Files
swift-mirror/lib/SIL/IR/SILPrinter.cpp
eeckstein 8d50f20965 Merge pull request #85728 from eeckstein/print-sil-ownership
SIL: add an option `-sil-print-ownership` to print ownership
2025-12-02 07:32:11 +01:00

5020 lines
159 KiB
C++

//===--- SILPrinter.cpp - Pretty-printing of SIL Code ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file defines the logic to pretty-print SIL, Instructions, etc.
///
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/QuotedString.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Demangling/Demangle.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILCoverageMap.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILMoveOnlyDeinit.h"
#include "swift/SIL/SILPrintContext.h"
#include "swift/SIL/SILVTable.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/TerminatorUtils.h"
#include "swift/Strings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormattedStream.h"
#include <set>
using namespace swift;
using ID = SILPrintContext::ID;
llvm::cl::opt<bool>
SILPrintNoColor("sil-print-no-color", llvm::cl::init(""),
llvm::cl::desc("Don't use color when printing SIL"));
llvm::cl::opt<bool>
SILFullDemangle("sil-full-demangle", llvm::cl::init(false),
llvm::cl::desc("Fully demangle symbol names in SIL output"));
llvm::cl::opt<bool>
SILPrintDebugInfo("sil-print-debuginfo", llvm::cl::init(false),
llvm::cl::desc("Include debug info in SIL output"));
llvm::cl::opt<bool>
SILPrintDebugInfoVerbose("sil-print-debuginfo-verbose",
llvm::cl::init(false),
llvm::cl::desc("Print verbose debug info output"));
llvm::cl::opt<bool>
SILPrintSourceInfo("sil-print-sourceinfo", llvm::cl::init(false),
llvm::cl::desc("Include source annotation in SIL output"));
llvm::cl::opt<bool>
SILPrintTypes("sil-print-types", llvm::cl::init(false),
llvm::cl::desc("always print type annotations for instruction operands in SIL output"));
llvm::cl::opt<bool>
SILPrintOwnership("sil-print-ownership", llvm::cl::init(false),
llvm::cl::desc("print ownership of instruction results in SIL output"));
llvm::cl::opt<bool>
SILPrintNoUses("sil-print-no-uses", llvm::cl::init(false),
llvm::cl::desc("omit use comments in SIL output"));
llvm::cl::opt<bool> SILPrintGenericSpecializationInfo(
"sil-print-generic-specialization-info", llvm::cl::init(false),
llvm::cl::desc("Include generic specialization"
"information info in SIL output"));
llvm::cl::opt<bool> SILPrintFunctionIsolationInfo(
"sil-print-function-isolation-info", llvm::cl::init(false),
llvm::cl::desc("Print out isolation info on functions in a manner that SIL "
"understands [e.x.: not in comments]"));
static std::string demangleSymbol(StringRef Name) {
if (SILFullDemangle)
return Demangle::demangleSymbolAsString(Name);
return Demangle::demangleSymbolAsString(Name,
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
}
enum SILColorKind {
SC_Type,
};
namespace {
/// RAII based coloring of SIL output.
class SILColor {
raw_ostream &OS;
enum raw_ostream::Colors Color;
public:
#define DEF_COL(NAME, RAW) case NAME: Color = raw_ostream::RAW; break;
explicit SILColor(raw_ostream &OS, SILColorKind K) : OS(OS) {
if (!OS.has_colors() || SILPrintNoColor)
return;
switch (K) {
DEF_COL(SC_Type, YELLOW)
}
OS.resetColor();
OS.changeColor(Color);
}
explicit SILColor(raw_ostream &OS, ID::ID_Kind K) : OS(OS) {
if (!OS.has_colors() || SILPrintNoColor)
return;
switch (K) {
DEF_COL(ID::SILUndef, RED)
DEF_COL(ID::SILBasicBlock, GREEN)
DEF_COL(ID::SSAValue, MAGENTA)
DEF_COL(ID::Null, YELLOW)
}
OS.resetColor();
OS.changeColor(Color);
}
~SILColor() {
if (!OS.has_colors() || SILPrintNoColor)
return;
// FIXME: instead of resetColor(), we can look into
// capturing the current active color and restoring it.
OS.resetColor();
}
#undef DEF_COL
};
} // end anonymous namespace
void SILPrintContext::ID::print(raw_ostream &OS) {
SILColor C(OS, Kind);
switch (Kind) {
case ID::SILUndef:
OS << "undef";
return;
case ID::SILBasicBlock: OS << "bb"; break;
case ID::SSAValue: OS << '%'; break;
case ID::Null: OS << "<<NULL OPERAND>>"; return;
}
OS << Number;
}
namespace swift {
raw_ostream &operator<<(raw_ostream &OS, SILPrintContext::ID i) {
i.print(OS);
return OS;
}
} // namespace swift
/// IDAndType - Used when a client wants to print something like "%0 : $Int".
struct SILValuePrinterInfo {
ID ValueID;
SILType Type;
std::optional<ValueOwnershipKind> OwnershipKind;
bool IsNoImplicitCopy = false;
LifetimeAnnotation Lifetime = LifetimeAnnotation::None;
bool IsCapture = false;
bool IsReborrow = false;
bool IsEscaping = false;
bool needPrintType = false;
SILValuePrinterInfo(ID ValueID) : ValueID(ValueID), Type(), OwnershipKind() {}
SILValuePrinterInfo(ID ValueID, SILType Type, bool needPrintType)
: ValueID(ValueID), Type(Type), OwnershipKind(), needPrintType(needPrintType) {}
SILValuePrinterInfo(ID ValueID, SILType Type,
ValueOwnershipKind OwnershipKind)
: ValueID(ValueID), Type(Type), OwnershipKind(OwnershipKind) {}
SILValuePrinterInfo(ID ValueID, SILType Type,
ValueOwnershipKind OwnershipKind, bool IsNoImplicitCopy,
LifetimeAnnotation Lifetime, bool IsCapture,
bool IsReborrow, bool IsEscaping, bool needPrintType)
: ValueID(ValueID), Type(Type), OwnershipKind(OwnershipKind),
IsNoImplicitCopy(IsNoImplicitCopy), Lifetime(Lifetime),
IsCapture(IsCapture), IsReborrow(IsReborrow), IsEscaping(IsEscaping),
needPrintType(needPrintType){}
SILValuePrinterInfo(ID ValueID, SILType Type, bool IsNoImplicitCopy,
LifetimeAnnotation Lifetime, bool IsCapture,
bool IsReborrow, bool IsEscaping, bool needPrintType)
: ValueID(ValueID), Type(Type), OwnershipKind(),
IsNoImplicitCopy(IsNoImplicitCopy), Lifetime(Lifetime),
IsCapture(IsCapture), IsReborrow(IsReborrow), IsEscaping(IsEscaping),
needPrintType(needPrintType) {}
SILValuePrinterInfo(ID ValueID, SILType Type,
ValueOwnershipKind OwnershipKind, bool IsReborrow,
bool IsEscaping, bool needPrintType)
: ValueID(ValueID), Type(Type), OwnershipKind(OwnershipKind),
IsReborrow(IsReborrow), IsEscaping(IsEscaping), needPrintType(needPrintType) {}
};
/// Return the fully qualified dotted path for DeclContext.
static void printFullContext(const DeclContext *Context, raw_ostream &Buffer) {
if (!Context)
return;
switch (Context->getContextKind()) {
case swift::DeclContextKind::Package:
return;
case DeclContextKind::Module:
if (Context == cast<ModuleDecl>(Context)->getASTContext().TheBuiltinModule)
Buffer << cast<ModuleDecl>(Context)->getName() << ".";
return;
case DeclContextKind::FileUnit:
// Ignore the file; just print the module.
printFullContext(Context->getParent(), Buffer);
return;
case DeclContextKind::MacroDecl:
// Ignore the macro, which won't have anything in it; just print the module.
printFullContext(Context->getParent(), Buffer);
return;
case DeclContextKind::Initializer:
// FIXME
Buffer << "<initializer>";
return;
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::SerializedAbstractClosure:
// FIXME
Buffer << "<anonymous function>";
return;
case DeclContextKind::GenericTypeDecl: {
auto *generic = cast<GenericTypeDecl>(Context);
printFullContext(generic->getDeclContext(), Buffer);
Buffer << generic->getName() << ".";
return;
}
case DeclContextKind::ExtensionDecl: {
const NominalTypeDecl *ExtNominal =
cast<ExtensionDecl>(Context)->getExtendedNominal();
printFullContext(ExtNominal->getDeclContext(), Buffer);
Buffer << ExtNominal->getName() << ".";
return;
}
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedTopLevelCodeDecl:
// FIXME
Buffer << "<top level code>";
return;
case DeclContextKind::AbstractFunctionDecl:
// FIXME
Buffer << "<abstract function>";
return;
case DeclContextKind::SubscriptDecl:
// FIXME
Buffer << "<subscript>";
return;
case DeclContextKind::EnumElementDecl:
// FIXME
Buffer << "<enum element>";
return;
}
llvm_unreachable("bad decl context");
}
static void printValueDecl(ValueDecl *Decl, raw_ostream &OS) {
printFullContext(Decl->getDeclContext(), OS);
if (!Decl->hasName()) {
OS << "anonname=" << (const void*)Decl;
} else if (Decl->isOperator()) {
OS << '"' << Decl->getBaseName() << '"';
} else {
bool isKeyword =
llvm::StringSwitch<bool>(Decl->getBaseName().userFacingName())
// FIXME: Represent "init" by a special name and remove this case
.Case("init", false)
#define KEYWORD(kw) \
.Case(#kw, true)
#include "swift/AST/TokenKinds.def"
.Default(false);
bool shouldEscapeIdentifier =
!Decl->getBaseName().isSpecial() &&
(isKeyword || Decl->getBaseName().mustAlwaysBeEscaped());
if (shouldEscapeIdentifier) {
OS << '`';
}
OS << Decl->getBaseName().userFacingName();
if (shouldEscapeIdentifier) {
OS << '`';
}
}
}
/// SILDeclRef uses sigil "#" and prints the fully qualified dotted path.
void SILDeclRef::print(raw_ostream &OS) const {
OS << "#";
if (isNull()) {
OS << "<null>";
return;
}
bool isDot = true;
switch (getLocKind()) {
case LocKind::Closure:
OS << "<anonymous function>";
break;
case LocKind::File:
OS << "<file>";
break;
case LocKind::Decl: {
if (kind != Kind::Func) {
printValueDecl(getDecl(), OS);
break;
}
auto *accessor = dyn_cast<AccessorDecl>(getDecl());
if (!accessor) {
printValueDecl(getDecl(), OS);
if (isDistributed()) {
OS << "!distributed";
OS << "(" << getDecl() << ")";
}
if (isDistributedThunk()) {
OS << "!distributed_thunk";
OS << "(" << getDecl() << ")";
}
isDot = false;
break;
}
printValueDecl(accessor->getStorage(), OS);
if (isDistributed()) {
OS << "!distributed";
OS << "(" << getDecl() << ")";
}
if (isDistributedThunk()) {
OS << "!distributed_thunk";
OS << "(" << getDecl() << ")";
}
switch (accessor->getAccessorKind()) {
case AccessorKind::WillSet:
OS << "!willSet";
break;
case AccessorKind::DidSet:
OS << "!didSet";
break;
case AccessorKind::Get:
OS << "!getter";
break;
case AccessorKind::DistributedGet:
OS << "!_distributed_getter";
break;
case AccessorKind::Set:
OS << "!setter";
break;
case AccessorKind::Address:
OS << "!addressor";
break;
case AccessorKind::MutableAddress:
OS << "!mutableAddressor";
break;
case AccessorKind::Read:
OS << "!read";
break;
case AccessorKind::Modify:
OS << "!modify";
break;
case AccessorKind::Init:
OS << "!init";
break;
case AccessorKind::Read2:
OS << "!read2";
break;
case AccessorKind::Modify2:
OS << "!modify2";
break;
case AccessorKind::Borrow:
OS << "!borrow";
break;
case AccessorKind::Mutate:
OS << "!mutate";
break;
}
break;
}
}
switch (kind) {
case SILDeclRef::Kind::Func:
case SILDeclRef::Kind::EntryPoint:
case SILDeclRef::Kind::AsyncEntryPoint:
break;
case SILDeclRef::Kind::Allocator:
OS << "!allocator";
break;
case SILDeclRef::Kind::Initializer:
OS << "!initializer";
break;
case SILDeclRef::Kind::EnumElement:
OS << "!enumelt";
break;
case SILDeclRef::Kind::Destroyer:
OS << "!destroyer";
break;
case SILDeclRef::Kind::Deallocator:
OS << "!deallocator";
break;
case SILDeclRef::Kind::IsolatedDeallocator:
OS << "!isolateddeallocator";
break;
case SILDeclRef::Kind::IVarInitializer:
OS << "!ivarinitializer";
break;
case SILDeclRef::Kind::IVarDestroyer:
OS << "!ivardestroyer";
break;
case SILDeclRef::Kind::GlobalAccessor:
OS << "!globalaccessor";
break;
case SILDeclRef::Kind::DefaultArgGenerator:
OS << "!defaultarg" << "." << defaultArgIndex;
break;
case SILDeclRef::Kind::StoredPropertyInitializer:
OS << "!propertyinit";
break;
case SILDeclRef::Kind::PropertyWrapperBackingInitializer:
OS << "!backinginit";
break;
case SILDeclRef::Kind::PropertyWrappedFieldInitAccessor:
OS << "!wrappedfieldinitaccessor";
break;
case SILDeclRef::Kind::PropertyWrapperInitFromProjectedValue:
OS << "!projectedvalueinit";
break;
}
if (isForeign)
OS << (isDot ? '.' : '!') << "foreign";
if (getDerivativeFunctionIdentifier()) {
OS << ((isDot || isForeign) ? '.' : '!');
switch (getDerivativeFunctionIdentifier()->getKind()) {
case AutoDiffDerivativeFunctionKind::JVP:
OS << "jvp.";
break;
case AutoDiffDerivativeFunctionKind::VJP:
OS << "vjp.";
break;
}
OS << getDerivativeFunctionIdentifier()->getParameterIndices()->getString();
if (auto derivativeGenSig =
getDerivativeFunctionIdentifier()->getDerivativeGenericSignature()) {
OS << "." << derivativeGenSig;
}
}
}
void SILDeclRef::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
/// Pretty-print the generic specialization information.
static void printGenericSpecializationInfo(
raw_ostream &OS, StringRef Kind, StringRef Name,
const GenericSpecializationInformation *SpecializationInfo,
SubstitutionMap Subs = { }) {
if (!SpecializationInfo && Subs.empty())
return;
auto PrintSubstitutions = [&](SubstitutionMap Subs) {
OS << '<';
interleave(Subs.getReplacementTypes(),
[&](Type type) { OS << type; },
[&] { OS << ", "; });
OS << '>';
OS << " conformances <";
interleave(Subs.getConformances(),
[&](ProtocolConformanceRef conf) { conf.print(OS); },
[&] { OS << ", ";});
OS << '>';
};
OS << "// Generic specialization information for " << Kind << " " << Name;
if (!Subs.empty()) {
OS << " ";
PrintSubstitutions(Subs);
}
OS << ":\n";
while (SpecializationInfo) {
OS << "// Caller: " << SpecializationInfo->getCaller()->getName() << '\n';
OS << "// Parent: " << SpecializationInfo->getParent()->getName() << '\n';
OS << "// Substitutions: ";
PrintSubstitutions(SpecializationInfo->getSubstitutions());
OS << '\n';
OS << "//\n";
if (!SpecializationInfo->getCaller()->isSpecialization())
return;
SpecializationInfo =
SpecializationInfo->getCaller()->getSpecializationInfo();
}
}
static void print(raw_ostream &OS, SILValueCategory category) {
switch (category) {
case SILValueCategory::Object: return;
case SILValueCategory::Address: OS << '*'; return;
}
llvm_unreachable("bad value category!");
}
static StringRef getCastConsumptionKindName(CastConsumptionKind kind) {
switch (kind) {
case CastConsumptionKind::TakeAlways: return "take_always";
case CastConsumptionKind::TakeOnSuccess: return "take_on_success";
case CastConsumptionKind::CopyOnSuccess: return "copy_on_success";
case CastConsumptionKind::BorrowAlways: return "borrow_always";
}
llvm_unreachable("bad cast consumption kind");
}
static void printSILTypeColorAndSigil(raw_ostream &OS, SILType t) {
SILColor C(OS, SC_Type);
OS << '$';
// Potentially add a leading sigil for the value category.
::print(OS, t.getCategory());
}
void SILType::print(raw_ostream &OS, const PrintOptions &PO) const {
printSILTypeColorAndSigil(OS, *this);
// Print other types as their Swift representation.
//
// NOTE: We always print the Raw AST type so we don't look through
// move-onlyness.
getRawASTType().print(OS, PO);
}
void SILType::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
/// Prints the name and type of the given SIL function with the given
/// `PrintOptions`. Computes mapping for sugared type names and stores the
/// result in `sugaredTypeNames`.
static void printSILFunctionNameAndType(
llvm::raw_ostream &OS, const SILFunction *function,
llvm::DenseMap<CanType, Identifier> &sugaredTypeNames,
const SILPrintContext *silPrintContext = nullptr) {
function->printName(OS);
OS << " : $";
auto *genEnv = function->getGenericEnvironment();
GenericSignature genSig;
// If `genEnv` is defined, get sugared names of generic
// parameter types for printing.
if (genEnv) {
genSig = genEnv->getGenericSignature();
llvm::DenseSet<Identifier> usedNames;
llvm::SmallString<16> disambiguatedNameBuf;
unsigned disambiguatedNameCounter = 1;
for (auto *paramTy : genSig.getGenericParams()) {
// Get a uniqued sugared name for the generic parameter type.
auto sugaredTy = genEnv->getGenericSignature()->getSugaredType(paramTy);
// Opaque parameter types are printed as their canonical types and not
// the unparseable "<anonymous>".
if (sugaredTy->getOpaqueDecl())
continue;
Identifier name = sugaredTy->getName();
while (!usedNames.insert(name).second) {
disambiguatedNameBuf.clear();
{
llvm::raw_svector_ostream names(disambiguatedNameBuf);
names << sugaredTy->getName() << disambiguatedNameCounter++;
}
name = function->getASTContext().getIdentifier(disambiguatedNameBuf);
}
// If the uniqued sugared name is equal to the sugared name, continue.
if (name == sugaredTy->getName())
continue;
// Otherwise, add sugared name mapping for the type (and its archetype, if
// defined).
sugaredTypeNames[paramTy->getCanonicalType()] = name;
if (auto *archetypeTy =
genEnv->mapTypeIntoEnvironment(paramTy)->getAs<ArchetypeType>())
sugaredTypeNames[archetypeTy->getCanonicalType()] = name;
}
}
auto printOptions = PrintOptions::printSIL(silPrintContext);
printOptions.GenericSig = genSig.getPointer();
printOptions.AlternativeTypeNames =
sugaredTypeNames.empty() ? nullptr : &sugaredTypeNames;
function->getLoweredFunctionType()->print(OS, printOptions);
}
/// Prints the name and type of the given SIL function.
static void printSILFunctionNameAndType(llvm::raw_ostream &OS,
const SILFunction *function) {
llvm::DenseMap<CanType, Identifier> sugaredTypeNames;
printSILFunctionNameAndType(OS, function, sugaredTypeNames);
}
namespace {
// 1. Accumulate opcode-specific comments in this stream.
// 2. Start emitting comments: lineComments.start()
// 3. Emit each comment section: lineComments.delim()
// 4. End emitting comments: LineComments::end()
class LineComments : public raw_ostream {
llvm::formatted_raw_ostream &os;
// Opcode-specific comments to be printed at the end of the current line.
std::string opcodeCommentString;
llvm::raw_string_ostream opcodeCommentStream;
bool emitting = false;
bool printedSlashes = false;
public:
LineComments(llvm::formatted_raw_ostream &os)
: os(os), opcodeCommentStream(opcodeCommentString) {
SetUnbuffered(); // pass through to the underlying stream
}
// Call to start emitting line comments into the underlying stream.
void start() {
emitting = true;
printedSlashes = false;
if (opcodeCommentString.empty())
return;
delim();
os << opcodeCommentString;
opcodeCommentString.clear();
}
// Call for each section of line
void delim() {
assert(emitting);
if (printedSlashes) {
os << "; ";
} else {
os.PadToColumn(50);
os << "// ";
printedSlashes = true;
}
}
void end() {
assert(emitting);
emitting = false;
printedSlashes = false;
os << "\n";
}
protected:
void write_impl(const char *ptr, size_t size) override {
if (emitting)
os.write(ptr, size);
else
opcodeCommentStream.write(ptr, size);
}
uint64_t current_pos() const override {
if (emitting)
return os.tell() - os.GetNumBytesInBuffer();
return opcodeCommentString.size();
}
};
static bool hasNonAddressResults(const SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
if (result->getType().isObject())
return true;
}
return false;
}
/// Returns true if the ownership of a result of `inst` mismatches with its type.
/// That can happen e.g. for non-trivial enums which are constructed with a trivial case:
/// ```
/// enum E {
/// case A
/// case B(AnyObject)
/// }
///
/// %1 = enum $E, #E.A!enumelt // type of %1 is non trivial, but ownership is "none"
/// ```
static bool hasUnusualResultOwnership(const SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
if (result->getType().isObject() &&
result->getOwnershipKind() == OwnershipKind::None &&
!result->getType().isTrivial(*inst->getFunction())) {
return true;
}
}
return false;
}
} // namespace
namespace swift {
/// SILPrinter class - This holds the internal implementation details of
/// printing SIL structures.
class SILPrinter : public SILInstructionVisitor<SILPrinter> {
SILPrintContext &Ctx;
struct {
llvm::formatted_raw_ostream OS;
PrintOptions ASTOptions;
} PrintState;
LineComments lineComments;
unsigned LastBufferID;
llvm::DenseSet<const SILBasicBlock *> printedBlocks;
// Printers for the underlying stream.
#define SIMPLE_PRINTER(TYPE) \
SILPrinter &operator<<(TYPE value) { \
PrintState.OS << value; \
return *this; \
}
SIMPLE_PRINTER(char)
SIMPLE_PRINTER(unsigned)
SIMPLE_PRINTER(uint64_t)
SIMPLE_PRINTER(int64_t)
SIMPLE_PRINTER(StringRef)
SIMPLE_PRINTER(Identifier)
SIMPLE_PRINTER(ID)
SIMPLE_PRINTER(QuotedString)
SIMPLE_PRINTER(SILDeclRef)
SIMPLE_PRINTER(APInt)
SIMPLE_PRINTER(ValueOwnershipKind)
SIMPLE_PRINTER(UUID)
SIMPLE_PRINTER(GenericSignature)
SIMPLE_PRINTER(ActorIsolation)
#undef SIMPLE_PRINTER
SILPrinter &operator<<(SILValuePrinterInfo i) {
SILColor C(PrintState.OS, SC_Type);
*this << i.ValueID;
if (!i.Type)
return *this;
const char *separator = " : ";
if (i.IsNoImplicitCopy) {
*this << separator << "@noImplicitCopy";
separator = " ";
}
switch (i.Lifetime) {
case LifetimeAnnotation::EagerMove:
*this << separator << "@_eagerMove";
separator = " ";
break;
case LifetimeAnnotation::None:
break;
case LifetimeAnnotation::Lexical:
*this << separator << "@_lexical";
separator = " ";
break;
}
if (i.IsCapture) {
*this << separator << "@closureCapture";
separator = " ";
}
if (i.IsReborrow) {
*this << separator << "@reborrow";
separator = " ";
}
if (i.IsEscaping) {
*this << separator << "@pointer_escape";
separator = " ";
}
if (!i.IsReborrow && i.OwnershipKind && *i.OwnershipKind != OwnershipKind::None) {
*this << separator << "@" << i.OwnershipKind.value();
separator = " ";
}
if (i.needPrintType) {
*this << separator << i.Type;
}
return *this;
}
bool needPrintTypeFor(SILValue V) {
if (SILPrintTypes)
return true;
if (!V)
return false;
if (isa<SILUndef>(V))
return true;
// Make sure to print the type if the operand's definition was not printed so far
return printedBlocks.count(V->getParentBlock()) == 0;
}
SILPrinter &operator<<(Type t) {
// Print the type using our print options.
t.print(PrintState.OS, PrintState.ASTOptions);
return *this;
}
SILPrinter &operator<<(SILType t) {
printSILTypeColorAndSigil(PrintState.OS, t);
t.getRawASTType().print(PrintState.OS, PrintState.ASTOptions);
return *this;
}
public:
SILPrinter(
SILPrintContext &PrintCtx,
llvm::DenseMap<CanType, Identifier> *AlternativeTypeNames = nullptr)
: Ctx(PrintCtx), PrintState{{PrintCtx.OS()},
PrintOptions::printSIL(&PrintCtx)},
lineComments(PrintState.OS), LastBufferID(0) {
PrintState.ASTOptions.AlternativeTypeNames = AlternativeTypeNames;
PrintState.ASTOptions.PrintForSIL = true;
}
SILValuePrinterInfo getIDAndType(SILValue V) {
return {Ctx.getID(V), V ? V->getType() : SILType(), needPrintTypeFor(V)};
}
SILValuePrinterInfo getIDAndForcedPrintedType(SILValue V) {
return {Ctx.getID(V), V ? V->getType() : SILType(), /*needPrintType=*/true};
}
SILValuePrinterInfo getIDAndType(SILFunctionArgument *arg) {
return {Ctx.getID(arg), arg->getType(),
arg->isNoImplicitCopy(), arg->getLifetimeAnnotation(),
arg->isClosureCapture(), arg->isReborrow(),
arg->hasPointerEscape(), /*needPrintType=*/true};
}
SILValuePrinterInfo getIDAndType(SILArgument *arg) {
return {Ctx.getID(arg), arg->getType(), /*needPrintType=*/true};
}
SILValuePrinterInfo getIDAndTypeAndOwnership(SILValue V) {
return {Ctx.getID(V), V ? V->getType() : SILType(), V->getOwnershipKind()};
}
SILValuePrinterInfo getIDAndTypeAndOwnership(SILFunctionArgument *arg) {
return {Ctx.getID(arg),
arg->getType(),
arg->getOwnershipKind(),
arg->isNoImplicitCopy(),
arg->getLifetimeAnnotation(),
arg->isClosureCapture(),
arg->isReborrow(),
arg->hasPointerEscape(),
/*needPrintType=*/true};
}
SILValuePrinterInfo getIDAndTypeAndOwnership(SILArgument *arg) {
return {Ctx.getID(arg), arg->getType(), arg->getOwnershipKind(),
arg->isReborrow(), arg->hasPointerEscape(),
/*needPrintType=*/true};
}
void markBlockAsPrinted(const SILBasicBlock *block) {
printedBlocks.insert(block);
}
//===--------------------------------------------------------------------===//
// Big entrypoints.
void print(const SILFunction *F) {
// If we are asked to emit sorted SIL, print out our BBs in RPOT order.
if (Ctx.sortSIL()) {
std::vector<SILBasicBlock *> RPOT;
auto *UnsafeF = const_cast<SILFunction *>(F);
std::copy(po_begin(UnsafeF), po_end(UnsafeF),
std::back_inserter(RPOT));
std::reverse(RPOT.begin(), RPOT.end());
Ctx.initBlockIDs(RPOT);
interleave(RPOT,
[&](SILBasicBlock *B) { print(B); },
[&] { *this << '\n'; });
return;
}
interleave(*F,
[&](const SILBasicBlock &B) { print(&B); },
[&] { *this << '\n'; });
}
void printBlockArgumentUses(const SILBasicBlock *BB) {
if (SILPrintNoUses)
return;
if (BB->args_empty())
return;
for (SILArgument *arg : BB->getArguments()) {
StringRef name;
if (arg->getDecl() && arg->getDecl()->hasName())
name = arg->getDecl()->getBaseName().userFacingName();
if (arg->use_empty() && name.empty())
continue;
*this << "// " << Ctx.getID(arg);
if (!name.empty()) {
*this << " \"" << name << '\"';
}
if (!arg->use_empty()) {
PrintState.OS.PadToColumn(50);
*this << "// user";
if (std::next(arg->use_begin()) != arg->use_end())
*this << 's';
*this << ": ";
llvm::SmallVector<ID, 32> UserIDs;
for (auto *Op : arg->getUses())
UserIDs.push_back(Ctx.getID(Op->getUser()));
// Display the user ids sorted to give a stable use order in the
// printer's output if we are asked to do so. This makes diffing large
// sections of SIL significantly easier at the expense of not showing
// the _TRUE_ order of the users in the use list.
if (Ctx.sortSIL()) {
std::sort(UserIDs.begin(), UserIDs.end());
}
llvm::interleave(
UserIDs.begin(), UserIDs.end(), [&](ID id) { *this << id; },
[&] { *this << ", "; });
}
*this << '\n';
}
}
void printBlockArguments(const SILBasicBlock *BB) {
if (BB->args_empty())
return;
*this << '(';
// If SIL ownership is enabled and the given function has not had ownership
// stripped out, print out ownership of SILArguments.
if (BB->getParent()->hasOwnership()) {
if (BB->isEntry()) {
auto Args = BB->getSILFunctionArguments();
*this << getIDAndTypeAndOwnership(Args[0]);
for (unsigned i : range(1, Args.size())) {
SILFunctionArgument *Arg = Args[i];
*this << ", " << getIDAndTypeAndOwnership(Arg);
}
*this << ')';
} else {
ArrayRef<SILArgument *> Args = BB->getArguments();
*this << getIDAndTypeAndOwnership(Args[0]);
for (SILArgument *Arg : Args.drop_front()) {
*this << ", " << getIDAndTypeAndOwnership(Arg);
}
*this << ')';
}
return;
}
if (BB->isEntry()) {
auto Args = BB->getSILFunctionArguments();
*this << getIDAndType(Args[0]);
for (unsigned i : range(1, Args.size())) {
SILFunctionArgument *Arg = Args[i];
*this << ", " << getIDAndType(Arg);
}
*this << ')';
return;
}
ArrayRef<SILArgument *> Args = BB->getArguments();
*this << getIDAndType(Args[0]);
for (SILArgument *Arg : Args.drop_front()) {
*this << ", " << getIDAndType(Arg);
}
*this << ')';
}
#ifndef NDEBUG
void printID(const SILBasicBlock *BB, bool newline) {
*this << Ctx.getID(BB);
if (newline) {
*this << "\n";
}
}
#endif
void print(const SILBasicBlock *BB) {
markBlockAsPrinted(BB);
// Output uses for BB arguments. These are put into place as comments before
// the block header.
printBlockArgumentUses(BB);
// If the basic block has a name available, print it as well
auto debugName = BB->getDebugName();
if (debugName.has_value()) {
*this << "// " << debugName.value() << '\n';
}
// Then print the name of our block, the arguments, and the block colon.
*this << Ctx.getID(BB);
printBlockArguments(BB);
*this << ":";
if (!BB->pred_empty() && !SILPrintNoUses) {
PrintState.OS.PadToColumn(50);
*this << "// Preds:";
llvm::SmallVector<ID, 32> PredIDs;
for (auto *BBI : BB->getPredecessorBlocks())
PredIDs.push_back(Ctx.getID(BBI));
// Display the pred ids sorted to give a stable use order in the printer's
// output if we are asked to do so. This makes diffing large sections of
// SIL significantly easier at the expense of not showing the _TRUE_ order
// of the users in the use list.
if (Ctx.sortSIL()) {
std::sort(PredIDs.begin(), PredIDs.end());
}
for (auto Id : PredIDs)
*this << ' ' << Id;
}
*this << '\n';
const auto &SM = BB->getModule().getASTContext().SourceMgr;
std::optional<SILLocation> PrevLoc;
for (const SILInstruction &I : *BB) {
if (SILPrintSourceInfo) {
auto CurSourceLoc = I.getLoc().getSourceLoc();
if (CurSourceLoc.isValid()) {
if (!PrevLoc ||
SM.getLineAndColumnInBuffer(CurSourceLoc).first >
SM.getLineAndColumnInBuffer(PrevLoc->getSourceLoc()).first) {
auto Buffer = SM.findBufferContainingLoc(CurSourceLoc);
auto Line = SM.getLineAndColumnInBuffer(CurSourceLoc).first;
auto LineLength = SM.getLineLength(Buffer, Line);
PrintState.OS << " // "
<< SM.extractText(
{SM.getLocForLineCol(Buffer, Line, 0),
LineLength.value_or(0)})
<< "\tSourceLoc: "
<< SM.getDisplayNameForLoc(CurSourceLoc) << ":"
<< Line << "\n";
PrevLoc = I.getLoc();
}
}
}
Ctx.printInstructionCallBack(&I);
if (SILPrintGenericSpecializationInfo) {
if (auto AI = ApplySite::isa(const_cast<SILInstruction *>(&I)))
if ((AI.getSpecializationInfo() ||
!AI.getSubstitutionMap().empty()) &&
AI.getCalleeFunction())
printGenericSpecializationInfo(
PrintState.OS, "call-site", AI.getCalleeFunction()->getName(),
AI.getSpecializationInfo(), AI.getSubstitutionMap());
}
print(&I);
}
}
//===--------------------------------------------------------------------===//
// SILInstruction Printing Logic
void printCheckedCastInstOptions(CheckedCastInstOptions options) {
switch (options.isolatedConformances()) {
case CastingIsolatedConformances::Allow:
break;
case CastingIsolatedConformances::Prohibit:
*this << "[prohibit_isolated_conformances] ";
break;
}
}
void printTypeDependentOperands(const SILInstruction *I) {
ArrayRef<Operand> TypeDepOps = I->getTypeDependentOperands();
if (TypeDepOps.empty())
return;
lineComments.delim();
*this << "type-defs: ";
interleave(TypeDepOps,
[&](const Operand &op) { *this << Ctx.getID(op.get()); },
[&] { *this << ", "; });
}
/// Print out the users of the SILValue \p V. Return true if we printed out
/// either an id or a use list. Return false otherwise.
void printUsersOfValue(SILValue value) {
lineComments.start();
printUserList({value}, value);
lineComments.end();
}
void printUsersOfInstruction(const SILInstruction *inst) {
llvm::SmallVector<SILValue, 8> values;
llvm::copy(inst->getResults(), std::back_inserter(values));
printUserList(values, inst);
printBranchTargets(inst);
}
void printOwnershipOfInstruction(const SILInstruction *inst) {
if (!inst->isStaticInitializerInst() &&
inst->getFunction()->hasOwnership() &&
hasNonAddressResults(inst) &&
(SILPrintOwnership || hasUnusualResultOwnership(inst)))
{
lineComments.delim();
*this << "ownership: ";
llvm::interleave(inst->getResults(),
[&](SILValue result) {
if (result->getType().isAddress()) {
*this << '-';
} else {
*this << result->getOwnershipKind();
}
},
[&] { *this << ", "; });
}
}
void printUserList(ArrayRef<SILValue> values, SILNodePointer node) {
if (SILPrintNoUses)
return;
// If the set of values is empty, we need to print the ID of
// the instruction. Otherwise, if none of the values has a use,
// we don't need to do anything.
if (!values.empty()) {
bool hasUse = false;
for (auto value : values) {
if (!value->use_empty()) hasUse = true;
}
if (!hasUse)
return;
}
lineComments.delim();
if (values.empty()) {
*this << "id: " << Ctx.getID(node);
return;
}
llvm::SmallVector<ID, 32> UserIDs;
for (auto value : values)
for (auto *Op : value->getUses())
UserIDs.push_back(Ctx.getID(Op->getUser()));
*this << "user";
if (UserIDs.size() != 1)
*this << 's';
*this << ": ";
// If we are asked to, display the user ids sorted to give a stable use
// order in the printer's output. This makes diffing large sections of SIL
// significantly easier.
if (Ctx.sortSIL()) {
std::sort(UserIDs.begin(), UserIDs.end());
}
llvm::interleave(
UserIDs.begin(), UserIDs.end(), [&](ID id) { *this << id; },
[&] { *this << ", "; });
}
void printBranchTargets(const SILInstruction *inst) {
if (auto condBr = dyn_cast<CondBranchInst>(inst)) {
if (condBr->getTrueBB()->getDebugName().has_value()) {
*this << ", true->" << condBr->getTrueBB()->getDebugName().value();
}
if (condBr->getFalseBB()->getDebugName().has_value()) {
*this << ", false->" << condBr->getFalseBB()->getDebugName().value();
}
} else if (auto br = dyn_cast<BranchInst>(inst)) {
if (br->getDestBB()->getDebugName().has_value()) {
*this << ", dest->" << br->getDestBB()->getDebugName().value();
}
} else if (auto termInst = dyn_cast<TermInst>(inst)) {
// Otherwise, we just print the successors in order without pretty printing
for (unsigned i = 0, numSuccessors = termInst->getSuccessors().size();
i != numSuccessors; ++i) {
auto &successor = termInst->getSuccessors()[i];
if (successor.getBB()->getDebugName().has_value()) {
*this << ", #" << i
<< "->" << successor.getBB()->getDebugName().value();
}
}
}
}
void printConformances(ArrayRef<ProtocolConformanceRef> conformances) {
// FIXME: conformances should always be printed and parsed!
if (!Ctx.printVerbose()) {
return;
}
for (ProtocolConformanceRef conformance : conformances) {
conformance.dump(lineComments, /*indent*/ 0, /*details*/ false);
}
}
void printDebugLocRef(SILLocation Loc, const SourceManager &SM,
bool PrintComma = true) {
auto DL = Loc.decodeForDebugging(SM);
if (!DL.filename.empty()) {
if (PrintComma)
*this << ", ";
*this << "loc ";
if (Loc.isAutoGenerated())
*this << "* ";
*this << QuotedString(DL.filename) << ':' << DL.line << ':'
<< (unsigned)DL.column;
if (SILPrintDebugInfoVerbose) {
if (Loc.isImplicit())
*this << " isImplicit: " << "true";
else
*this << " isImplicit: " << "false";
if (Loc.isAutoGenerated())
*this << ", isAutoGenerated: " << "true";
else
*this << ", isAutoGenerated: " << "false";
if (Loc.isHiddenFromDebugInfo())
*this << ", isHiddenFromDebugInfo: " << "true";
else
*this << ", isHiddenFromDebugInfo: " << "false";
}
}
}
void printDebugScope(const SILDebugScope *DS, const SourceManager &SM) {
if (!DS)
return;
if (!Ctx.hasScopeID(DS)) {
printDebugScope(DS->Parent.dyn_cast<const SILDebugScope *>(), SM);
printDebugScope(DS->InlinedCallSite, SM);
unsigned ID = Ctx.assignScopeID(DS);
*this << "sil_scope " << ID << " { ";
printDebugLocRef(DS->Loc, SM, false);
*this << " parent ";
if (auto *F = DS->Parent.dyn_cast<SILFunction *>())
*this << "@" << F->getName() << " : $" << F->getLoweredFunctionType();
else {
auto *PS = cast<const SILDebugScope *>(DS->Parent);
*this << Ctx.getScopeID(PS);
}
if (auto *CS = DS->InlinedCallSite)
*this << " inlined_at " << Ctx.getScopeID(CS);
*this << " }\n";
}
}
void printDebugScopeRef(const SILDebugScope *DS, const SourceManager &SM,
bool PrintComma = true) {
if (DS) {
if (PrintComma)
*this << ", ";
*this << "scope " << Ctx.getScopeID(DS);
}
}
void printSILLocation(SILLocation L, SILModule &M, const SILDebugScope *DS) {
lineComments.delim();
if (!L.isNull()) {
// To minimize output, only print the line and column number for
// everything but the first instruction.
L.getSourceLoc().printLineAndColumn(PrintState.OS,
M.getASTContext().SourceMgr);
// Print the type of location.
switch (L.getKind()) {
case SILLocation::RegularKind:
break;
case SILLocation::ReturnKind:
*this << ":return";
break;
case SILLocation::ImplicitReturnKind:
*this << ":imp_return";
break;
case SILLocation::InlinedKind:
*this << ":inlined";
break;
case SILLocation::MandatoryInlinedKind:
*this << ":minlined";
break;
case SILLocation::CleanupKind:
*this << ":cleanup";
break;
case SILLocation::ArtificialUnreachableKind:
*this << ":art_unreach";
break;
}
if (L.isSILFile())
*this << ":sil";
if (L.isAutoGenerated())
*this << ":auto_gen";
if (L.isInPrologue())
*this << ":in_prologue";
} else {
if (L.isAutoGenerated())
*this << " auto_gen";
else
*this << " no_loc";
if (L.isInPrologue())
*this << ":in_prologue";
}
if (!DS)
return;
// Print inlined-at location, if any.
const SILDebugScope *CS = DS;
while ((CS = CS->InlinedCallSite)) {
*this << ": ";
if (auto *InlinedF = CS->getInlinedFunction())
*this << demangleSymbol(InlinedF->getName());
else
*this << '?';
*this << " perf_inlined_at ";
auto CallSite = CS->Loc;
if (!CallSite.isNull() && CallSite.isASTNode())
CallSite.getSourceLoc().print(
PrintState.OS, M.getASTContext().SourceMgr, LastBufferID);
else
*this << "?";
}
}
void printInstOpCode(const SILInstruction *I) {
*this << getSILInstructionName(I->getKind()) << " ";
}
void print(const SILInstruction *I) {
if (auto *FRI = dyn_cast<FunctionRefInst>(I))
*this << " // function_ref "
<< demangleSymbol(FRI->getReferencedFunction()->getName())
<< "\n";
else if (auto *FRI = dyn_cast<DynamicFunctionRefInst>(I))
*this << " // dynamic_function_ref "
<< demangleSymbol(FRI->getInitiallyReferencedFunction()->getName())
<< "\n";
else if (auto *FRI = dyn_cast<PreviousDynamicFunctionRefInst>(I))
*this << " // prev_dynamic_function_ref "
<< demangleSymbol(FRI->getInitiallyReferencedFunction()->getName())
<< "\n";
*this << " ";
// Print results.
auto results = I->getResults();
if (results.size() == 1 && !I->isDeleted() && I->isStaticInitializerInst()
&& I == &I->getParent()->back()) {
*this << "%initval = ";
} else if (results.size() == 1) {
ID Name = Ctx.getID(results[0]);
*this << Name << " = ";
} else if (results.size() > 1) {
*this << '(';
bool first = true;
for (auto result : results) {
if (first) {
first = false;
} else {
*this << ", ";
}
ID Name = Ctx.getID(result);
*this << Name;
}
*this << ") = ";
}
// Print the opcode.
printInstOpCode(I);
// Use the visitor to print the rest of the instruction.
visit(const_cast<SILInstruction*>(I));
// Maybe print debugging information.
if (Ctx.printDebugInfo() && !I->isDeleted()
&& !I->isStaticInitializerInst()) {
auto &SM = I->getModule().getASTContext().SourceMgr;
printDebugLocRef(I->getLoc(), SM);
printDebugScopeRef(I->getDebugScope(), SM);
}
lineComments.start();
printTypeDependentOperands(I);
// Print users, or id for valueless instructions.
printUsersOfInstruction(I);
printOwnershipOfInstruction(I);
// Print SIL location.
if (Ctx.printVerbose()) {
printSILLocation(I->getLoc(), I->getModule(), I->getDebugScope());
}
lineComments.end();
}
void print(const SILNode *node) {
switch (node->getKind()) {
#define INST(ID, PARENT) \
case SILNodeKind::ID:
#include "swift/SIL/SILNodes.def"
print(cast<SILInstruction>(node));
return;
#define ARGUMENT(ID, PARENT) \
case SILNodeKind::ID:
#include "swift/SIL/SILNodes.def"
printSILArgument(cast<SILArgument>(node));
return;
case SILNodeKind::SILUndef:
printSILUndef(cast<SILUndef>(node));
return;
case SILNodeKind::PlaceholderValue:
// This should really only happen during debugging.
*this << "placeholder<" << cast<PlaceholderValue>(node)->getType()
<< ">\n";
return;
case SILNodeKind::MultipleValueInstructionResult:
printSILMultipleValueInstructionResult(
cast<MultipleValueInstructionResult>(node));
return;
}
llvm_unreachable("bad kind");
}
void printSILArgument(const SILArgument *arg) {
// This should really only happen during debugging.
*this << Ctx.getID(arg) << " = argument of "
<< Ctx.getID(arg->getParent()) << " : " << arg->getType();
// Print users.
printUsersOfValue(arg);
}
void printSILUndef(const SILUndef *undef) {
// This should really only happen during debugging.
*this << "undef<" << undef->getType() << ">\n";
}
void printSILMultipleValueInstructionResult(
const MultipleValueInstructionResult *result) {
// This should really only happen during debugging.
if (result->getParent()->getNumResults() == 1) {
*this << "**" << Ctx.getID(result) << "**";
} else {
*this << '(';
llvm::interleave(
result->getParent()->getResults(),
[&](SILValue value) {
if (value == SILValue(result)) {
*this << "**" << Ctx.getID(result) << "**";
return;
}
*this << Ctx.getID(value);
},
[&] { *this << ", "; });
*this << ')';
}
*this << " = ";
printInstOpCode(result->getParent());
auto *nonConstParent =
const_cast<MultipleValueInstruction *>(result->getParent());
visit(static_cast<SILInstruction *>(nonConstParent));
// Print users.
printUsersOfValue(result);
}
void printInContext(const SILNode *node) {
auto sortByID = [&](SILNodePointer a, SILNodePointer b) {
return Ctx.getID(a).Number < Ctx.getID(b).Number;
};
if (auto *I = dyn_cast<SILInstruction>(node)) {
auto operands = map<SmallVector<SILValue,4>>(I->getAllOperands(),
[](Operand const &o) {
return o.get();
});
std::sort(operands.begin(), operands.end(), sortByID);
for (auto &operand : operands) {
*this << " ";
print(operand);
}
}
*this << "-> ";
print(node);
if (auto V = dyn_cast<ValueBase>(node)) {
auto users = map<SmallVector<const SILInstruction*,4>>(V->getUses(),
[](Operand *o) {
return o->getUser();
});
std::sort(users.begin(), users.end(), sortByID);
for (auto &user : users) {
*this << " ";
print(user);
}
}
}
void printDebugInfoExpression(const SILDebugInfoExpression &DIExpr) {
assert(DIExpr && "DIExpression empty?");
*this << ", expr ";
bool IsFirst = true;
for (const auto &Operand : DIExpr.operands()) {
if (IsFirst)
IsFirst = false;
else
*this << ":";
// Print the operator
SILDIExprOperator Op = Operand.getOperator();
assert(Op != SILDIExprOperator::INVALID &&
"Invalid SILDIExprOperator kind");
*this << SILDIExprInfo::get(Op)->OpText;
// Print arguments
for (const auto &Arg : Operand.args()) {
*this << ":";
switch (Arg.getKind()) {
case SILDIExprElement::OperatorKind:
llvm_unreachable("Cannot use operator as argument");
break;
case SILDIExprElement::DeclKind: {
const Decl *D = Arg.getAsDecl();
// FIXME: Can we generalize this special handling for VarDecl
// to other kinds of Decl?
if (const auto *VD = dyn_cast<VarDecl>(D)) {
*this << "#";
printFullContext(VD->getDeclContext(), PrintState.OS);
*this << VD->getName().get();
} else
D->print(PrintState.OS, PrintState.ASTOptions);
break;
}
case SILDIExprElement::ConstIntKind: {
uint64_t V = *Arg.getAsConstInt();
if (Op == SILDIExprOperator::ConstSInt)
*this << static_cast<int64_t>(V);
else
*this << V;
break;
}
case SILDIExprElement::TypeKind: {
const Type TypePtr = Arg.getAsType();
*this << "$";
TypePtr->print(PrintState.OS, PrintState.ASTOptions);
}
}
}
}
}
void printDebugVar(std::optional<SILDebugVariable> Var,
const SourceManager *SM = nullptr) {
if (!Var)
return;
if (!Var->Name.empty()) {
if (Var->Constant)
*this << ", let";
else
*this << ", var";
if ((Var->Loc || Var->Scope) && SM && Ctx.printDebugInfo()) {
*this << ", (name \"" << Var->Name << '"';
if (Var->Loc)
printDebugLocRef(*Var->Loc, *SM);
if (Var->Scope)
printDebugScopeRef(Var->Scope, *SM);
*this << ")";
} else
*this << ", name \"" << Var->Name << '"';
if (Var->ArgNo)
*this << ", argno " << Var->ArgNo;
if (Var->Type) {
*this << ", type ";
Var->Type->print(PrintState.OS, PrintState.ASTOptions);
}
}
// Although it's rare in real-world use cases, but during testing,
// sometimes we want to print out di-expression, even the debug
// variable name is empty.
if (Var->DIExpr)
printDebugInfoExpression(Var->DIExpr);
}
template <class T>
void printNonNested(T *inst) {
static_assert(&T::isStackAllocationNested !=
&SILInstruction::isStackAllocationNested,
"Type doesn't override isStackAllocationNested");
if (inst->isStackAllocationNested() == StackAllocationIsNotNested)
*this << "[non_nested] ";
}
void visitAllocStackInst(AllocStackInst *AVI) {
printNonNested(AVI);
if (AVI->hasDynamicLifetime())
*this << "[dynamic_lifetime] ";
if (AVI->isLexical())
*this << "[lexical] ";
if (AVI->isFromVarDecl())
*this << "[var_decl] ";
if (AVI->usesMoveableValueDebugInfo() && !AVI->getType().isMoveOnly())
*this << "[moveable_value_debuginfo] ";
*this << AVI->getElementType();
printDebugVar(AVI->getVarInfo(false),
&AVI->getModule().getASTContext().SourceMgr);
}
void visitAllocPackInst(AllocPackInst *API) {
*this << API->getType().getObjectType();
}
void visitAllocPackMetadataInst(AllocPackMetadataInst *APMI) {
*this << APMI->getType().getObjectType();
}
void printAllocRefInstBase(AllocRefInstBase *ARI) {
if (ARI->isObjC())
*this << "[objc] ";
if (ARI->canAllocOnStack())
*this << "[stack] ";
auto Types = ARI->getTailAllocatedTypes();
auto Counts = ARI->getTailAllocatedCounts();
for (unsigned Idx = 0, NumTypes = Types.size(); Idx < NumTypes; ++Idx) {
*this << "[tail_elems " << Types[Idx] << " * "
<< getIDAndType(Counts[Idx].get()) << "] ";
}
}
void visitAllocRefInst(AllocRefInst *ARI) {
if (ARI->isBare())
*this << "[bare] ";
printAllocRefInstBase(ARI);
*this << ARI->getType();
}
void visitAllocRefDynamicInst(AllocRefDynamicInst *ARDI) {
printAllocRefInstBase(ARDI);
*this << getIDAndType(ARDI->getMetatypeOperand());
*this << ", " << ARDI->getType();
}
void visitAllocBoxInst(AllocBoxInst *ABI) {
if (ABI->hasDynamicLifetime())
*this << "[dynamic_lifetime] ";
if (ABI->emitReflectionMetadata()) {
*this << "[reflection] ";
}
if (ABI->hasPointerEscape()) {
*this << "[pointer_escape] ";
}
if (ABI->usesMoveableValueDebugInfo() &&
!ABI->getAddressType().isMoveOnly()) {
*this << "[moveable_value_debuginfo] ";
}
*this << ABI->getType();
printDebugVar(ABI->getVarInfo(false),
&ABI->getModule().getASTContext().SourceMgr);
}
void printSubstitutions(SubstitutionMap Subs,
GenericSignature Sig = GenericSignature()) {
if (!Subs.hasAnySubstitutableParams()) return;
// FIXME: This is a hack to cope with cases where the substitution map uses
// a generic signature that's close-to-but-not-the-same-as expected.
auto genericSig = Sig ? Sig : Subs.getGenericSignature();
*this << '<';
bool first = true;
for (auto gp : genericSig.getGenericParams()) {
if (first) first = false;
else *this << ", ";
*this << Type(gp).subst(Subs);
}
*this << '>';
}
template <class Inst>
void visitApplyInstBase(Inst *AI) {
*this << Ctx.getID(AI->getCallee());
printSubstitutions(AI->getSubstitutionMap(),
AI->getOrigCalleeType()->getInvocationGenericSignature());
*this << '(';
llvm::interleave(
AI->getArguments(),
[&](const SILValue &arg) { *this << Ctx.getID(arg); },
[&] { *this << ", "; });
*this << ") : ";
if (auto callee = AI->getCallee())
*this << callee->getType();
else
*this << "<<NULL CALLEE>>";
}
void visitApplyInst(ApplyInst *AI) {
if (AI->isNonThrowing())
*this << "[nothrow] ";
if (AI->isNonAsync())
*this << "[noasync] ";
if (auto isolationCrossing = AI->getIsolationCrossing()) {
auto callerIsolation = isolationCrossing->getCallerIsolation();
if (callerIsolation != ActorIsolation::Unspecified) {
*this << "[callee_isolation=";
callerIsolation.printForSIL(PrintState.OS);
*this << "] ";
}
auto calleeIsolation = isolationCrossing->getCalleeIsolation();
if (calleeIsolation != ActorIsolation::Unspecified) {
*this << "[caller_isolation=";
calleeIsolation.printForSIL(PrintState.OS);
*this << "] ";
}
}
visitApplyInstBase(AI);
}
void visitBeginApplyInst(BeginApplyInst *AI) {
if (AI->isNonThrowing())
*this << "[nothrow] ";
visitApplyInstBase(AI);
}
void visitTryApplyInst(TryApplyInst *AI) {
if (AI->isNonAsync())
*this << "[noasync] ";
visitApplyInstBase(AI);
*this << ", normal " << Ctx.getID(AI->getNormalBB());
*this << ", error " << Ctx.getID(AI->getErrorBB());
if (AI->getNormalBBCount())
*this << " !normal_count(" << AI->getNormalBBCount().getValue() << ")";
if (AI->getErrorBBCount())
*this << " !error_count(" << AI->getErrorBBCount().getValue() << ")";
}
void visitPartialApplyInst(PartialApplyInst *CI) {
auto fnType = CI->getFunctionType();
switch (fnType->getCalleeConvention()) {
case ParameterConvention::Direct_Owned:
// Default; do nothing.
break;
case ParameterConvention::Direct_Guaranteed:
*this << "[callee_guaranteed] ";
break;
// Should not apply to callees.
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_In_CXX:
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("unexpected callee convention!");
}
switch (fnType->getIsolation().getKind()) {
case SILFunctionTypeIsolation::Unknown:
break;
case SILFunctionTypeIsolation::Erased:
*this << "[isolated_any] ";
break;
}
if (CI->isOnStack())
*this << "[on_stack] ";
visitApplyInstBase(CI);
}
void visitAbortApplyInst(AbortApplyInst *AI) {
*this << Ctx.getID(AI->getOperand());
}
void visitEndApplyInst(EndApplyInst *AI) {
*this << Ctx.getID(AI->getOperand()) << " as " << AI->getType();
}
void visitFunctionRefInst(FunctionRefInst *FRI) {
FRI->getReferencedFunction()->printName(PrintState.OS);
*this << " : " << FRI->getType();
}
void visitDynamicFunctionRefInst(DynamicFunctionRefInst *FRI) {
FRI->getInitiallyReferencedFunction()->printName(PrintState.OS);
*this << " : " << FRI->getType();
}
void
visitPreviousDynamicFunctionRefInst(PreviousDynamicFunctionRefInst *FRI) {
FRI->getInitiallyReferencedFunction()->printName(PrintState.OS);
*this << " : " << FRI->getType();
}
void visitBuiltinInst(BuiltinInst *BI) {
*this << QuotedString(BI->getName().str());
printSubstitutions(BI->getSubstitutions());
*this << "(";
llvm::interleave(BI->getArguments(), [&](SILValue v) {
*this << getIDAndType(v);
}, [&]{
*this << ", ";
});
*this << ") : ";
*this << BI->getType();
}
void visitMergeIsolationRegionInst(MergeIsolationRegionInst *mir) {
llvm::interleave(
mir->getArguments(), [&](SILValue v) { *this << getIDAndType(v); },
[&] { *this << ", "; });
}
void visitAllocGlobalInst(AllocGlobalInst *AGI) {
if (AGI->getReferencedGlobal()) {
AGI->getReferencedGlobal()->printName(PrintState.OS);
} else {
*this << "<<placeholder>>";
}
}
void visitGlobalAddrInst(GlobalAddrInst *GAI) {
if (GAI->getReferencedGlobal()) {
GAI->getReferencedGlobal()->printName(PrintState.OS);
} else {
*this << "<<placeholder>>";
}
*this << " : " << GAI->getType();
if (SILValue token = GAI->getDependencyToken()) {
*this << " depends_on " << Ctx.getID(token);
}
}
void visitGlobalValueInst(GlobalValueInst *GVI) {
if (GVI->isBare())
*this << "[bare] ";
GVI->getReferencedGlobal()->printName(PrintState.OS);
*this << " : " << GVI->getType();
}
void visitBaseAddrForOffsetInst(BaseAddrForOffsetInst *BAI) {
*this << BAI->getType();
}
void visitIntegerLiteralInst(IntegerLiteralInst *ILI) {
const auto &lit = ILI->getValue();
*this << ILI->getType() << ", " << lit;
}
void visitFloatLiteralInst(FloatLiteralInst *FLI) {
llvm::SmallString<12> hex;
llvm::SmallString<12> decimal;
FLI->getBits().toString(hex, 16, /*Signed*/ false);
FLI->getValue().toString(decimal);
*this << FLI->getType()
<< (llvm::Twine(", 0x") + hex + " // " + decimal).str();
}
static StringRef getStringEncodingName(StringLiteralInst::Encoding kind) {
switch (kind) {
case StringLiteralInst::Encoding::Bytes: return "bytes ";
case StringLiteralInst::Encoding::UTF8: return "utf8 ";
case StringLiteralInst::Encoding::UTF8_OSLOG: return "oslog ";
case StringLiteralInst::Encoding::ObjCSelector: return "objc_selector ";
}
llvm_unreachable("bad string literal encoding");
}
void visitStringLiteralInst(StringLiteralInst *SLI) {
*this << getStringEncodingName(SLI->getEncoding());
if (SLI->getEncoding() != StringLiteralInst::Encoding::Bytes) {
// FIXME: this isn't correct: this doesn't properly handle translating
// UTF16 into UTF8, and the SIL parser always parses as UTF8.
*this << QuotedString(SLI->getValue());
return;
}
// "Bytes" are always output in a hexadecimal form.
*this << '"' << llvm::toHex(SLI->getValue()) << '"';
}
void printLoadOwnershipQualifier(LoadOwnershipQualifier Qualifier) {
switch (Qualifier) {
case LoadOwnershipQualifier::Unqualified:
return;
case LoadOwnershipQualifier::Take:
*this << "[take] ";
return;
case LoadOwnershipQualifier::Copy:
*this << "[copy] ";
return;
case LoadOwnershipQualifier::Trivial:
*this << "[trivial] ";
return;
}
}
void visitLoadInst(LoadInst *LI) {
printLoadOwnershipQualifier(LI->getOwnershipQualifier());
*this << getIDAndType(LI->getOperand());
}
void visitLoadBorrowInst(LoadBorrowInst *LBI) {
if (LBI->isUnchecked()) {
*this << "[unchecked] ";
}
*this << getIDAndType(LBI->getOperand());
}
void visitBeginBorrowInst(BeginBorrowInst *BBI) {
if (BBI->isLexical()) {
*this << "[lexical] ";
}
if (BBI->hasPointerEscape()) {
*this << "[pointer_escape] ";
}
if (BBI->isFromVarDecl()) {
*this << "[var_decl] ";
}
if (BBI->isFixed()) {
*this << "[fixed] ";
}
*this << getIDAndType(BBI->getOperand());
}
void visitBorrowedFromInst(BorrowedFromInst *bfi) {
*this << getIDAndType(bfi->getBorrowedValue());
*this << " from (";
bool first = true;
for (SILValue ev : bfi->getEnclosingValues()) {
if (!first) {
*this << ", ";
}
first = false;
*this << getIDAndType(ev);
}
*this << ")";
}
void printStoreOwnershipQualifier(StoreOwnershipQualifier Qualifier) {
switch (Qualifier) {
case StoreOwnershipQualifier::Unqualified:
return;
case StoreOwnershipQualifier::Init:
*this << "[init] ";
return;
case StoreOwnershipQualifier::Assign:
*this << "[assign] ";
return;
case StoreOwnershipQualifier::Trivial:
*this << "[trivial] ";
return;
}
}
void printAssignOwnershipQualifier(AssignOwnershipQualifier Qualifier) {
switch (Qualifier) {
case AssignOwnershipQualifier::Unknown:
return;
case AssignOwnershipQualifier::Init:
*this << "[init] ";
return;
case AssignOwnershipQualifier::Reassign:
*this << "[reassign] ";
return;
case AssignOwnershipQualifier::Reinit:
*this << "[reinit] ";
return;
}
}
void printForwardingOwnershipKind(ForwardingInstruction *inst, SILValue op) {
if (!op)
return;
if (inst->getForwardingOwnershipKind() != op->getOwnershipKind()) {
*this << ", forwarding: @" << inst->getForwardingOwnershipKind();
}
}
template <typename Inst>
void printForwardingOwnershipKind(Inst *inst) {
if (inst->getNumRealOperands() == 0) {
return;
}
bool matching = false;
for (Operand *op : inst->getRealOperands()) {
if (inst->getForwardingOwnershipKind() == op->get()->getOwnershipKind()) {
matching = true;
break;
}
}
if (!matching) {
*this << ", forwarding: @" << inst->getForwardingOwnershipKind();
}
}
void visitStoreInst(StoreInst *SI) {
*this << Ctx.getID(SI->getSrc()) << " to ";
printStoreOwnershipQualifier(SI->getOwnershipQualifier());
*this << getIDAndType(SI->getDest());
}
void visitStoreBorrowInst(StoreBorrowInst *SI) {
*this << Ctx.getID(SI->getSrc()) << " to ";
*this << getIDAndType(SI->getDest());
}
void visitEndBorrowInst(EndBorrowInst *EBI) {
*this << getIDAndType(EBI->getOperand());
}
void visitAssignInst(AssignInst *AI) {
*this << Ctx.getID(AI->getSrc()) << " to ";
printAssignOwnershipQualifier(AI->getOwnershipQualifier());
*this << getIDAndType(AI->getDest());
}
void visitAssignOrInitInst(AssignOrInitInst *AI) {
switch (AI->getMode()) {
case AssignOrInitInst::Unknown:
break;
case AssignOrInitInst::Init:
*this << "[init] ";
break;
case AssignOrInitInst::Set:
*this << "[set] ";
break;
}
// Print all of the properties that have been previously initialized.
for (unsigned i = 0, n = AI->getNumInitializedProperties(); i != n; ++i) {
if (AI->isPropertyAlreadyInitialized(i)) {
*this << "[assign=" << i << "] ";
}
}
*this << "#";
auto declContext = AI->getProperty()->getDeclContext();
if (!declContext->isLocalContext()) {
printFullContext(declContext, PrintState.OS);
*this << AI->getPropertyName() << ", self ";
} else {
*this << AI->getPropertyName() << ", local ";
}
*this << getIDAndType(AI->getSelfOrLocalOperand());
*this << ", value " << getIDAndType(AI->getSrc());
*this << ", init " << getIDAndType(AI->getInitializer())
<< ", set " << getIDAndType(AI->getSetter());
}
void visitMarkUninitializedInst(MarkUninitializedInst *MU) {
switch (MU->getMarkUninitializedKind()) {
case MarkUninitializedInst::Var: *this << "[var] "; break;
case MarkUninitializedInst::RootSelf: *this << "[rootself] "; break;
case MarkUninitializedInst::CrossModuleRootSelf:
*this << "[crossmodulerootself] ";
break;
case MarkUninitializedInst::DerivedSelf: *this << "[derivedself] "; break;
case MarkUninitializedInst::DerivedSelfOnly:
*this << "[derivedselfonly] ";
break;
case MarkUninitializedInst::DelegatingSelf: *this << "[delegatingself] ";break;
case MarkUninitializedInst::DelegatingSelfAllocated:
*this << "[delegatingselfallocated] ";
break;
case MarkUninitializedInst::Out:
*this << "[out] ";
break;
}
*this << getIDAndType(MU->getOperand());
printForwardingOwnershipKind(MU, MU->getOperand());
}
void visitMarkFunctionEscapeInst(MarkFunctionEscapeInst *MFE) {
llvm::interleave(
MFE->getElements(), [&](SILValue Var) { *this << getIDAndType(Var); },
[&] { *this << ", "; });
}
void visitDebugValueInst(DebugValueInst *DVI) {
if (DVI->poisonRefs())
*this << "[poison] ";
if (DVI->usesMoveableValueDebugInfo() &&
!DVI->getOperand()->getType().isMoveOnly())
*this << "[moveable_value_debuginfo] ";
if (DVI->hasTrace())
*this << "[trace] ";
*this << getIDAndType(DVI->getOperand());
printDebugVar(DVI->getVarInfo(false),
&DVI->getModule().getASTContext().SourceMgr);
}
void visitDebugStepInst(DebugStepInst *dsi) {
// nothing to print other than the instruction name
}
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
void visitLoad##Name##Inst(Load##Name##Inst *LI) { \
if (LI->isTake()) \
*this << "[take] "; \
*this << getIDAndType(LI->getOperand()); \
} \
void visitStore##Name##Inst(Store##Name##Inst *SI) { \
*this << Ctx.getID(SI->getSrc()) << " to "; \
if (SI->isInitializationOfDest()) \
*this << "[init] "; \
*this << getIDAndType(SI->getDest()); \
}
#include "swift/AST/ReferenceStorage.def"
void visitCopyAddrInst(CopyAddrInst *CI) {
if (CI->isTakeOfSrc())
*this << "[take] ";
*this << Ctx.getID(CI->getSrc()) << " to ";
if (CI->isInitializationOfDest())
*this << "[init] ";
*this << getIDAndType(CI->getDest());
}
void visitExplicitCopyAddrInst(ExplicitCopyAddrInst *CI) {
if (CI->isTakeOfSrc())
*this << "[take] ";
*this << Ctx.getID(CI->getSrc()) << " to ";
if (CI->isInitializationOfDest())
*this << "[init] ";
*this << getIDAndType(CI->getDest());
}
void visitMarkUnresolvedMoveAddrInst(MarkUnresolvedMoveAddrInst *CI) {
*this << Ctx.getID(CI->getSrc()) << " to ";
*this << getIDAndType(CI->getDest());
}
void visitBindMemoryInst(BindMemoryInst *BI) {
*this << getIDAndType(BI->getBase()) << ", ";
*this << getIDAndType(BI->getIndex()) << " to ";
*this << BI->getBoundType();
}
void visitRebindMemoryInst(RebindMemoryInst *BI) {
*this << getIDAndType(BI->getBase()) << " to ";
*this << getIDAndType(BI->getInToken());
}
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *CI) {
printCheckedCastInstOptions(CI->getCheckedCastOptions());
*this << getIDAndType(CI->getOperand()) << " to " << CI->getTargetFormalType();
printForwardingOwnershipKind(CI, CI->getOperand());
}
void visitCheckedCastBranchInst(CheckedCastBranchInst *CI) {
printCheckedCastInstOptions(CI->getCheckedCastOptions());
if (CI->isExact())
*this << "[exact] ";
*this << CI->getSourceFormalType() << " in ";
*this << getIDAndType(CI->getOperand()) << " to " << CI->getTargetFormalType()
<< ", " << Ctx.getID(CI->getSuccessBB()) << ", "
<< Ctx.getID(CI->getFailureBB());
if (CI->getTrueBBCount())
*this << " !true_count(" << CI->getTrueBBCount().getValue() << ")";
if (CI->getFalseBBCount())
*this << " !false_count(" << CI->getFalseBBCount().getValue() << ")";
printForwardingOwnershipKind(CI, CI->getOperand());
}
void visitUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *CI) {
printCheckedCastInstOptions(CI->getCheckedCastOptions());
*this << CI->getSourceFormalType() << " in " << getIDAndType(CI->getSrc())
<< " to " << CI->getTargetFormalType() << " in "
<< getIDAndType(CI->getDest());
}
void visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *CI) {
printCheckedCastInstOptions(CI->getCheckedCastOptions());
*this << getCastConsumptionKindName(CI->getConsumptionKind()) << ' '
<< CI->getSourceFormalType() << " in " << getIDAndType(CI->getSrc())
<< " to " << CI->getTargetFormalType() << " in "
<< getIDAndType(CI->getDest()) << ", "
<< Ctx.getID(CI->getSuccessBB()) << ", "
<< Ctx.getID(CI->getFailureBB());
if (CI->getTrueBBCount())
*this << " !true_count(" << CI->getTrueBBCount().getValue() << ")";
if (CI->getFalseBBCount())
*this << " !false_count(" << CI->getFalseBBCount().getValue() << ")";
}
void printUncheckedConversionInst(ConversionOperation CI, SILValue operand) {
*this << getIDAndType(operand) << " to " << CI->getType();
if (auto *ofci = dyn_cast<OwnershipForwardingSingleValueInstruction>(*CI)) {
printForwardingOwnershipKind(ofci, ofci->getOperand(0));
}
}
void visitUncheckedOwnershipConversionInst(
UncheckedOwnershipConversionInst *UOCI) {
*this << getIDAndType(UOCI->getOperand()) << ", "
<< "@" << UOCI->getOperand()->getOwnershipKind() << " to "
<< "@" << UOCI->getConversionOwnershipKind();
}
void visitImplicitActorToOpaqueIsolationCastInst(
ImplicitActorToOpaqueIsolationCastInst *inst) {
*this << getIDAndType(inst->getValue());
}
void visitConvertFunctionInst(ConvertFunctionInst *CI) {
*this << getIDAndType(CI->getOperand()) << " to ";
if (CI->withoutActuallyEscaping())
*this << "[without_actually_escaping] ";
*this << CI->getType();
printForwardingOwnershipKind(CI, CI->getOperand());
}
void visitThunkInst(ThunkInst *ti) {
switch (ti->getThunkKind()) {
case ThunkInst::Kind::Invalid:
llvm_unreachable("Cannot print invalid?!");
break;
case ThunkInst::Kind::Identity:
*this << "[identity] ";
break;
}
*this << Ctx.getID(ti->getOperand());
printSubstitutions(
ti->getSubstitutionMap(),
ti->getOrigCalleeType()->getInvocationGenericSignature());
*this << "() : " << ti->getOperand()->getType();
}
void visitConvertEscapeToNoEscapeInst(ConvertEscapeToNoEscapeInst *CI) {
*this << (CI->isLifetimeGuaranteed() ? "" : "[not_guaranteed] ")
<< getIDAndType(CI->getOperand()) << " to " << CI->getType();
}
void visitUpcastInst(UpcastInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitAddressToPointerInst(AddressToPointerInst *CI) {
*this << (CI->needsStackProtection() ? "[stack_protection] " : "");
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitPointerToAddressInst(PointerToAddressInst *CI) {
*this << getIDAndType(CI->getOperand()) << " to ";
if (CI->isStrict())
*this << "[strict] ";
if (CI->isInvariant())
*this << "[invariant] ";
if (CI->alignment())
*this << "[align=" << CI->alignment()->value() << "] ";
*this << CI->getType();
}
void visitUncheckedRefCastInst(UncheckedRefCastInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitUncheckedRefCastAddrInst(UncheckedRefCastAddrInst *CI) {
*this << ' ' << CI->getSourceFormalType() << " in " << getIDAndType(CI->getSrc())
<< " to " << CI->getTargetFormalType() << " in "
<< getIDAndType(CI->getDest());
}
void visitUncheckedAddrCastInst(UncheckedAddrCastInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitUncheckedValueCastInst(UncheckedValueCastInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitRefToRawPointerInst(RefToRawPointerInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitRawPointerToRefInst(RawPointerToRefInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
#define LOADABLE_REF_STORAGE(Name, ...) \
void visitRefTo##Name##Inst(RefTo##Name##Inst *CI) { \
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand()); \
} \
void visit##Name##ToRefInst(Name##ToRefInst *CI) { \
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand()); \
}
#include "swift/AST/ReferenceStorage.def"
void visitThinToThickFunctionInst(ThinToThickFunctionInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *CI) {
printUncheckedConversionInst(ConversionOperation(CI), CI->getOperand());
}
void visitObjCProtocolInst(ObjCProtocolInst *CI) {
*this << "#" << CI->getProtocol()->getName() << " : " << CI->getType();
}
void visitRefToBridgeObjectInst(RefToBridgeObjectInst *I) {
*this << getIDAndType(I->getOperand(0)) << ", "
<< getIDAndType(I->getBitsOperand());
printForwardingOwnershipKind(I, I->getOperand(0));
}
void visitBridgeObjectToRefInst(BridgeObjectToRefInst *I) {
printUncheckedConversionInst(ConversionOperation(I), I->getOperand());
printForwardingOwnershipKind(I, I->getOperand());
}
void visitBridgeObjectToWordInst(BridgeObjectToWordInst *I) {
printUncheckedConversionInst(ConversionOperation(I), I->getOperand());
}
void visitCopyValueInst(CopyValueInst *I) {
*this << getIDAndType(I->getOperand());
}
void visitExplicitCopyValueInst(ExplicitCopyValueInst *I) {
*this << getIDAndType(I->getOperand());
}
void visitMoveValueInst(MoveValueInst *I) {
if (I->getAllowDiagnostics())
*this << "[allows_diagnostics] ";
if (I->isLexical())
*this << "[lexical] ";
if (I->hasPointerEscape())
*this << "[pointer_escape] ";
if (I->isFromVarDecl())
*this << "[var_decl] ";
*this << getIDAndType(I->getOperand());
}
void visitDropDeinitInst(DropDeinitInst *I) {
*this << getIDAndType(I->getOperand());
}
void visitMarkUnresolvedNonCopyableValueInst(
MarkUnresolvedNonCopyableValueInst *I) {
using CheckKind = MarkUnresolvedNonCopyableValueInst::CheckKind;
if (I->isStrict()) {
*this << "[strict] ";
}
switch (I->getCheckKind()) {
case CheckKind::Invalid:
llvm_unreachable("Invalid?!");
case CheckKind::ConsumableAndAssignable:
*this << "[consumable_and_assignable] ";
break;
case CheckKind::NoConsumeOrAssign:
*this << "[no_consume_or_assign] ";
break;
case CheckKind::AssignableButNotConsumable:
*this << "[assignable_but_not_consumable] ";
break;
case CheckKind::InitableButNotConsumable:
*this << "[initable_but_not_consumable] ";
break;
}
*this << getIDAndType(I->getOperand());
}
void visitMarkUnresolvedReferenceBindingInst(
MarkUnresolvedReferenceBindingInst *I) {
using Kind = MarkUnresolvedReferenceBindingInst::Kind;
switch (I->getKind()) {
case Kind::Invalid:
llvm_unreachable("Invalid?!");
case Kind::InOut:
*this << "[inout] ";
break;
}
*this << getIDAndType(I->getOperand());
}
void visitCopyableToMoveOnlyWrapperValueInst(
CopyableToMoveOnlyWrapperValueInst *I) {
switch (I->getInitialKind()) {
case CopyableToMoveOnlyWrapperValueInst::Owned:
*this << "[owned] ";
break;
case CopyableToMoveOnlyWrapperValueInst::Guaranteed:
*this << "[guaranteed] ";
break;
}
*this << getIDAndType(I->getOperand());
}
void visitMoveOnlyWrapperToCopyableValueInst(
MoveOnlyWrapperToCopyableValueInst *I) {
switch (I->getInitialKind()) {
case MoveOnlyWrapperToCopyableValueInst::Owned:
*this << "[owned] ";
break;
case MoveOnlyWrapperToCopyableValueInst::Guaranteed:
*this << "[guaranteed] ";
break;
}
*this << getIDAndType(I->getOperand());
}
void visitUncheckedOwnershipInst(UncheckedOwnershipInst *I) {
*this << getIDAndType(I->getOperand());
}
void visitUnownedCopyValueInst(UnownedCopyValueInst *I) {
*this << getIDAndType(I->getOperand());
}
void visitWeakCopyValueInst(WeakCopyValueInst *I) {
*this << getIDAndType(I->getOperand());
}
#define REF_STORAGE(Name, ...) \
void visitStrongCopy##Name##ValueInst(StrongCopy##Name##ValueInst *I) { \
*this << getIDAndType(I->getOperand()); \
}
#include "swift/AST/ReferenceStorage.def"
void visitDestroyValueInst(DestroyValueInst *I) {
if (I->poisonRefs())
*this << "[poison] ";
if (I->isDeadEnd())
*this << "[dead_end] ";
*this << getIDAndType(I->getOperand());
}
void visitStructInst(StructInst *SI) {
*this << SI->getType() << " (";
llvm::interleave(
SI->getElements(), [&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
*this << ')';
printForwardingOwnershipKind(SI);
}
void visitObjectInst(ObjectInst *OI) {
*this << OI->getType() << " (";
llvm::interleave(
OI->getBaseElements(),
[&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
if (!OI->getTailElements().empty()) {
*this << ", [tail_elems] ";
llvm::interleave(
OI->getTailElements(),
[&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
}
*this << ')';
}
void visitVectorInst(VectorInst *vi) {
*this << "(";
llvm::interleave(
vi->getElements(),
[&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
*this << ')';
}
void visitTupleInst(TupleInst *TI) {
// Check to see if the type of the tuple can be inferred accurately from the
// elements.
bool SimpleType = true;
for (auto &Elt : TI->getType().castTo<TupleType>()->getElements()) {
if (Elt.hasName()) {
SimpleType = false;
break;
}
}
// If the type is simple, just print the tuple elements.
if (SimpleType) {
*this << '(';
llvm::interleave(
TI->getElements(),
[&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
*this << ')';
} else {
// Otherwise, print the type, then each value.
*this << TI->getType() << " (";
llvm::interleave(
TI->getElements(), [&](const SILValue &V) { *this << Ctx.getID(V); },
[&] { *this << ", "; });
*this << ')';
}
printForwardingOwnershipKind(TI);
}
void visitTupleAddrConstructorInst(TupleAddrConstructorInst *TI) {
// First print out our dest.
if (TI->isInitializationOfDest()) {
*this << "[init] ";
} else {
*this << "[assign] ";
}
*this << getIDAndType(TI->getDest());
*this << " with (";
llvm::interleave(
TI->getElements(), [&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
*this << ')';
}
void visitEnumInst(EnumInst *UI) {
*this << UI->getType() << ", "
<< SILDeclRef(UI->getElement(), SILDeclRef::Kind::EnumElement);
if (UI->hasOperand()) {
*this << ", " << getIDAndType(UI->getOperand());
printForwardingOwnershipKind(UI, UI->getOperand());
}
}
void visitInitEnumDataAddrInst(InitEnumDataAddrInst *UDAI) {
*this << getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitUncheckedEnumDataInst(UncheckedEnumDataInst *UDAI) {
*this << getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
printForwardingOwnershipKind(UDAI, UDAI->getOperand());
}
void visitUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *UDAI) {
*this << getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitInjectEnumAddrInst(InjectEnumAddrInst *IUAI) {
*this << getIDAndType(IUAI->getOperand()) << ", "
<< SILDeclRef(IUAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitTupleExtractInst(TupleExtractInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", " << EI->getFieldIndex();
printForwardingOwnershipKind(EI, EI->getOperand());
}
void visitTupleElementAddrInst(TupleElementAddrInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", " << EI->getFieldIndex();
}
void visitStructExtractInst(StructExtractInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), PrintState.OS);
*this << EI->getField()->getName().get();
printForwardingOwnershipKind(EI, EI->getOperand());
}
void visitStructElementAddrInst(StructElementAddrInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), PrintState.OS);
*this << EI->getField()->getName().get();
}
void visitVectorBaseAddrInst(VectorBaseAddrInst *vbai) {
*this << getIDAndType(vbai->getVector());
}
void visitRefElementAddrInst(RefElementAddrInst *EI) {
*this << (EI->isImmutable() ? "[immutable] " : "")
<< getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), PrintState.OS);
*this << EI->getField()->getName().get();
}
void visitRefTailAddrInst(RefTailAddrInst *RTAI) {
*this << (RTAI->isImmutable() ? "[immutable] " : "")
<< getIDAndType(RTAI->getOperand()) << ", " << RTAI->getTailType();
}
void visitDestructureStructInst(DestructureStructInst *DSI) {
*this << getIDAndType(DSI->getOperand());
printForwardingOwnershipKind(DSI, DSI->getOperand());
}
void visitDestructureTupleInst(DestructureTupleInst *DTI) {
*this << getIDAndType(DTI->getOperand());
printForwardingOwnershipKind(DTI, DTI->getOperand());
}
void printMethodInst(MethodInst *I, SILValue Operand) {
*this << getIDAndType(Operand) << ", " << I->getMember();
}
void visitClassMethodInst(ClassMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitSuperMethodInst(SuperMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitObjCMethodInst(ObjCMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitObjCSuperMethodInst(ObjCSuperMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitWitnessMethodInst(WitnessMethodInst *WMI) {
PrintOptions QualifiedSILTypeOptions =
PrintOptions::printQualifiedSILType();
QualifiedSILTypeOptions.CurrentModule = WMI->getModule().getSwiftModule();
auto lookupType = WMI->getLookupType();
*this << "$" << lookupType << ", " << WMI->getMember() << " : ";
WMI->getMember().getDecl()->getInterfaceType().print(
PrintState.OS, QualifiedSILTypeOptions);
if ((getLocalArchetypeOf(lookupType) || lookupType->hasDynamicSelfType()) && !WMI->getTypeDependentOperands().empty()) {
*this << ", ";
*this << getIDAndForcedPrintedType(WMI->getTypeDependentOperands()[0].get());
}
*this << " : " << WMI->getType();
printConformances({WMI->getConformance()});
}
void visitOpenExistentialAddrInst(OpenExistentialAddrInst *OI) {
if (OI->getAccessKind() == OpenedExistentialAccess::Immutable)
*this << "immutable_access ";
else
*this << "mutable_access ";
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialRefInst(OpenExistentialRefInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
printForwardingOwnershipKind(OI, OI->getOperand());
}
void visitOpenExistentialMetatypeInst(OpenExistentialMetatypeInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialBoxInst(OpenExistentialBoxInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialBoxValueInst(OpenExistentialBoxValueInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
printForwardingOwnershipKind(OI, OI->getOperand());
}
void visitOpenExistentialValueInst(OpenExistentialValueInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
printForwardingOwnershipKind(OI, OI->getOperand());
}
void visitInitExistentialAddrInst(InitExistentialAddrInst *AEI) {
*this << getIDAndType(AEI->getOperand()) << ", $"
<< AEI->getFormalConcreteType();
printConformances(AEI->getConformances());
}
void visitInitExistentialValueInst(InitExistentialValueInst *AEI) {
*this << getIDAndType(AEI->getOperand()) << ", $"
<< AEI->getFormalConcreteType() << ", " << AEI->getType();
printConformances(AEI->getConformances());
}
void visitInitExistentialRefInst(InitExistentialRefInst *AEI) {
*this << getIDAndForcedPrintedType(AEI->getOperand()) << " : $"
<< AEI->getFormalConcreteType() << ", " << AEI->getType();
printConformances(AEI->getConformances());
printForwardingOwnershipKind(AEI, AEI->getOperand());
}
void visitInitExistentialMetatypeInst(InitExistentialMetatypeInst *EMI) {
*this << getIDAndType(EMI->getOperand()) << ", " << EMI->getType();
printConformances(EMI->getConformances());
}
void visitAllocExistentialBoxInst(AllocExistentialBoxInst *AEBI) {
*this << AEBI->getExistentialType() << ", $"
<< AEBI->getFormalConcreteType();
printConformances(AEBI->getConformances());
}
void visitDeinitExistentialAddrInst(DeinitExistentialAddrInst *DEI) {
*this << getIDAndType(DEI->getOperand());
}
void visitDeinitExistentialValueInst(DeinitExistentialValueInst *DEI) {
*this << getIDAndType(DEI->getOperand());
}
void visitDeallocExistentialBoxInst(DeallocExistentialBoxInst *DEI) {
*this << getIDAndType(DEI->getOperand()) << ", $" << DEI->getConcreteType();
}
void visitPackLengthInst(PackLengthInst *PLI) {
*this << "$" << PLI->getPackType();
}
void visitDynamicPackIndexInst(DynamicPackIndexInst *DPII) {
*this << Ctx.getID(DPII->getOperand()) << " of $"
<< DPII->getIndexedPackType();
}
void visitPackPackIndexInst(PackPackIndexInst *PPII) {
*this << PPII->getComponentStartIndex() << ", "
<< Ctx.getID(PPII->getOperand()) << " of $"
<< PPII->getIndexedPackType();
}
void visitScalarPackIndexInst(ScalarPackIndexInst *SPII) {
*this << SPII->getComponentIndex() << " of $"
<< SPII->getIndexedPackType();
}
void visitOpenPackElementInst(OpenPackElementInst *OPEI) {
auto env = OPEI->getOpenedGenericEnvironment();
auto subs = env->getOuterSubstitutions();
*this << Ctx.getID(OPEI->getIndexOperand()) << " of ";
PrintOptions Opts;
Opts.PrintInverseRequirements = true;
subs.getGenericSignature().print(PrintState.OS, Opts);
*this << " at ";
printSubstitutions(subs);
// The shape class in the opened environment is a canonical interface
// type, which won't resolve in the generic signature we just printed.
// Map it back to the sugared generic parameter.
auto sugaredShapeClass =
subs.getGenericSignature()->getSugaredType(
env->getOpenedElementShapeClass());
*this << ", shape $" << sugaredShapeClass
<< ", uuid \"" << env->getOpenedElementUUID() << "\"";
}
void visitPackElementGetInst(PackElementGetInst *I) {
*this << Ctx.getID(I->getIndex()) << " of "
<< getIDAndType(I->getPack()) << " as "
<< I->getElementType();
}
void visitPackElementSetInst(PackElementSetInst *I) {
*this << getIDAndType(I->getValue()) << " into "
<< Ctx.getID(I->getIndex()) << " of "
<< getIDAndType(I->getPack());
}
void visitTuplePackElementAddrInst(TuplePackElementAddrInst *I) {
*this << Ctx.getID(I->getIndex()) << " of "
<< getIDAndType(I->getTuple()) << " as "
<< I->getElementType();
}
void visitTuplePackExtractInst(TuplePackExtractInst *I) {
*this << Ctx.getID(I->getIndex()) << " of " << getIDAndType(I->getTuple())
<< " as " << I->getElementType();
}
void visitProjectBlockStorageInst(ProjectBlockStorageInst *PBSI) {
*this << getIDAndType(PBSI->getOperand());
}
void visitInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *IBSHI) {
*this << getIDAndType(IBSHI->getBlockStorage()) << ", invoke "
<< Ctx.getID(IBSHI->getInvokeFunction());
printSubstitutions(IBSHI->getSubstitutions());
*this << " : " << IBSHI->getInvokeFunction()->getType()
<< ", type " << IBSHI->getType();
}
void visitValueMetatypeInst(ValueMetatypeInst *MI) {
*this << MI->getType() << ", " << getIDAndType(MI->getOperand());
}
void visitExistentialMetatypeInst(ExistentialMetatypeInst *MI) {
*this << MI->getType() << ", " << getIDAndType(MI->getOperand());
}
void visitMetatypeInst(MetatypeInst *MI) { *this << MI->getType(); }
void visitFixLifetimeInst(FixLifetimeInst *RI) {
*this << getIDAndType(RI->getOperand());
}
void visitTypeValueInst(TypeValueInst *tvi) {
*this << tvi->getType() << " for " << tvi->getParamType();
}
void visitEndLifetimeInst(EndLifetimeInst *ELI) {
*this << getIDAndType(ELI->getOperand());
}
void visitExtendLifetimeInst(ExtendLifetimeInst *ELLI) {
*this << getIDAndType(ELLI->getOperand());
}
void visitValueToBridgeObjectInst(ValueToBridgeObjectInst *VBOI) {
*this << getIDAndType(VBOI->getOperand());
}
void visitClassifyBridgeObjectInst(ClassifyBridgeObjectInst *CBOI) {
*this << getIDAndType(CBOI->getOperand());
}
template <SILInstructionKind Opc, typename T>
void visitMarkDependenceInstBase(MarkDependenceInstBase<Opc, T> *MDI) {
switch (MDI->dependenceKind()) {
case MarkDependenceKind::Unresolved:
*this << "[unresolved] ";
break;
case MarkDependenceKind::Escaping:
break;
case MarkDependenceKind::NonEscaping:
*this << "[nonescaping] ";
break;
}
*this <<
getIDAndType(MDI->getOperand(MarkDependenceInstBase<Opc, T>::Dependent))
<< " on " << getIDAndType(MDI->getBase());
}
void visitMarkDependenceInst(MarkDependenceInst *MDI) {
visitMarkDependenceInstBase(MDI);
printForwardingOwnershipKind(MDI, MDI->getValue());
}
void visitMarkDependenceAddrInst(MarkDependenceAddrInst *MDI) {
visitMarkDependenceInstBase(MDI);
}
void visitCopyBlockInst(CopyBlockInst *RI) {
*this << getIDAndType(RI->getOperand());
}
void visitCopyBlockWithoutEscapingInst(CopyBlockWithoutEscapingInst *RI) {
*this << getIDAndType(RI->getBlock()) << " withoutEscaping "
<< getIDAndType(RI->getClosure());
}
void visitRefCountingInst(RefCountingInst *I) {
if (I->isNonAtomic())
*this << "[nonatomic] ";
*this << getIDAndType(I->getOperand(0));
}
void visitIsUniqueInst(IsUniqueInst *CUI) {
*this << getIDAndType(CUI->getOperand());
}
void visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI) {
if (BCMI->isNative())
*this << "[native] ";
*this << getIDAndType(BCMI->getOperand());
}
void visitEndCOWMutationInst(EndCOWMutationInst *ECMI) {
if (ECMI->doKeepUnique())
*this << "[keep_unique] ";
*this << getIDAndType(ECMI->getOperand());
}
void visitEndCOWMutationAddrInst(EndCOWMutationAddrInst *ECMI) {
*this << getIDAndType(ECMI->getOperand());
}
void visitEndInitLetRefInst(EndInitLetRefInst *I) {
*this << getIDAndType(I->getOperand());
}
void visitBeginDeallocRefInst(BeginDeallocRefInst *I) {
*this << getIDAndType(I->getReference()) << " of "
<< getIDAndType(I->getOperand(1));
}
void visitDestroyNotEscapedClosureInst(DestroyNotEscapedClosureInst *CUI) {
if (CUI->getVerificationType())
*this << "[objc] ";
*this << getIDAndType(CUI->getOperand());
}
void visitDeallocStackInst(DeallocStackInst *DI) {
*this << getIDAndType(DI->getOperand());
}
void visitDeallocPackInst(DeallocPackInst *DI) {
*this << getIDAndType(DI->getOperand());
}
void visitDeallocPackMetadataInst(DeallocPackMetadataInst *DPMI) {
*this << getIDAndType(DPMI->getOperand());
}
void visitDeallocStackRefInst(DeallocStackRefInst *ESRL) {
*this << getIDAndType(ESRL->getOperand());
}
void visitDeallocRefInst(DeallocRefInst *DI) {
*this << getIDAndType(DI->getOperand());
}
void visitDeallocPartialRefInst(DeallocPartialRefInst *DPI) {
*this << getIDAndType(DPI->getInstance());
*this << ", ";
*this << getIDAndType(DPI->getMetatype());
}
void visitDeallocBoxInst(DeallocBoxInst *DI) {
if (DI->isDeadEnd())
*this << "[dead_end] ";
*this << getIDAndType(DI->getOperand());
}
void visitDestroyAddrInst(DestroyAddrInst *DI) {
*this << getIDAndType(DI->getOperand());
}
void visitProjectBoxInst(ProjectBoxInst *PBI) {
*this << getIDAndType(PBI->getOperand()) << ", " << PBI->getFieldIndex();
}
void visitProjectExistentialBoxInst(ProjectExistentialBoxInst *PEBI) {
*this << PEBI->getType().getObjectType()
<< " in " << getIDAndType(PEBI->getOperand());
}
void visitBeginAccessInst(BeginAccessInst *BAI) {
*this << '[' << getSILAccessKindName(BAI->getAccessKind()) << "] ["
<< getSILAccessEnforcementName(BAI->getEnforcement()) << "] "
<< (BAI->hasNoNestedConflict() ? "[no_nested_conflict] " : "")
<< (BAI->isFromBuiltin() ? "[builtin] " : "")
<< getIDAndType(BAI->getOperand());
}
void visitMoveOnlyWrapperToCopyableAddrInst(
MoveOnlyWrapperToCopyableAddrInst *BAI) {
*this << getIDAndType(BAI->getOperand());
}
void
visitMoveOnlyWrapperToCopyableBoxInst(MoveOnlyWrapperToCopyableBoxInst *BAI) {
*this << getIDAndType(BAI->getOperand());
}
void visitCopyableToMoveOnlyWrapperAddrInst(
CopyableToMoveOnlyWrapperAddrInst *BAI) {
*this << getIDAndType(BAI->getOperand());
}
void visitEndAccessInst(EndAccessInst *EAI) {
*this << (EAI->isAborting() ? "[abort] " : "")
<< getIDAndType(EAI->getOperand());
}
void visitBeginUnpairedAccessInst(BeginUnpairedAccessInst *BAI) {
*this << '[' << getSILAccessKindName(BAI->getAccessKind()) << "] ["
<< getSILAccessEnforcementName(BAI->getEnforcement()) << "] "
<< (BAI->hasNoNestedConflict() ? "[no_nested_conflict] " : "")
<< (BAI->isFromBuiltin() ? "[builtin] " : "")
<< getIDAndType(BAI->getSource()) << ", "
<< getIDAndType(BAI->getBuffer());
}
void visitEndUnpairedAccessInst(EndUnpairedAccessInst *EAI) {
*this << (EAI->isAborting() ? "[abort] " : "") << '['
<< getSILAccessEnforcementName(EAI->getEnforcement()) << "] "
<< (EAI->isFromBuiltin() ? "[builtin] " : "")
<< getIDAndType(EAI->getOperand());
}
void visitCondFailInst(CondFailInst *FI) {
*this << getIDAndType(FI->getOperand()) << ", "
<< QuotedString(FI->getMessage());
}
void visitIncrementProfilerCounterInst(IncrementProfilerCounterInst *IPCI) {
*this << IPCI->getCounterIndex() << ", "
<< QuotedString(IPCI->getPGOFuncName()) << ", "
<< "num_counters " << IPCI->getNumCounters() << ", "
<< "hash " << IPCI->getPGOFuncHash();
}
void visitIndexAddrInst(IndexAddrInst *IAI) {
*this << (IAI->needsStackProtection() ? "[stack_protection] " : "")
<< getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitTailAddrInst(TailAddrInst *TAI) {
*this << getIDAndType(TAI->getBase()) << ", "
<< getIDAndType(TAI->getIndex()) << ", " << TAI->getTailType();
}
void visitIndexRawPointerInst(IndexRawPointerInst *IAI) {
*this << getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitUnreachableInst(UnreachableInst *UI) {}
void visitReturnInst(ReturnInst *RI) {
*this << getIDAndType(RI->getOperand());
}
void visitReturnBorrowInst(ReturnBorrowInst *rbi) {
*this << getIDAndType(rbi->getReturnValue());
*this << " from_scopes (";
bool first = true;
for (SILValue ev : rbi->getEnclosingValues()) {
if (!first) {
*this << ", ";
}
first = false;
*this << getIDAndType(ev);
}
*this << ")";
}
void visitSpecifyTestInst(SpecifyTestInst *TSI) {
*this << QuotedString(TSI->getArgumentsSpecification());
}
void visitThrowInst(ThrowInst *TI) {
*this << getIDAndType(TI->getOperand());
}
void visitThrowAddrInst(ThrowAddrInst *TAI) {
// no operands
}
void visitUnwindInst(UnwindInst *UI) {
// no operands
}
void visitYieldInst(YieldInst *YI) {
auto values = YI->getYieldedValues();
if (values.size() != 1) *this << '(';
llvm::interleave(
values, [&](SILValue value) { *this << getIDAndType(value); },
[&] { *this << ", "; });
if (values.size() != 1) *this << ')';
*this << ", resume " << Ctx.getID(YI->getResumeBB())
<< ", unwind " << Ctx.getID(YI->getUnwindBB());
}
void visitGetAsyncContinuationInst(GetAsyncContinuationInst *GI) {
if (GI->throws())
*this << "[throws] ";
*this << GI->getFormalResumeType();
}
void visitIgnoredUseInst(IgnoredUseInst *i) {
*this << getIDAndType(i->getOperand());
}
void visitGetAsyncContinuationAddrInst(GetAsyncContinuationAddrInst *GI) {
if (GI->throws())
*this << "[throws] ";
*this << GI->getFormalResumeType()
<< ", " << getIDAndType(GI->getOperand());
}
void visitAwaitAsyncContinuationInst(AwaitAsyncContinuationInst *AI) {
*this << getIDAndType(AI->getOperand())
<< ", resume " << Ctx.getID(AI->getResumeBB());
if (auto errorBB = AI->getErrorBB()) {
*this << ", error " << Ctx.getID(errorBB);
}
}
void visitHopToExecutorInst(HopToExecutorInst *HTEI) {
if (HTEI->isMandatory())
*this << "[mandatory] ";
*this << getIDAndType(HTEI->getTargetExecutor());
}
void visitExtractExecutorInst(ExtractExecutorInst *AEI) {
*this << getIDAndType(AEI->getExpectedExecutor());
}
void visitFunctionExtractIsolationInst(FunctionExtractIsolationInst *I) {
*this << getIDAndType(I->getFunction());
}
void visitSwitchValueInst(SwitchValueInst *SII) {
*this << getIDAndType(SII->getOperand());
for (unsigned i = 0, e = SII->getNumCases(); i < e; ++i) {
SILValue value;
SILBasicBlock *dest;
std::tie(value, dest) = SII->getCase(i);
*this << ", case " << Ctx.getID(value) << ": " << Ctx.getID(dest);
}
if (SII->hasDefault())
*this << ", default " << Ctx.getID(SII->getDefaultBB());
}
void printSwitchEnumInst(SwitchEnumTermInst switchEnum) {
*this << getIDAndType(switchEnum.getOperand());
for (unsigned i = 0, e = switchEnum.getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = switchEnum.getCase(i);
*this << ", case " << SILDeclRef(elt, SILDeclRef::Kind::EnumElement)
<< ": " << Ctx.getID(dest);
if (switchEnum.getCaseCount(i)) {
*this << " !case_count(" << switchEnum.getCaseCount(i).getValue()
<< ")";
}
}
if (switchEnum.hasDefault()) {
*this << ", default " << Ctx.getID(switchEnum.getDefaultBB());
if (switchEnum.getDefaultCount()) {
*this << " !default_count(" << switchEnum.getDefaultCount().getValue()
<< ")";
}
if (NullablePtr<EnumElementDecl> uniqueCase =
switchEnum.getUniqueCaseForDefault()) {
lineComments << SILDeclRef(uniqueCase.get(),
SILDeclRef::Kind::EnumElement);
}
}
}
void visitSwitchEnumInst(SwitchEnumInst *switchEnum) {
printSwitchEnumInst(switchEnum);
printForwardingOwnershipKind(switchEnum, switchEnum->getOperand());
}
void visitSwitchEnumAddrInst(SwitchEnumAddrInst *switchEnum) {
printSwitchEnumInst(switchEnum);
}
void printSelectEnumInst(SelectEnumOperation SEO) {
*this << getIDAndType(SEO.getEnumOperand());
for (unsigned i = 0, e = SEO.getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILValue result;
std::tie(elt, result) = SEO.getCase(i);
*this << ", case " << SILDeclRef(elt, SILDeclRef::Kind::EnumElement)
<< ": " << Ctx.getID(result);
}
if (SEO.hasDefault())
*this << ", default " << Ctx.getID(SEO.getDefaultResult());
*this << " : " << SEO->getType();
}
void visitSelectEnumInst(SelectEnumInst *SEI) {
printSelectEnumInst(SEI);
}
void visitSelectEnumAddrInst(SelectEnumAddrInst *SEI) {
printSelectEnumInst(SEI);
}
void visitDynamicMethodBranchInst(DynamicMethodBranchInst *DMBI) {
*this << getIDAndType(DMBI->getOperand()) << ", " << DMBI->getMember()
<< ", " << Ctx.getID(DMBI->getHasMethodBB()) << ", "
<< Ctx.getID(DMBI->getNoMethodBB());
}
void printBranchArgs(OperandValueArrayRef args) {
if (args.empty()) return;
*this << '(';
llvm::interleave(
args, [&](SILValue v) { *this << getIDAndType(v); },
[&] { *this << ", "; });
*this << ')';
}
void visitBranchInst(BranchInst *UBI) {
*this << Ctx.getID(UBI->getDestBB());
printBranchArgs(UBI->getArgs());
}
void visitCondBranchInst(CondBranchInst *CBI) {
*this << Ctx.getID(CBI->getCondition()) << ", "
<< Ctx.getID(CBI->getTrueBB());
printBranchArgs(CBI->getTrueArgs());
*this << ", " << Ctx.getID(CBI->getFalseBB());
printBranchArgs(CBI->getFalseArgs());
if (CBI->getTrueBBCount())
*this << " !true_count(" << CBI->getTrueBBCount().getValue() << ")";
if (CBI->getFalseBBCount())
*this << " !false_count(" << CBI->getFalseBBCount().getValue() << ")";
}
void visitKeyPathInst(KeyPathInst *KPI) {
*this << KPI->getType() << ", ";
auto pattern = KPI->getPattern();
if (pattern->getGenericSignature()) {
PrintOptions Opts;
Opts.PrintInverseRequirements = true;
pattern->getGenericSignature()->print(PrintState.OS, Opts);
*this << ' ';
}
*this << "(";
if (!pattern->getObjCString().empty())
*this << "objc \"" << pattern->getObjCString() << "\"; ";
*this << "root $" << KPI->getPattern()->getRootType();
for (auto &component : pattern->getComponents()) {
*this << "; ";
printKeyPathPatternComponent(component);
}
*this << ')';
if (!KPI->getSubstitutions().empty()) {
*this << ' ';
printSubstitutions(KPI->getSubstitutions());
}
if (!KPI->getPatternOperands().empty()) {
*this << " (";
interleave(KPI->getPatternOperands(),
[&](const Operand &operand) {
*this << Ctx.getID(operand.get());
}, [&]{
*this << ", ";
});
*this << ")";
}
}
void
printKeyPathPatternComponent(const KeyPathPatternComponent &component) {
auto printComponentIndices =
[&](ArrayRef<KeyPathPatternComponent::Index> indices) {
*this << '[';
interleave(indices,
[&](const KeyPathPatternComponent::Index &i) {
*this << "%$" << i.Operand << " : $"
<< i.FormalType << " : "
<< i.LoweredType;
}, [&]{
*this << ", ";
});
*this << ']';
};
switch (auto kind = component.getKind()) {
case KeyPathPatternComponent::Kind::StoredProperty: {
auto prop = component.getStoredPropertyDecl();
*this << "stored_property #";
printValueDecl(prop, PrintState.OS);
*this << " : $" << component.getComponentType();
break;
}
case KeyPathPatternComponent::Kind::GettableProperty:
case KeyPathPatternComponent::Kind::SettableProperty:
case KeyPathPatternComponent::Kind::Method: {
*this << (kind == KeyPathPatternComponent::Kind::GettableProperty
? "gettable_property $" : "settable_property $")
<< component.getComponentType() << ", "
<< " id ";
auto id = component.getComputedPropertyId();
switch (id.getKind()) {
case KeyPathPatternComponent::ComputedPropertyId::DeclRef: {
auto declRef = id.getDeclRef();
*this << declRef << " : "
<< declRef.getDecl()->getInterfaceType();
break;
}
case KeyPathPatternComponent::ComputedPropertyId::Function: {
id.getFunction()->printName(PrintState.OS);
*this << " : " << id.getFunction()->getLoweredType();
break;
}
case KeyPathPatternComponent::ComputedPropertyId::Property: {
*this << "##";
printValueDecl(id.getProperty(), PrintState.OS);
break;
}
}
*this << ", getter ";
component.getComputedPropertyForGettable()->printName(PrintState.OS);
*this << " : "
<< component.getComputedPropertyForGettable()->getLoweredType();
if (kind == KeyPathPatternComponent::Kind::SettableProperty) {
*this << ", setter ";
component.getComputedPropertyForSettable()->printName(PrintState.OS);
*this << " : "
<< component.getComputedPropertyForSettable()->getLoweredType();
}
if (!component.getArguments().empty()) {
*this << ", indices ";
printComponentIndices(component.getArguments());
*this << ", indices_equals ";
component.getIndexEquals()->printName(PrintState.OS);
*this << " : " << component.getIndexEquals()->getLoweredType();
*this << ", indices_hash ";
component.getIndexHash()->printName(PrintState.OS);
*this << " : " << component.getIndexHash()->getLoweredType();
}
if (auto external = component.getExternalDecl()) {
*this << ", external #";
printValueDecl(external, PrintState.OS);
auto subs = component.getExternalSubstitutions();
if (!subs.empty()) {
printSubstitutions(subs);
}
}
break;
}
case KeyPathPatternComponent::Kind::OptionalWrap:
case KeyPathPatternComponent::Kind::OptionalChain:
case KeyPathPatternComponent::Kind::OptionalForce: {
switch (kind) {
case KeyPathPatternComponent::Kind::OptionalWrap:
*this << "optional_wrap : $";
break;
case KeyPathPatternComponent::Kind::OptionalChain:
*this << "optional_chain : $";
break;
case KeyPathPatternComponent::Kind::OptionalForce:
*this << "optional_force : $";
break;
default:
llvm_unreachable("out of sync");
}
*this << component.getComponentType();
break;
}
case KeyPathPatternComponent::Kind::TupleElement: {
*this << "tuple_element #" << component.getTupleIndex();
*this << " : $" << component.getComponentType();
break;
}
}
}
void visitDifferentiableFunctionInst(DifferentiableFunctionInst *dfi) {
*this << "[parameters";
for (auto i : dfi->getParameterIndices()->getIndices())
*this << ' ' << i;
*this << "] ";
*this << "[results";
for (auto i : dfi->getResultIndices()->getIndices())
*this << ' ' << i;
*this << "] ";
*this << getIDAndType(dfi->getOriginalFunction());
if (dfi->hasDerivativeFunctions()) {
*this << " with_derivative ";
*this << '{' << getIDAndType(dfi->getJVPFunction()) << ", "
<< getIDAndType(dfi->getVJPFunction()) << '}';
}
}
void visitLinearFunctionInst(LinearFunctionInst *lfi) {
*this << "[parameters";
for (auto i : lfi->getParameterIndices()->getIndices())
*this << ' ' << i;
*this << "] ";
*this << getIDAndType(lfi->getOriginalFunction());
if (lfi->hasTransposeFunction()) {
*this << " with_transpose ";
*this << getIDAndType(lfi->getTransposeFunction());
}
}
void visitDifferentiableFunctionExtractInst(
DifferentiableFunctionExtractInst *dfei) {
*this << '[';
switch (dfei->getExtractee()) {
case NormalDifferentiableFunctionTypeComponent::Original:
*this << "original";
break;
case NormalDifferentiableFunctionTypeComponent::JVP:
*this << "jvp";
break;
case NormalDifferentiableFunctionTypeComponent::VJP:
*this << "vjp";
break;
}
*this << "] ";
*this << getIDAndType(dfei->getOperand());
if (dfei->hasExplicitExtracteeType()) {
*this << " as ";
*this << dfei->getType();
}
printForwardingOwnershipKind(dfei, dfei->getOperand());
}
void visitLinearFunctionExtractInst(LinearFunctionExtractInst *lfei) {
*this << '[';
switch (lfei->getExtractee()) {
case LinearDifferentiableFunctionTypeComponent::Original:
*this << "original";
break;
case LinearDifferentiableFunctionTypeComponent::Transpose:
*this << "transpose";
break;
}
*this << "] ";
*this << getIDAndType(lfei->getOperand());
printForwardingOwnershipKind(lfei, lfei->getOperand());
}
void visitDifferentiabilityWitnessFunctionInst(
DifferentiabilityWitnessFunctionInst *dwfi) {
auto *witness = dwfi->getWitness();
*this << '[';
switch (dwfi->getWitnessKind()) {
case DifferentiabilityWitnessFunctionKind::JVP:
*this << "jvp";
break;
case DifferentiabilityWitnessFunctionKind::VJP:
*this << "vjp";
break;
case DifferentiabilityWitnessFunctionKind::Transpose:
*this << "transpose";
break;
}
*this << "] [";
switch (dwfi->getWitness()->getKind()) {
case DifferentiabilityKind::Forward:
*this << "forward";
break;
case DifferentiabilityKind::Reverse:
*this << "reverse";
break;
case DifferentiabilityKind::Normal:
*this << "normal";
break;
case DifferentiabilityKind::Linear:
*this << "linear";
break;
case DifferentiabilityKind::NonDifferentiable:
llvm_unreachable("Impossible case");
}
*this << "] [parameters";
for (auto i : witness->getParameterIndices()->getIndices())
*this << ' ' << i;
*this << "] [results";
for (auto i : witness->getResultIndices()->getIndices())
*this << ' ' << i;
*this << "] ";
if (auto witnessGenSig = witness->getDerivativeGenericSignature()) {
auto subPrinter = PrintOptions::printSIL();
subPrinter.PrintInverseRequirements = true;
witnessGenSig->print(PrintState.OS, subPrinter);
*this << " ";
}
printSILFunctionNameAndType(PrintState.OS, witness->getOriginalFunction());
if (dwfi->getHasExplicitFunctionType()) {
*this << " as ";
*this << dwfi->getType();
}
}
void visitHasSymbolInst(HasSymbolInst *hsi) {
*this << "#";
printValueDecl(hsi->getDecl(), PrintState.OS);
}
};
} // namespace swift
static void printBlockID(raw_ostream &OS, SILBasicBlock *bb) {
SILPrintContext Ctx(OS);
OS << Ctx.getID(bb);
}
void SILBasicBlock::printAsOperand(raw_ostream &OS, bool PrintType) {
printBlockID(OS, this);
}
//===----------------------------------------------------------------------===//
// Printing for SILInstruction, SILBasicBlock, SILFunction, and SILModule
//===----------------------------------------------------------------------===//
void SILNode::dump() const {
print(llvm::errs());
}
void SILNode::print(raw_ostream &OS) const {
SILPrintContext Ctx(OS);
print(Ctx);
}
void SILNode::print(SILPrintContext &Ctx) const {
SILPrinter(Ctx).print(this);
}
void SILInstruction::dump() const {
print(llvm::errs());
}
void SILInstruction::dump(bool DebugInfo) const {
SILPrintContext Ctx(llvm::errs(), /*Verbose*/ false, /*SortedSIL*/ false,
DebugInfo, /*PrintFullConvention*/ false);
SILPrinter(Ctx).print(this);
}
void SingleValueInstruction::dump() const {
SILInstruction::dump();
}
void SILInstruction::print(raw_ostream &OS) const {
SILPrintContext Ctx(OS);
print(Ctx);
}
void SILInstruction::print(SILPrintContext &Ctx) const {
SILPrinter(Ctx).print(this);
}
void NonSingleValueInstruction::dump() const {
SILNode::dump();
}
/// Pretty-print the SILBasicBlock to errs.
void SILBasicBlock::dump() const {
print(llvm::errs());
}
/// Pretty-print the SILBasicBlock to errs with Debug Info.
void SILBasicBlock::dump(bool DebugInfo) const {
SILPrintContext Ctx(llvm::errs(), /*Verbose*/ false, /*SortedSIL*/ false,
DebugInfo, /*PrintFullConvention*/ false);
SILPrinter(Ctx).print(this);
}
/// Pretty-print the SILBasicBlock to the designated stream.
void SILBasicBlock::print(raw_ostream &OS) const {
SILPrintContext Ctx(OS);
print(Ctx);
}
void SILBasicBlock::print(SILPrintContext &Ctx) const {
// Print the debug scope (and compute if we didn't do it already).
auto &SM = this->getParent()->getModule().getASTContext().SourceMgr;
for (auto &I : *this) {
SILPrinter P(Ctx);
P.printDebugScope(I.getDebugScope(), SM);
}
SILPrinter(Ctx).print(this);
}
void SILBasicBlock::dumpID(bool newline) const {
#ifndef NDEBUG
printID(llvm::errs(), newline);
#else
llvm::errs() << "NOASSERTS" << (newline ? "\n" : "");
#endif
}
void SILBasicBlock::printID(llvm::raw_ostream &OS, bool newline) const {
#ifndef NDEBUG
SILPrintContext Ctx(OS);
printID(Ctx, newline);
#else
llvm::errs() << "NOASSERTS" << (newline ? "\n" : "");
#endif
}
void SILBasicBlock::printID(SILPrintContext &Ctx, bool newline) const {
#ifndef NDEBUG
SILPrinter(Ctx).printID(this, newline);
#else
llvm::errs() << "NOASSERTS" << (newline ? "\n" : "");
#endif
}
/// Pretty-print the SILFunction to errs.
void SILFunction::dump(bool Verbose) const {
SILPrintContext Ctx(llvm::errs(), Verbose);
print(Ctx);
}
// This is out of line so the debugger can find it.
void SILFunction::dump() const {
dump(false);
}
/// Pretty-print the SILFunction to errs.
void SILFunction::dump(bool Verbose, bool DebugInfo) const {
SILPrintContext Ctx(llvm::errs(), Verbose, /*SortedSIL*/ false, DebugInfo,
/*PrintFullConvention*/ false);
print(Ctx);
}
void SILFunction::dump(const char *FileName) const {
std::error_code EC;
llvm::raw_fd_ostream os(FileName, EC, llvm::sys::fs::OpenFlags::OF_None);
print(os);
}
StringRef swift::getLinkageString(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public: return "public";
case SILLinkage::PublicNonABI: return "non_abi";
case SILLinkage::Package: return "package";
case SILLinkage::PackageNonABI: return "package_non_abi";
case SILLinkage::Hidden: return "hidden";
case SILLinkage::Shared: return "shared";
case SILLinkage::Private: return "private";
case SILLinkage::PublicExternal: return "public_external";
case SILLinkage::PackageExternal: return "package_external";
case SILLinkage::HiddenExternal: return "hidden_external";
}
llvm_unreachable("bad linkage");
}
static void printLinkage(llvm::raw_ostream &OS, SILLinkage linkage,
bool isDefinition) {
if ((isDefinition && linkage == SILLinkage::DefaultForDefinition) ||
(!isDefinition && linkage == SILLinkage::DefaultForDeclaration))
return;
OS << getLinkageString(linkage) << ' ';
}
static void printSerializedKind(llvm::raw_ostream &OS, SerializedKind_t kind) {
switch (kind) {
case IsNotSerialized:
break;
case IsSerializedForPackage:
OS << "[serialized_for_package] ";
break;
case IsSerialized:
OS << "[serialized] ";
break;
}
}
static void printClangQualifiedNameCommentIfPresent(llvm::raw_ostream &OS,
const clang::Decl *decl) {
if (decl) {
if (auto namedDecl = dyn_cast_or_null<clang::NamedDecl>(decl)) {
OS << "// clang name: ";
namedDecl->printQualifiedName(OS);
OS << "\n";
}
}
}
/// Pretty-print the SILFunction to the designated stream.
void SILFunction::print(SILPrintContext &PrintCtx) const {
llvm::raw_ostream &OS = PrintCtx.OS();
if (PrintCtx.printDebugInfo()) {
auto &SM = getModule().getASTContext().SourceMgr;
for (auto &BB : *this)
for (auto &I : BB) {
SILPrinter P(PrintCtx);
P.printDebugScope(I.getDebugScope(), SM);
}
OS << "\n";
}
if (SILPrintGenericSpecializationInfo) {
if (isSpecialization()) {
printGenericSpecializationInfo(OS, "function", getName(),
getSpecializationInfo());
}
}
OS << "// " << demangleSymbol(getName());
if (PrintCtx.printDebugInfo()) {
auto &SM = getModule().getASTContext().SourceMgr;
SILPrinter P(PrintCtx);
P.printDebugLocRef(getLocation(), SM);
P.printDebugScopeRef(getDebugScope(), SM);
}
OS << '\n';
if (auto functionIsolation = getActorIsolation()) {
OS << "// Isolation: ";
functionIsolation->print(OS);
OS << '\n';
}
printClangQualifiedNameCommentIfPresent(OS, getClangDecl());
OS << "sil ";
printLinkage(OS, getLinkage(), isDefinition());
if (isTransparent())
OS << "[transparent] ";
printSerializedKind(OS, getSerializedKind());
switch (isThunk()) {
case IsNotThunk: break;
case IsBackDeployedThunk:
OS << "[back_deployed_thunk] ";
break;
case IsThunk: OS << "[thunk] "; break;
case IsSignatureOptimizedThunk:
OS << "[signature_optimized_thunk] ";
break;
case IsReabstractionThunk: OS << "[reabstraction_thunk] "; break;
}
if (isDynamicallyReplaceable()) {
OS << "[dynamically_replacable] ";
}
if (isDistributed()) {
OS << "[distributed] ";
}
if (isRuntimeAccessible()) {
OS << "[runtime_accessible] ";
}
if (forceEnableLexicalLifetimes()) {
OS << "[lexical_lifetimes] ";
}
if (!useStackForPackMetadata()) {
OS << "[no_onstack_pack_metadata] ";
}
if (hasUnsafeNonEscapableResult()) {
OS << "[unsafe_nonescapable_result] ";
}
if (isExactSelfClass()) {
OS << "[exact_self_class] ";
}
if (isWithoutActuallyEscapingThunk())
OS << "[without_actually_escaping] ";
switch (getSpecialPurpose()) {
case SILFunction::Purpose::None:
break;
case SILFunction::Purpose::GlobalInit:
OS << "[global_init] ";
break;
case SILFunction::Purpose::GlobalInitOnceFunction:
OS << "[global_init_once_fn] ";
break;
case SILFunction::Purpose::LazyPropertyGetter:
OS << "[lazy_getter] ";
break;
}
if (isAlwaysWeakImported())
OS << "[weak_imported] ";
auto availability = getAvailabilityForLinkage();
if (!availability.isAlwaysAvailable()) {
OS << "[available " << availability.getVersionString() << "] ";
}
// This is here only for testing purposes.
if (SILPrintFunctionIsolationInfo) {
if (auto isolation = getActorIsolation()) {
OS << "[isolation \"";
isolation->printForSIL(OS);
OS << "\"] ";
}
}
switch (getInlineStrategy()) {
case NoInline: OS << "[noinline] "; break;
case HeuristicAlwaysInline: OS << "[heuristic_always_inline] "; break;
case AlwaysInline: OS << "[always_inline] "; break;
case InlineDefault: break;
}
switch (getOptimizationMode()) {
case OptimizationMode::NoOptimization: OS << "[Onone] "; break;
case OptimizationMode::ForSpeed: OS << "[Ospeed] "; break;
case OptimizationMode::ForSize: OS << "[Osize] "; break;
default: break;
}
PerformanceConstraints perf = getPerfConstraints();
switch (perf) {
case PerformanceConstraints::None: break;
case PerformanceConstraints::NoLocks: OS << "[no_locks] "; break;
case PerformanceConstraints::NoAllocation: OS << "[no_allocation] "; break;
case PerformanceConstraints::NoRuntime: OS << "[no_runtime] "; break;
case PerformanceConstraints::NoExistentials: OS << "[no_existentials] "; break;
case PerformanceConstraints::NoObjCBridging: OS << "[no_objc_bridging] "; break;
case PerformanceConstraints::ManualOwnership: OS << "[manual_ownership] "; break;
}
if (isPerformanceConstraint())
OS << "[perf_constraint] ";
if (getEffectsKind() == EffectsKind::ReadOnly)
OS << "[readonly] ";
else if (getEffectsKind() == EffectsKind::ReadNone)
OS << "[readnone] ";
else if (getEffectsKind() == EffectsKind::ReadWrite)
OS << "[readwrite] ";
else if (getEffectsKind() == EffectsKind::ReleaseNone)
OS << "[releasenone] ";
if (auto *replacedFun = getDynamicallyReplacedFunction()) {
OS << "[dynamic_replacement_for \"";
OS << replacedFun->getName();
OS << "\"] ";
}
if (auto *usedFunc = getReferencedAdHocRequirementWitnessFunction()) {
OS << "[ref_adhoc_requirement_witness \"";
OS << usedFunc->getName();
OS << "\"] ";
}
if (hasObjCReplacement()) {
OS << "[objc_replacement_for \"";
OS << getObjCReplacement().str();
OS << "\"] ";
}
for (auto &Attr : getSemanticsAttrs())
OS << "[_semantics \"" << Attr << "\"] ";
for (auto *Attr : getSpecializeAttrs()) {
OS << "[_specialize "; Attr->print(OS); OS << "] ";
}
if (markedAsUsed())
OS << "[used] ";
if (!section().empty())
OS << "[section \"" << section() << "\"] ";
if (!asmName().empty())
OS << "[asmname \"" << asmName() << "\"] ";
// TODO: Handle clang node owners which don't have a name.
if (hasClangNode() && getClangNodeOwner()->hasName()) {
OS << "[clang ";
printValueDecl(getClangNodeOwner(), OS);
OS << "] ";
}
// Handle functions that are deserialized from canonical SIL. Normally, we
// should emit SIL with the correct SIL stage, so preserving this attribute
// won't be necessary. But consider serializing raw SIL (either textual SIL or
// SIB) after importing canonical SIL from another module. If the imported
// functions are reserialized (e.g. shared linkage), then we must preserve
// this attribute.
if (WasDeserializedCanonical && getModule().getStage() == SILStage::Raw)
OS << "[canonical] ";
// If this function is not an external declaration /and/ is in ownership ssa
// form, print [ossa].
if (!isExternalDeclaration() && hasOwnership())
OS << "[ossa] ";
if (needsStackProtection())
OS << "[stack_protection] ";
llvm::DenseMap<CanType, Identifier> sugaredTypeNames;
printSILFunctionNameAndType(OS, this, sugaredTypeNames, &PrintCtx);
if (!isExternalDeclaration()) {
if (auto eCount = getEntryCount()) {
OS << " !function_entry_count(" << eCount.getValue() << ")";
}
OS << " {\n";
writeEffects(OS);
SILPrinter(PrintCtx, sugaredTypeNames.empty() ? nullptr : &sugaredTypeNames)
.print(this);
OS << "} // end sil function '" << getName() << '\'';
} else if (hasArgumentEffects()) {
OS << " {\n";
writeEffects(OS);
OS << "} // end sil function '" << getName() << '\'';
}
OS << "\n\n";
}
/// Pretty-print the SILFunction's name using SIL syntax,
/// '@function_mangled_name'.
void SILFunction::printName(raw_ostream &OS) const { OS << "@" << Name; }
/// Pretty-print a global variable to the designated stream.
void SILGlobalVariable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "// " << demangleSymbol(getName()) << '\n';
printClangQualifiedNameCommentIfPresent(OS, getClangDecl());
OS << "sil_global ";
// Passing true for 'isDefinition' lets print the (external) linkage if it's
// not a definition.
printLinkage(OS, getLinkage(), /*isDefinition*/ true);
printSerializedKind(OS, getSerializedKind());
if (isLet())
OS << "[let] ";
if (markedAsUsed())
OS << "[used] ";
if (!asmName().empty())
OS << "[asmname \"" << asmName() << "\"] ";
if (!section().empty())
OS << "[section \"" << section() << "\"] ";
printName(OS);
OS << " : " << LoweredType;
if (!StaticInitializerBlock.empty()) {
OS << " = {\n";
{
SILPrintContext Ctx(OS);
SILPrinter Printer(Ctx);
Printer.markBlockAsPrinted(&StaticInitializerBlock);
for (const SILInstruction &I : StaticInitializerBlock) {
Printer.print(&I);
}
}
OS << "}\n";
}
OS << "\n\n";
}
void SILGlobalVariable::dump(bool Verbose) const {
print(llvm::errs(), Verbose);
}
void SILGlobalVariable::dump() const {
dump(false);
}
void SILGlobalVariable::printName(raw_ostream &OS) const {
OS << "@" << Name;
}
/// Pretty-print the SILModule to errs.
void SILModule::dump(bool Verbose) const {
SILPrintContext Ctx(llvm::errs(), Verbose);
print(Ctx);
}
/// Pretty-print the SILModule to errs with DebugInfo.
void SILModule::dump(bool Verbose, bool DebugInfo) const {
SILPrintContext Ctx(llvm::errs(), Verbose, /*SortedSIL*/ false, DebugInfo,
/*PrintFullConvention*/ false);
print(Ctx);
}
void SILModule::dump(const char *FileName, bool Verbose,
bool PrintASTDecls) const {
std::error_code EC;
llvm::raw_fd_ostream os(FileName, EC, llvm::sys::fs::OpenFlags::OF_None);
SILPrintContext Ctx(os, Verbose);
print(Ctx, getSwiftModule(), PrintASTDecls);
}
static void printSILGlobals(SILPrintContext &Ctx,
const SILModule::GlobalListType &Globals) {
if (!Ctx.sortSIL()) {
for (const SILGlobalVariable &g : Globals)
g.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILGlobalVariable *> globals;
globals.reserve(Globals.size());
for (const SILGlobalVariable &g : Globals)
globals.push_back(&g);
std::sort(globals.begin(), globals.end(),
[] (const SILGlobalVariable *g1, const SILGlobalVariable *g2) -> bool {
return g1->getName().compare(g2->getName()) == -1;
}
);
for (const SILGlobalVariable *g : globals)
g->print(Ctx.OS(), Ctx.printVerbose());
}
static void printSILFunctions(SILPrintContext &Ctx,
const SILModule::FunctionListType &Functions) {
if (!Ctx.sortSIL()) {
for (const SILFunction &f : Functions)
f.print(Ctx);
return;
}
std::vector<const SILFunction *> functions;
functions.reserve(Functions.size());
for (const SILFunction &f : Functions)
functions.push_back(&f);
std::sort(functions.begin(), functions.end(),
[] (const SILFunction *f1, const SILFunction *f2) -> bool {
return f1->getName().compare(f2->getName()) == -1;
}
);
for (const SILFunction *f : functions)
f->print(Ctx);
}
static void printSILVTables(SILPrintContext &Ctx,
const SILModule::VTableListType &VTables) {
if (!Ctx.sortSIL()) {
for (const auto &vt : VTables)
vt->print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILVTable *> vtables;
vtables.reserve(VTables.size());
for (const auto &vt : VTables)
vtables.push_back(vt);
std::sort(vtables.begin(), vtables.end(),
[] (const SILVTable *v1, const SILVTable *v2) -> bool {
StringRef Name1 = v1->getClass()->getName().str();
StringRef Name2 = v2->getClass()->getName().str();
return Name1.compare(Name2) == -1;
}
);
for (const SILVTable *vt : vtables)
vt->print(Ctx.OS(), Ctx.printVerbose());
}
static void printSILMoveOnlyDeinits(
SILPrintContext &printCtx,
const SILModule::SILMoveOnlyDeinitListType &deinitTables) {
if (!printCtx.sortSIL()) {
for (const auto &tbl : deinitTables)
tbl->print(printCtx.OS(), printCtx.printVerbose());
return;
}
std::vector<const SILMoveOnlyDeinit *> sortedTables;
sortedTables.reserve(deinitTables.size());
for (const auto &tbl : deinitTables)
sortedTables.push_back(tbl);
std::sort(
sortedTables.begin(), sortedTables.end(),
[](const SILMoveOnlyDeinit *v1, const SILMoveOnlyDeinit *v2) -> bool {
StringRef name1 = v1->getNominalDecl()->getName().str();
StringRef name2 = v2->getNominalDecl()->getName().str();
return name1.compare(name2) == -1;
});
for (const auto *tbl : sortedTables)
tbl->print(printCtx.OS(), printCtx.printVerbose());
}
static void
printSILWitnessTables(SILPrintContext &Ctx,
const SILModule::WitnessTableListType &WTables) {
if (!Ctx.sortSIL()) {
for (const SILWitnessTable &wt : WTables)
wt.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILWitnessTable *> witnesstables;
witnesstables.reserve(WTables.size());
for (const SILWitnessTable &wt : WTables)
witnesstables.push_back(&wt);
std::sort(witnesstables.begin(), witnesstables.end(),
[] (const SILWitnessTable *w1, const SILWitnessTable *w2) -> bool {
return w1->getName().compare(w2->getName()) == -1;
}
);
for (const SILWitnessTable *wt : witnesstables)
wt->print(Ctx.OS(), Ctx.printVerbose());
}
static void
printSILDefaultWitnessTables(SILPrintContext &Ctx,
const SILModule::DefaultWitnessTableListType &WTables) {
if (!Ctx.sortSIL()) {
for (const SILDefaultWitnessTable &wt : WTables)
wt.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILDefaultWitnessTable *> witnesstables;
witnesstables.reserve(WTables.size());
for (const SILDefaultWitnessTable &wt : WTables)
witnesstables.push_back(&wt);
std::sort(witnesstables.begin(), witnesstables.end(),
[] (const SILDefaultWitnessTable *w1,
const SILDefaultWitnessTable *w2) -> bool {
return w1->getProtocol()->getName()
.compare(w2->getProtocol()->getName()) == -1;
}
);
for (const SILDefaultWitnessTable *wt : witnesstables)
wt->print(Ctx.OS(), Ctx.printVerbose());
}
static void printSILDefaultOverrideTables(
SILPrintContext &Ctx,
const SILModule::DefaultOverrideTableListType &tables) {
if (!Ctx.sortSIL()) {
for (const auto &table : tables)
table.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILDefaultOverrideTable *> sorted;
sorted.reserve(tables.size());
for (const auto &table : tables)
sorted.push_back(&table);
std::sort(sorted.begin(), sorted.end(),
[](const auto *left, const auto *right) -> bool {
return left->getClass()->getName().compare(
right->getClass()->getName()) == -1;
});
for (const auto *table : sorted)
table->print(Ctx.OS(), Ctx.printVerbose());
}
static void printSILDifferentiabilityWitnesses(
SILPrintContext &Ctx,
const SILModule::DifferentiabilityWitnessListType &diffWitnesses) {
if (!Ctx.sortSIL()) {
for (auto &dw : diffWitnesses)
dw.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILDifferentiabilityWitness *> sortedDiffWitnesses;
sortedDiffWitnesses.reserve(diffWitnesses.size());
for (auto &dw : diffWitnesses)
sortedDiffWitnesses.push_back(&dw);
std::sort(sortedDiffWitnesses.begin(), sortedDiffWitnesses.end(),
[](const SILDifferentiabilityWitness *dw1,
const SILDifferentiabilityWitness *dw2) -> bool {
// TODO(TF-893): Sort based on more criteria for deterministic
// ordering.
return dw1->getOriginalFunction()->getName().compare(
dw2->getOriginalFunction()->getName()) == -1;
});
for (auto *dw : sortedDiffWitnesses)
dw->print(Ctx.OS(), Ctx.printVerbose());
}
static void printSILLinearMapTypes(SILPrintContext &Ctx,
const ModuleDecl *M) {
auto &OS = Ctx.OS();
PrintOptions Options = PrintOptions::printSIL();
Options.TypeDefinitions = true;
Options.VarInitializers = true;
Options.ExplodePatternBindingDecls = true;
Options.SkipImplicit = false;
Options.PrintGetSetOnRWProperties = true;
Options.PrintInSILBody = false;
SmallVector<Decl *, 32> topLevelDecls;
M->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
if (D->getDeclContext() == M)
continue;
if (!isa<StructDecl>(D) && !isa<EnumDecl>(D))
continue;
StringRef Name = cast<TypeDecl>(D)->getNameStr();
if (!Name.starts_with("_AD__"))
continue;
D->print(OS, Options);
OS << "\n\n";
}
}
static void
printSILCoverageMaps(SILPrintContext &Ctx,
const SILModule::CoverageMapCollectionType &CoverageMaps) {
if (!Ctx.sortSIL()) {
for (const auto &M : CoverageMaps)
M.second->print(Ctx);
return;
}
std::vector<const SILCoverageMap *> Maps;
Maps.reserve(CoverageMaps.size());
for (const auto &M : CoverageMaps)
Maps.push_back(M.second);
std::sort(Maps.begin(), Maps.end(),
[](const SILCoverageMap *LHS, const SILCoverageMap *RHS) -> bool {
return LHS->getName().compare(RHS->getName()) == -1;
});
for (const SILCoverageMap *M : Maps)
M->print(Ctx);
}
using FileIDMap = llvm::StringMap<std::pair<std::string, /*isWinner=*/bool>>;
static void printFileIDMapEntry(SILPrintContext &Ctx,
const FileIDMap::MapEntryTy &entry) {
auto &OS = Ctx.OS();
OS << "// '" << std::get<0>(entry.second)
<< "' => '" << entry.first() << "'";
if (!std::get<1>(entry.second))
OS << " (alternate)";
OS << "\n";
}
static void printFileIDMap(SILPrintContext &Ctx, const FileIDMap map) {
if (map.empty())
return;
Ctx.OS() << "\n\n// Mappings from '#fileID' to '#filePath':\n";
if (Ctx.sortSIL()) {
llvm::SmallVector<llvm::StringRef, 16> keys;
llvm::copy(map.keys(), std::back_inserter(keys));
llvm::sort(keys, [&](StringRef leftKey, StringRef rightKey) -> bool {
const auto &leftValue = map.find(leftKey)->second;
const auto &rightValue = map.find(rightKey)->second;
// Lexicographically earlier #file strings sort earlier.
if (std::get<0>(leftValue) != std::get<0>(rightValue))
return std::get<0>(leftValue) < std::get<0>(rightValue);
// Conflict winners sort before losers.
if (std::get<1>(leftValue) != std::get<1>(rightValue))
return std::get<1>(leftValue);
// Finally, lexicographically earlier #filePath strings sort earlier.
return leftKey < rightKey;
});
for (auto key : keys)
printFileIDMapEntry(Ctx, *map.find(key));
} else {
for (const auto &entry : map)
printFileIDMapEntry(Ctx, entry);
}
}
void SILProperty::print(SILPrintContext &Ctx) const {
auto &OS = Ctx.OS();
OS << "sil_property ";
printSerializedKind(OS, getSerializedKind());
OS << '#';
printValueDecl(getDecl(), OS);
if (auto sig = getDecl()->getInnermostDeclContext()
->getGenericSignatureOfContext()) {
PrintOptions Options = PrintOptions::printSIL(&Ctx);
Options.PrintInverseRequirements = true;
sig.getCanonicalSignature()->print(OS, Options);
}
OS << " (";
if (auto component = getComponent())
SILPrinter(Ctx).printKeyPathPatternComponent(*component);
OS << ")\n";
}
void SILProperty::dump() const {
SILPrintContext context(llvm::errs());
print(context);
}
static void printSILProperties(SILPrintContext &Ctx,
const SILModule::PropertyListType &Properties) {
for (const SILProperty &P : Properties) {
P.print(Ctx);
}
}
static void printExternallyVisibleDecls(SILPrintContext &Ctx,
ArrayRef<ValueDecl *> decls) {
if (decls.empty())
return;
Ctx.OS() << "/* externally visible decls: \n";
for (ValueDecl *decl : decls) {
printValueDecl(decl, Ctx.OS());
Ctx.OS() << '\n';
}
Ctx.OS() << "*/\n";
}
/// Pretty-print the SILModule to the designated stream.
void SILModule::print(SILPrintContext &PrintCtx, ModuleDecl *M,
bool PrintASTDecls) const {
llvm::raw_ostream &OS = PrintCtx.OS();
OS << "sil_stage ";
switch (Stage) {
case SILStage::Raw:
OS << "raw";
break;
case SILStage::Canonical:
OS << "canonical";
break;
case SILStage::Lowered:
OS << "lowered";
break;
}
OS << "\n\nimport " << BUILTIN_NAME
<< "\nimport " << STDLIB_NAME
<< "\nimport " << SWIFT_SHIMS_NAME << "\n\n";
// Print the declarations and types from the associated context (origin module or
// current file).
if (M && PrintASTDecls) {
PrintOptions Options = PrintOptions::printSIL();
Options.TypeDefinitions = true;
Options.VarInitializers = true;
// FIXME: ExplodePatternBindingDecls is incompatible with VarInitializers!
Options.ExplodePatternBindingDecls = true;
Options.SkipImplicit = false;
Options.PrintGetSetOnRWProperties = true;
Options.PrintInSILBody = false;
bool WholeModuleMode = (M == AssociatedDeclContext);
SmallVector<Decl *, 32> topLevelDecls;
M->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
if (!WholeModuleMode && !(D->getDeclContext() == AssociatedDeclContext))
continue;
if ((isa<ValueDecl>(D) || isa<OperatorDecl>(D) ||
isa<ExtensionDecl>(D) || isa<ImportDecl>(D)) &&
!D->isImplicit()) {
if (isa<AccessorDecl>(D))
continue;
// skip to visit ASTPrinter to avoid sil-opt prints duplicated import declarations
if (auto importDecl = dyn_cast<ImportDecl>(D)) {
StringRef importName = importDecl->getModule()->getName().str();
if (importName == BUILTIN_NAME ||
importName == STDLIB_NAME ||
importName == SWIFT_SHIMS_NAME)
continue;
}
D->print(OS, Options);
OS << "\n\n";
}
}
}
printSILGlobals(PrintCtx, getSILGlobalList());
printSILDifferentiabilityWitnesses(PrintCtx,
getDifferentiabilityWitnessList());
printSILLinearMapTypes(PrintCtx, getSwiftModule());
printSILFunctions(PrintCtx, getFunctionList());
printSILVTables(PrintCtx, getVTables());
printSILWitnessTables(PrintCtx, getWitnessTableList());
printSILDefaultWitnessTables(PrintCtx, getDefaultWitnessTableList());
printSILDefaultOverrideTables(PrintCtx, getDefaultOverrideTableList());
printSILCoverageMaps(PrintCtx, getCoverageMaps());
printSILProperties(PrintCtx, getPropertyList());
printSILMoveOnlyDeinits(PrintCtx, getMoveOnlyDeinits());
printExternallyVisibleDecls(PrintCtx, externallyVisible.getArrayRef());
if (M)
printFileIDMap(
PrintCtx, M->computeFileIDMap(/*shouldDiagnose=*/false));
OS << "\n\n";
}
void SILNode::dumpInContext() const {
printInContext(llvm::errs());
}
void SILNode::printInContext(llvm::raw_ostream &OS) const {
SILPrintContext Ctx(OS);
printInContext(Ctx);
}
void SILNode::printInContext(SILPrintContext &Ctx) const {
SILPrinter(Ctx).printInContext(this);
}
void SILInstruction::dumpInContext() const {
printInContext(llvm::errs());
}
void SILInstruction::printInContext(llvm::raw_ostream &OS) const {
SILPrintContext Ctx(OS);
printInContext(Ctx);
}
void SILInstruction::printInContext(SILPrintContext &Ctx) const {
SILPrinter(Ctx).printInContext(asSILNode());
}
void SILVTableEntry::print(llvm::raw_ostream &OS) const {
getMethod().print(OS);
OS << ": ";
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
bool HasSingleImplementation = false;
switch (getMethod().kind) {
default:
break;
case SILDeclRef::Kind::IVarDestroyer:
case SILDeclRef::Kind::Destroyer:
case SILDeclRef::Kind::Deallocator:
case SILDeclRef::Kind::IsolatedDeallocator:
HasSingleImplementation = true;
}
// No need to emit the signature for methods that may have only
// single implementation, e.g. for destructors.
if (!HasSingleImplementation) {
QualifiedSILTypeOptions.CurrentModule =
getMethod().getDecl()->getDeclContext()->getParentModule();
getMethod().getDecl()->getInterfaceType().print(
OS, QualifiedSILTypeOptions);
OS << " : ";
}
OS << '@' << getImplementation()->getName();
switch (getKind()) {
case SILVTable::Entry::Kind::Normal:
break;
case SILVTable::Entry::Kind::Inherited:
OS << " [inherited]";
break;
case SILVTable::Entry::Kind::Override:
OS << " [override]";
break;
}
if (isNonOverridden()) {
OS << " [nonoverridden]";
}
OS << "\t// " << demangleSymbol(getImplementation()->getName());
}
void SILVTable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "sil_vtable ";
printSerializedKind(OS, getSerializedKind());
if (SILType classTy = getClassType()) {
OS << classTy;
} else {
OS << getClass()->getName();
}
OS << " {\n";
for (auto &entry : getEntries()) {
OS << " ";
entry.print(OS);
OS << "\n";
}
OS << "}\n\n";
}
void SILVTable::dump() const { print(llvm::errs()); }
void SILMoveOnlyDeinit::print(llvm::raw_ostream &OS, bool verbose) const {
OS << "sil_moveonlydeinit ";
printSerializedKind(OS, getSerializedKind());
OS << getNominalDecl()->getName() << " {\n";
OS << " @" << getImplementation()->getName();
OS << "\t// " << demangleSymbol(getImplementation()->getName());
OS << "\n";
OS << "}\n\n";
}
void SILMoveOnlyDeinit::dump() const { print(llvm::errs(), false); }
/// Returns true if anything was printed.
static bool printAssociatedTypePath(llvm::raw_ostream &OS, CanType path) {
if (auto memberType = dyn_cast<DependentMemberType>(path)) {
if (printAssociatedTypePath(OS, memberType.getBase()))
OS << '.';
OS << memberType->getName().str();
return true;
} else {
assert(isa<GenericTypeParamType>(path));
return false;
}
}
void SILWitnessTable::Entry::print(llvm::raw_ostream &out, bool verbose,
const PrintOptions &options) const {
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
out << " ";
switch (getKind()) {
case WitnessKind::Invalid:
out << "no_default";
break;
case WitnessKind::Method: {
// method #declref: @function
auto &methodWitness = getMethodWitness();
out << "method ";
methodWitness.Requirement.print(out);
out << ": ";
QualifiedSILTypeOptions.CurrentModule =
methodWitness.Requirement.getDecl()
->getDeclContext()
->getParentModule();
methodWitness.Requirement.getDecl()->getInterfaceType().print(
out, QualifiedSILTypeOptions);
out << " : ";
if (methodWitness.Witness) {
methodWitness.Witness->printName(out);
out << "\t// "
<< demangleSymbol(methodWitness.Witness->getName());
} else {
out << "nil";
}
break;
}
case WitnessKind::AssociatedType: {
// associated_type AssociatedTypeName: ConformingType
auto &assocWitness = getAssociatedTypeWitness();
out << "associated_type ";
out << assocWitness.Requirement->getName() << ": ";
assocWitness.Witness->print(out, options);
break;
}
case WitnessKind::AssociatedConformance: {
// associated_conformance (AssociatedTypeName: Protocol): <conformance>
auto &assocProtoWitness = getAssociatedConformanceWitness();
if (assocProtoWitness.Witness.isInvalid())
return;
out << "associated_conformance (";
(void) printAssociatedTypePath(out, assocProtoWitness.Requirement);
auto conformance = assocProtoWitness.Witness;
out << ": " << conformance.getProtocol()->getName() << "): ";
if (conformance.isConcrete())
conformance.getConcrete()->printName(out, options);
else {
out << "dependent ";
assocProtoWitness.Witness.getType()->print(out, options);
}
break;
}
case WitnessKind::BaseProtocol: {
// base_protocol Protocol: <conformance>
auto &baseProtoWitness = getBaseProtocolWitness();
out << "base_protocol "
<< baseProtoWitness.Requirement->getName() << ": ";
baseProtoWitness.Witness->printName(out, options);
break;
}
}
out << '\n';
}
void SILWitnessTable::print(llvm::raw_ostream &OS, bool Verbose) const {
PrintOptions Options = PrintOptions::printSIL();
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
OS << "sil_witness_table ";
printLinkage(OS, getLinkage(), /*isDefinition*/ isDefinition());
printSerializedKind(OS, getSerializedKind());
if (isSpecialized())
OS << "[specialized] ";
getConformance()->printName(OS, Options);
Options.GenericSig =
getConformance()->getDeclContext()->getGenericSignatureOfContext()
.getPointer();
if (isDeclaration()) {
OS << "\n\n";
return;
}
OS << " {\n";
for (auto &witness : getEntries()) {
witness.print(OS, Verbose, Options);
}
for (auto conditionalConformance : getConditionalConformances()) {
// conditional_conformance (TypeName: Protocol):
// <conformance>
if (conditionalConformance.isInvalid()) {
OS << " conditional_conformance invalid";
continue;
}
OS << " conditional_conformance (";
conditionalConformance.getType().print(OS, Options);
OS << ": " << conditionalConformance.getProtocol()->getName()
<< "): ";
if (conditionalConformance.isConcrete())
conditionalConformance.getConcrete()->printName(OS, Options);
else {
ASSERT(conditionalConformance.isAbstract() && "Handle pack conformance here");
OS << "dependent ";
conditionalConformance.getType()->print(OS, Options);
}
OS << '\n';
}
OS << "}\n\n";
}
void SILWitnessTable::dump() const {
print(llvm::errs());
}
void SILDefaultWitnessTable::print(llvm::raw_ostream &OS, bool Verbose) const {
// sil_default_witness_table [<Linkage>] <Protocol> <MinSize>
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
OS << "sil_default_witness_table ";
printLinkage(OS, getLinkage(), ForDefinition);
OS << getProtocol()->getName() << " {\n";
PrintOptions options = PrintOptions::printSIL();
options.GenericSig = Protocol->getGenericSignatureOfContext().getPointer();
for (auto &witness : getEntries()) {
witness.print(OS, Verbose, options);
}
OS << "}\n\n";
}
void SILDefaultWitnessTable::dump() const {
print(llvm::errs());
}
void SILDefaultOverrideTable::Entry::print(llvm::raw_ostream &out,
bool verbose) const {
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
out << " ";
// #replacement.declref : #original.declref : @function
method.print(out);
out << ": ";
original.print(out);
out << ": ";
auto *decl = method.getDecl();
QualifiedSILTypeOptions.CurrentModule =
decl->getDeclContext()->getParentModule();
decl->getInterfaceType().print(out, QualifiedSILTypeOptions);
out << " : ";
impl->printName(out);
out << "\t// " << demangleSymbol(impl->getName());
out << '\n';
}
void SILDefaultOverrideTable::Entry::dump() const {
print(llvm::errs(), /*verbose=*/false);
}
void SILDefaultOverrideTable::print(llvm::raw_ostream &OS, bool Verbose) const {
// sil_default_override_table [<Linkage>] <Protocol> <MinSize>
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
OS << "sil_default_override_table ";
printLinkage(OS, getLinkage(), ForDefinition);
OS << decl->getName() << " {\n";
PrintOptions options = PrintOptions::printSIL();
options.GenericSig = decl->getGenericSignatureOfContext().getPointer();
for (auto &entry : getEntries()) {
entry.print(OS, Verbose);
}
OS << "}\n\n";
}
void SILDefaultOverrideTable::dump() const { print(llvm::errs()); }
void SILDifferentiabilityWitness::print(llvm::raw_ostream &OS,
bool verbose) const {
OS << "// differentiability witness for "
<< demangleSymbol(getOriginalFunction()->getName()) << '\n';
PrintOptions qualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
// sil_differentiability_witness (linkage)?
OS << "sil_differentiability_witness ";
printLinkage(OS, getLinkage(), /*isDefinition*/ isDefinition());
// ([serialized])?
if (isSerialized())
OS << "[serialized] ";
// Kind
OS << '[';
switch (getKind()) {
case DifferentiabilityKind::Forward:
OS << "forward";
break;
case DifferentiabilityKind::Reverse:
OS << "reverse";
break;
case DifferentiabilityKind::Normal:
OS << "normal";
break;
case DifferentiabilityKind::Linear:
OS << "linear";
break;
case DifferentiabilityKind::NonDifferentiable:
llvm_unreachable("Impossible case");
}
// [parameters ...]
OS << "] [parameters ";
interleave(
getParameterIndices()->getIndices(), [&](unsigned index) { OS << index; },
[&] { OS << ' '; });
// [results ...]
OS << "] [results ";
interleave(
getResultIndices()->getIndices(), [&](unsigned index) { OS << index; },
[&] { OS << ' '; });
OS << "] ";
// (<...>)?
if (auto derivativeGenSig = getDerivativeGenericSignature()) {
auto subPrinter = PrintOptions::printSIL();
subPrinter.PrintInverseRequirements = true;
derivativeGenSig->print(OS, subPrinter);
OS << " ";
}
// @original-function-name : $original-sil-type
printSILFunctionNameAndType(OS, getOriginalFunction());
if (isDeclaration()) {
OS << "\n\n";
return;
}
// {
// jvp: @jvp-function-name : $jvp-sil-type
// vjp: @vjp-function-name : $vjp-sil-type
// }
OS << " {\n";
if (auto *jvp = getJVP()) {
OS << " jvp: ";
printSILFunctionNameAndType(OS, jvp);
OS << '\n';
}
if (auto *vjp = getVJP()) {
OS << " vjp: ";
printSILFunctionNameAndType(OS, vjp);
OS << '\n';
}
OS << "}\n\n";
}
void SILDifferentiabilityWitness::dump() const {
print(llvm::errs());
}
void SILCoverageMap::print(SILPrintContext &PrintCtx) const {
llvm::raw_ostream &OS = PrintCtx.OS();
OS << "sil_coverage_map " << QuotedString(getFilename()) << " "
<< QuotedString(getName()) << " " << QuotedString(getPGOFuncName()) << " "
<< getHash() << " {\t// " << demangleSymbol(getName()) << "\n";
if (PrintCtx.sortSIL())
std::sort(MappedRegions.begin(), MappedRegions.end(),
[](const MappedRegion &LHS, const MappedRegion &RHS) {
return std::tie(LHS.StartLine, LHS.StartCol, LHS.EndLine, LHS.EndCol) <
std::tie(RHS.StartLine, RHS.StartCol, RHS.EndLine, RHS.EndCol);
});
for (auto &MR : getMappedRegions()) {
OS << " " << MR.StartLine << ":" << MR.StartCol << " -> " << MR.EndLine
<< ":" << MR.EndCol << " : ";
switch (MR.RegionKind) {
case MappedRegion::Kind::Code:
printCounter(OS, MR.Counter);
break;
case MappedRegion::Kind::Skipped:
OS << "skipped";
break;
}
OS << "\n";
}
OS << "}\n\n";
}
void SILCoverageMap::dump() const {
print(llvm::errs());
}
#ifndef NDEBUG
// Disable the "for use only in debugger" warning.
#if SWIFT_COMPILER_IS_MSVC
#pragma warning(push)
#pragma warning(disable : 4996)
#endif
void SILDebugScope::print(SourceManager &SM, llvm::raw_ostream &OS,
unsigned Indent) const {
OS << "{\n";
OS.indent(Indent);
if (Loc.isASTNode())
Loc.getSourceLoc().print(OS, SM);
OS << "\n";
OS.indent(Indent + 2);
OS << " parent: ";
if (auto *P = Parent.dyn_cast<const SILDebugScope *>()) {
P->print(SM, OS, Indent + 2);
OS.indent(Indent + 2);
}
else if (auto *F = Parent.dyn_cast<SILFunction *>())
OS << "@" << F->getName();
else
OS << "nullptr";
OS << "\n";
OS.indent(Indent + 2);
if (auto *CS = InlinedCallSite) {
OS << "inlinedCallSite: ";
CS->print(SM, OS, Indent + 2);
OS.indent(Indent + 2);
}
OS << "}\n";
}
void SILDebugScope::print(SILModule &Mod) const {
// We just use the default indent and llvm::errs().
print(Mod.getASTContext().SourceMgr);
}
#if SWIFT_COMPILER_IS_MSVC
#pragma warning(pop)
#endif
#endif
void SILSpecializeAttr::print(llvm::raw_ostream &OS) const {
SILPrintContext Ctx(OS);
// Print other types as their Swift representation.
PrintOptions options = PrintOptions::printSIL();
auto exported = isExported() ? "true" : "false";
auto kind = isPartialSpecialization() ? "partial" : "full";
OS << "exported: " << exported << ", ";
OS << "kind: " << kind << ", ";
if (!getSPIGroup().empty()) {
OS << "spi: " << getSPIGroup() << ", ";
OS << "spiModule: ";
getSPIModule()->getReverseFullModuleName().printForward(OS);
OS << ", ";
}
auto *genericEnv = getFunction()->getGenericEnvironment();
GenericSignature genericSig;
if (genericEnv)
genericSig = genericEnv->getGenericSignature();
auto requirements =
getUnerasedSpecializedSignature().requirementsNotSatisfiedBy(genericSig);
if (targetFunction) {
OS << "target: \"" << targetFunction->getName() << "\", ";
}
if (!availability.isAlwaysAvailable()) {
OS << "available: " << availability.getVersionString() << ", ";
}
if (!requirements.empty()) {
OS << "where ";
SILFunction *F = getFunction();
assert(F);
interleave(
requirements,
[&](Requirement req) {
if (!genericSig) {
req.print(OS, options);
return;
}
// Use GenericEnvironment to produce user-friendly
// names instead of something like t_0_0.
auto FirstTy = genericSig->getSugaredType(req.getFirstType());
auto erasedParams = getTypeErasedParams();
bool erased = std::any_of(erasedParams.begin(), erasedParams.end(),
[&](auto Ty) {
return Ty->isEqual(FirstTy);
});
if (erased) {
OS << " @_noMetadata ";
}
if (req.getKind() != RequirementKind::Layout) {
auto SecondTy = genericSig->getSugaredType(req.getSecondType());
Requirement ReqWithDecls(req.getKind(), FirstTy, SecondTy);
ReqWithDecls.print(OS, options);
} else {
Requirement ReqWithDecls(req.getKind(), FirstTy,
req.getLayoutConstraint());
PrintOptions::OverrideScope scope(options);
OVERRIDE_PRINT_OPTION(scope, PrintInternalLayoutName, erased);
ReqWithDecls.print(OS, options);
}
},
[&] { OS << ", "; });
}
}
void KeyPathPatternComponent::print(SILPrintContext &ctxt) const {
SILPrinter printer(ctxt);
printer.printKeyPathPatternComponent(*this);
}
//===----------------------------------------------------------------------===//
// SILPrintContext members
//===----------------------------------------------------------------------===//
SILPrintContext::SILPrintContext(llvm::raw_ostream &OS, bool Verbose,
bool SortedSIL, bool PrintFullConvention)
: OutStream(OS), Verbose(Verbose), SortedSIL(SortedSIL),
DebugInfo(SILPrintDebugInfo), PrintFullConvention(PrintFullConvention) {}
SILPrintContext::SILPrintContext(llvm::raw_ostream &OS, const SILOptions &Opts)
: OutStream(OS), Verbose(Opts.EmitVerboseSIL),
SortedSIL(Opts.EmitSortedSIL),
DebugInfo(Opts.PrintDebugInfo || SILPrintDebugInfo),
PrintFullConvention(Opts.PrintFullConvention) {}
SILPrintContext::SILPrintContext(llvm::raw_ostream &OS, bool Verbose,
bool SortedSIL, bool DebugInfo,
bool PrintFullConvention)
: OutStream(OS), Verbose(Verbose), SortedSIL(SortedSIL),
DebugInfo(DebugInfo), PrintFullConvention(PrintFullConvention) {}
void SILPrintContext::setContext(const void *FunctionOrBlock) {
if (FunctionOrBlock != ContextFunctionOrBlock) {
BlocksToIDMap.clear();
ValueToIDMap.clear();
ContextFunctionOrBlock = FunctionOrBlock;
}
}
SILPrintContext::~SILPrintContext() {
}
void SILPrintContext::printInstructionCallBack(const SILInstruction *I) {
}
void SILPrintContext::initBlockIDs(ArrayRef<const SILBasicBlock *> Blocks) {
if (Blocks.empty())
return;
setContext(Blocks[0]->getParent());
// Initialize IDs so our IDs are in RPOT as well. This is a hack.
for (unsigned Index : indices(Blocks))
BlocksToIDMap[Blocks[Index]] = Index;
}
ID SILPrintContext::getID(const SILBasicBlock *Block) {
setContext(Block->getParent());
// Lazily initialize the Blocks-to-IDs mapping.
// If we are asked to emit sorted SIL, print out our BBs in RPOT order.
if (BlocksToIDMap.empty()) {
if (sortSIL()) {
std::vector<SILBasicBlock *> RPOT;
auto *UnsafeF = const_cast<SILFunction *>(Block->getParent());
std::copy(po_begin(UnsafeF), po_end(UnsafeF), std::back_inserter(RPOT));
std::reverse(RPOT.begin(), RPOT.end());
// Initialize IDs so our IDs are in RPOT as well. This is a hack.
for (unsigned Index : indices(RPOT))
BlocksToIDMap[RPOT[Index]] = Index;
} else {
unsigned idx = 0;
for (const SILBasicBlock &B : *Block->getParent())
BlocksToIDMap[&B] = idx++;
}
}
ID R = {ID::SILBasicBlock, BlocksToIDMap[Block]};
return R;
}
ID SILPrintContext::getID(SILNodePointer node) {
if (node == nullptr)
return {ID::Null, ~0U};
if (isa<SILUndef>(node.get()))
return {ID::SILUndef, 0};
SILBasicBlock *BB = node->getParentBlock();
if (!BB) {
return { ID::Null, 0 };
}
if (SILFunction *F = BB->getParent()) {
setContext(F);
// Lazily initialize the instruction -> ID mapping.
if (ValueToIDMap.empty())
F->numberValues(ValueToIDMap);
ID R = {ID::SSAValue, ValueToIDMap[node]};
return R;
}
setContext(BB);
// Check if we have initialized our ValueToIDMap yet. If we have, just use
// that.
if (!ValueToIDMap.empty()) {
ID R = {ID::SSAValue, ValueToIDMap[node]};
return R;
}
// Otherwise, initialize the instruction -> ID mapping cache.
unsigned idx = 0;
for (auto &I : *BB) {
// Give the instruction itself the next ID.
ValueToIDMap[I.asSILNode()] = idx;
// If there are no results, make sure we don't reuse that ID.
auto results = I.getResults();
if (results.empty()) {
++idx;
continue;
}
// Otherwise, assign all of the results an index. Note that
// we'll assign the same ID to both the instruction and the
// first result.
for (auto result : results) {
ValueToIDMap[result] = idx++;
}
}
ID R = {ID::SSAValue, ValueToIDMap[node]};
return R;
}
PrintOptions PrintOptions::printSIL(const SILPrintContext *ctx) {
PrintOptions result;
result.PrintLongAttrsOnSeparateLines = true;
result.PrintStorageRepresentationAttrs = true;
result.AbstractAccessors = false;
result.PrintForSIL = true;
result.PrintInSILBody = true;
result.PreferTypeRepr = false;
result.OpaqueReturnTypePrinting =
OpaqueReturnTypePrintingMode::StableReference;
if (ctx && ctx->printFullConvention())
result.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::Full;
return result;
}