Files
swift-mirror/test/SILOptimizer/funcsig_explode_heuristic.sil
Josh Soref 730b16c569 Spelling siloptimizer
* access
* accessed
* accesses
* accessor
* acquiring
* across
* activated
* additive
* address
* addresses'
* aggregated
* analysis
* and
* appropriately
* archetype
* argument
* associated
* availability
* barriers
* because
* been
* beginning
* belongs
* beneficial
* blocks
* borrow
* builtin
* cannot
* canonical
* canonicalize
* clazz
* cleanup
* coalesceable
* coalesced
* comparisons
* completely
* component
* computed
* concrete
* conjunction
* conservatively
* constituent
* construct
* consuming
* containing
* covered
* creates
* critical
* dataflow
* declaration
* defined
* defining
* definition
* deinitialization
* deliberately
* dependencies
* dependent
* deserialized
* destroy
* deterministic
* deterministically
* devirtualizes
* diagnostic
* diagnostics
* differentiation
* disable
* discipline
* dominate
* dominates
* don't
* element
* eliminate
* eliminating
* elimination
* embedded
* encounter
* epilogue
* epsilon
* escape
* escaping
* essential
* evaluating
* evaluation
* evaluator
* executing
* existential
* existentials
* explicit
* expression
* extended
* extension
* extract
* for
* from
* function
* generic
* guarantee
* guaranteed
* happened
* heuristic
* however
* identifiable
* immediately
* implementation
* improper
* include
* infinite
* initialize
* initialized
* initializer
* inside
* instruction
* interference
* interferes
* interleaved
* internal
* intersection
* intractable
* intrinsic
* invalidates
* irreducible
* irrelevant
* language
* lifetime
* literal
* looks
* materialize
* meaning
* mergeable
* might
* mimics
* modification
* modifies
* multiple
* mutating
* necessarily
* necessary
* needsmultiplecopies
* nonetheless
* nothing
* occurred
* occurs
* optimization
* optimizing
* original
* outside
* overflow
* overlapping
* overridden
* owned
* ownership
* parallel
* parameter
* paths
* patterns
* pipeline
* plottable
* possible
* potentially
* practically
* preamble
* precede
* preceding
* predecessor
* preferable
* preparation
* probably
* projection
* properties
* property
* protocol
* reabstraction
* reachable
* recognized
* recursive
* recursively
* redundant
* reentrancy
* referenced
* registry
* reinitialization
* reload
* represent
* requires
* response
* responsible
* retrieving
* returned
* returning
* returns
* rewriting
* rewritten
* sample
* scenarios
* scope
* should
* sideeffects
* similar
* simplify
* simplifycfg
* somewhat
* spaghetti
* specialization
* specializations
* specialized
* specially
* statistically
* substitute
* substitution
* succeeds
* successful
* successfully
* successor
* superfluous
* surprisingly
* suspension
* swift
* targeted
* that
* that our
* the
* therefore
* this
* those
* threshold
* through
* transform
* transformation
* truncated
* ultimate
* unchecked
* uninitialized
* unlikely
* unmanaged
* unoptimized key
* updataflow
* usefulness
* utilities
* villain
* whenever
* writes

Signed-off-by: Josh Soref <jsoref@users.noreply.github.com>
2022-10-03 18:31:33 -04:00

208 lines
12 KiB
Plaintext

// RUN: %target-sil-opt -enable-objc-interop -enable-sil-verify-all -function-signature-opts -sil-fso-disable-dead-argument -sil-fso-disable-owned-to-guaranteed -enable-expand-all -sil-fso-optimize-if-not-called %s | %FileCheck %s
// *NOTE* We turn off all other fso optimizations including dead arg so we can
// make sure that we are not exploding those.
sil_stage canonical
import Builtin
//////////////////
// Declarations //
//////////////////
struct BigTrivial {
var x1: Builtin.Int32
var x2: Builtin.Int32
var x3: Builtin.Int32
var x4: Builtin.Int32
var x5: Builtin.Int32
var x6: Builtin.Int32
}
class Klass {}
struct LargeNonTrivialStructOneNonTrivialField {
var k1: Klass
var k2: Klass
var x1: Builtin.Int32
var x2: Builtin.Int32
var x3: Builtin.Int32
var x4: Builtin.Int32
}
sil @int_user : $@convention(thin) (Builtin.Int32) -> ()
sil @consuming_user : $@convention(thin) (@owned Klass) -> ()
sil @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
///////////
// Tests //
///////////
// We should never optimize this. If we did this would become a thunk, so we
// know that just be checking NFC we have proven no optimization has occurred.
//
// CHECK-LABEL: sil @never_explode_trivial : $@convention(thin) (BigTrivial) -> () {
// CHECK: } // end sil function 'never_explode_trivial'
sil @never_explode_trivial : $@convention(thin) (BigTrivial) -> () {
bb0(%0 : $BigTrivial):
%1 = struct_extract %0 : $BigTrivial, #BigTrivial.x1
%intfunc = function_ref @int_user : $@convention(thin) (Builtin.Int32) -> ()
apply %intfunc(%1) : $@convention(thin) (Builtin.Int32) -> ()
%9999 = tuple()
return %9999 : $()
}
// If a value is never used, do not touch it. We leave it for dead argument
// elimination. We have deliberately turned this off to test that behavior.
//
// CHECK-LABEL: sil @big_arg_with_no_uses : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK-NOT: apply
// CHECK: } // end sil function 'big_arg_with_no_uses'
sil @big_arg_with_no_uses : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%9999 = tuple()
return %9999 : $()
}
// We are using a single non-trivial field of the struct. We should explode this
// so we eliminate the second non-trivial leaf.
//
// CHECK-LABEL: sil [signature_optimized_thunk] [always_inline] @big_arg_with_one_nontrivial_use : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK: bb0([[ARG:%.*]] : $LargeNonTrivialStructOneNonTrivialField):
// CHECK: [[FUNC:%.*]] = function_ref @$s31big_arg_with_one_nontrivial_useTf4x_n
// CHECK: [[FIELD:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
// CHECK: apply [[FUNC]]([[FIELD]])
// CHECK: } // end sil function 'big_arg_with_one_nontrivial_use'
sil @big_arg_with_one_nontrivial_use : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = function_ref @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
apply %2(%1) : $@convention(thin) (@guaranteed Klass) -> ()
%9999 = tuple()
return %9999 : $()
}
// We are using a single non-trivial field and a single trivial field. We are
// willing to blow this up.
//
// CHECK-LABEL: sil [signature_optimized_thunk] [always_inline] @big_arg_with_one_nontrivial_use_one_trivial_use : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK: bb0([[ARG:%.*]] : $LargeNonTrivialStructOneNonTrivialField):
// CHECK: [[FUNC:%.*]] = function_ref @$s032big_arg_with_one_nontrivial_use_d9_trivial_F0Tf4x_n : $@convention(thin) (@guaranteed Klass, Builtin.Int32) -> ()
// CHECK: [[TRIVIAL_FIELD:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x1
// CHECK: [[NON_TRIVIAL_FIELD:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
// CHECK: apply [[FUNC]]([[NON_TRIVIAL_FIELD]], [[TRIVIAL_FIELD]])
// CHECK: } // end sil function 'big_arg_with_one_nontrivial_use_one_trivial_use'
sil @big_arg_with_one_nontrivial_use_one_trivial_use : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x1
%3 = function_ref @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
apply %3(%1) : $@convention(thin) (@guaranteed Klass) -> ()
%intfunc = function_ref @int_user : $@convention(thin) (Builtin.Int32) -> ()
apply %intfunc(%2) : $@convention(thin) (Builtin.Int32) -> ()
%9999 = tuple()
return %9999 : $()
}
// We can still explode this, since our limit is 3 values.
//
// CHECK-LABEL: sil [signature_optimized_thunk] [always_inline] @big_arg_with_one_nontrivial_use_two_trivial_uses : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK: bb0([[ARG:%.*]] : $LargeNonTrivialStructOneNonTrivialField):
// CHECK: [[FUNC:%.*]] = function_ref @$s48big_arg_with_one_nontrivial_use_two_trivial_usesTf4x_n : $@convention(thin)
// CHECK: [[TRIVIAL_FIELD1:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x2
// CHECK: [[TRIVIAL_FIELD2:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x1
// CHECK: [[NON_TRIVIAL_FIELD:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
// CHECK: apply [[FUNC]]([[NON_TRIVIAL_FIELD]], [[TRIVIAL_FIELD2]], [[TRIVIAL_FIELD1]])
sil @big_arg_with_one_nontrivial_use_two_trivial_uses : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x1
%3 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x2
%4 = function_ref @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
apply %4(%1) : $@convention(thin) (@guaranteed Klass) -> ()
%intfunc = function_ref @int_user : $@convention(thin) (Builtin.Int32) -> ()
apply %intfunc(%2) : $@convention(thin) (Builtin.Int32) -> ()
apply %intfunc(%3) : $@convention(thin) (Builtin.Int32) -> ()
%9999 = tuple()
return %9999 : $()
}
// We do not blow up the struct here since we have 4 uses, not 3.
//
// CHECK-LABEL: sil @big_arg_with_one_nontrivial_use_three_trivial_uses : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
sil @big_arg_with_one_nontrivial_use_three_trivial_uses : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x1
%3 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x2
%3a = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.x3
%4 = function_ref @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
apply %4(%1) : $@convention(thin) (@guaranteed Klass) -> ()
%intfunc = function_ref @int_user : $@convention(thin) (Builtin.Int32) -> ()
apply %intfunc(%2) : $@convention(thin) (Builtin.Int32) -> ()
apply %intfunc(%3) : $@convention(thin) (Builtin.Int32) -> ()
apply %intfunc(%3a) : $@convention(thin) (Builtin.Int32) -> ()
%9999 = tuple()
return %9999 : $()
}
// In this case, we shouldn't blow up the struct since we have not reduced the
// number of non-trivial leaf nodes used.
//
// CHECK-LABEL: sil @big_arg_with_two_nontrivial_use : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
sil @big_arg_with_two_nontrivial_use : $@convention(thin) (@guaranteed LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k2
%3 = function_ref @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
apply %3(%1) : $@convention(thin) (@guaranteed Klass) -> ()
apply %3(%2) : $@convention(thin) (@guaranteed Klass) -> ()
%9999 = tuple()
return %9999 : $()
}
// If we have one non-trivial value that is live and only live because of a
// destroy, we can delete the argument after performing o2g.
//
// We are using a single non-trivial field of the struct. We should explode this
// so we eliminate the second non-trivial leaf.
//
// CHECK-LABEL: sil [signature_optimized_thunk] [always_inline] @big_arg_with_one_nontrivial_use_o2g_other_dead : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK-NOT: release_value
// CHECK: apply
// CHECK-NOT: release_value
// CHECK: } // end sil function 'big_arg_with_one_nontrivial_use_o2g_other_dead'
sil @big_arg_with_one_nontrivial_use_o2g_other_dead : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
release_value %1 : $Klass
%9999 = tuple()
return %9999 : $()
}
// If we have two non-trivial values that are live and one is always dead and
// the other is kept alive due to a release, we can get rid of both since FSO
// reruns with o2g. Test here that we explode it appropriately even though we
// aren't reducing the number of non-trivial uses. The
// funcsig_explode_heuristic_inline.sil test makes sure we in combination
// produce the appropriate SIL.
//
// We check that we can inline this correctly in the inline test.
//
// CHECK-LABEL: sil [signature_optimized_thunk] [always_inline] @big_arg_with_one_nontrivial_use_o2g : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK: bb0([[ARG:%.*]] : $LargeNonTrivialStructOneNonTrivialField):
// CHECK: [[FUNC:%.*]] = function_ref @$s35big_arg_with_one_nontrivial_use_o2gTf4x_n : $@convention(thin) (@owned Klass, @owned Klass) -> ()
// CHECK: apply [[FUNC]](
// CHECK: } // end sil function 'big_arg_with_one_nontrivial_use_o2g'
sil @big_arg_with_one_nontrivial_use_o2g : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k2
%3 = function_ref @consuming_user : $@convention(thin) (@owned Klass) -> ()
apply %3(%2) : $@convention(thin) (@owned Klass) -> ()
release_value %1 : $Klass
%9999 = tuple()
return %9999 : $()
}