Files
swift-mirror/test/Constraints/array_literal.swift
Pavel Yaskevich 2c9d05991f [CSBindings] Prevent BindingSet::isViable from dropping viable bindings
I think the original idea was to elide `Array<$T>` if there is
a binding a resolved generic arguments i.e. `Array<Float>`, but
the check doesn't account for the fact that bindings could be
of different kinds and there are some implicit conversions that
could be missed if we remove the bindings.

For example, given the following constraints:

`Array<$T0> conv $T1`
`$T1 conv Array<(String, Int)>`

`$T0` can be a supertype of `Array<$T0>` and subtype of `Array<(String, Int)>`.

The solver should accept both types as viable bindings because the
`$T0` could be bound to `(key: String, value: Int)` and that would
match `Array<(String, Int)>` conversion.
2024-09-16 09:54:12 -07:00

428 lines
11 KiB
Swift

// RUN: %target-typecheck-verify-swift -disable-availability-checking
struct IntList : ExpressibleByArrayLiteral {
typealias Element = Int
init(arrayLiteral elements: Int...) {}
}
struct DoubleList : ExpressibleByArrayLiteral {
typealias Element = Double
init(arrayLiteral elements: Double...) {}
}
struct IntDict : ExpressibleByArrayLiteral {
typealias Element = (String, Int)
init(arrayLiteral elements: Element...) {}
}
final class DoubleDict : ExpressibleByArrayLiteral {
typealias Element = (String, Double)
init(arrayLiteral elements: Element...) {}
}
final class List<T> : ExpressibleByArrayLiteral {
typealias Element = T
init(arrayLiteral elements: T...) {}
}
final class Dict<K,V> : ExpressibleByArrayLiteral {
typealias Element = (K,V)
init(arrayLiteral elements: (K,V)...) {}
}
infix operator =>
func => <K, V>(k: K, v: V) -> (K,V) { return (k,v) }
func useIntList(_ l: IntList) {}
func useDoubleList(_ l: DoubleList) {}
func useIntDict(_ l: IntDict) {}
func useDoubleDict(_ l: DoubleDict) {}
func useList<T>(_ l: List<T>) {}
func useDict<K,V>(_ d: Dict<K,V>) {}
useIntList([1,2,3])
useIntList([1.0,2,3]) // expected-error{{cannot convert value of type 'Double' to expected element type 'Int'}}
useIntList([nil]) // expected-error {{'nil' is not compatible with expected element type 'Int'}}
useDoubleList([1.0,2,3])
useDoubleList([1.0,2.0,3.0])
useIntDict(["Niners" => 31, "Ravens" => 34])
useIntDict(["Niners" => 31, "Ravens" => 34.0]) // expected-error{{cannot convert value of type 'Double' to expected element type 'Int'}}
// <rdar://problem/22333090> QoI: Propagate contextual information in a call to operands
useDoubleDict(["Niners" => 31, "Ravens" => 34.0])
useDoubleDict(["Niners" => 31.0, "Ravens" => 34])
useDoubleDict(["Niners" => 31.0, "Ravens" => 34.0])
// Generic slices
useList([1,2,3])
useList([1.0,2,3])
useList([1.0,2.0,3.0])
useDict(["Niners" => 31, "Ravens" => 34])
useDict(["Niners" => 31, "Ravens" => 34.0])
useDict(["Niners" => 31.0, "Ravens" => 34.0])
// Fall back to [T] if no context is otherwise available.
var a = [1,2,3]
var a2 : [Int] = a
var b = [1,2,3.0]
var b2 : [Double] = b
var arrayOfStreams = [1..<2, 3..<4]
struct MyArray : ExpressibleByArrayLiteral {
typealias Element = Double
init(arrayLiteral elements: Double...) {
}
}
var myArray : MyArray = [2.5, 2.5]
// Inference for tuple elements.
var x1 = [1]
x1[0] = 0
var x2 = [(1, 2)]
x2[0] = (3, 4)
var x3 = [1, 2, 3]
x3[0] = 4
func trailingComma() {
_ = [1, ]
_ = [1, 2, ]
_ = ["a": 1, ]
_ = ["a": 1, "b": 2, ]
}
func longArray() {
var _=["1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1"]
}
[1,2].map // expected-error {{generic parameter 'T' could not be inferred}}
// <rdar://problem/25563498> Type checker crash assigning array literal to type conforming to ArrayProtocol
func rdar25563498<T : ExpressibleByArrayLiteral>(t: T) {
var x: T = [1] // expected-error {{cannot convert value of type 'Int' to expected element type 'T.ArrayLiteralElement'}}
}
func rdar25563498_ok<T : ExpressibleByArrayLiteral>(t: T) -> T
where T.ArrayLiteralElement : ExpressibleByIntegerLiteral {
let x: T = [1]
return x
}
class A { }
class B : A { }
class C : A { }
/// Check for defaulting the element type to 'Any' / 'Any?'.
func defaultToAny(i: Int, s: String) {
let a1 = [1, "a", 3.5]
// expected-error@-1{{heterogeneous collection literal could only be inferred to '[Any]'; add explicit type annotation if this is intentional}}
let _: Int = a1 // expected-error{{value of type '[Any]'}}
let _ = ([1, "a"])
// expected-error@-1{{heterogeneous collection literal could only be inferred to '[Any]'; add explicit type annotation if this is intentional}}
let _ = [1, true, []]
// expected-error@-1:11 {{heterogeneous collection literal could only be inferred to '[Any]'; add explicit type annotation if this is intentional}}
let a2: Array = [1, "a", 3.5]
// expected-error@-1{{heterogeneous collection literal could only be inferred to '[Any]'; add explicit type annotation if this is intentional}}
let _: Int = a2 // expected-error{{value of type '[Any]'}}
let a3 = [1, "a", nil, 3.5]
// expected-error@-1{{heterogeneous collection literal could only be inferred to '[Any?]'; add explicit type annotation if this is intentional}}
let _: Int = a3 // expected-error{{value of type '[Any?]'}}
let a4: Array = [1, "a", nil, 3.5]
// expected-error@-1{{heterogeneous collection literal could only be inferred to '[Any?]'; add explicit type annotation if this is intentional}}
let _: Int = a4 // expected-error{{value of type '[Any?]'}}
let a5 = []
// expected-error@-1{{empty collection literal requires an explicit type}}
let _: Int = a5 // expected-error{{value of type '[Any]'}}
let _: [Any] = []
let _: [Any] = [1, "a", 3.5]
let _: [Any] = [1, "a", [3.5, 3.7, 3.9]]
let _: [Any] = [1, "a", [3.5, "b", 3]]
let _: [Any] = [1, [2, [3]]]
func f1() -> [Any] {
[]
}
let _: [Any?] = [1, "a", nil, 3.5]
let _: [Any?] = [1, "a", nil, [3.5, 3.7, 3.9]]
let _: [Any?] = [1, "a", nil, [3.5, "b", nil]]
let _: [Any?] = [1, [2, [3]]]
let _: [Any?] = [1, nil, [2, nil, [3]]]
let a6 = [B(), C()]
let _: Int = a6 // expected-error{{value of type '[A]'}}
let a7: some Collection = [1, "Swift"]
let _: (any Sequence)? = [1, "Swift"]
let _: any Sequence = [1, nil, "Swift"]
let _ = true ? [] : []
let _ = (true, ([1, "Swift"]))
func f2<T>(_: [T]) {}
func f3<T>() -> [T]? {}
f2([])
f2([1, nil, ""])
_ = f3() ?? []
}
func noInferAny(iob: inout B, ioc: inout C) {
var b = B()
var c = C()
let _ = [b, c, iob, ioc] // do not infer [Any] when elements are lvalues or inout
let _: [A] = [b, c, iob, ioc] // do not infer [Any] when elements are lvalues or inout
b = B()
c = C()
}
/// Check handling of 'nil'.
protocol Proto1 {}
protocol Proto2 {}
struct Nilable: ExpressibleByNilLiteral {
init(nilLiteral: ()) {}
}
func joinWithNil<T>(s: String, a: Any, t: T, m: T.Type, p: Proto1 & Proto2, arr: [Int], opt: Int?, iou: Int!, n: Nilable) {
let a1 = [s, nil]
let _: Int = a1 // expected-error{{value of type '[String?]'}}
let a2 = [nil, s]
let _: Int = a2 // expected-error{{value of type '[String?]'}}
let a3 = ["hello", nil]
let _: Int = a3 // expected-error{{value of type '[String?]'}}
let a4 = [nil, "hello"]
let _: Int = a4 // expected-error{{value of type '[String?]'}}
let a5 = [(s, s), nil]
let _: Int = a5 // expected-error{{value of type '[(String, String)?]'}}
let a6 = [nil, (s, s)]
let _: Int = a6 // expected-error{{value of type '[(String, String)?]'}}
let a7 = [("hello", "world"), nil]
let _: Int = a7 // expected-error{{value of type '[(String, String)?]'}}
let a8 = [nil, ("hello", "world")]
let _: Int = a8 // expected-error{{value of type '[(String, String)?]'}}
let a9 = [{ $0 * 2 }, nil]
let _: Int = a9 // expected-error{{value of type '[((Int) -> Int)?]'}}
let a10 = [nil, { $0 * 2 }]
let _: Int = a10 // expected-error{{value of type '[((Int) -> Int)?]'}}
let a11 = [a, nil]
let _: Int = a11 // expected-error{{value of type '[Any?]'}}
let a12 = [nil, a]
let _: Int = a12 // expected-error{{value of type '[Any?]'}}
let a13 = [t, nil]
let _: Int = a13 // expected-error{{value of type '[T?]'}}
let a14 = [nil, t]
let _: Int = a14 // expected-error{{value of type '[T?]'}}
let a15 = [m, nil]
let _: Int = a15 // expected-error{{value of type '[T.Type?]'}}
let a16 = [nil, m]
let _: Int = a16 // expected-error{{value of type '[T.Type?]'}}
let a17 = [p, nil]
let _: Int = a17 // expected-error{{value of type '[(any Proto1 & Proto2)?]'}}
let a18 = [nil, p]
let _: Int = a18 // expected-error{{value of type '[(any Proto1 & Proto2)?]'}}
let a19 = [arr, nil]
let _: Int = a19 // expected-error{{value of type '[[Int]?]'}}
let a20 = [nil, arr]
let _: Int = a20 // expected-error{{value of type '[[Int]?]'}}
let a21 = [opt, nil]
let _: Int = a21 // expected-error{{value of type '[Int?]'}}
let a22 = [nil, opt]
let _: Int = a22 // expected-error{{value of type '[Int?]'}}
let a23 = [iou, nil]
let _: Int = a23 // expected-error{{value of type '[Int?]'}}
let a24 = [nil, iou]
let _: Int = a24 // expected-error{{value of type '[Int?]'}}
let a25 = [n, nil]
let _: Int = a25 // expected-error{{value of type '[Nilable]'}}
let a26 = [nil, n]
let _: Int = a26 // expected-error{{value of type '[Nilable]'}}
}
struct OptionSetLike : ExpressibleByArrayLiteral {
typealias Element = OptionSetLike
init() { }
init(arrayLiteral elements: OptionSetLike...) { }
static let option: OptionSetLike = OptionSetLike()
}
func testOptionSetLike(b: Bool) {
let _: OptionSetLike = [ b ? [] : OptionSetLike.option, OptionSetLike.option]
let _: OptionSetLike = [ b ? [] : .option, .option]
}
// Join of class metatypes - <rdar://problem/30233451>
class Company<T> {
init(routes: [() -> T]) { }
}
class Person { }
class Employee: Person { }
class Manager: Person { }
let routerPeople = Company(
routes: [
{ () -> Employee.Type in
_ = ()
return Employee.self
},
{ () -> Manager.Type in
_ = ()
return Manager.self
}
]
)
// Same as above but with existentials
protocol Fruit {}
protocol Tomato : Fruit {}
struct Chicken : Tomato {}
protocol Pear : Fruit {}
struct Beef : Pear {}
let routerFruit = Company(
routes: [
{ () -> Tomato.Type in
_ = ()
return Chicken.self
},
{ () -> Pear.Type in
_ = ()
return Beef.self
}
]
)
// https://github.com/apple/swift/issues/46371
do {
let x: [Int] = [1, 2, 3]
// Infer '[[Int]]'.
// FIXME: As noted in the issue, this was the behavior in Swift 3, but
// it seems like the wrong choice and is less by design than by accident.
let _ = [x.reversed(), x]
}
// Conditional conformance
protocol P { }
struct PArray<T> { }
extension PArray : ExpressibleByArrayLiteral where T: P {
// expected-note@-1 {{requirement from conditional conformance of 'PArray<String>' to 'ExpressibleByArrayLiteral'}}
typealias ArrayLiteralElement = T
init(arrayLiteral elements: T...) { }
}
extension Int: P { }
func testConditional(i: Int, s: String) {
let _: PArray<Int> = [i, i, i]
let _: PArray<String> = [s, s, s] // expected-error{{generic struct 'PArray' requires that 'String' conform to 'P'}}
}
// https://github.com/apple/swift/issues/50912
do {
enum Enum: ExpressibleByStringLiteral {
case text(String)
init(stringLiteral value: String) {
self = .text(value)
}
}
let _: [Enum] = [Enum("hello")]
let _: [Enum] = [.text("hello")]
let _: [Enum] = ["hello", Enum.text("world")]
let _: [Enum] = ["hello", .text("world")]
}
struct TestMultipleOverloadedInits {
var x: Double
func foo() {
let _ = [Float(x), Float(x), Float(x), Float(x)]
}
}
do {
struct Section {
var rows: [Row<Any>]?
}
struct Row<T> {
init(value: T?) {}
}
struct Asset {
var orientation: Int32
}
func test(asset: Asset) -> [Section] {
return [
Section(rows: [
Row(value: String(describing: asset.orientation)) // Ok
])
]
}
}
do {
func f<R>(fn: () -> [R]) -> [R] { [] }
// Requires collection upcast from Array<(key: String, value: String)> to `Array<(String, String)>`
func g(v: [String: String]) {
let _: [(String, String)] = f { return Array(v) } + v // Ok
}
}