Files
swift-mirror/lib/Sema/ResilienceDiagnostics.cpp
Allan Shortlidge c868378d96 ConstraintSystem: Use scoring to implement MemberImportVisibility.
Previously, the constraint solver would first attempt member lookup that
excluded members from transitively imported modules. If there were no viable
candidates, it would perform a second lookup that included the previously
excluded members, treating any candidates as unviable. This meant that if the
member reference did resolve to one of the unviable candidates the resulting
AST would be broken, which could cause unwanted knock-on diagnostics.

Now, members from transitively imported modules are always returned in the set
of viable candidates. However, scoring will always prioritize candidates from
directly imported modules over members from transitive imports. This solves the
ambiguities that `MemberImportVisibility` is designed to prevent. If the only
viable candidates are from transitively imported modules, though, then the
reference will be resolved successfully and diagnosed later in
`MiscDiagnostics.cpp`. The resulting AST will not contain any errors, which
ensures that necessary access levels can be computed correctly for the imports
suggested by `MemberImportVisibility` fix-its.

Resolves rdar://126637855.
2024-09-10 09:47:42 -07:00

422 lines
17 KiB
C++

//===--- ResilienceDiagnostics.cpp - Resilience Inlineability Diagnostics -===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements diagnostics for fragile functions, like those with
// @inlinable, @_alwaysEmitIntoClient, or @backDeployed.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckAccess.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DeclContext.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeDeclFinder.h"
#include "swift/Basic/Assertions.h"
using namespace swift;
static bool addMissingImport(SourceLoc loc, const Decl *D,
const ExportContext &where) {
ASTContext &ctx = where.getDeclContext()->getASTContext();
ModuleDecl *M = D->getModuleContext();
auto *SF = where.getDeclContext()->getParentSourceFile();
// Only add imports of API level modules if this is an API level module.
if (M->getLibraryLevel() != LibraryLevel::API &&
SF->getParentModule()->getLibraryLevel() == LibraryLevel::API)
return false;
// Hack to fix swiftinterfaces in case of missing imports. We can get rid of
// this logic when we don't leak the use of non-locally imported things in
// API.
auto missingImport = ImportedModule(ImportPath::Access(),
const_cast<ModuleDecl *>(M));
SF->addImplicitImportForModuleInterface(missingImport);
ctx.Diags.diagnose(loc, diag::missing_import_inserted, M->getName());
return true;
}
bool TypeChecker::diagnoseInlinableDeclRefAccess(SourceLoc loc,
const ValueDecl *D,
const ExportContext &where) {
auto fragileKind = where.getFragileFunctionKind();
if (fragileKind.kind == FragileFunctionKind::None)
return false;
// Local declarations are OK.
if (D->getDeclContext()->isLocalContext())
return false;
auto *DC = where.getDeclContext();
auto &Context = DC->getASTContext();
if (auto *init = dyn_cast<ConstructorDecl>(DC)) {
if (init->isDesignatedInit()) {
auto *storage = dyn_cast<AbstractStorageDecl>(D);
if (storage && storage->hasInitAccessor()) {
if (diagnoseInlinableDeclRefAccess(
loc, storage->getAccessor(AccessorKind::Init), where))
return true;
}
}
}
// Remember that the module defining the decl must be imported publicly.
recordRequiredImportAccessLevelForDecl(
D, DC, AccessLevel::Public,
[&](AttributedImport<ImportedModule> attributedImport) {
ModuleDecl *importedVia = attributedImport.module.importedModule,
*sourceModule = D->getModuleContext();
Context.Diags.diagnose(loc, diag::module_api_import, D, importedVia,
sourceModule, importedVia == sourceModule,
/*isImplicit*/ false);
});
// General check on access-level of the decl.
auto declAccessScope =
D->getFormalAccessScope(/*useDC=*/DC,
/*allowUsableFromInline=*/true);
// Public declarations are OK, even if they're SPI or came from an
// implementation-only import. We'll diagnose exportability violations
// from diagnoseDeclRefExportability().
if (declAccessScope.isPublic())
return false;
// Dynamic declarations were mistakenly not checked in Swift 4.2.
// Do enforce the restriction even in pre-Swift-5 modes if the module we're
// building is resilient, though.
if (D->shouldUseObjCDispatch() && !Context.isSwiftVersionAtLeast(5) &&
!DC->getParentModule()->isResilient()) {
return false;
}
DowngradeToWarning downgradeToWarning = DowngradeToWarning::No;
// Swift 4.2 did not perform any checks for type aliases.
if (isa<TypeAliasDecl>(D)) {
if (!Context.isSwiftVersionAtLeast(4, 2))
return false;
if (!Context.isSwiftVersionAtLeast(5))
downgradeToWarning = DowngradeToWarning::Yes;
}
// Swift 4.2 did not check accessor accessibility.
if (auto accessor = dyn_cast<AccessorDecl>(D)) {
if (!accessor->isInitAccessor() && !Context.isSwiftVersionAtLeast(5))
downgradeToWarning = DowngradeToWarning::Yes;
}
// Swift 5.0 did not check the underlying types of local typealiases.
if (isa<TypeAliasDecl>(DC) && !Context.isSwiftVersionAtLeast(6))
downgradeToWarning = DowngradeToWarning::Yes;
auto diagID = diag::resilience_decl_unavailable;
if (downgradeToWarning == DowngradeToWarning::Yes)
diagID = diag::resilience_decl_unavailable_warn;
AccessLevel diagAccessLevel = declAccessScope.accessLevelForDiagnostics();
Context.Diags.diagnose(loc, diagID, D, diagAccessLevel,
fragileKind.getSelector());
Context.Diags.diagnose(D, diag::resilience_decl_declared_here, D);
ImportAccessLevel problematicImport = D->getImportAccessFrom(DC);
if (problematicImport.has_value() &&
problematicImport->accessLevel < D->getFormalAccess()) {
Context.Diags.diagnose(problematicImport->importLoc,
diag::decl_import_via_here, D,
problematicImport->accessLevel,
problematicImport->module.importedModule);
}
return (downgradeToWarning == DowngradeToWarning::No);
}
static bool diagnoseTypeAliasDeclRefExportability(SourceLoc loc,
const TypeAliasDecl *TAD,
const ExportContext &where) {
assert(where.mustOnlyReferenceExportedDecls());
auto *D = TAD->getUnderlyingType()->getAnyNominal();
if (!D)
return false;
const DeclContext *DC = where.getDeclContext();
auto exportingModule = DC->getParentModule();
ASTContext &ctx = exportingModule->getASTContext();
// Remember that the module defining the underlying type must be imported
// publicly.
recordRequiredImportAccessLevelForDecl(
D, DC, AccessLevel::Public,
[&](AttributedImport<ImportedModule> attributedImport) {
ModuleDecl *importedVia = attributedImport.module.importedModule,
*sourceModule = D->getModuleContext();
ctx.Diags.diagnose(loc, diag::module_api_import_aliases, D, importedVia,
sourceModule, importedVia == sourceModule);
});
auto ignoredDowngradeToWarning = DowngradeToWarning::No;
auto originKind =
getDisallowedOriginKind(D, where, ignoredDowngradeToWarning);
if (originKind == DisallowedOriginKind::None)
return false;
// As an exception, if the import of the module that defines the desugared
// decl is just missing (as opposed to imported explicitly with reduced
// visibility) then we should only diagnose if we're building a resilient
// module.
if (originKind == DisallowedOriginKind::MissingImport &&
!exportingModule->isResilient())
return false;
auto definingModule = D->getModuleContext();
auto fragileKind = where.getFragileFunctionKind();
bool warnPreSwift6 = originKind != DisallowedOriginKind::SPIOnly &&
originKind != DisallowedOriginKind::NonPublicImport;
if (fragileKind.kind == FragileFunctionKind::None) {
auto reason = where.getExportabilityReason();
ctx.Diags
.diagnose(loc, diag::typealias_desugars_to_type_from_hidden_module,
TAD, definingModule->getNameStr(), D->getNameStr(),
static_cast<unsigned>(*reason), definingModule->getName(),
static_cast<unsigned>(originKind))
.warnUntilSwiftVersionIf(warnPreSwift6, 6);
} else {
ctx.Diags
.diagnose(loc,
diag::inlinable_typealias_desugars_to_type_from_hidden_module,
TAD, definingModule->getNameStr(), D->getNameStr(),
fragileKind.getSelector(), definingModule->getName(),
static_cast<unsigned>(originKind))
.warnUntilSwiftVersionIf(warnPreSwift6, 6);
}
D->diagnose(diag::kind_declared_here, DescriptiveDeclKind::Type);
if (originKind == DisallowedOriginKind::MissingImport &&
!ctx.LangOpts.isSwiftVersionAtLeast(6))
addMissingImport(loc, D, where);
// If limited by an import, note which one.
if (originKind == DisallowedOriginKind::NonPublicImport) {
ImportAccessLevel limitImport = D->getImportAccessFrom(DC);
assert(limitImport.has_value() &&
limitImport->accessLevel < AccessLevel::Public &&
"The import should still be non-public");
ctx.Diags.diagnose(limitImport->importLoc,
diag::decl_import_via_here, D,
limitImport->accessLevel,
limitImport->module.importedModule);
}
return true;
}
static bool diagnoseValueDeclRefExportability(SourceLoc loc, const ValueDecl *D,
const ExportContext &where) {
assert(where.mustOnlyReferenceExportedDecls());
auto definingModule = D->getModuleContext();
auto downgradeToWarning = DowngradeToWarning::No;
auto reason = where.getExportabilityReason();
auto DC = where.getDeclContext();
auto SF = DC->getParentSourceFile();
ASTContext &ctx = DC->getASTContext();
auto originKind = getDisallowedOriginKind(D, where, downgradeToWarning);
// Remember that the module defining the decl must be imported publicly.
recordRequiredImportAccessLevelForDecl(
D, DC, AccessLevel::Public,
[&](AttributedImport<ImportedModule> attributedImport) {
if (where.isExported() && reason != ExportabilityReason::General &&
originKind != DisallowedOriginKind::NonPublicImport) {
// These may be reported twice, for the Type and for the TypeRepr.
ModuleDecl *importedVia = attributedImport.module.importedModule,
*sourceModule = D->getModuleContext();
ctx.Diags.diagnose(loc, diag::module_api_import, D, importedVia,
sourceModule, importedVia == sourceModule,
/*isImplicit*/ false);
}
});
// Access levels from imports are reported with the others access levels.
// Except for extensions and protocol conformances, we report them here.
if (originKind == DisallowedOriginKind::NonPublicImport) {
bool reportHere = [&] {
switch (*reason) {
case ExportabilityReason::ExtensionWithPublicMembers:
case ExportabilityReason::ExtensionWithConditionalConformances:
return true;
case ExportabilityReason::Inheritance:
return isa<ProtocolDecl>(D);
default:
return false;
}
}();
if (!reportHere)
return false;
}
if (originKind == DisallowedOriginKind::None)
return false;
// Some diagnostics emitted with the `MemberImportVisibility` feature enabled
// subsume these diagnostics.
if (originKind == DisallowedOriginKind::MissingImport &&
ctx.LangOpts.hasFeature(Feature::MemberImportVisibility) && SF)
return false;
if (auto accessor = dyn_cast<AccessorDecl>(D)) {
// Only diagnose accessors if their disallowed origin kind differs from
// that of their storage.
if (getDisallowedOriginKind(accessor->getStorage(), where) == originKind)
return false;
}
auto fragileKind = where.getFragileFunctionKind();
if (fragileKind.kind == FragileFunctionKind::None) {
DiagnosticBehavior limit = downgradeToWarning == DowngradeToWarning::Yes
? DiagnosticBehavior::Warning
: DiagnosticBehavior::Unspecified;
ctx.Diags.diagnose(loc, diag::decl_from_hidden_module, D,
static_cast<unsigned>(*reason),
definingModule->getName(),
static_cast<unsigned>(originKind))
.limitBehavior(limit);
D->diagnose(diag::kind_declared_here, DescriptiveDeclKind::Type);
} else {
// Only implicitly imported decls should be reported as a warning,
// and only for language versions below Swift 6.
assert(downgradeToWarning == DowngradeToWarning::No ||
originKind == DisallowedOriginKind::MissingImport &&
"Only implicitly imported decls should be reported as a warning.");
ctx.Diags.diagnose(loc, diag::inlinable_decl_ref_from_hidden_module, D,
fragileKind.getSelector(), definingModule->getName(),
static_cast<unsigned>(originKind))
.warnUntilSwiftVersionIf(downgradeToWarning == DowngradeToWarning::Yes,
6);
if (originKind == DisallowedOriginKind::MissingImport &&
downgradeToWarning == DowngradeToWarning::Yes)
addMissingImport(loc, D, where);
}
// If limited by an import, note which one.
ImportAccessLevel import = D->getImportAccessFrom(DC);
if (originKind == DisallowedOriginKind::NonPublicImport) {
assert(import.has_value() &&
import->accessLevel < AccessLevel::Public &&
"The import should still be non-public");
ctx.Diags.diagnose(import->importLoc,
diag::decl_import_via_here, D,
import->accessLevel,
import->module.importedModule);
}
return true;
}
bool TypeChecker::diagnoseDeclRefExportability(SourceLoc loc,
const ValueDecl *D,
const ExportContext &where) {
if (!where.mustOnlyReferenceExportedDecls())
return false;
if (diagnoseValueDeclRefExportability(loc, D, where))
return true;
if (auto *TAD = dyn_cast<TypeAliasDecl>(D))
if (diagnoseTypeAliasDeclRefExportability(loc, TAD, where))
return true;
return false;
}
bool
TypeChecker::diagnoseConformanceExportability(SourceLoc loc,
const RootProtocolConformance *rootConf,
const ExtensionDecl *ext,
const ExportContext &where,
bool warnIfConformanceUnavailablePreSwift6) {
if (!where.mustOnlyReferenceExportedDecls())
return false;
// Skip the special Sendable and Copyable conformances we synthesized in
// ASTContext::getBuiltinTupleDecl().
if (ext->getParentModule()->isBuiltinModule())
return false;
const DeclContext *DC = where.getDeclContext();
ModuleDecl *M = ext->getParentModule();
ASTContext &ctx = M->getASTContext();
// Remember that the module defining the conformance must be imported
// publicly.
recordRequiredImportAccessLevelForDecl(
ext, DC, AccessLevel::Public,
[&](AttributedImport<ImportedModule> attributedImport) {
ModuleDecl *importedVia = attributedImport.module.importedModule,
*sourceModule = ext->getModuleContext();
ctx.Diags.diagnose(loc, diag::module_api_import_conformance,
rootConf->getType(), rootConf->getProtocol(),
importedVia, sourceModule,
importedVia == sourceModule);
});
auto originKind = getDisallowedOriginKind(ext, where);
if (originKind == DisallowedOriginKind::None)
return false;
auto reason = where.getExportabilityReason();
if (!reason.has_value())
reason = ExportabilityReason::General;
ctx.Diags.diagnose(loc, diag::conformance_from_implementation_only_module,
rootConf->getType(),
rootConf->getProtocol()->getName(),
static_cast<unsigned>(*reason),
M->getName(),
static_cast<unsigned>(originKind))
.warnUntilSwiftVersionIf((warnIfConformanceUnavailablePreSwift6 &&
originKind != DisallowedOriginKind::SPIOnly &&
originKind != DisallowedOriginKind::NonPublicImport) ||
originKind == DisallowedOriginKind::MissingImport,
6);
if (originKind == DisallowedOriginKind::MissingImport &&
!ctx.LangOpts.isSwiftVersionAtLeast(6))
addMissingImport(loc, ext, where);
// If limited by an import, note which one.
if (originKind == DisallowedOriginKind::NonPublicImport) {
ImportAccessLevel limitImport = ext->getImportAccessFrom(DC);
assert(limitImport.has_value() &&
limitImport->accessLevel < AccessLevel::Public &&
"The import should still be non-public");
ctx.Diags.diagnose(limitImport->importLoc,
diag::decl_import_via_here, ext,
limitImport->accessLevel,
limitImport->module.importedModule);
}
return true;
}