClosureInst)) {
|
|
for (auto Opd : PA->getArguments())
|
|
PossibleMarkDependenceBases.insert(Opd);
|
|
}
|
|
|
|
bool HaveUsedReabstraction = false;
|
|
// Uses may grow in this loop.
|
|
for (size_t UseIndex = 0; UseIndex < Uses.size(); ++UseIndex) {
|
|
auto *Use = Uses[UseIndex];
|
|
UsePoints.push_back(Use->getUser());
|
|
|
|
// Recurse through conversions.
|
|
if (auto *CFI = dyn_cast<ConvertFunctionInst>(Use->getUser())) {
|
|
// Push Uses in reverse order so they are visited in forward order.
|
|
Uses.append(CFI->getUses().begin(), CFI->getUses().end());
|
|
PossibleMarkDependenceBases.insert(CFI);
|
|
continue;
|
|
}
|
|
if (auto *Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(Use->getUser())) {
|
|
Uses.append(Cvt->getUses().begin(), Cvt->getUses().end());
|
|
PossibleMarkDependenceBases.insert(Cvt);
|
|
continue;
|
|
}
|
|
|
|
// Look through reabstraction thunks.
|
|
if (auto *PA = dyn_cast<PartialApplyInst>(Use->getUser())) {
|
|
// Reabstraction can cause series of partial_apply to be emitted. It
|
|
// is okay to treat these like conversion instructions. Current
|
|
// restriction: if the partial_apply does not take ownership of its
|
|
// argument we don't need to analyze which partial_apply to emit
|
|
// release for (its all of them).
|
|
if (isPartialApplyOfReabstractionThunk(PA) &&
|
|
isSupportedClosure(PA) &&
|
|
PA->getArgument(0)
|
|
->getType()
|
|
.getAs<SILFunctionType>()
|
|
->isTrivialNoEscape()) {
|
|
Uses.append(PA->getUses().begin(), PA->getUses().end());
|
|
PossibleMarkDependenceBases.insert(PA);
|
|
HaveUsedReabstraction = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Look through mark_dependence on partial_apply [stack].
|
|
if (auto *MD = dyn_cast<MarkDependenceInst>(Use->getUser())) {
|
|
// We can't copy a closure if the mark_dependence base is not
|
|
// available in the specialized function.
|
|
if (!PossibleMarkDependenceBases.count(MD->getBase()))
|
|
continue;
|
|
if (MD->getValue() == Use->get() &&
|
|
MD->getValue()->getType().is<SILFunctionType>() &&
|
|
MD->getValue()
|
|
->getType()
|
|
.castTo<SILFunctionType>()
|
|
->isTrivialNoEscape()) {
|
|
Uses.append(MD->getUses().begin(), MD->getUses().end());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If this use is not a full apply site that we can process or an apply
|
|
// inst with substitutions, there is nothing interesting for us to do,
|
|
// so continue...
|
|
auto AI = FullApplySite::isa(Use->getUser());
|
|
if (!AI || AI.hasSubstitutions() ||
|
|
!canSpecializeFullApplySite(AI.getKind()) ||
|
|
!AI.canOptimize())
|
|
continue;
|
|
|
|
// Check if we have already associated this apply inst with a closure to
|
|
// be specialized. We do not handle applies that take in multiple
|
|
// closures at this time.
|
|
if (!VisitedAI.insert(AI).second) {
|
|
MultipleClosureAI.insert(AI);
|
|
continue;
|
|
}
|
|
|
|
// If AI does not have a function_ref definition as its callee, we can
|
|
// not do anything here... so continue...
|
|
SILFunction *ApplyCallee = AI.getReferencedFunctionOrNull();
|
|
if (!ApplyCallee || ApplyCallee->isExternalDeclaration())
|
|
continue;
|
|
|
|
// Don't specialize non-fragile callees if the caller is fragile;
|
|
// the specialized callee will have shared linkage, and thus cannot
|
|
// be referenced from the fragile caller.
|
|
if (Caller->isSerialized() &&
|
|
!ApplyCallee->hasValidLinkageForFragileInline())
|
|
continue;
|
|
|
|
// If the callee uses a dynamic Self, we cannot specialize it,
|
|
// since the resulting specialization might longer has 'self' as the
|
|
// last parameter.
|
|
//
|
|
// We could fix this by inserting new arguments more carefully, or
|
|
// changing how we model dynamic Self altogether.
|
|
if (mayBindDynamicSelf(ApplyCallee))
|
|
return CFGChanged;
|
|
|
|
// Check if the closure is passed as an argument (and not called).
|
|
if (!AI.isArgumentOperand(*Use))
|
|
continue;
|
|
|
|
unsigned ClosureIndex = AI.getCalleeArgIndex(*Use);
|
|
|
|
// Ok, we know that we can perform the optimization but not whether or
|
|
// not the optimization is profitable. Check if the closure is actually
|
|
// called in the callee (or in a function called by the callee).
|
|
SmallPtrSet<SILFunction *, 8> HandledFuncs;
|
|
if (!isClosureAppliedIn(ApplyCallee, ClosureIndex, HandledFuncs))
|
|
continue;
|
|
|
|
unsigned firstParamArgIdx =
|
|
AI.getSubstCalleeConv().getSILArgIndexOfFirstParam();
|
|
assert(ClosureIndex >= firstParamArgIdx);
|
|
auto ClosureParamIndex = ClosureIndex - firstParamArgIdx;
|
|
|
|
auto ParamInfo = AI.getSubstCalleeType()->getParameters();
|
|
SILParameterInfo ClosureParamInfo = ParamInfo[ClosureParamIndex];
|
|
|
|
// We currently only support copying intermediate reabstraction
|
|
// closures if the closure is ultimately passed trivially.
|
|
bool IsClosurePassedTrivially = ClosureParamInfo.getInterfaceType()
|
|
->castTo<SILFunctionType>()
|
|
->isTrivialNoEscape();
|
|
if (HaveUsedReabstraction && !IsClosurePassedTrivially)
|
|
continue;
|
|
|
|
// Get all non-failure exit BBs in the Apply Callee if our partial apply
|
|
// is guaranteed. If we do not understand one of the exit BBs, bail.
|
|
//
|
|
// We need this to make sure that we insert a release in the appropriate
|
|
// locations to balance the +1 from the creation of the partial apply.
|
|
//
|
|
// However, thin_to_thick_function closures don't have a context and
|
|
// don't need to be released.
|
|
bool OnlyHaveThinToThickClosure =
|
|
isa<ThinToThickFunctionInst>(ClosureInst) && !HaveUsedReabstraction;
|
|
|
|
llvm::TinyPtrVector<SILBasicBlock *> NonFailureExitBBs;
|
|
if ((ClosureParamInfo.isGuaranteed() || IsClosurePassedTrivially) &&
|
|
!OnlyHaveThinToThickClosure &&
|
|
!findAllNonFailureExitBBs(ApplyCallee, NonFailureExitBBs)) {
|
|
continue;
|
|
}
|
|
|
|
// Specializing a readnone, readonly, releasenone function with a
|
|
// nontrivial context is illegal. Inserting a release in such a function
|
|
// results in miscompilation after other optimizations.
|
|
// For now, the specialization is disabled.
|
|
//
|
|
// TODO: A @noescape closure should never be converted to an @owned
|
|
// argument regardless of the function attribute.
|
|
if (!OnlyHaveThinToThickClosure
|
|
&& ApplyCallee->getEffectsKind() <= EffectsKind::ReleaseNone) {
|
|
continue;
|
|
}
|
|
|
|
// Avoid an infinite specialization loop caused by repeated runs of
|
|
// ClosureSpecializer and CapturePropagation.
|
|
// CapturePropagation propagates constant function-literals. Such
|
|
// function specializations can then be optimized again by the
|
|
// ClosureSpecializer and so on.
|
|
// This happens if a closure argument is called _and_ referenced in
|
|
// another closure, which is passed to a recursive call. E.g.
|
|
//
|
|
// func foo(_ c: @escaping () -> ()) {
|
|
// c()
|
|
// foo({ c() })
|
|
// }
|
|
//
|
|
// A limit of 2 is good enough and will not be exceed in "regular"
|
|
// optimization scenarios.
|
|
if (getSpecializationLevel(getClosureCallee(ClosureInst))
|
|
> SpecializationLevelLimit) {
|
|
continue;
|
|
}
|
|
// Compute the final release points of the closure. We will insert
|
|
// release of the captured arguments here.
|
|
if (!CInfo)
|
|
CInfo.reset(new ClosureInfo(ClosureInst));
|
|
|
|
// Mark the reabstraction closures as used.
|
|
if (HaveUsedReabstraction)
|
|
markReabstractionPartialApplyAsUsed(ClosureInst, Use->get(),
|
|
UsedReabstractionClosure);
|
|
// Now we know that CSDesc is profitable to specialize. Add it to our
|
|
// call site list.
|
|
CInfo->CallSites.push_back(
|
|
CallSiteDescriptor(CInfo.get(), AI, ClosureIndex,
|
|
ClosureParamInfo, std::move(NonFailureExitBBs)));
|
|
}
|
|
if (CInfo) {
|
|
ValueLifetimeAnalysis VLA(CInfo->Closure, UsePoints);
|
|
if (!VLA.computeFrontier(CInfo->LifetimeFrontier,
|
|
ValueLifetimeAnalysis::AllowToModifyCFG)) {
|
|
CFGChanged = true;
|
|
}
|
|
ClosureCandidates.push_back(std::move(CInfo));
|
|
}
|
|
}
|
|
}
|
|
return CFGChanged;
|
|
}
|
|
|
|
bool SILClosureSpecializerTransform::specialize(SILFunction *Caller,
|
|
std::vector<SingleValueInstruction *> &PropagatedClosures) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Optimizing callsites that take closure "
|
|
"argument in "
|
|
<< Caller->getName() << '\n');
|
|
|
|
// Collect all of the PartialApplyInsts that are used as arguments to
|
|
// ApplyInsts. Check the profitability of specializing the closure argument.
|
|
llvm::SmallVector<std::unique_ptr<ClosureInfo>, 8> ClosureCandidates;
|
|
llvm::DenseSet<FullApplySite> MultipleClosureAI;
|
|
if (gatherCallSites(Caller, ClosureCandidates, MultipleClosureAI)) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::Branches);
|
|
}
|
|
|
|
SILOptFunctionBuilder FuncBuilder(*this);
|
|
bool Changed = false;
|
|
for (const auto &CInfo : ClosureCandidates) {
|
|
for (auto &CSDesc : CInfo->CallSites) {
|
|
// Do not specialize apply insts that take in multiple closures. This pass
|
|
// does not know how to do this yet.
|
|
if (MultipleClosureAI.count(CSDesc.getApplyInst()))
|
|
continue;
|
|
|
|
auto NewFName = CSDesc.createName();
|
|
LLVM_DEBUG(llvm::dbgs() << " Perform optimizations with new name "
|
|
<< NewFName << '\n');
|
|
|
|
// Then see if we already have a specialized version of this function in
|
|
// our module.
|
|
SILFunction *NewF = CInfo->Closure->getModule().lookUpFunction(NewFName);
|
|
|
|
// If not, create a specialized version of ApplyCallee calling the closure
|
|
// directly.
|
|
if (!NewF) {
|
|
NewF = ClosureSpecCloner::cloneFunction(FuncBuilder, CSDesc, NewFName);
|
|
addFunctionToPassManagerWorklist(NewF, CSDesc.getApplyCallee());
|
|
LLVM_DEBUG(llvm::dbgs() << "\nThe rewritten callee is:\n";
|
|
NewF->dump());
|
|
}
|
|
|
|
// Rewrite the call
|
|
rewriteApplyInst(CSDesc, NewF);
|
|
|
|
PropagatedClosures.push_back(CSDesc.getClosure());
|
|
Changed = true;
|
|
}
|
|
}
|
|
LLVM_DEBUG(if (Changed) {
|
|
llvm::dbgs() << "\nThe rewritten caller is:\n";
|
|
Caller->dump();
|
|
});
|
|
return Changed;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createClosureSpecializer() {
|
|
return new SILClosureSpecializerTransform();
|
|
}
|