Files
swift-mirror/lib/ClangImporter/ClangImporter.cpp
Steven Wu 8e68fab034 Revert "[Caching][NFC] Using llvm::cas::CASConfiguration"
This reverts commit 4f059033bb. The change
is actually not NFC since previously, there is a cache in the
CompilerInvocation that prevents the same CAS from the same CASOptions
from being initialized multiple times, which was relied upon when
running inside sub invocation. When switching to a non-caching simple
CASOption types, it causes every single sub instance will create its own
CAS, and it can consume too many file descriptors and causing errors
during dependency scanning.

rdar://164903080
2025-11-17 12:21:53 -08:00

9178 lines
341 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- ClangImporter.cpp - Import Clang Modules -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for loading Clang modules into Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/ClangImporter/ClangImporter.h"
#include "CFTypeInfo.h"
#include "ClangDerivedConformances.h"
#include "ClangDiagnosticConsumer.h"
#include "ClangIncludePaths.h"
#include "ImporterImpl.h"
#include "SwiftDeclSynthesizer.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/ConcreteDeclRef.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Evaluator.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Frontend/CompileJobCacheKey.h"
#include "swift/Parse/ParseVersion.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileEntry.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangStandard.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CAS/CASOptions.h"
#include "clang/CAS/IncludeTree.h"
#include "clang/CodeGen/ObjectFilePCHContainerWriter.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/IncludeTreePPActions.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Frontend/Utils.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Parse/Parser.h"
#include "clang/Rewrite/Frontend/Rewriters.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "clang/Serialization/ObjectFilePCHContainerReader.h"
#include "clang/Tooling/DependencyScanning/ModuleDepCollector.h"
#include "clang/Tooling/DependencyScanning/ScanAndUpdateArgs.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/CAS/CASReference.h"
#include "llvm/CAS/ObjectStore.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileCollector.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrefixMapper.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/TextAPI/InterfaceFile.h"
#include "llvm/TextAPI/TextAPIReader.h"
#include <algorithm>
#include <memory>
#include <optional>
#include <string>
#include <utility>
using namespace swift;
using namespace importer;
// Commonly-used Clang classes.
using clang::CompilerInstance;
using clang::CompilerInvocation;
#pragma mark Internal data structures
namespace {
class HeaderImportCallbacks : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
HeaderImportCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void handleImport(const clang::Module *imported) {
if (!imported)
return;
Impl.ImportedHeaderExports.push_back(
const_cast<clang::Module *>(imported));
}
void InclusionDirective(
clang::SourceLocation HashLoc, const clang::Token &IncludeTok,
StringRef FileName, bool IsAngled, clang::CharSourceRange FilenameRange,
clang::OptionalFileEntryRef File, StringRef SearchPath,
StringRef RelativePath, const clang::Module *SuggestedModule,
bool ModuleImported,
clang::SrcMgr::CharacteristicKind FileType) override {
handleImport(ModuleImported ? SuggestedModule : nullptr);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
handleImport(Imported);
}
};
class PCHDeserializationCallbacks : public clang::ASTDeserializationListener {
ClangImporter::Implementation &Impl;
public:
explicit PCHDeserializationCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void ModuleImportRead(clang::serialization::SubmoduleID ID,
clang::SourceLocation ImportLoc) override {
if (Impl.IsReadingBridgingPCH) {
Impl.PCHImportedSubmodules.push_back(ID);
}
}
};
class HeaderParsingASTConsumer : public clang::ASTConsumer {
SmallVector<clang::DeclGroupRef, 4> DeclGroups;
PCHDeserializationCallbacks PCHCallbacks;
public:
explicit HeaderParsingASTConsumer(ClangImporter::Implementation &impl)
: PCHCallbacks(impl) {}
void
HandleTopLevelDeclInObjCContainer(clang::DeclGroupRef decls) override {
DeclGroups.push_back(decls);
}
ArrayRef<clang::DeclGroupRef> getAdditionalParsedDecls() {
return DeclGroups;
}
clang::ASTDeserializationListener *GetASTDeserializationListener() override {
return &PCHCallbacks;
}
void reset() {
DeclGroups.clear();
}
};
class ParsingAction : public clang::ASTFrontendAction {
ClangImporter &Importer;
ClangImporter::Implementation &Impl;
const ClangImporterOptions &ImporterOpts;
std::string SwiftPCHHash;
public:
explicit ParsingAction(ClangImporter &importer,
ClangImporter::Implementation &impl,
const ClangImporterOptions &importerOpts,
std::string swiftPCHHash)
: Importer(importer), Impl(impl), ImporterOpts(importerOpts),
SwiftPCHHash(swiftPCHHash) {}
std::unique_ptr<clang::ASTConsumer>
CreateASTConsumer(clang::CompilerInstance &CI, StringRef InFile) override {
return std::make_unique<HeaderParsingASTConsumer>(Impl);
}
bool BeginSourceFileAction(clang::CompilerInstance &CI) override {
auto PCH =
Importer.getOrCreatePCH(ImporterOpts, SwiftPCHHash, /*Cached=*/true);
if (PCH.has_value()) {
Impl.getClangInstance()->getPreprocessorOpts().ImplicitPCHInclude =
PCH.value();
Impl.IsReadingBridgingPCH = true;
Impl.setSinglePCHImport(PCH.value());
}
return true;
}
};
class StdStringMemBuffer : public llvm::MemoryBuffer {
const std::string storage;
const std::string name;
public:
StdStringMemBuffer(std::string &&source, StringRef name)
: storage(std::move(source)), name(name.str()) {
init(storage.data(), storage.data() + storage.size(),
/*null-terminated=*/true);
}
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_Malloc;
}
};
class ZeroFilledMemoryBuffer : public llvm::MemoryBuffer {
const std::string name;
public:
explicit ZeroFilledMemoryBuffer(size_t size, StringRef name)
: name(name.str()) {
assert(size > 0);
std::error_code error;
llvm::sys::MemoryBlock memory =
llvm::sys::Memory::allocateMappedMemory(size, nullptr,
llvm::sys::Memory::MF_READ,
error);
assert(!error && "failed to allocated read-only zero-filled memory");
init(static_cast<char *>(memory.base()),
static_cast<char *>(memory.base()) + memory.allocatedSize() - 1,
/*null-terminated*/true);
}
~ZeroFilledMemoryBuffer() override {
llvm::sys::MemoryBlock memory{const_cast<char *>(getBufferStart()),
getBufferSize()};
std::error_code error = llvm::sys::Memory::releaseMappedMemory(memory);
assert(!error && "failed to deallocate read-only zero-filled memory");
(void)error;
}
ZeroFilledMemoryBuffer(const ZeroFilledMemoryBuffer &) = delete;
ZeroFilledMemoryBuffer(ZeroFilledMemoryBuffer &&) = delete;
void operator=(const ZeroFilledMemoryBuffer &) = delete;
void operator=(ZeroFilledMemoryBuffer &&) = delete;
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_MMap;
}
};
} // end anonymous namespace
namespace {
class BridgingPPTracker : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
BridgingPPTracker(ClangImporter::Implementation &Impl)
: Impl(Impl) {}
private:
static unsigned getNumModuleIdentifiers(const clang::Module *Mod) {
unsigned Result = 1;
while (Mod->Parent) {
Mod = Mod->Parent;
++Result;
}
return Result;
}
void InclusionDirective(clang::SourceLocation HashLoc,
const clang::Token &IncludeTok, StringRef FileName,
bool IsAngled, clang::CharSourceRange FilenameRange,
clang::OptionalFileEntryRef File,
StringRef SearchPath, StringRef RelativePath,
const clang::Module *SuggestedModule,
bool ModuleImported,
clang::SrcMgr::CharacteristicKind FileType) override {
if (!ModuleImported) {
if (File)
Impl.BridgeHeaderFiles.insert(*File);
return;
}
// Synthesize identifier locations.
SmallVector<clang::SourceLocation, 4> IdLocs;
for (unsigned I = 0, E = getNumModuleIdentifiers(SuggestedModule); I != E; ++I)
IdLocs.push_back(HashLoc);
handleImport(HashLoc, IdLocs, SuggestedModule);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
if (!Imported)
return;
SmallVector<clang::SourceLocation, 4> IdLocs;
for (auto &P : Path)
IdLocs.push_back(P.getLoc());
handleImport(ImportLoc, IdLocs, Imported);
}
void handleImport(clang::SourceLocation ImportLoc,
ArrayRef<clang::SourceLocation> IdLocs,
const clang::Module *Imported) {
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
clang::ImportDecl *ClangImport = clang::ImportDecl::Create(ClangCtx,
ClangCtx.getTranslationUnitDecl(),
ImportLoc,
const_cast<clang::Module*>(Imported),
IdLocs);
Impl.BridgeHeaderTopLevelImports.push_back(ClangImport);
}
void MacroDefined(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD) override {
Impl.BridgeHeaderMacros.push_back(MacroNameTok.getIdentifierInfo());
}
};
class ClangImporterDependencyCollector : public clang::DependencyCollector
{
llvm::StringSet<> ExcludedPaths;
/// The FileCollector is used by LLDB to generate reproducers. It's not used
/// by Swift to track dependencies.
std::shared_ptr<llvm::FileCollectorBase> FileCollector;
const IntermoduleDepTrackingMode Mode;
public:
ClangImporterDependencyCollector(
IntermoduleDepTrackingMode Mode,
std::shared_ptr<llvm::FileCollectorBase> FileCollector)
: FileCollector(FileCollector), Mode(Mode) {}
void excludePath(StringRef filename) {
ExcludedPaths.insert(filename);
}
bool isClangImporterSpecialName(StringRef Filename) {
using ImporterImpl = ClangImporter::Implementation;
return (Filename == ImporterImpl::moduleImportBufferName
|| Filename == ImporterImpl::bridgingHeaderBufferName);
}
bool needSystemDependencies() override {
return Mode == IntermoduleDepTrackingMode::IncludeSystem;
}
bool sawDependency(StringRef Filename, bool FromClangModule,
bool IsSystem, bool IsClangModuleFile,
bool IsMissing) override {
if (!clang::DependencyCollector::sawDependency(Filename, FromClangModule,
IsSystem, IsClangModuleFile,
IsMissing))
return false;
// Currently preserving older ClangImporter behavior of ignoring .pcm
// file dependencies, but possibly revisit?
if (IsClangModuleFile
|| isClangImporterSpecialName(Filename)
|| ExcludedPaths.count(Filename))
return false;
return true;
}
void maybeAddDependency(StringRef Filename, bool FromModule, bool IsSystem,
bool IsModuleFile, bool IsMissing) override {
if (FileCollector)
FileCollector->addFile(Filename);
clang::DependencyCollector::maybeAddDependency(
Filename, FromModule, IsSystem, IsModuleFile, IsMissing);
}
};
} // end anonymous namespace
std::shared_ptr<clang::DependencyCollector>
ClangImporter::createDependencyCollector(
IntermoduleDepTrackingMode Mode,
std::shared_ptr<llvm::FileCollectorBase> FileCollector) {
return std::make_shared<ClangImporterDependencyCollector>(Mode,
FileCollector);
}
bool ClangImporter::isKnownCFTypeName(llvm::StringRef name) {
return CFPointeeInfo::isKnownCFTypeName(name);
}
void ClangImporter::Implementation::addBridgeHeaderTopLevelDecls(
clang::Decl *D) {
if (shouldIgnoreBridgeHeaderTopLevelDecl(D))
return;
BridgeHeaderTopLevelDecls.push_back(D);
}
bool importer::isForwardDeclOfType(const clang::Decl *D) {
if (auto *ID = dyn_cast<clang::ObjCInterfaceDecl>(D)) {
if (!ID->isThisDeclarationADefinition())
return true;
} else if (auto PD = dyn_cast<clang::ObjCProtocolDecl>(D)) {
if (!PD->isThisDeclarationADefinition())
return true;
} else if (auto TD = dyn_cast<clang::TagDecl>(D)) {
if (!TD->isThisDeclarationADefinition())
return true;
}
return false;
}
bool ClangImporter::Implementation::shouldIgnoreBridgeHeaderTopLevelDecl(
clang::Decl *D) {
return importer::isForwardDeclOfType(D);
}
ClangImporter::ClangImporter(ASTContext &ctx, DependencyTracker *tracker,
DWARFImporterDelegate *dwarfImporterDelegate)
: ClangModuleLoader(tracker),
Impl(*new Implementation(ctx, tracker, dwarfImporterDelegate)) {}
ClangImporter::~ClangImporter() {
delete &Impl;
}
#pragma mark Module loading
static bool clangSupportsPragmaAttributeWithSwiftAttr() {
clang::AttributeCommonInfo swiftAttrInfo(clang::SourceRange(),
clang::AttributeCommonInfo::AT_SwiftAttr,
clang::AttributeCommonInfo::Form::GNU());
auto swiftAttrParsedInfo = clang::ParsedAttrInfo::get(swiftAttrInfo);
return swiftAttrParsedInfo.IsSupportedByPragmaAttribute;
}
static inline bool isPCHFilenameExtension(StringRef path) {
return llvm::sys::path::extension(path)
.ends_with(file_types::getExtension(file_types::TY_PCH));
}
void importer::getNormalInvocationArguments(
std::vector<std::string> &invocationArgStrs, ASTContext &ctx,
bool ignoreClangTarget) {
const auto &LangOpts = ctx.LangOpts;
llvm::Triple triple = LangOpts.Target;
// Use clang specific target triple if given.
if (LangOpts.ClangTarget.has_value() && !ignoreClangTarget) {
triple = LangOpts.ClangTarget.value();
}
auto canonicalTriple = getCanonicalTriple(triple);
if (canonicalTriple.has_value() &&
!areTriplesStrictlyEqual(*canonicalTriple, triple))
triple = *canonicalTriple;
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
ClangImporterOptions &importerOpts = ctx.ClangImporterOpts;
auto languageVersion = ctx.LangOpts.EffectiveLanguageVersion;
auto bridgingPCH = importerOpts.getPCHInputPath();
if (!bridgingPCH.empty())
invocationArgStrs.insert(invocationArgStrs.end(),
{"-include-pch", bridgingPCH});
// If there are no shims in the resource dir, add a search path in the SDK.
SmallString<128> shimsPath(searchPathOpts.RuntimeResourcePath);
llvm::sys::path::append(shimsPath, "shims");
if (!llvm::sys::fs::exists(shimsPath)) {
shimsPath = searchPathOpts.getSDKPath();
llvm::sys::path::append(shimsPath, "usr", "lib", "swift", "shims");
invocationArgStrs.insert(invocationArgStrs.end(),
{"-isystem", std::string(shimsPath.str())});
}
// Construct the invocation arguments for the current target.
// Add target-independent options first.
invocationArgStrs.insert(invocationArgStrs.end(), {
// Don't emit LLVM IR.
"-fsyntax-only",
// Enable block support.
"-fblocks",
languageVersion.preprocessorDefinition("__swift__", {10000, 100, 1}),
"-fretain-comments-from-system-headers",
"-isystem", searchPathOpts.RuntimeResourcePath,
});
if (LangOpts.hasFeature(Feature::Embedded)) {
invocationArgStrs.insert(invocationArgStrs.end(), {"-D__swift_embedded__"});
}
// Enable Position Independence. `-fPIC` is not supported on Windows, which
// is implicitly position independent.
if (!triple.isOSWindows())
invocationArgStrs.insert(invocationArgStrs.end(), {"-fPIC"});
// Enable modules.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-fmodules",
"-Xclang", "-fmodule-feature", "-Xclang", "swift"
});
bool EnableCXXInterop = LangOpts.EnableCXXInterop;
if (LangOpts.EnableObjCInterop) {
invocationArgStrs.insert(invocationArgStrs.end(), {"-fobjc-arc"});
// TODO: Investigate whether 7.0 is a suitable default version.
if (!triple.isOSDarwin())
invocationArgStrs.insert(invocationArgStrs.end(),
{"-fobjc-runtime=ios-7.0"});
invocationArgStrs.insert(invocationArgStrs.end(), {
"-x", EnableCXXInterop ? "objective-c++" : "objective-c",
});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-x", EnableCXXInterop ? "c++" : "c",
});
}
{
const clang::LangStandard &stdcxx =
#if defined(CLANG_DEFAULT_STD_CXX)
*clang::LangStandard::getLangStandardForName(CLANG_DEFAULT_STD_CXX);
#else
clang::LangStandard::getLangStandardForKind(
clang::LangStandard::lang_gnucxx17);
#endif
const clang::LangStandard &stdc =
#if defined(CLANG_DEFAULT_STD_C)
*clang::LangStandard::getLangStandardForName(CLANG_DEFAULT_STD_C);
#else
clang::LangStandard::getLangStandardForKind(
clang::LangStandard::lang_gnu11);
#endif
invocationArgStrs.insert(invocationArgStrs.end(), {
(Twine("-std=") + StringRef(EnableCXXInterop ? stdcxx.getName()
: stdc.getName())).str()
});
}
if (LangOpts.EnableCXXInterop) {
if (auto path = getCxxShimModuleMapPath(searchPathOpts, LangOpts, triple)) {
invocationArgStrs.push_back((Twine("-fmodule-map-file=") + *path).str());
}
}
if (LangOpts.hasFeature(Feature::SafeInteropWrappers))
invocationArgStrs.push_back("-fexperimental-bounds-safety-attributes");
// Set C language options.
if (triple.isOSDarwin()) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Avoid including the iso646.h header because some headers from OS X
// frameworks are broken by it.
"-D_ISO646_H_", "-D__ISO646_H",
// Request new APIs from AppKit.
"-DSWIFT_SDK_OVERLAY_APPKIT_EPOCH=2",
// Request new APIs from Foundation.
"-DSWIFT_SDK_OVERLAY_FOUNDATION_EPOCH=8",
// Request new APIs from SceneKit.
"-DSWIFT_SDK_OVERLAY2_SCENEKIT_EPOCH=3",
// Request new APIs from GameplayKit.
"-DSWIFT_SDK_OVERLAY_GAMEPLAYKIT_EPOCH=1",
// Request new APIs from SpriteKit.
"-DSWIFT_SDK_OVERLAY_SPRITEKIT_EPOCH=1",
// Request new APIs from CoreImage.
"-DSWIFT_SDK_OVERLAY_COREIMAGE_EPOCH=2",
// Request new APIs from libdispatch.
"-DSWIFT_SDK_OVERLAY_DISPATCH_EPOCH=2",
// Request new APIs from libpthread
"-DSWIFT_SDK_OVERLAY_PTHREAD_EPOCH=1",
// Request new APIs from CoreGraphics.
"-DSWIFT_SDK_OVERLAY_COREGRAPHICS_EPOCH=0",
// Request new APIs from UIKit.
"-DSWIFT_SDK_OVERLAY_UIKIT_EPOCH=2",
// Backwards compatibility for headers that were checking this instead of
// '__swift__'.
"-DSWIFT_CLASS_EXTRA=",
});
// Indicate that using '__attribute__((swift_attr))' with '@Sendable' and
// '@_nonSendable' on Clang declarations is fully supported, including the
// 'attribute push' pragma.
if (clangSupportsPragmaAttributeWithSwiftAttr())
invocationArgStrs.push_back("-D__SWIFT_ATTR_SUPPORTS_SENDABLE_DECLS=1");
if (triple.isXROS()) {
// FIXME: This is a gnarly hack until some macros get adjusted in the SDK.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-DOS_OBJECT_HAVE_OBJC_SUPPORT=1",
});
}
// Get the version of this compiler and pass it to C/Objective-C
// declarations.
auto V = version::getCurrentCompilerVersion();
if (!V.empty()) {
// Note: Prior to Swift 5.7, the "Y" version component was omitted and the
// "X" component resided in its digits.
invocationArgStrs.insert(invocationArgStrs.end(), {
V.preprocessorDefinition("__SWIFT_COMPILER_VERSION",
{1000000000000, // X
1000000000, // Y
1000000, // Z
1000, // a
1}), // b
});
}
} else {
// Ideally we should turn this on for all Glibc targets that are actually
// using Glibc or a libc that respects that flag. This will cause some
// source breakage however (specifically with strerror_r()) on Linux
// without a workaround.
if (triple.isOSFuchsia() || triple.isAndroid() || triple.isMusl()) {
// Many of the modern libc features are hidden behind feature macros like
// _GNU_SOURCE or _XOPEN_SOURCE.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-D_GNU_SOURCE",
});
}
if (triple.isAndroid()) {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-D__ANDROID_UNAVAILABLE_SYMBOLS_ARE_WEAK__",
});
}
if (triple.isOSWindows()) {
switch (triple.getArch()) {
default: llvm_unreachable("unsupported Windows architecture");
case llvm::Triple::arm:
case llvm::Triple::thumb:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_ARM_"});
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_ARM64_"});
break;
case llvm::Triple::x86:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_X86_"});
break;
case llvm::Triple::x86_64:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_AMD64_"});
break;
}
}
}
if (LangOpts.UseStaticStandardLibrary)
invocationArgStrs.push_back("-DSWIFT_STATIC_STDLIB");
// If we support SendingArgsAndResults, set the -D flag to signal that it
// is supported.
if (LangOpts.hasFeature(Feature::SendingArgsAndResults))
invocationArgStrs.push_back("-D__SWIFT_ATTR_SUPPORTS_SENDING=1");
// Indicate that the compiler will respect macros applied to imported
// declarations via '__attribute__((swift_attr("@...")))'.
if (LangOpts.hasFeature(Feature::MacrosOnImports))
invocationArgStrs.push_back("-D__SWIFT_ATTR_SUPPORTS_MACROS=1");
if (searchPathOpts.getSDKPath().empty()) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back("-nostdsysteminc");
} else {
if (triple.isWindowsMSVCEnvironment()) {
llvm::SmallString<261> path; // MAX_PATH + 1
path = searchPathOpts.getSDKPath();
llvm::sys::path::append(path, "usr", "include");
llvm::sys::path::native(path);
invocationArgStrs.push_back("-isystem");
invocationArgStrs.push_back(std::string(path.str()));
} else {
// On Darwin, Clang uses -isysroot to specify the include
// system root. On other targets, it seems to use --sysroot.
if (triple.isOSDarwin()) {
invocationArgStrs.push_back("-isysroot");
invocationArgStrs.push_back(searchPathOpts.getSDKPath().str());
} else {
if (auto sysroot = searchPathOpts.getSysRoot()) {
invocationArgStrs.push_back("--sysroot");
invocationArgStrs.push_back(sysroot->str());
} else {
invocationArgStrs.push_back("--sysroot");
invocationArgStrs.push_back(searchPathOpts.getSDKPath().str());
}
}
}
}
const std::string &moduleCachePath = importerOpts.ModuleCachePath;
const std::string &scannerCachePath = importerOpts.ClangScannerModuleCachePath;
// If a scanner cache is specified, this must be a scanning action. Prefer this
// path for the Clang scanner to cache its Scanning PCMs.
if (!scannerCachePath.empty()) {
invocationArgStrs.push_back("-fmodules-cache-path=");
invocationArgStrs.back().append(scannerCachePath);
} else if (!moduleCachePath.empty() && !importerOpts.DisableImplicitClangModules) {
invocationArgStrs.push_back("-fmodules-cache-path=");
invocationArgStrs.back().append(moduleCachePath);
}
if (importerOpts.DisableImplicitClangModules) {
invocationArgStrs.push_back("-fno-implicit-modules");
invocationArgStrs.push_back("-fno-implicit-module-maps");
}
if (ctx.SearchPathOpts.DisableModulesValidateSystemDependencies) {
invocationArgStrs.push_back("-fno-modules-validate-system-headers");
} else {
invocationArgStrs.push_back("-fmodules-validate-system-headers");
}
if (importerOpts.DetailedPreprocessingRecord) {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-detailed-preprocessing-record",
"-Xclang", "-fmodule-format=raw",
});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-fmodule-format=obj",
});
}
// Enable API notes alongside headers/in frameworks.
invocationArgStrs.push_back("-fapinotes-modules");
invocationArgStrs.push_back("-fapinotes-swift-version=" +
languageVersion.asAPINotesVersionString());
// Prefer `-sdk` paths.
if (!searchPathOpts.getSDKPath().empty()) {
llvm::SmallString<261> path{searchPathOpts.getSDKPath()};
llvm::sys::path::append(path, "usr", "lib", "swift", "apinotes");
invocationArgStrs.push_back("-iapinotes-modules");
invocationArgStrs.push_back(path.str().str());
}
// Fallback to "legacy" `-resource-dir` paths.
{
llvm::SmallString<261> path{searchPathOpts.RuntimeResourcePath};
llvm::sys::path::append(path, "apinotes");
invocationArgStrs.push_back("-iapinotes-modules");
invocationArgStrs.push_back(path.str().str());
}
if (importerOpts.LoadVersionIndependentAPINotes)
invocationArgStrs.insert(invocationArgStrs.end(),
{"-fswift-version-independent-apinotes"});
}
static void
getEmbedBitcodeInvocationArguments(std::vector<std::string> &invocationArgStrs,
ASTContext &ctx) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Backend mode.
"-fembed-bitcode",
// ...but Clang isn't doing the emission.
"-fsyntax-only",
"-x", "ir",
});
}
void
importer::addCommonInvocationArguments(
std::vector<std::string> &invocationArgStrs,
ASTContext &ctx, bool requiresBuiltinHeadersInSystemModules,
bool ignoreClangTarget) {
using ImporterImpl = ClangImporter::Implementation;
llvm::Triple triple = ctx.LangOpts.Target;
// Use clang specific target triple if given.
if (ctx.LangOpts.ClangTarget.has_value() && !ignoreClangTarget) {
triple = ctx.LangOpts.ClangTarget.value();
}
auto canonicalTriple = getCanonicalTriple(triple);
if (canonicalTriple.has_value() &&
!areTriplesStrictlyEqual(*canonicalTriple, triple))
triple = *canonicalTriple;
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
const ClangImporterOptions &importerOpts = ctx.ClangImporterOpts;
invocationArgStrs.push_back("-target");
invocationArgStrs.push_back(triple.str());
if (ctx.LangOpts.SDKVersion) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back(
"-target-sdk-version=" + ctx.LangOpts.SDKVersion->getAsString());
}
invocationArgStrs.push_back(ImporterImpl::moduleImportBufferName);
if (ctx.LangOpts.EnableAppExtensionRestrictions) {
invocationArgStrs.push_back("-fapplication-extension");
}
if (!importerOpts.TargetCPU.empty()) {
switch (triple.getArch()) {
case llvm::Triple::x86:
case llvm::Triple::x86_64:
// For x86, `-mcpu` is deprecated and an alias of `-mtune`. We need to
// pass `-march` and `-mtune` to behave like `-mcpu` on other targets.
invocationArgStrs.push_back("-march=" + importerOpts.TargetCPU);
invocationArgStrs.push_back("-mtune=" + importerOpts.TargetCPU);
break;
default:
invocationArgStrs.push_back("-mcpu=" + importerOpts.TargetCPU);
break;
}
} else if (triple.getArch() == llvm::Triple::systemz) {
invocationArgStrs.push_back("-march=z13");
}
if (triple.getArch() == llvm::Triple::x86_64) {
// Enable double wide atomic intrinsics on every x86_64 target.
// (This is the default on Darwin, but not so on other platforms.)
invocationArgStrs.push_back("-mcx16");
}
// REPL and LLDB unconditionally want debug info in pcm files.
if (importerOpts.DebuggerSupport)
invocationArgStrs.push_back("-g");
if (triple.isOSDarwin()) {
if (auto variantTriple = ctx.LangOpts.TargetVariant) {
// Passing the -target-variant along to clang causes clang's
// CodeGenerator to emit zippered .o files.
invocationArgStrs.push_back("-darwin-target-variant");
if (ctx.LangOpts.ClangTargetVariant.has_value() && !ignoreClangTarget)
variantTriple = ctx.LangOpts.ClangTargetVariant.value();
auto canonicalVariantTriple = getCanonicalTriple(*variantTriple);
if (canonicalVariantTriple.has_value() &&
!areTriplesStrictlyEqual(*canonicalVariantTriple, *variantTriple))
*variantTriple = *canonicalVariantTriple;
invocationArgStrs.push_back(variantTriple->str());
}
if (ctx.LangOpts.VariantSDKVersion) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back(
("-darwin-target-variant-sdk-version=" +
ctx.LangOpts.VariantSDKVersion->getAsString()));
}
}
if (std::optional<StringRef> R = searchPathOpts.getWinSDKRoot()) {
invocationArgStrs.emplace_back("-Xmicrosoft-windows-sdk-root");
invocationArgStrs.emplace_back(*R);
}
if (std::optional<StringRef> V = searchPathOpts.getWinSDKVersion()) {
invocationArgStrs.emplace_back("-Xmicrosoft-windows-sdk-version");
invocationArgStrs.emplace_back(*V);
}
if (std::optional<StringRef> R = searchPathOpts.getVCToolsRoot()) {
invocationArgStrs.emplace_back("-Xmicrosoft-visualc-tools-root");
invocationArgStrs.emplace_back(*R);
}
if (std::optional<StringRef> V = searchPathOpts.getVCToolsVersion()) {
invocationArgStrs.emplace_back("-Xmicrosoft-visualc-tools-version");
invocationArgStrs.emplace_back(*V);
}
if (!importerOpts.Optimization.empty()) {
invocationArgStrs.push_back(importerOpts.Optimization);
}
const std::string &overrideResourceDir = importerOpts.OverrideResourceDir;
if (overrideResourceDir.empty()) {
llvm::SmallString<128> resourceDir(searchPathOpts.RuntimeResourcePath);
// Adjust the path to refer to our copy of the Clang resource directory
// under 'lib/swift/clang', which is either a real resource directory or a
// symlink to one inside of a full Clang installation.
//
// The rationale for looking under the Swift resource directory and not
// assuming that the Clang resource directory is located next to it is that
// Swift, when installed separately, should not need to install files in
// directories that are not "owned" by it.
llvm::sys::path::append(resourceDir, "clang");
// Set the Clang resource directory to the path we computed.
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(std::string(resourceDir.str()));
} else {
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(overrideResourceDir);
}
if (!importerOpts.IndexStorePath.empty()) {
invocationArgStrs.push_back("-index-store-path");
invocationArgStrs.push_back(importerOpts.IndexStorePath);
}
invocationArgStrs.push_back("-fansi-escape-codes");
if (importerOpts.ValidateModulesOnce) {
invocationArgStrs.push_back("-fmodules-validate-once-per-build-session");
invocationArgStrs.push_back("-fbuild-session-file=" + importerOpts.BuildSessionFilePath);
}
for (auto extraArg : importerOpts.ExtraArgs) {
invocationArgStrs.push_back(extraArg);
}
for (const auto &framepath : searchPathOpts.getFrameworkSearchPaths()) {
if (!framepath.Path.empty()) {
if (framepath.IsSystem) {
invocationArgStrs.push_back("-iframework");
invocationArgStrs.push_back(framepath.Path);
} else {
invocationArgStrs.push_back("-F" + framepath.Path);
}
}
}
for (const auto &path : searchPathOpts.getImportSearchPaths()) {
if (!path.Path.empty()) {
if (path.IsSystem) {
invocationArgStrs.push_back("-isystem");
invocationArgStrs.push_back(path.Path);
} else {
invocationArgStrs.push_back("-I" + path.Path);
}
}
}
for (auto &overlay : searchPathOpts.VFSOverlayFiles) {
invocationArgStrs.push_back("-ivfsoverlay");
invocationArgStrs.push_back(overlay);
}
if (requiresBuiltinHeadersInSystemModules) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back("-fbuiltin-headers-in-system-modules");
}
}
bool ClangImporter::canReadPCH(StringRef PCHFilename) {
if (!llvm::sys::fs::exists(PCHFilename))
return false;
// FIXME: The following attempts to do an initial ReadAST invocation to verify
// the PCH, without causing trouble for the existing CompilerInstance.
// Look into combining creating the ASTReader along with verification + update
// if necessary, so that we can create and use one ASTReader in the common
// case when there is no need for update.
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
invocation->getPreprocessorOpts().DisablePCHOrModuleValidation =
clang::DisableValidationForModuleKind::None;
invocation->getHeaderSearchOpts().ModulesValidateSystemHeaders = true;
invocation->getLangOpts().NeededByPCHOrCompilationUsesPCH = true;
invocation->getLangOpts().CacheGeneratedPCH = true;
// ClangImporter::create adds a remapped MemoryBuffer that we don't need
// here. Moreover, it's a raw pointer owned by the preprocessor options; if
// we don't clear the range then both the original and new CompilerInvocation
// will try to free it.
invocation->getPreprocessorOpts().RemappedFileBuffers.clear();
clang::DiagnosticOptions diagOpts;
clang::CompilerInstance CI(std::move(invocation),
Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
CI.setTarget(&Impl.Instance->getTarget());
CI.setDiagnostics(&*clang::CompilerInstance::createDiagnostics(
Impl.Instance->getVirtualFileSystem(), diagOpts));
// Note: Reusing the file manager is safe; this is a component that's already
// reused when building PCM files for the module cache.
CI.setVirtualFileSystem(Impl.Instance->getVirtualFileSystemPtr());
CI.setFileManager(Impl.Instance->getFileManagerPtr());
CI.createSourceManager();
auto &clangSrcMgr = CI.getSourceManager();
auto FID = clangSrcMgr.createFileID(
std::make_unique<ZeroFilledMemoryBuffer>(1, "<main>"));
clangSrcMgr.setMainFileID(FID);
auto &diagConsumer = CI.getDiagnosticClient();
diagConsumer.BeginSourceFile(CI.getLangOpts());
SWIFT_DEFER {
diagConsumer.EndSourceFile();
};
// Pass in TU_Complete, which is the default mode for the Preprocessor
// constructor and the right one for reading a PCH.
CI.createPreprocessor(clang::TU_Complete);
CI.createASTContext();
CI.createASTReader();
clang::ASTReader &Reader = *CI.getASTReader();
auto failureCapabilities =
clang::ASTReader::ARR_Missing |
clang::ASTReader::ARR_OutOfDate |
clang::ASTReader::ARR_VersionMismatch;
// If a PCH was output with errors, it may not have serialized all its
// inputs. If there was a change to the search path or a headermap now
// exists where it didn't previously, it's possible those inputs will now be
// found. Ideally we would only rebuild in this particular case rather than
// any error in general, but explicit module builds are the real solution
// there. For now, just treat PCH with errors as out of date.
failureCapabilities |= clang::ASTReader::ARR_TreatModuleWithErrorsAsOutOfDate;
auto result = Reader.ReadAST(PCHFilename, clang::serialization::MK_PCH,
clang::SourceLocation(), failureCapabilities);
switch (result) {
case clang::ASTReader::Success:
return true;
case clang::ASTReader::Failure:
case clang::ASTReader::Missing:
case clang::ASTReader::OutOfDate:
case clang::ASTReader::VersionMismatch:
return false;
case clang::ASTReader::ConfigurationMismatch:
case clang::ASTReader::HadErrors:
assert(0 && "unexpected ASTReader failure for PCH validation");
return false;
}
llvm_unreachable("unhandled result");
}
std::string ClangImporter::getOriginalSourceFile(StringRef PCHFilename) {
return clang::ASTReader::getOriginalSourceFile(
PCHFilename.str(), Impl.Instance->getFileManager(),
Impl.Instance->getPCHContainerReader(), Impl.Instance->getDiagnostics());
}
std::optional<std::string>
ClangImporter::getPCHFilename(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash, bool &isExplicit) {
auto bridgingPCH = ImporterOptions.getPCHInputPath();
if (!bridgingPCH.empty()) {
isExplicit = true;
return bridgingPCH;
}
isExplicit = false;
const auto &BridgingHeader = ImporterOptions.BridgingHeader;
const auto &PCHOutputDir = ImporterOptions.PrecompiledHeaderOutputDir;
if (SwiftPCHHash.empty() || BridgingHeader.empty() || PCHOutputDir.empty()) {
return std::nullopt;
}
SmallString<256> PCHBasename { llvm::sys::path::filename(BridgingHeader) };
llvm::sys::path::replace_extension(PCHBasename, "");
PCHBasename.append("-swift_");
PCHBasename.append(SwiftPCHHash);
PCHBasename.append("-clang_");
PCHBasename.append(getClangModuleHash());
PCHBasename.append(".pch");
SmallString<256> PCHFilename { PCHOutputDir };
llvm::sys::path::append(PCHFilename, PCHBasename);
return PCHFilename.str().str();
}
std::optional<std::string>
ClangImporter::getOrCreatePCH(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash, bool Cached) {
bool isExplicit;
auto PCHFilename = getPCHFilename(ImporterOptions, SwiftPCHHash,
isExplicit);
if (!PCHFilename.has_value()) {
return std::nullopt;
}
if (!isExplicit && !ImporterOptions.PCHDisableValidation &&
!canReadPCH(PCHFilename.value())) {
StringRef parentDir = llvm::sys::path::parent_path(PCHFilename.value());
std::error_code EC = llvm::sys::fs::create_directories(parentDir);
if (EC) {
llvm::errs() << "failed to create directory '" << parentDir << "': "
<< EC.message();
return std::nullopt;
}
auto FailedToEmit = emitBridgingPCH(ImporterOptions.BridgingHeader,
PCHFilename.value(), Cached);
if (FailedToEmit) {
return std::nullopt;
}
}
return PCHFilename.value();
}
std::vector<std::string>
ClangImporter::getClangDriverArguments(ASTContext &ctx, bool ignoreClangTarget) {
assert(!ctx.ClangImporterOpts.DirectClangCC1ModuleBuild &&
"direct-clang-cc1-module-build should not call this function");
std::vector<std::string> invocationArgStrs;
// When creating from driver commands, clang expects this to be like an actual
// command line. So we need to pass in "clang" for argv[0]
invocationArgStrs.push_back(ctx.ClangImporterOpts.clangPath);
switch (ctx.ClangImporterOpts.Mode) {
case ClangImporterOptions::Modes::Normal:
case ClangImporterOptions::Modes::PrecompiledModule:
getNormalInvocationArguments(invocationArgStrs, ctx, ignoreClangTarget);
break;
case ClangImporterOptions::Modes::EmbedBitcode:
getEmbedBitcodeInvocationArguments(invocationArgStrs, ctx);
break;
}
addCommonInvocationArguments(invocationArgStrs, ctx,
requiresBuiltinHeadersInSystemModules, ignoreClangTarget);
return invocationArgStrs;
}
std::optional<std::vector<std::string>> ClangImporter::getClangCC1Arguments(
ASTContext &ctx, llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
bool ignoreClangTarget) {
ASSERT(VFS && "Expected non-null file system");
std::unique_ptr<clang::CompilerInvocation> CI;
// Set up a temporary diagnostic client to report errors from parsing the
// command line, which may be important for Swift clients if, for example,
// they're using -Xcc options. Unfortunately this diagnostic engine has to
// use the default options because the /actual/ options haven't been parsed
// yet.
//
// The long-term client for Clang diagnostics is set up afterwards, after the
// clang::CompilerInstance is created.
clang::DiagnosticOptions tempDiagOpts;
auto *tempDiagClient = new ClangDiagnosticConsumer(
Impl, tempDiagOpts, ctx.ClangImporterOpts.DumpClangDiagnostics);
auto clangDiags = clang::CompilerInstance::createDiagnostics(
*VFS, tempDiagOpts, tempDiagClient,
/*owned*/ true);
// If using direct cc1 module build, use extra args to setup ClangImporter.
if (ctx.ClangImporterOpts.DirectClangCC1ModuleBuild) {
llvm::SmallVector<const char *> clangArgs;
clangArgs.reserve(ctx.ClangImporterOpts.ExtraArgs.size());
llvm::for_each(
ctx.ClangImporterOpts.ExtraArgs,
[&](const std::string &Arg) { clangArgs.push_back(Arg.c_str()); });
// Try parse extra args, if failed, return nullopt.
CI = std::make_unique<clang::CompilerInvocation>();
if (!clang::CompilerInvocation::CreateFromArgs(*CI, clangArgs,
*clangDiags))
return std::nullopt;
// Forwards some options from swift to clang even using direct mode. This is
// to reduce the number of argument passing on the command-line and swift
// compiler can be more efficient to compute swift cache key without having
// the knowledge about clang command-line options.
if (ctx.CASOpts.EnableCaching || ctx.CASOpts.ImportModuleFromCAS) {
CI->getCASOpts() = ctx.CASOpts.CASOpts;
// When clangImporter is used to compile (generate .pcm or .pch), need to
// inherit the include tree from swift args (last one wins) and clear the
// input file.
if ((CI->getFrontendOpts().ProgramAction ==
clang::frontend::ActionKind::GenerateModule ||
CI->getFrontendOpts().ProgramAction ==
clang::frontend::ActionKind::GeneratePCH) &&
!ctx.CASOpts.ClangIncludeTree.empty()) {
CI->getFrontendOpts().CASIncludeTreeID = ctx.CASOpts.ClangIncludeTree;
CI->getFrontendOpts().Inputs.clear();
}
}
// If clang target is ignored, using swift target.
if (ignoreClangTarget) {
CI->getTargetOpts().Triple = ctx.LangOpts.Target.str();
if (ctx.LangOpts.TargetVariant.has_value())
CI->getTargetOpts().DarwinTargetVariantTriple = ctx.LangOpts.TargetVariant->str();
}
// Forward the index store path. That information is not passed to scanner
// and it is cached invariant so we don't want to re-scan if that changed.
CI->getFrontendOpts().IndexStorePath = ctx.ClangImporterOpts.IndexStorePath;
} else {
// Otherwise, create cc1 arguments from driver args.
auto driverArgs = getClangDriverArguments(ctx, ignoreClangTarget);
llvm::SmallVector<const char *> invocationArgs;
invocationArgs.reserve(driverArgs.size());
llvm::for_each(driverArgs, [&](const std::string &Arg) {
invocationArgs.push_back(Arg.c_str());
});
if (ctx.ClangImporterOpts.DumpClangDiagnostics) {
llvm::errs() << "clang importer driver args: '";
llvm::interleave(
invocationArgs, [](StringRef arg) { llvm::errs() << arg; },
[] { llvm::errs() << "' '"; });
llvm::errs() << "'\n\n";
}
clang::CreateInvocationOptions CIOpts;
CIOpts.VFS = VFS;
CIOpts.Diags = clangDiags;
CIOpts.RecoverOnError = false;
CIOpts.ProbePrecompiled = true;
CI = clang::createInvocation(invocationArgs, std::move(CIOpts));
if (!CI)
return std::nullopt;
}
// FIXME: clang fails to generate a module if there is a `-fmodule-map-file`
// argument pointing to a missing file.
// Such missing module files occur frequently in SourceKit. If the files are
// missing, SourceKit fails to build SwiftShims (which wouldn't have required
// the missing module file), thus fails to load the stdlib and hence looses
// all semantic functionality.
// To work around this issue, drop all `-fmodule-map-file` arguments pointing
// to missing files and report the error that clang would throw manually.
// rdar://77516546 is tracking that the clang importer should be more
// resilient and provide a module even if there were building it.
auto TempVFS = clang::createVFSFromCompilerInvocation(*CI, *clangDiags, VFS);
std::vector<std::string> FilteredModuleMapFiles;
for (auto ModuleMapFile : CI->getFrontendOpts().ModuleMapFiles) {
if (ctx.CASOpts.HasImmutableFileSystem) {
// There is no need to add any module map file here. Issue a warning and
// drop the option.
Impl.diagnose(SourceLoc(), diag::module_map_ignored, ModuleMapFile);
} else if (TempVFS->exists(ModuleMapFile)) {
FilteredModuleMapFiles.push_back(ModuleMapFile);
} else {
Impl.diagnose(SourceLoc(), diag::module_map_not_found, ModuleMapFile);
}
}
CI->getFrontendOpts().ModuleMapFiles = FilteredModuleMapFiles;
// Clear clang debug flags.
CI->getCodeGenOpts().DwarfDebugFlags.clear();
return CI->getCC1CommandLine();
}
std::unique_ptr<clang::CompilerInvocation> ClangImporter::createClangInvocation(
ClangImporter *importer, const ClangImporterOptions &importerOpts,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
const std::vector<std::string> &CC1Args) {
std::vector<const char *> invocationArgs;
invocationArgs.reserve(CC1Args.size());
llvm::for_each(CC1Args, [&](const std::string &Arg) {
invocationArgs.push_back(Arg.c_str());
});
// Create a diagnostics engine for creating clang compiler invocation. The
// option here is either generated by dependency scanner or just round tripped
// from `getClangCC1Arguments` so we don't expect it to fail. Use a simple
// printing diagnostics consumer for debugging any unexpected error.
clang::DiagnosticOptions diagOpts;
clang::DiagnosticsEngine clangDiags(
new clang::DiagnosticIDs(), diagOpts,
new clang::TextDiagnosticPrinter(llvm::errs(), diagOpts));
// Finally, use the CC1 command-line and the diagnostic engine
// to instantiate our Invocation.
auto CI = std::make_unique<clang::CompilerInvocation>();
if (!clang::CompilerInvocation::CreateFromArgs(
*CI, invocationArgs, clangDiags, importerOpts.clangPath.c_str()))
return nullptr;
return CI;
}
std::unique_ptr<ClangImporter> ClangImporter::create(
ASTContext &ctx, std::string swiftPCHHash, DependencyTracker *tracker,
DWARFImporterDelegate *dwarfImporterDelegate, bool ignoreFileMapping) {
std::unique_ptr<ClangImporter> importer{
new ClangImporter(ctx, tracker, dwarfImporterDelegate)};
auto &importerOpts = ctx.ClangImporterOpts;
auto bridgingPCH = importerOpts.getPCHInputPath();
if (!bridgingPCH.empty()) {
importer->Impl.setSinglePCHImport(bridgingPCH);
importer->Impl.IsReadingBridgingPCH = true;
if (tracker) {
// Currently ignoring dependency on bridging .pch files because they are
// temporaries; if and when they are no longer temporaries, this condition
// should be removed.
auto &coll = static_cast<ClangImporterDependencyCollector &>(
*tracker->getClangCollector());
coll.excludePath(bridgingPCH);
}
}
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS =
ctx.SourceMgr.getFileSystem();
ClangInvocationFileMapping fileMapping =
applyClangInvocationMapping(ctx, nullptr, VFS, ignoreFileMapping);
importer->requiresBuiltinHeadersInSystemModules =
fileMapping.requiresBuiltinHeadersInSystemModules;
// Create a new Clang compiler invocation.
{
if (auto ClangArgs = importer->getClangCC1Arguments(ctx, VFS))
importer->Impl.ClangArgs = *ClangArgs;
else
return nullptr;
ArrayRef<std::string> invocationArgStrs = importer->Impl.ClangArgs;
if (importerOpts.DumpClangDiagnostics) {
llvm::errs() << "clang importer cc1 args: '";
llvm::interleave(
invocationArgStrs, [](StringRef arg) { llvm::errs() << arg; },
[] { llvm::errs() << "' '"; });
llvm::errs() << "'\n";
}
importer->Impl.Invocation = createClangInvocation(
importer.get(), importerOpts, VFS, importer->Impl.ClangArgs);
if (!importer->Impl.Invocation)
return nullptr;
}
{
// Create an almost-empty memory buffer.
auto sourceBuffer = llvm::MemoryBuffer::getMemBuffer(
"extern int __swift __attribute__((unavailable));",
Implementation::moduleImportBufferName);
clang::PreprocessorOptions &ppOpts =
importer->Impl.Invocation->getPreprocessorOpts();
ppOpts.addRemappedFile(Implementation::moduleImportBufferName,
sourceBuffer.release());
}
// Install a Clang module file extension to build Swift name lookup tables.
importer->Impl.Invocation->getFrontendOpts().ModuleFileExtensions.push_back(
std::make_shared<SwiftNameLookupExtension>(
importer->Impl.BridgingHeaderLookupTable, importer->Impl.LookupTables,
importer->Impl.SwiftContext,
importer->Impl.getBufferImporterForDiagnostics(),
importer->Impl.platformAvailability, &importer->Impl));
// Create a compiler instance.
{
// The Clang modules produced by ClangImporter are always embedded in an
// ObjectFilePCHContainer and contain -gmodules debug info.
importer->Impl.Invocation->getCodeGenOpts().DebugTypeExtRefs = true;
if (importerOpts.DebuggerSupport)
importer->Impl.Invocation->getCodeGenOpts().setDebugInfo(
llvm::codegenoptions::FullDebugInfo);
auto PCHContainerOperations =
std::make_shared<clang::PCHContainerOperations>();
PCHContainerOperations->registerWriter(
std::make_unique<clang::ObjectFilePCHContainerWriter>());
PCHContainerOperations->registerReader(
std::make_unique<clang::ObjectFilePCHContainerReader>());
importer->Impl.Instance.reset(new clang::CompilerInstance(
importer->Impl.Invocation, std::move(PCHContainerOperations)));
}
auto &instance = *importer->Impl.Instance;
if (tracker)
instance.addDependencyCollector(tracker->getClangCollector());
// Now set up the real client for Clang diagnostics---configured with proper
// options---as opposed to the temporary one we made above.
auto actualDiagClient = std::make_unique<ClangDiagnosticConsumer>(
importer->Impl, instance.getDiagnosticOpts(),
importerOpts.DumpClangDiagnostics);
instance.createVirtualFileSystem(std::move(VFS), actualDiagClient.get());
instance.createFileManager();
instance.createDiagnostics(actualDiagClient.release());
// Don't stop emitting messages if we ever can't load a module.
// FIXME: This is actually a general problem: any "fatal" error could mess up
// the CompilerInvocation when we're not in "show diagnostics after fatal
// error" mode.
clang::DiagnosticsEngine &clangDiags = instance.getDiagnostics();
clangDiags.setSeverity(clang::diag::err_module_not_found,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags.setSeverity(clang::diag::err_module_not_built,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags.setFatalsAsError(ctx.Diags.getShowDiagnosticsAfterFatalError());
// Use Clang to configure/save options for Swift IRGen/CodeGen
if (ctx.LangOpts.ClangTarget.has_value()) {
// If '-clang-target' is set, create a mock invocation with the Swift triple
// to configure CodeGen and Target options for Swift compilation.
auto swiftTargetClangArgs = importer->getClangCC1Arguments(
ctx, instance.getVirtualFileSystemPtr(), true);
if (!swiftTargetClangArgs)
return nullptr;
auto swiftTargetClangInvocation = createClangInvocation(
importer.get(), importerOpts, instance.getVirtualFileSystemPtr(),
*swiftTargetClangArgs);
if (!swiftTargetClangInvocation)
return nullptr;
importer->Impl.configureOptionsForCodeGen(clangDiags,
swiftTargetClangInvocation.get());
} else {
// Set using the existing invocation.
importer->Impl.configureOptionsForCodeGen(clangDiags);
}
// Create the associated action.
importer->Impl.Action.reset(new ParsingAction(*importer,
importer->Impl,
importerOpts,
swiftPCHHash));
auto *action = importer->Impl.Action.get();
// Execute the action. We effectively inline most of
// CompilerInstance::ExecuteAction here, because we need to leave the AST
// open for future module loading.
// FIXME: This has to be cleaned up on the Clang side before we can improve
// things here.
// Create the target instance.
instance.setTarget(clang::TargetInfo::CreateTargetInfo(
clangDiags, instance.getInvocation().getTargetOpts()));
if (!instance.hasTarget())
return nullptr;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
instance.getTarget().adjust(clangDiags, instance.getLangOpts(),
/*AuxTarget=*/nullptr);
if (importerOpts.Mode == ClangImporterOptions::Modes::EmbedBitcode)
return importer;
// ClangImporter always sets this in Normal mode, so we need to make sure to
// set it before bailing out early when configuring ClangImporter for
// precompiled modules. This is not a benign langopt, so forgetting this (for
// example, if we combined the early exit below with the one above) would make
// the compiler instance used to emit PCMs incompatible with the one used to
// read them later.
instance.getLangOpts().NeededByPCHOrCompilationUsesPCH = true;
// Clang implicitly enables this by default in C++20 mode.
instance.getLangOpts().ModulesLocalVisibility = false;
if (importerOpts.Mode == ClangImporterOptions::Modes::PrecompiledModule)
return importer;
instance.initializeDelayedInputFileFromCAS();
if (instance.getFrontendOpts().Inputs.empty())
return nullptr; // no inputs available.
bool canBegin = action->BeginSourceFile(instance,
instance.getFrontendOpts().Inputs[0]);
if (!canBegin)
return nullptr; // there was an error related to the compiler arguments.
clang::Preprocessor &clangPP = instance.getPreprocessor();
clangPP.enableIncrementalProcessing();
// Setup Preprocessor callbacks before initialing the parser to make sure
// we catch implicit includes.
auto ppTracker = std::make_unique<BridgingPPTracker>(importer->Impl);
clangPP.addPPCallbacks(std::move(ppTracker));
instance.createASTReader();
// Manually run the action, so that the TU stays open for additional parsing.
instance.createSema(action->getTranslationUnitKind(), nullptr);
importer->Impl.Parser.reset(new clang::Parser(clangPP, instance.getSema(),
/*SkipFunctionBodies=*/false));
clangPP.EnterMainSourceFile();
importer->Impl.Parser->Initialize();
importer->Impl.nameImporter.reset(new NameImporter(
importer->Impl.SwiftContext, importer->Impl.platformAvailability,
importer->Impl.getClangSema(), &importer->Impl));
// FIXME: These decls are not being parsed correctly since (a) some of the
// callbacks are still being added, and (b) the logic to parse them has
// changed.
clang::Parser::DeclGroupPtrTy parsed;
clang::Sema::ModuleImportState importState =
clang::Sema::ModuleImportState::NotACXX20Module;
while (!importer->Impl.Parser->ParseTopLevelDecl(parsed, importState)) {
for (auto *D : parsed.get()) {
importer->Impl.addBridgeHeaderTopLevelDecls(D);
if (auto named = dyn_cast<clang::NamedDecl>(D)) {
addEntryToLookupTable(*importer->Impl.BridgingHeaderLookupTable, named,
*importer->Impl.nameImporter);
}
}
}
// FIXME: This is missing implicit includes.
auto *CB = new HeaderImportCallbacks(importer->Impl);
clangPP.addPPCallbacks(std::unique_ptr<clang::PPCallbacks>(CB));
// Create the selectors we'll be looking for.
auto &clangContext = importer->Impl.Instance->getASTContext();
importer->Impl.objectAtIndexedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectAtIndexedSubscript"));
const clang::IdentifierInfo *setObjectAtIndexedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("atIndexedSubscript"),
};
importer->Impl.setObjectAtIndexedSubscript
= clangContext.Selectors.getSelector(2, setObjectAtIndexedSubscriptIdents);
importer->Impl.objectForKeyedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectForKeyedSubscript"));
const clang::IdentifierInfo *setObjectForKeyedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("forKeyedSubscript"),
};
importer->Impl.setObjectForKeyedSubscript
= clangContext.Selectors.getSelector(2, setObjectForKeyedSubscriptIdents);
// Can't inherit implicit modules from main module, because it isn't loaded yet.
// Add the Swift module, because it is important for safe interop wrappers.
Identifier stdlibName =
importer->Impl.SwiftContext.getIdentifier(STDLIB_NAME);
ImportPath::Raw path =
importer->Impl.SwiftContext.AllocateCopy<Located<Identifier>>(
Located<Identifier>(stdlibName, SourceLoc()));
ImplicitImportInfo implicitImportInfo;
implicitImportInfo.AdditionalUnloadedImports.emplace_back(
UnloadedImportedModule(ImportPath(path), ImportKind::Module));
// Set up the imported header module.
auto *importedHeaderModule = ModuleDecl::create(
ctx.getIdentifier(CLANG_HEADER_MODULE_NAME), ctx, implicitImportInfo,
[&](ModuleDecl *importedHeaderModule, auto addFile) {
importer->Impl.ImportedHeaderUnit = new (ctx)
ClangModuleUnit(*importedHeaderModule, importer->Impl, nullptr);
addFile(importer->Impl.ImportedHeaderUnit);
});
importedHeaderModule->setHasResolvedImports();
importedHeaderModule->setIsNonSwiftModule(true);
importer->Impl.IsReadingBridgingPCH = false;
return importer;
}
bool ClangImporter::addSearchPath(StringRef newSearchPath, bool isFramework,
bool isSystem) {
clang::FileManager &fileMgr = Impl.Instance->getFileManager();
auto optionalEntry = fileMgr.getOptionalDirectoryRef(newSearchPath);
if (!optionalEntry)
return true;
auto entry = *optionalEntry;
auto &headerSearchInfo = Impl.getClangPreprocessor().getHeaderSearchInfo();
auto exists = std::any_of(headerSearchInfo.search_dir_begin(),
headerSearchInfo.search_dir_end(),
[&](const clang::DirectoryLookup &lookup) -> bool {
if (isFramework)
return lookup.getFrameworkDir() == &entry.getDirEntry();
return lookup.getDir() == &entry.getDirEntry();
});
if (exists) {
// Don't bother adding a search path that's already there. Clang would have
// removed it via deduplication at the time the search path info gets built.
return false;
}
auto kind = isSystem ? clang::SrcMgr::C_System : clang::SrcMgr::C_User;
headerSearchInfo.AddSearchPath({entry, kind, isFramework},
/*isAngled=*/true);
// In addition to changing the current preprocessor directly, we still need
// to change the options structure for future module-building.
Impl.Instance->getHeaderSearchOpts().AddPath(newSearchPath,
isSystem ? clang::frontend::System : clang::frontend::Angled,
isFramework,
/*IgnoreSysRoot=*/true);
return false;
}
clang::SourceLocation
ClangImporter::Implementation::getNextIncludeLoc() {
clang::SourceManager &srcMgr = getClangInstance()->getSourceManager();
if (!DummyIncludeBuffer.isValid()) {
clang::SourceLocation includeLoc =
srcMgr.getLocForStartOfFile(srcMgr.getMainFileID());
// Picking the beginning of the main FileID as include location is also what
// the clang PCH mechanism is doing (see
// clang::ASTReader::getImportLocation()). Choose the next source location
// here to avoid having the exact same import location as the clang PCH.
// Otherwise, if we are using a PCH for bridging header, we'll have
// problems with source order comparisons of clang source locations not
// being deterministic.
includeLoc = includeLoc.getLocWithOffset(1);
DummyIncludeBuffer = srcMgr.createFileID(
std::make_unique<ZeroFilledMemoryBuffer>(
256*1024, StringRef(moduleImportBufferName)),
clang::SrcMgr::C_User, /*LoadedID*/0, /*LoadedOffset*/0, includeLoc);
}
clang::SourceLocation clangImportLoc =
srcMgr.getLocForStartOfFile(DummyIncludeBuffer)
.getLocWithOffset(IncludeCounter++);
assert(srcMgr.isInFileID(clangImportLoc, DummyIncludeBuffer) &&
"confused Clang's source manager with our fake locations");
return clangImportLoc;
}
bool ClangImporter::Implementation::importHeader(
ModuleDecl *adapter, StringRef headerName, SourceLoc diagLoc,
bool trackParsedSymbols,
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer,
bool implicitImport) {
// Progress update for the debugger.
SwiftContext.PreModuleImportHook(
headerName, ASTContext::ModuleImportKind::BridgingHeader);
// Don't even try to load the bridging header if the Clang AST is in a bad
// state. It could cause a crash.
auto &clangDiags = getClangASTContext().getDiagnostics();
if (clangDiags.hasUnrecoverableErrorOccurred() &&
!getClangInstance()->getPreprocessorOpts().AllowPCHWithCompilerErrors)
return true;
assert(adapter);
ImportedHeaderOwners.push_back(adapter);
bool hadError = clangDiags.hasErrorOccurred();
clang::SourceManager &sourceMgr = getClangInstance()->getSourceManager();
clang::FileID bufferID = sourceMgr.createFileID(std::move(sourceBuffer),
clang::SrcMgr::C_User,
/*LoadedID=*/0,
/*LoadedOffset=*/0,
getNextIncludeLoc());
auto &consumer =
static_cast<HeaderParsingASTConsumer &>(Instance->getASTConsumer());
consumer.reset();
clang::Preprocessor &pp = getClangPreprocessor();
pp.EnterSourceFile(bufferID, /*Dir=*/nullptr, /*Loc=*/{});
// Force the import to occur.
pp.LookAhead(0);
SmallVector<clang::DeclGroupRef, 16> allParsedDecls;
auto handleParsed = [&](clang::DeclGroupRef parsed) {
if (trackParsedSymbols) {
for (auto *D : parsed) {
addBridgeHeaderTopLevelDecls(D);
}
}
allParsedDecls.push_back(parsed);
};
clang::Parser::DeclGroupPtrTy parsed;
clang::Sema::ModuleImportState importState =
clang::Sema::ModuleImportState::NotACXX20Module;
while (!Parser->ParseTopLevelDecl(parsed, importState)) {
if (parsed)
handleParsed(parsed.get());
for (auto additionalParsedGroup : consumer.getAdditionalParsedDecls())
handleParsed(additionalParsedGroup);
consumer.reset();
}
// We're trying to discourage (and eventually deprecate) the use of implicit
// bridging-header imports triggered by IMPORTED_HEADER blocks in
// modules. There are two sub-cases to consider:
//
// #1 The implicit import actually occurred.
//
// #2 The user explicitly -import-objc-header'ed some header or PCH that
// makes the implicit import redundant.
//
// It's not obvious how to exactly differentiate these cases given the
// interface clang gives us, but we only want to warn on case #1, and the
// non-emptiness of allParsedDecls is a _definite_ sign that we're in case
// #1. So we treat that as an approximation of the condition we're after, and
// accept that we might fail to warn in the odd case where "the import
// occurred" but didn't introduce any new decls.
//
// We also want to limit (for now) the warning in case #1 to invocations that
// requested an explicit bridging header, because otherwise the warning will
// complain in a very common scenario (unit test w/o bridging header imports
// application w/ bridging header) that we don't yet have Xcode automation
// to correct. The fix would be explicitly importing on the command line.
if (implicitImport && !allParsedDecls.empty() &&
BridgingHeaderExplicitlyRequested) {
diagnose(
diagLoc, diag::implicit_bridging_header_imported_from_module,
llvm::sys::path::filename(headerName), adapter->getName());
}
// We can't do this as we're parsing because we may want to resolve naming
// conflicts between the things we've parsed.
std::function<void(clang::Decl *)> visit = [&](clang::Decl *decl) {
// Iterate into extern "C" {} type declarations.
if (auto linkageDecl = dyn_cast<clang::LinkageSpecDecl>(decl)) {
for (auto *decl : linkageDecl->noload_decls()) {
visit(decl);
}
}
if (auto named = dyn_cast<clang::NamedDecl>(decl)) {
addEntryToLookupTable(*BridgingHeaderLookupTable, named,
getNameImporter());
}
};
for (auto group : allParsedDecls) {
for (auto *D : group) {
visit(D);
}
}
pp.EndSourceFile();
bumpGeneration();
// Add any defined macros to the bridging header lookup table.
addMacrosToLookupTable(*BridgingHeaderLookupTable, getNameImporter());
// Finish loading any extra modules that were (transitively) imported.
handleDeferredImports(diagLoc);
// Wrap all Clang imports under a Swift import decl.
for (auto &Import : BridgeHeaderTopLevelImports) {
if (auto *ClangImport = Import.dyn_cast<clang::ImportDecl*>()) {
Import = createImportDecl(SwiftContext, adapter, ClangImport, {});
}
}
// Finalize the lookup table, which may fail.
finalizeLookupTable(*BridgingHeaderLookupTable, getNameImporter(),
getBufferImporterForDiagnostics());
// FIXME: What do we do if there was already an error?
if (!hadError && clangDiags.hasErrorOccurred() &&
!getClangInstance()->getPreprocessorOpts().AllowPCHWithCompilerErrors) {
diagnose(diagLoc, diag::bridging_header_error, headerName);
return true;
}
return false;
}
bool ClangImporter::importHeader(StringRef header, ModuleDecl *adapter,
off_t expectedSize, time_t expectedModTime,
StringRef cachedContents, SourceLoc diagLoc) {
clang::FileManager &fileManager = Impl.Instance->getFileManager();
// Especially in an explicit modules project, LLDB might not know all the
// search paths needed to imported the on disk header, so prefer the
// serialized preprocessed contents when debugger support is on.
if (!Impl.SwiftContext.ClangImporterOpts.PreferSerializedBridgingHeader ||
cachedContents.empty()) {
auto headerFile = fileManager.getOptionalFileRef(header, /*OpenFile=*/true);
// Prefer importing the header directly if the header content matches by
// checking size and mod time. This allows correct import if some no-modular
// headers are already imported into clang importer. If mod time is zero,
// then the module should be built from CAS and there is no mod time to
// verify. LLDB prefers the serialized bridging header because, in an
// explicit modules project, LLDB might not know all the search paths needed
// to imported the on disk header.
if (headerFile && headerFile->getSize() == expectedSize &&
(expectedModTime == 0 ||
headerFile->getModificationTime() == expectedModTime)) {
return importBridgingHeader(header, adapter, diagLoc, false, true);
}
}
// If we've made it to here, this is some header other than the bridging
// header, which means we can no longer rely on one file's modification time
// to invalidate code completion caches. :-(
Impl.setSinglePCHImport(std::nullopt);
if (!cachedContents.empty() && cachedContents.back() == '\0')
cachedContents = cachedContents.drop_back();
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer =
llvm::MemoryBuffer::getMemBufferCopy(cachedContents, header);
return Impl.importHeader(adapter, header, diagLoc, /*trackParsedSymbols=*/false,
std::move(sourceBuffer), true);
}
bool ClangImporter::importBridgingHeader(StringRef header, ModuleDecl *adapter,
SourceLoc diagLoc,
bool trackParsedSymbols,
bool implicitImport) {
if (isPCHFilenameExtension(header)) {
return bindBridgingHeader(adapter, diagLoc);
}
clang::FileManager &fileManager = Impl.Instance->getFileManager();
auto headerFile = fileManager.getOptionalFileRef(header, /*OpenFile=*/true);
if (!headerFile) {
Impl.diagnose(diagLoc, diag::bridging_header_missing, header);
return true;
}
llvm::SmallString<128> importLine;
if (Impl.SwiftContext.LangOpts.EnableObjCInterop)
importLine = "#import \"";
else
importLine = "#include \"";
importLine += header;
importLine += "\"\n";
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer{
llvm::MemoryBuffer::getMemBufferCopy(
importLine, Implementation::bridgingHeaderBufferName)
};
return Impl.importHeader(adapter, header, diagLoc, trackParsedSymbols,
std::move(sourceBuffer), implicitImport);
}
bool ClangImporter::bindBridgingHeader(ModuleDecl *adapter, SourceLoc diagLoc) {
Impl.ImportedHeaderOwners.push_back(adapter);
// We already imported this with -include-pch above, so we should have
// collected a bunch of PCH-encoded module imports that we just need to
// replay in handleDeferredImports.
Impl.handleDeferredImports(diagLoc);
return false;
}
static llvm::Expected<llvm::cas::ObjectRef>
setupIncludeTreeInput(clang::CompilerInvocation &invocation,
StringRef headerPath, StringRef pchIncludeTree) {
auto DB = invocation.getCASOpts().getOrCreateDatabases();
if (!DB)
return DB.takeError();
auto CAS = DB->first;
auto Cache = DB->second;
auto ID = CAS->parseID(pchIncludeTree);
if (!ID)
return ID.takeError();
auto Ref = CAS->getReference(*ID);
if (!Ref)
return llvm::cas::ObjectStore::createUnknownObjectError(*ID);
auto Key = ClangImporter::createEmbeddedBridgingHeaderCacheKey(*CAS, *Ref);
if (!Key)
return Key.takeError();
auto Lookup = Cache->get(CAS->getID(*Key));
if (!Lookup)
return Lookup.takeError();
std::optional<llvm::cas::ObjectRef> includeTreeRef;
if (*Lookup) {
includeTreeRef = CAS->getReference(**Lookup);
if (!includeTreeRef)
return llvm::cas::ObjectStore::createUnknownObjectError(**Lookup);
} else
// Failed to look up. This is from a caching build that doesn't use bridging
// header chaining due to an older swift-driver. Just use the include tree
// for PCH directly.
includeTreeRef = *Ref;
invocation.getFrontendOpts().Inputs.push_back(clang::FrontendInputFile(
*includeTreeRef, headerPath, clang::Language::ObjC));
return *includeTreeRef;
}
std::string ClangImporter::getBridgingHeaderContents(
StringRef headerPath, off_t &fileSize, time_t &fileModTime,
StringRef pchIncludeTree) {
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
invocation->getFrontendOpts().DisableFree = false;
invocation->getFrontendOpts().Inputs.clear();
std::optional<llvm::cas::ObjectRef> includeTreeRef;
if (pchIncludeTree.empty())
invocation->getFrontendOpts().Inputs.push_back(
clang::FrontendInputFile(headerPath, clang::Language::ObjC));
else if (auto err =
setupIncludeTreeInput(*invocation, headerPath, pchIncludeTree)
.moveInto(includeTreeRef)) {
Impl.diagnose({}, diag::err_rewrite_bridging_header,
toString(std::move(err)));
return "";
}
invocation->getPreprocessorOpts().resetNonModularOptions();
clang::CompilerInstance rewriteInstance(
std::move(invocation), Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
rewriteInstance.setVirtualFileSystem(
Impl.Instance->getVirtualFileSystemPtr());
rewriteInstance.setFileManager(Impl.Instance->getFileManagerPtr());
rewriteInstance.createDiagnostics(new clang::IgnoringDiagConsumer);
rewriteInstance.createSourceManager();
rewriteInstance.setTarget(&Impl.Instance->getTarget());
std::string result;
bool success = llvm::CrashRecoveryContext().RunSafelyOnThread([&] {
// A much simpler version of clang::RewriteIncludesAction that lets us
// write to an in-memory buffer.
class RewriteIncludesAction : public clang::PreprocessorFrontendAction {
raw_ostream &OS;
std::optional<llvm::cas::ObjectRef> includeTreeRef;
void ExecuteAction() override {
clang::CompilerInstance &compiler = getCompilerInstance();
// If the input is include tree, setup the IncludeTreePPAction.
if (includeTreeRef) {
auto IncludeTreeRoot = clang::cas::IncludeTreeRoot::get(
compiler.getOrCreateObjectStore(), *includeTreeRef);
if (!IncludeTreeRoot)
llvm::report_fatal_error(IncludeTreeRoot.takeError());
auto PPCachedAct =
clang::createPPActionsFromIncludeTree(*IncludeTreeRoot);
if (!PPCachedAct)
llvm::report_fatal_error(PPCachedAct.takeError());
compiler.getPreprocessor().setPPCachedActions(
std::move(*PPCachedAct));
}
clang::RewriteIncludesInInput(compiler.getPreprocessor(), &OS,
compiler.getPreprocessorOutputOpts());
}
public:
explicit RewriteIncludesAction(
raw_ostream &os, std::optional<llvm::cas::ObjectRef> includeTree)
: OS(os), includeTreeRef(includeTree) {}
};
llvm::raw_string_ostream os(result);
RewriteIncludesAction action(os, includeTreeRef);
rewriteInstance.ExecuteAction(action);
});
success |= !rewriteInstance.getDiagnostics().hasErrorOccurred();
if (!success) {
Impl.diagnose({}, diag::could_not_rewrite_bridging_header);
return "";
}
if (auto fileInfo = rewriteInstance.getFileManager().getOptionalFileRef(headerPath)) {
fileSize = fileInfo->getSize();
fileModTime = fileInfo->getModificationTime();
}
return result;
}
/// Returns the appropriate source input language based on language options.
static clang::Language getLanguageFromOptions(
const clang::LangOptions &LangOpts) {
if (LangOpts.OpenCL)
return clang::Language::OpenCL;
if (LangOpts.CUDA)
return clang::Language::CUDA;
if (LangOpts.ObjC)
return LangOpts.CPlusPlus ?
clang::Language::ObjCXX : clang::Language::ObjC;
return LangOpts.CPlusPlus ? clang::Language::CXX : clang::Language::C;
}
/// Wraps the given frontend action in an index data recording action if the
/// frontend options have an index store path specified.
static
std::unique_ptr<clang::FrontendAction> wrapActionForIndexingIfEnabled(
const clang::FrontendOptions &FrontendOpts,
std::unique_ptr<clang::FrontendAction> action) {
if (!FrontendOpts.IndexStorePath.empty()) {
return clang::index::createIndexDataRecordingAction(
FrontendOpts, std::move(action));
}
return action;
}
std::unique_ptr<clang::CompilerInstance>
ClangImporter::cloneCompilerInstanceForPrecompiling() {
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
auto &PPOpts = invocation->getPreprocessorOpts();
PPOpts.resetNonModularOptions();
auto &FrontendOpts = invocation->getFrontendOpts();
FrontendOpts.DisableFree = false;
if (FrontendOpts.CASIncludeTreeID.empty())
FrontendOpts.Inputs.clear();
// Share the CASOption and the underlying CAS.
invocation->setCASOption(Impl.Invocation->getCASOptsPtr());
auto clonedInstance = std::make_unique<clang::CompilerInstance>(
std::move(invocation), Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
clonedInstance->setVirtualFileSystem(
Impl.Instance->getVirtualFileSystemPtr());
clonedInstance->setFileManager(Impl.Instance->getFileManagerPtr());
clonedInstance->createDiagnostics(&Impl.Instance->getDiagnosticClient(),
/*ShouldOwnClient=*/false);
clonedInstance->createSourceManager();
clonedInstance->setTarget(&Impl.Instance->getTarget());
clonedInstance->setOutputBackend(Impl.SwiftContext.OutputBackend);
return clonedInstance;
}
bool ClangImporter::emitBridgingPCH(
StringRef headerPath, StringRef outputPCHPath, bool cached) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto &LangOpts = invocation.getLangOpts();
LangOpts.NeededByPCHOrCompilationUsesPCH = true;
LangOpts.CacheGeneratedPCH = cached;
auto language = getLanguageFromOptions(LangOpts);
auto inputFile = clang::FrontendInputFile(headerPath, language);
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty())
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPCHPath.str();
FrontendOpts.ProgramAction = clang::frontend::GeneratePCH;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts, std::make_unique<clang::GeneratePCHAction>());
emitInstance->ExecuteAction(*action);
if (emitInstance->getDiagnostics().hasErrorOccurred() &&
!emitInstance->getPreprocessorOpts().AllowPCHWithCompilerErrors) {
Impl.diagnose({}, diag::bridging_header_pch_error,
outputPCHPath, headerPath);
return true;
}
return false;
}
bool ClangImporter::runPreprocessor(
StringRef inputPath, StringRef outputPath) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto &LangOpts = invocation.getLangOpts();
auto &OutputOpts = invocation.getPreprocessorOutputOpts();
OutputOpts.ShowCPP = 1;
OutputOpts.ShowComments = 0;
OutputOpts.ShowLineMarkers = 0;
OutputOpts.ShowMacros = 0;
OutputOpts.ShowMacroComments = 0;
auto language = getLanguageFromOptions(LangOpts);
auto inputFile = clang::FrontendInputFile(inputPath, language);
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty())
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPath.str();
FrontendOpts.ProgramAction = clang::frontend::PrintPreprocessedInput;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts, std::make_unique<clang::PrintPreprocessedAction>());
emitInstance->ExecuteAction(*action);
return emitInstance->getDiagnostics().hasErrorOccurred();
}
bool ClangImporter::emitPrecompiledModule(
StringRef moduleMapPath, StringRef moduleName, StringRef outputPath) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto &LangOpts = invocation.getLangOpts();
LangOpts.setCompilingModule(clang::LangOptions::CMK_ModuleMap);
LangOpts.ModuleName = moduleName.str();
LangOpts.CurrentModule = LangOpts.ModuleName;
auto language = getLanguageFromOptions(LangOpts);
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty()) {
auto inputFile = clang::FrontendInputFile(
moduleMapPath,
clang::InputKind(language, clang::InputKind::ModuleMap, false),
FrontendOpts.IsSystemModule);
FrontendOpts.Inputs = {inputFile};
}
FrontendOpts.OriginalModuleMap = moduleMapPath.str();
FrontendOpts.OutputFile = outputPath.str();
FrontendOpts.ProgramAction = clang::frontend::GenerateModule;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts,
std::make_unique<clang::GenerateModuleFromModuleMapAction>());
emitInstance->ExecuteAction(*action);
if (emitInstance->getDiagnostics().hasErrorOccurred() &&
!FrontendOpts.AllowPCMWithCompilerErrors) {
Impl.diagnose({}, diag::emit_pcm_error, outputPath, moduleMapPath);
return true;
}
return false;
}
bool ClangImporter::dumpPrecompiledModule(
StringRef modulePath, StringRef outputPath) {
auto dumpInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = dumpInstance->getInvocation();
auto inputFile = clang::FrontendInputFile(
modulePath, clang::InputKind(
clang::Language::Unknown, clang::InputKind::Precompiled, false));
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty())
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPath.str();
auto action = std::make_unique<clang::DumpModuleInfoAction>();
dumpInstance->ExecuteAction(*action);
if (dumpInstance->getDiagnostics().hasErrorOccurred()) {
Impl.diagnose({}, diag::dump_pcm_error, modulePath);
return true;
}
return false;
}
void ClangImporter::collectVisibleTopLevelModuleNames(
SmallVectorImpl<Identifier> &names) const {
SmallVector<clang::Module *, 32> Modules;
Impl.getClangPreprocessor().getHeaderSearchInfo().collectAllModules(Modules);
for (auto &M : Modules) {
if (!M->isAvailable())
continue;
names.push_back(
Impl.SwiftContext.getIdentifier(M->getTopLevelModuleName()));
}
}
void ClangImporter::collectSubModuleNames(
ImportPath::Module path,
std::vector<std::string> &names) const {
auto &clangHeaderSearch = Impl.getClangPreprocessor().getHeaderSearchInfo();
// Look up the top-level module first.
clang::Module *clangModule = clangHeaderSearch.lookupModule(
path.front().Item.str(), /*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true, /*AllowExtraModuleMapSearch=*/true);
if (!clangModule)
return;
clang::Module *submodule = clangModule;
for (auto component : path.getSubmodulePath()) {
submodule = submodule->findSubmodule(component.Item.str());
if (!submodule)
return;
}
for (auto sub : submodule->submodules())
names.push_back(sub->Name);
}
bool ClangImporter::isModuleImported(const clang::Module *M) {
return M->NameVisibility == clang::Module::NameVisibilityKind::AllVisible;
}
static llvm::VersionTuple getCurrentVersionFromTBD(llvm::vfs::FileSystem &FS,
StringRef path,
StringRef moduleName) {
std::string fwName = (moduleName + ".framework").str();
auto pos = path.find(fwName);
if (pos == StringRef::npos)
return {};
llvm::SmallString<256> buffer(path.substr(0, pos + fwName.size()));
llvm::sys::path::append(buffer, moduleName + ".tbd");
auto tbdPath = buffer.str();
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> tbdBufOrErr =
FS.getBufferForFile(tbdPath);
// .tbd file doesn't exist, exit.
if (!tbdBufOrErr)
return {};
auto tbdFileOrErr =
llvm::MachO::TextAPIReader::get(tbdBufOrErr.get()->getMemBufferRef());
if (auto err = tbdFileOrErr.takeError()) {
consumeError(std::move(err));
return {};
}
auto tbdCV = (*tbdFileOrErr)->getCurrentVersion();
return llvm::VersionTuple(tbdCV.getMajor(), tbdCV.getMinor(),
tbdCV.getSubminor());
}
bool ClangImporter::canImportModule(ImportPath::Module modulePath,
SourceLoc loc,
ModuleVersionInfo *versionInfo,
bool isTestableDependencyLookup) {
// Look up the top-level module to see if it exists.
auto topModule = modulePath.front();
clang::Module *clangModule = Impl.lookupModule(topModule.Item.str());
if (!clangModule) {
return false;
}
clang::Module::Requirement r;
clang::Module::UnresolvedHeaderDirective mh;
clang::Module *m;
auto &ctx = Impl.getClangASTContext();
auto &lo = ctx.getLangOpts();
auto &ti = getModuleAvailabilityTarget();
auto available = clangModule->isAvailable(lo, ti, r, mh, m);
if (!available)
return false;
if (modulePath.hasSubmodule()) {
for (auto &component : modulePath.getSubmodulePath()) {
clangModule = clangModule->findSubmodule(component.Item.str());
// Special case: a submodule named "Foo.Private" can be moved to a
// top-level module named "Foo_Private". Clang has special support for
// this.
if (!clangModule && component.Item.str() == "Private" &&
(&component) == (&modulePath.getRaw()[1])) {
clangModule =
Impl.lookupModule((topModule.Item.str() + "_Private").str());
}
if (!clangModule || !clangModule->isAvailable(lo, ti, r, mh, m)) {
return false;
}
}
}
if (!versionInfo)
return true;
assert(available);
StringRef path = getClangASTContext().getSourceManager()
.getFilename(clangModule->DefinitionLoc);
// Look for the .tbd file inside .framework dir to get the project version
// number.
llvm::VersionTuple currentVersion = getCurrentVersionFromTBD(
Impl.Instance->getVirtualFileSystem(), path, topModule.Item.str());
versionInfo->setVersion(currentVersion,
ModuleVersionSourceKind::ClangModuleTBD);
return true;
}
clang::Module *
ClangImporter::Implementation::lookupModule(StringRef moduleName) {
auto &clangHeaderSearch = getClangPreprocessor().getHeaderSearchInfo();
// Explicit module. Try load from modulemap.
auto &PP = Instance->getPreprocessor();
auto &MM = PP.getHeaderSearchInfo().getModuleMap();
auto loadFromMM = [&]() -> clang::Module * {
auto *II = PP.getIdentifierInfo(moduleName);
if (auto clangModule = MM.getCachedModuleLoad(*II))
return *clangModule;
return nullptr;
};
// Check if it is already loaded.
if (auto *clangModule = loadFromMM())
return clangModule;
// If not, try load it.
auto &PrebuiltModules = Instance->getHeaderSearchOpts().PrebuiltModuleFiles;
auto moduleFile = PrebuiltModules.find(moduleName);
if (moduleFile == PrebuiltModules.end()) {
if (getClangASTContext().getLangOpts().ImplicitModules)
return clangHeaderSearch.lookupModule(
moduleName, /*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true, /*AllowExtraModuleMapSearch=*/true);
return nullptr;
}
clang::serialization::ModuleFile *Loaded = nullptr;
if (!Instance->loadModuleFile(moduleFile->second, Loaded))
return nullptr; // error loading, return not found.
return loadFromMM();
}
ModuleDecl *ClangImporter::Implementation::loadModuleClang(
SourceLoc importLoc, ImportPath::Module path) {
auto realModuleName = SwiftContext.getRealModuleName(path.front().Item).str();
// Convert the Swift import path over to a Clang import path.
SmallVector<clang::IdentifierLoc, 4> clangPath;
bool isTopModuleComponent = true;
for (auto component : path) {
StringRef item = isTopModuleComponent? realModuleName:
component.Item.str();
isTopModuleComponent = false;
clangPath.emplace_back(exportSourceLoc(component.Loc),
getClangPreprocessor().getIdentifierInfo(item));
}
auto &diagEngine = Instance->getDiagnostics();
auto &rawDiagClient = *diagEngine.getClient();
auto &diagClient = static_cast<ClangDiagnosticConsumer &>(rawDiagClient);
auto loadModule = [&](clang::ModuleIdPath path,
clang::Module::NameVisibilityKind visibility)
-> clang::ModuleLoadResult {
auto importRAII = diagClient.handleImport(
clangPath.front().getIdentifierInfo(), diagEngine, importLoc);
std::string preservedIndexStorePathOption;
auto &clangFEOpts = Instance->getFrontendOpts();
if (!clangFEOpts.IndexStorePath.empty()) {
StringRef moduleName = path[0].getIdentifierInfo()->getName();
// Ignore the SwiftShims module for the index data.
if (moduleName == SwiftContext.SwiftShimsModuleName.str()) {
preservedIndexStorePathOption = clangFEOpts.IndexStorePath;
clangFEOpts.IndexStorePath.clear();
}
}
clang::SourceLocation clangImportLoc = getNextIncludeLoc();
clang::ModuleLoadResult result =
Instance->loadModule(clangImportLoc, path, visibility,
/*IsInclusionDirective=*/false);
if (!preservedIndexStorePathOption.empty()) {
// Restore the -index-store-path option.
clangFEOpts.IndexStorePath = preservedIndexStorePathOption;
}
if (result && (visibility == clang::Module::AllVisible)) {
getClangPreprocessor().makeModuleVisible(result, clangImportLoc);
}
return result;
};
// Now load the top-level module, so that we can check if the submodule
// exists without triggering a fatal error.
auto clangModule = loadModule(clangPath.front(), clang::Module::AllVisible);
if (!clangModule)
return nullptr;
// If we're asked to import the top-level module then we're done here.
auto *topSwiftModule = finishLoadingClangModule(clangModule, importLoc);
if (path.size() == 1) {
return topSwiftModule;
}
// Verify that the submodule exists.
clang::Module *submodule = clangModule;
for (auto &component : path.getSubmodulePath()) {
submodule = submodule->findSubmodule(component.Item.str());
// Special case: a submodule named "Foo.Private" can be moved to a top-level
// module named "Foo_Private". Clang has special support for this.
// We're limiting this to just submodules named "Private" because this will
// put the Clang AST in a fatal error state if it /doesn't/ exist.
if (!submodule && component.Item.str() == "Private" &&
(&component) == (&path.getRaw()[1])) {
submodule = loadModule(llvm::ArrayRef(clangPath).slice(0, 2),
clang::Module::Hidden);
}
if (!submodule) {
// FIXME: Specialize the error for a missing submodule?
return nullptr;
}
}
// Finally, load the submodule and make it visible.
clangModule = loadModule(clangPath, clang::Module::AllVisible);
if (!clangModule)
return nullptr;
return finishLoadingClangModule(clangModule, importLoc);
}
ModuleDecl *
ClangImporter::loadModule(SourceLoc importLoc,
ImportPath::Module path,
bool AllowMemoryCache) {
return Impl.loadModule(importLoc, path);
}
ModuleDecl *ClangImporter::Implementation::loadModule(
SourceLoc importLoc, ImportPath::Module path) {
ModuleDecl *MD = nullptr;
ASTContext &ctx = getNameImporter().getContext();
if (path.front().Item == ctx.Id_CxxStdlib) {
ImportPath::Builder adjustedPath(ctx.getIdentifier("std"), importLoc);
adjustedPath.append(path.getSubmodulePath());
path = adjustedPath.copyTo(ctx).getModulePath(ImportKind::Module);
}
if (!DisableSourceImport)
MD = loadModuleClang(importLoc, path);
if (!MD)
MD = loadModuleDWARF(importLoc, path);
return MD;
}
ModuleDecl *ClangImporter::Implementation::finishLoadingClangModule(
const clang::Module *clangModule, SourceLoc importLoc) {
assert(clangModule);
// Bump the generation count.
bumpGeneration();
// Force load overlays for all imported modules.
// FIXME: This forces the creation of wrapper modules for all imports as
// well, and may do unnecessary work.
ClangModuleUnit *wrapperUnit = getWrapperForModule(clangModule, importLoc);
ModuleDecl *result = wrapperUnit->getParentModule();
auto &moduleWrapper = ModuleWrappers[clangModule];
if (!moduleWrapper.getInt()) {
moduleWrapper.setInt(true);
(void) namelookup::getAllImports(result);
}
// Register '.h' inputs of each Clang module dependency with
// the dependency tracker. In implicit builds such dependencies are registered
// during the on-demand construction of Clang module. In Explicit Module
// Builds, since we load pre-built PCMs directly, we do not get to do so. So
// instead, manually register all `.h` inputs of Clang module dependnecies.
if (SwiftDependencyTracker &&
!Instance->getInvocation().getLangOpts().ImplicitModules) {
if (auto moduleRef = clangModule->getASTFile()) {
auto *moduleFile = Instance->getASTReader()->getModuleManager().lookup(
*moduleRef);
llvm::SmallString<0> pathBuf;
pathBuf.reserve(256);
Instance->getASTReader()->visitInputFileInfos(
*moduleFile, /*IncludeSystem=*/true,
[&](const clang::serialization::InputFileInfo &IFI, bool isSystem) {
auto Filename = clang::ASTReader::ResolveImportedPath(
pathBuf, IFI.UnresolvedImportedFilename, *moduleFile);
SwiftDependencyTracker->addDependency(*Filename, isSystem);
});
}
}
if (clangModule->isSubModule()) {
finishLoadingClangModule(clangModule->getTopLevelModule(), importLoc);
} else {
if (!SwiftContext.getLoadedModule(result->getName()))
SwiftContext.addLoadedModule(result);
}
return result;
}
// Run through the set of deferred imports -- either those referenced by
// submodule ID from a bridging PCH, or those already loaded as clang::Modules
// in response to an import directive in a bridging header -- and call
// finishLoadingClangModule on each.
void ClangImporter::Implementation::handleDeferredImports(SourceLoc diagLoc) {
clang::ASTReader &R = *Instance->getASTReader();
llvm::SmallSet<clang::serialization::SubmoduleID, 32> seenSubmodules;
for (clang::serialization::SubmoduleID ID : PCHImportedSubmodules) {
if (!seenSubmodules.insert(ID).second)
continue;
ImportedHeaderExports.push_back(R.getSubmodule(ID));
}
PCHImportedSubmodules.clear();
// Avoid a for-in loop because in unusual situations we can end up pulling in
// another bridging header while we finish loading the modules that are
// already here. This is a brittle situation but it's outside what's
// officially supported with bridging headers: app targets and unit tests
// only. Unfortunately that's not enforced.
for (size_t i = 0; i < ImportedHeaderExports.size(); ++i) {
(void)finishLoadingClangModule(ImportedHeaderExports[i], diagLoc);
}
}
ModuleDecl *ClangImporter::getImportedHeaderModule() const {
return Impl.ImportedHeaderUnit->getParentModule();
}
ModuleDecl *
ClangImporter::getWrapperForModule(const clang::Module *mod,
bool returnOverlayIfPossible) const {
auto clangUnit = Impl.getWrapperForModule(mod);
if (returnOverlayIfPossible && clangUnit->getOverlayModule())
return clangUnit->getOverlayModule();
return clangUnit->getParentModule();
}
PlatformAvailability::PlatformAvailability(const LangOptions &langOpts)
: platformKind(targetPlatform(langOpts)) {
switch (platformKind) {
case PlatformKind::iOS:
case PlatformKind::iOSApplicationExtension:
case PlatformKind::macCatalyst:
case PlatformKind::macCatalystApplicationExtension:
case PlatformKind::tvOS:
case PlatformKind::tvOSApplicationExtension:
deprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 7 and earlier are unavailable in Swift";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 12 and earlier are not imported as 'async'";
break;
case PlatformKind::watchOS:
case PlatformKind::watchOSApplicationExtension:
deprecatedAsUnavailableMessage = "";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of watchOS 5 and earlier are not imported as "
"'async'";
break;
case PlatformKind::macOS:
case PlatformKind::macOSApplicationExtension:
deprecatedAsUnavailableMessage =
"APIs deprecated as of macOS 10.9 and earlier are unavailable in Swift";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of macOS 10.14 and earlier are not imported as "
"'async'";
break;
case PlatformKind::visionOS:
case PlatformKind::visionOSApplicationExtension:
break;
case PlatformKind::DriverKit:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::Swift:
case PlatformKind::anyAppleOS:
llvm_unreachable("Unexpected platform");
case PlatformKind::FreeBSD:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::OpenBSD:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::Windows:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::Android:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::none:
break;
}
}
bool PlatformAvailability::isPlatformRelevant(StringRef name) const {
switch (platformKind) {
case PlatformKind::macOS:
return name == "macos";
case PlatformKind::macOSApplicationExtension:
return name == "macos" || name == "macos_app_extension";
case PlatformKind::iOS:
return name == "ios";
case PlatformKind::iOSApplicationExtension:
return name == "ios" || name == "ios_app_extension";
case PlatformKind::macCatalyst:
return name == "ios" || name == "maccatalyst";
case PlatformKind::macCatalystApplicationExtension:
return name == "ios" || name == "ios_app_extension" ||
name == "maccatalyst" || name == "maccatalyst_app_extension";
case PlatformKind::tvOS:
return name == "tvos";
case PlatformKind::tvOSApplicationExtension:
return name == "tvos" || name == "tvos_app_extension";
case PlatformKind::watchOS:
return name == "watchos";
case PlatformKind::watchOSApplicationExtension:
return name == "watchos" || name == "watchos_app_extension";
case PlatformKind::visionOS:
return name == "xros" || name == "visionos";
case PlatformKind::visionOSApplicationExtension:
return name == "xros" || name == "xros_app_extension" ||
name == "visionos" || name == "visionos_app_extension";
case PlatformKind::DriverKit:
return name == "driverkit";
case PlatformKind::Swift:
case PlatformKind::anyAppleOS:
break; // Unexpected
case PlatformKind::FreeBSD:
return name == "freebsd";
case PlatformKind::OpenBSD:
return name == "openbsd";
case PlatformKind::Windows:
return name == "windows";
case PlatformKind::Android:
return name == "android";
case PlatformKind::none:
return false;
}
llvm_unreachable("Unexpected platform");
}
bool PlatformAvailability::treatDeprecatedAsUnavailable(
const clang::Decl *clangDecl, const llvm::VersionTuple &version,
bool isAsync) const {
assert(!version.empty() && "Must provide version when deprecated");
unsigned major = version.getMajor();
std::optional<unsigned> minor = version.getMinor();
switch (platformKind) {
case PlatformKind::none:
llvm_unreachable("version but no platform?");
case PlatformKind::macOS:
case PlatformKind::macOSApplicationExtension:
// Anything deprecated by macOS 10.14 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major < 10 ||
(major == 10 && (!minor.has_value() || minor.value() <= 14));
}
// Anything deprecated in OSX 10.9.x and earlier is unavailable in Swift.
return major < 10 ||
(major == 10 && (!minor.has_value() || minor.value() <= 9));
case PlatformKind::iOS:
case PlatformKind::iOSApplicationExtension:
case PlatformKind::tvOS:
case PlatformKind::tvOSApplicationExtension:
// Anything deprecated by iOS 12 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major <= 12;
}
// Anything deprecated in iOS 7.x and earlier is unavailable in Swift.
return major <= 7;
case PlatformKind::macCatalyst:
case PlatformKind::macCatalystApplicationExtension:
// ClangImporter does not yet support macCatalyst.
return false;
case PlatformKind::watchOS:
case PlatformKind::watchOSApplicationExtension:
// Anything deprecated by watchOS 5.0 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major <= 5;
}
// No deprecation filter on watchOS
return false;
case PlatformKind::visionOS:
case PlatformKind::visionOSApplicationExtension:
// No deprecation filter on xrOS
return false;
case PlatformKind::DriverKit:
// No deprecation filter on DriverKit
// FIXME: [availability] This should probably have a value.
return false;
case PlatformKind::Swift:
case PlatformKind::anyAppleOS:
break; // Unexpected
case PlatformKind::FreeBSD:
// No deprecation filter on FreeBSD
return false;
case PlatformKind::OpenBSD:
// No deprecation filter on OpenBSD
return false;
case PlatformKind::Windows:
// No deprecation filter on Windows
return false;
case PlatformKind::Android:
// The minimum Android API level supported by Swift is 21
return major <= 20;
}
llvm_unreachable("Unexpected platform");
}
ClangImporter::Implementation::Implementation(
ASTContext &ctx, DependencyTracker *dependencyTracker,
DWARFImporterDelegate *dwarfImporterDelegate)
: SwiftContext(ctx), ImportForwardDeclarations(
ctx.ClangImporterOpts.ImportForwardDeclarations),
DisableSwiftBridgeAttr(ctx.ClangImporterOpts.DisableSwiftBridgeAttr),
BridgingHeaderExplicitlyRequested(
!ctx.ClangImporterOpts.BridgingHeader.empty()),
BridgingHeaderIsInternal(ctx.ClangImporterOpts.BridgingHeaderIsInternal),
DisableOverlayModules(ctx.ClangImporterOpts.DisableOverlayModules),
EnableClangSPI(ctx.ClangImporterOpts.EnableClangSPI),
IsReadingBridgingPCH(false),
CurrentVersion(ImportNameVersion::fromOptions(ctx.LangOpts)),
Walker(DiagnosticWalker(*this)), BuffersForDiagnostics(ctx.SourceMgr),
BridgingHeaderLookupTable(new SwiftLookupTable(nullptr)),
platformAvailability(ctx.LangOpts), nameImporter(),
DisableSourceImport(ctx.ClangImporterOpts.DisableSourceImport),
SwiftDependencyTracker(dependencyTracker),
DWARFImporter(dwarfImporterDelegate) {}
ClangImporter::Implementation::~Implementation() {
#ifndef NDEBUG
SwiftContext.SourceMgr.verifyAllBuffers();
#endif
}
ClangImporter::Implementation::DiagnosticWalker::DiagnosticWalker(
ClangImporter::Implementation &Impl)
: Impl(Impl) {}
bool ClangImporter::Implementation::DiagnosticWalker::TraverseDecl(
clang::Decl *D) {
if (!D)
return true;
// In some cases, diagnostic notes about types (ex: built-in types) do not
// have an obvious source location at which to display diagnostics. We
// provide the location of the closest decl as a reasonable choice.
llvm::SaveAndRestore<clang::SourceLocation> sar{TypeReferenceSourceLocation,
D->getBeginLoc()};
return clang::RecursiveASTVisitor<DiagnosticWalker>::TraverseDecl(D);
}
bool ClangImporter::Implementation::DiagnosticWalker::TraverseParmVarDecl(
clang::ParmVarDecl *D) {
// When the ClangImporter imports functions / methods, the return
// type is first imported, followed by parameter types in order of
// declaration. If any type fails to import, the import of the function /
// method is aborted. This means any parameters after the first to fail to
// import (the first could be the return type) will not have diagnostics
// attached. Even though these remaining parameters may have unimportable
// types, we avoid diagnosing these types as a type diagnosis without a
// "parameter not imported" note on the referencing param decl is inconsistent
// behaviour and could be confusing.
if (Impl.ImportDiagnostics[D].size()) {
// Since the parameter decl in question has been diagnosed (we didn't bail
// before importing this param) continue the traversal as normal.
return clang::RecursiveASTVisitor<DiagnosticWalker>::TraverseParmVarDecl(D);
}
// If the decl in question has not been diagnosed, traverse "as normal" except
// avoid traversing to the referenced typed. Note the traversal has been
// simplified greatly and may need to be modified to support some future
// diagnostics.
if (!getDerived().shouldTraversePostOrder())
if (!WalkUpFromParmVarDecl(D))
return false;
if (clang::DeclContext *declContext = dyn_cast<clang::DeclContext>(D)) {
for (auto *Child : declContext->decls()) {
if (!canIgnoreChildDeclWhileTraversingDeclContext(Child))
if (!TraverseDecl(Child))
return false;
}
}
if (getDerived().shouldTraversePostOrder())
if (!WalkUpFromParmVarDecl(D))
return false;
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitDecl(
clang::Decl *D) {
Impl.emitDiagnosticsForTarget(D);
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitMacro(
const clang::MacroInfo *MI) {
Impl.emitDiagnosticsForTarget(MI);
for (const clang::Token &token : MI->tokens()) {
Impl.emitDiagnosticsForTarget(&token);
}
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::
VisitObjCObjectPointerType(clang::ObjCObjectPointerType *T) {
// If an ObjCInterface is pointed to, diagnose it.
if (const clang::ObjCInterfaceDecl *decl = T->getInterfaceDecl()) {
Impl.emitDiagnosticsForTarget(decl);
}
// Diagnose any protocols the pointed to type conforms to.
for (auto cp = T->qual_begin(), cpEnd = T->qual_end(); cp != cpEnd; ++cp) {
Impl.emitDiagnosticsForTarget(*cp);
}
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitType(
clang::Type *T) {
if (TypeReferenceSourceLocation.isValid())
Impl.emitDiagnosticsForTarget(T, TypeReferenceSourceLocation);
return true;
}
ClangModuleUnit *ClangImporter::Implementation::getWrapperForModule(
const clang::Module *underlying, SourceLoc diagLoc) {
auto &cacheEntry = ModuleWrappers[underlying];
if (ClangModuleUnit *cached = cacheEntry.getPointer())
return cached;
// FIXME: Handle hierarchical names better.
Identifier name = underlying->Name == "std"
? SwiftContext.Id_CxxStdlib
: SwiftContext.getIdentifier(underlying->Name);
ImplicitImportInfo implicitImportInfo;
if (auto mainModule = SwiftContext.MainModule) {
implicitImportInfo = mainModule->getImplicitImportInfo();
}
if (!underlying->isSubModule()) {
// Make sure that synthesized Swift code in the clang module wrapper
// (e.g. _SwiftifyImport macro expansions) can access the same symbols
// as if it were actually in the clang module, by copying the imports.
// Because this top-level module wrapper contains all the imported decls
// of the clang submodules, we need to add the imports of all the
// transitive submodules, since we don't know at this point of the
// compilation which submodules will contain relevant macros.
// We also need to add (transitive) explicit submodules as imports,
// to make sure that they are marked as imported *somewhere* (clang modules
// including them don't count) - otherwise their decls won't be found after
// non-visible clang decls are filtered out.
llvm::SmallVector<const clang::Module *, 32> SubmoduleWorklist;
llvm::DenseSet<ImportPath> Imported;
SubmoduleWorklist.push_back(underlying);
ImportPath::Builder underlyingSwiftModulePath =
getSwiftModulePath(underlying);
Imported.insert(underlyingSwiftModulePath.get());
for (auto UI : implicitImportInfo.AdditionalUnloadedImports)
Imported.insert(UI.module.getImportPath());
assert(implicitImportInfo.AdditionalImports.empty());
const bool cxx = SwiftContext.LangOpts.EnableCXXInterop;
auto addImplicitImport = [&implicitImportInfo, &Imported, cxx,
this](const clang::Module *M,
bool guaranteedUnique) {
const bool cannotBeImported =
llvm::any_of(M->Requirements, [cxx](auto &Req) {
if (Req.FeatureName == "swift")
return !Req.RequiredState;
if (Req.FeatureName == "cplusplus")
return Req.RequiredState != cxx;
return false;
});
if (cannotBeImported) {
return;
}
ImportPath::Builder builder = getSwiftModulePath(M);
if (!guaranteedUnique && Imported.count(builder.get()))
return;
// Don't perform this clone for modules already added to the list
ImportPath importedModulePath = builder.copyTo(SwiftContext);
#ifndef NDEBUG
const bool performSanityCheck = true;
#else
const bool performSanityCheck = false;
#endif
if (!guaranteedUnique || performSanityCheck) {
bool WasInserted = Imported.insert(importedModulePath).second;
assert(WasInserted);
}
UnloadedImportedModule importedModule(importedModulePath,
ImportKind::Module);
implicitImportInfo.AdditionalUnloadedImports.push_back(
std::move(importedModule));
};
while (!SubmoduleWorklist.empty()) {
const clang::Module *CurrModule = SubmoduleWorklist.pop_back_val();
if (CurrModule->IsExplicit) {
// We don't add imports under the same TLM, and submodules form
// a tree, so these don't require deduplication.
addImplicitImport(CurrModule, /*guaranteedUnique=*/true);
}
for (auto *I : CurrModule->Imports) {
// `underlying` is the current TLM. Only explicit submodules need to
// be imported under the same TLM, which is handled above.
if (I->getTopLevelModule() == underlying)
continue;
addImplicitImport(I, /*guaranteedUnique=*/false);
}
for (auto *Submodule : CurrModule->submodules())
SubmoduleWorklist.push_back(Submodule);
}
}
ClangModuleUnit *file = nullptr;
auto wrapper = ModuleDecl::create(name, SwiftContext, implicitImportInfo,
[&](ModuleDecl *wrapper, auto addFile) {
file = new (SwiftContext) ClangModuleUnit(*wrapper, *this, underlying);
addFile(file);
});
wrapper->setIsSystemModule(underlying->IsSystem);
wrapper->setIsNonSwiftModule();
wrapper->setHasResolvedImports();
if (!underlying->ExportAsModule.empty())
wrapper->setExportAsName(
SwiftContext.getIdentifier(underlying->ExportAsModule));
SwiftContext.getClangModuleLoader()->findOverlayFiles(diagLoc, wrapper, file);
cacheEntry.setPointer(file);
return file;
}
ClangModuleUnit *ClangImporter::Implementation::getClangModuleForDecl(
const clang::Decl *D,
bool allowForwardDeclaration) {
auto maybeModule = getClangSubmoduleForDecl(D, allowForwardDeclaration);
if (!maybeModule)
return nullptr;
if (!maybeModule.value())
return ImportedHeaderUnit;
// Get the parent module because currently we don't represent submodules with
// ClangModuleUnit.
auto *M = maybeModule.value()->getTopLevelModule();
return getWrapperForModule(M);
}
void ClangImporter::Implementation::addImportDiagnostic(
ImportDiagnosticTarget target, Diagnostic &&diag,
clang::SourceLocation loc) {
ImportDiagnostic importDiag = ImportDiagnostic(target, diag, loc);
if (SwiftContext.LangOpts.DisableExperimentalClangImporterDiagnostics)
return;
auto [_, inserted] = CollectedDiagnostics.insert(importDiag);
if (!inserted)
return;
ImportDiagnostics[target].push_back(importDiag);
}
#pragma mark Source locations
clang::SourceLocation
ClangImporter::Implementation::exportSourceLoc(SourceLoc loc) {
// FIXME: Implement!
return clang::SourceLocation();
}
SourceLoc
ClangImporter::Implementation::importSourceLoc(clang::SourceLocation loc) {
return BuffersForDiagnostics.resolveSourceLocation(Instance->getSourceManager(), loc);
}
SourceRange
ClangImporter::Implementation::importSourceRange(clang::SourceRange range) {
return SourceRange(importSourceLoc(range.getBegin()), importSourceLoc(range.getEnd()));
}
#pragma mark Importing names
clang::DeclarationName
ClangImporter::Implementation::exportName(Identifier name) {
// FIXME: When we start dealing with C++, we can map over some operator
// names.
if (name.empty() || name.isOperator())
return clang::DeclarationName();
// Map the identifier. If it's some kind of keyword, it can't be mapped.
auto ident = &Instance->getASTContext().Idents.get(name.str());
if (ident->getTokenID() != clang::tok::identifier)
return clang::DeclarationName();
return ident;
}
Identifier
ClangImporter::Implementation::importIdentifier(
const clang::IdentifierInfo *identifier,
StringRef removePrefix)
{
if (!identifier) return Identifier();
StringRef name = identifier->getName();
// Remove the prefix, if any.
if (!removePrefix.empty()) {
if (name.starts_with(removePrefix)) {
name = name.slice(removePrefix.size(), name.size());
}
}
// Get the Swift identifier.
return SwiftContext.getIdentifier(name);
}
ObjCSelector ClangImporter::Implementation::importSelector(
clang::Selector selector) {
auto &ctx = SwiftContext;
// Handle zero-argument selectors directly.
if (selector.isUnarySelector()) {
Identifier name;
if (auto id = selector.getIdentifierInfoForSlot(0))
name = ctx.getIdentifier(id->getName());
return ObjCSelector(ctx, 0, name);
}
SmallVector<Identifier, 2> pieces;
for (auto i = 0u, n = selector.getNumArgs(); i != n; ++i) {
Identifier piece;
if (auto id = selector.getIdentifierInfoForSlot(i))
piece = ctx.getIdentifier(id->getName());
pieces.push_back(piece);
}
return ObjCSelector(ctx, pieces.size(), pieces);
}
clang::Selector
ClangImporter::Implementation::exportSelector(DeclName name,
bool allowSimpleName) {
if (!allowSimpleName && name.isSimpleName())
return {};
clang::ASTContext &ctx = getClangASTContext();
SmallVector<const clang::IdentifierInfo *, 8> pieces;
pieces.push_back(exportName(name.getBaseIdentifier()).getAsIdentifierInfo());
auto argNames = name.getArgumentNames();
if (argNames.empty())
return ctx.Selectors.getNullarySelector(pieces.front());
if (!argNames.front().empty())
return {};
argNames = argNames.slice(1);
for (Identifier argName : argNames)
pieces.push_back(exportName(argName).getAsIdentifierInfo());
return ctx.Selectors.getSelector(pieces.size(), pieces.data());
}
clang::Selector
ClangImporter::Implementation::exportSelector(ObjCSelector selector) {
SmallVector<const clang::IdentifierInfo *, 4> pieces;
for (auto piece : selector.getSelectorPieces())
pieces.push_back(exportName(piece).getAsIdentifierInfo());
return getClangASTContext().Selectors.getSelector(selector.getNumArgs(),
pieces.data());
}
/// Determine whether the given method potentially conflicts with the
/// setter for a property in the given protocol.
static bool
isPotentiallyConflictingSetter(const clang::ObjCProtocolDecl *proto,
const clang::ObjCMethodDecl *method) {
auto sel = method->getSelector();
if (sel.getNumArgs() != 1)
return false;
const clang::IdentifierInfo *setterID = sel.getIdentifierInfoForSlot(0);
if (!setterID || !setterID->getName().starts_with("set"))
return false;
for (auto *prop : proto->properties()) {
if (prop->getSetterName() == sel)
return true;
}
return false;
}
bool importer::shouldSuppressDeclImport(const clang::Decl *decl) {
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = decl->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// If this member is a method that is a getter or setter for a
// property, don't add it into the table. property names and
// getter names (by choosing to only have a property).
//
// Note that this is suppressed for certain accessibility declarations,
// which are imported as getter/setter pairs and not properties.
if (objcMethod->isPropertyAccessor()) {
// Suppress the import of this method when the corresponding
// property is not suppressed.
return !shouldSuppressDeclImport(
objcMethod->findPropertyDecl(/*CheckOverrides=*/false));
}
// If the method was declared within a protocol, check that it
// does not conflict with the setter of a property.
if (auto proto = dyn_cast<clang::ObjCProtocolDecl>(dc))
return isPotentiallyConflictingSetter(proto, objcMethod);
return false;
}
if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = objcProperty->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// Suppress certain properties; import them as getter/setter pairs instead.
if (shouldImportPropertyAsAccessors(objcProperty))
return true;
// Check whether there is a superclass method for the getter that
// is *not* suppressed, in which case we will need to suppress
// this property.
auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(dc);
if (!objcClass) {
if (auto objcCategory = dyn_cast<clang::ObjCCategoryDecl>(dc)) {
// If the enclosing category is invalid, suppress this declaration.
if (objcCategory->isInvalidDecl()) return true;
objcClass = objcCategory->getClassInterface();
}
}
if (objcClass) {
if (auto objcSuperclass = objcClass->getSuperClass()) {
auto getterMethod =
objcSuperclass->lookupMethod(objcProperty->getGetterName(),
objcProperty->isInstanceProperty());
if (getterMethod && !shouldSuppressDeclImport(getterMethod))
return true;
}
}
return false;
}
if (isa<clang::BuiltinTemplateDecl>(decl)) {
return true;
}
return false;
}
#pragma mark Name lookup
const clang::TypedefNameDecl *
ClangImporter::Implementation::lookupTypedef(clang::DeclarationName name) {
clang::Sema &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, name,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, sema.TUScope)) {
for (auto decl : lookupResult) {
if (auto typedefDecl =
dyn_cast<clang::TypedefNameDecl>(decl->getUnderlyingDecl()))
return typedefDecl;
}
}
return nullptr;
}
static bool isDeclaredInModule(const ClangModuleUnit *ModuleFilter,
const Decl *VD) {
// Sometimes imported decls get put into the clang header module. If we
// found one of these decls, don't filter it out.
if (VD->getModuleContext()->getName().str() == CLANG_HEADER_MODULE_NAME) {
return true;
}
// Because the ClangModuleUnit saved as a decl context will be saved as the top-level module, but
// the ModuleFilter we're given might be a submodule (if a submodule was passed to
// getTopLevelDecls, for example), we should compare the underlying Clang modules to determine
// module membership.
if (auto ClangNode = VD->getClangNode()) {
if (auto *ClangModule = ClangNode.getOwningClangModule()) {
return ModuleFilter->getClangModule() == ClangModule;
}
}
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
return ModuleFilter == ContainingUnit;
}
static const clang::Module *
getClangOwningModule(ClangNode Node, const clang::ASTContext &ClangCtx) {
assert(!Node.getAsModule() && "not implemented for modules");
if (const clang::Decl *D = Node.getAsDecl()) {
auto ExtSource = ClangCtx.getExternalSource();
assert(ExtSource);
auto originalDecl = D;
if (auto functionDecl = dyn_cast<clang::FunctionDecl>(D)) {
if (auto pattern = functionDecl->getTemplateInstantiationPattern()) {
// Function template instantiations don't have an owning Clang module.
// Let's use the owning module of the template pattern.
originalDecl = pattern;
}
}
if (auto classTemplateSpecDecl =
dyn_cast<clang::ClassTemplateSpecializationDecl>(D)) {
if (auto pattern =
classTemplateSpecDecl->getTemplateInstantiationPattern()) {
// Class template instantiations sometimes don't have an owning Clang
// module, if the instantiation is not typedef-ed.
originalDecl = pattern;
}
}
return ExtSource->getModule(originalDecl->getOwningModuleID());
}
if (const clang::ModuleMacro *M = Node.getAsModuleMacro())
return M->getOwningModule();
// A locally-defined MacroInfo does not have an owning module.
assert(Node.getAsMacroInfo());
return nullptr;
}
static const clang::Module *
getClangTopLevelOwningModule(ClangNode Node,
const clang::ASTContext &ClangCtx) {
const clang::Module *OwningModule = getClangOwningModule(Node, ClangCtx);
if (!OwningModule)
return nullptr;
return OwningModule->getTopLevelModule();
}
static bool isVisibleFromModule(const ClangModuleUnit *ModuleFilter,
ValueDecl *VD) {
assert(ModuleFilter);
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
if (ModuleFilter == ContainingUnit)
return true;
// The rest of this function is looking to see if the Clang entity that
// caused VD to be imported has redeclarations in the filter module.
auto Wrapper = dyn_cast<ClangModuleUnit>(ContainingUnit);
if (!Wrapper)
return false;
ASTContext &Ctx = ContainingUnit->getASTContext();
auto *Importer = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
auto ClangNode = Importer->getEffectiveClangNode(VD);
// Macros can be "redeclared" by putting an equivalent definition in two
// different modules. (We don't actually check the equivalence.)
// FIXME: We're also not checking if the redeclaration is in /this/ module.
if (ClangNode.getAsMacro())
return true;
const clang::Decl *D = ClangNode.castAsDecl();
auto &ClangASTContext = ModuleFilter->getClangASTContext();
// We don't handle Clang submodules; pop everything up to the top-level
// module.
auto OwningClangModule = getClangTopLevelOwningModule(ClangNode,
ClangASTContext);
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
// If this decl was implicitly synthesized by the compiler, and is not
// supposed to be owned by any module, return true.
if (Importer->isSynthesizedAndVisibleFromAllModules(D)) {
return true;
}
// Friends from class templates don't have an owning module. Just return true.
if (isa<clang::FunctionDecl>(D) &&
cast<clang::FunctionDecl>(D)->isThisDeclarationInstantiatedFromAFriendDefinition())
return true;
// Handle redeclarable Clang decls by checking each redeclaration.
bool IsTagDecl = isa<clang::TagDecl>(D);
if (!(IsTagDecl || isa<clang::FunctionDecl>(D) || isa<clang::VarDecl>(D) ||
isa<clang::TypedefNameDecl>(D) || isa<clang::NamespaceDecl>(D))) {
return false;
}
for (auto Redeclaration : D->redecls()) {
if (Redeclaration == D)
continue;
// For enums, structs, and unions, only count definitions when looking to
// see what other modules they appear in.
if (IsTagDecl) {
auto TD = cast<clang::TagDecl>(Redeclaration);
if (!TD->isCompleteDefinition() &&
!TD->isThisDeclarationADemotedDefinition())
continue;
}
auto OwningClangModule = getClangTopLevelOwningModule(Redeclaration,
ClangASTContext);
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
}
return false;
}
namespace {
class ClangVectorDeclConsumer : public clang::VisibleDeclConsumer {
std::vector<clang::NamedDecl *> results;
public:
ClangVectorDeclConsumer() = default;
void FoundDecl(clang::NamedDecl *ND, clang::NamedDecl *Hiding,
clang::DeclContext *Ctx, bool InBaseClass) override {
if (!ND->getIdentifier())
return;
if (ND->isModulePrivate())
return;
results.push_back(ND);
}
llvm::MutableArrayRef<clang::NamedDecl *> getResults() {
return results;
}
};
class FilteringVisibleDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter;
public:
FilteringVisibleDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer), ModuleFilter(CMU) {
assert(CMU);
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (!VD->hasClangNode() || isVisibleFromModule(ModuleFilter, VD))
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
};
class FilteringDeclaredDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter;
public:
FilteringDeclaredDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer), ModuleFilter(CMU) {
assert(CMU);
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (isDeclaredInModule(ModuleFilter, VD)) {
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
}
};
/// A hack to hide particular types in the "Darwin" module on Apple platforms.
class DarwinLegacyFilterDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
clang::ASTContext &ClangASTContext;
bool shouldDiscard(ValueDecl *VD) {
if (!VD->hasClangNode())
return false;
const clang::Module *clangModule = getClangOwningModule(VD->getClangNode(),
ClangASTContext);
if (!clangModule)
return false;
if (clangModule->Name == "MacTypes") {
if (!VD->hasName() || VD->getBaseName().isSpecial())
return true;
return llvm::StringSwitch<bool>(VD->getBaseName().userFacingName())
.Cases("OSErr", "OSStatus", "OptionBits", false)
.Cases("FourCharCode", "OSType", false)
.Case("Boolean", false)
.Case("kUnknownType", false)
.Cases("UTF32Char", "UniChar", "UTF16Char", "UTF8Char", false)
.Case("ProcessSerialNumber", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "CarbonCore") {
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("BackupCore", "DiskSpaceRecovery", "MacErrors", false)
.Case("UnicodeUtilities", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "OSServices") {
// Note that this is a list of things to /drop/ rather than to /keep/.
// We're more likely to see new, modern headers added to OSServices.
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("IconStorage", "KeychainCore", "Power", true)
.Cases("SecurityCore", "SystemSound", true)
.Cases("WSMethodInvocation", "WSProtocolHandler", "WSTypes", true)
.Default(false);
}
return false;
}
public:
DarwinLegacyFilterDeclConsumer(swift::VisibleDeclConsumer &consumer,
clang::ASTContext &clangASTContext)
: NextConsumer(consumer), ClangASTContext(clangASTContext) {}
static bool needsFiltering(const clang::Module *topLevelModule) {
return topLevelModule && (topLevelModule->Name == "Darwin" ||
topLevelModule->Name == "CoreServices");
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (!shouldDiscard(VD))
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
};
} // unnamed namespace
/// Translate a MacroDefinition to a ClangNode, either a ModuleMacro for
/// a definition imported from a module or a MacroInfo for a macro defined
/// locally.
static ClangNode getClangNodeForMacroDefinition(clang::MacroDefinition &M) {
if (!M.getModuleMacros().empty())
return ClangNode(M.getModuleMacros().back()->getMacroInfo());
if (auto *MD = M.getLocalDirective())
return ClangNode(MD->getMacroInfo());
return ClangNode();
}
void ClangImporter::lookupBridgingHeaderDecls(
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
for (auto &Import : Impl.BridgeHeaderTopLevelImports) {
auto ImportD = cast<ImportDecl *>(Import);
if (filter(ImportD->getClangDecl()))
receiver(ImportD);
}
for (auto *ClangD : Impl.BridgeHeaderTopLevelDecls) {
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
auto &ClangPP = Impl.getClangPreprocessor();
for (clang::IdentifierInfo *II : Impl.BridgeHeaderMacros) {
auto MD = ClangPP.getMacroDefinition(II);
if (auto macroNode = getClangNodeForMacroDefinition(MD)) {
if (filter(macroNode)) {
auto MI = macroNode.getAsMacro();
Identifier Name = Impl.getNameImporter().importMacroName(II, MI);
if (Decl *imported = Impl.importMacro(Name, macroNode))
receiver(imported);
}
}
}
}
bool ClangImporter::lookupDeclsFromHeader(StringRef Filename,
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
llvm::Expected<clang::FileEntryRef> ExpectedFile =
getClangPreprocessor().getFileManager().getFileRef(Filename);
if (!ExpectedFile)
return true;
clang::FileEntryRef File = *ExpectedFile;
auto &ClangCtx = getClangASTContext();
auto &ClangSM = ClangCtx.getSourceManager();
auto &ClangPP = getClangPreprocessor();
// Look up the header in the includes of the bridging header.
if (Impl.BridgeHeaderFiles.count(File)) {
auto headerFilter = [&](ClangNode ClangN) -> bool {
if (ClangN.isNull())
return false;
auto ClangLoc = ClangSM.getFileLoc(ClangN.getLocation());
if (ClangLoc.isInvalid())
return false;
clang::OptionalFileEntryRef LocRef =
ClangSM.getFileEntryRefForID(ClangSM.getFileID(ClangLoc));
if (!LocRef || *LocRef != File)
return false;
return filter(ClangN);
};
lookupBridgingHeaderDecls(headerFilter, receiver);
return false;
}
clang::FileID FID = ClangSM.translateFile(File);
if (FID.isInvalid())
return false;
// Look up the header in the ASTReader.
if (ClangSM.isLoadedFileID(FID)) {
// Decls.
SmallVector<clang::Decl *, 32> Decls;
unsigned Length = ClangSM.getFileIDSize(FID);
ClangCtx.getExternalSource()->FindFileRegionDecls(FID, 0, Length, Decls);
for (auto *ClangD : Decls) {
if (Impl.shouldIgnoreBridgeHeaderTopLevelDecl(ClangD))
continue;
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
// Macros.
for (const auto &Iter : ClangPP.macros()) {
auto *II = Iter.first;
auto MD = ClangPP.getMacroDefinition(II);
MD.forAllDefinitions([&](clang::MacroInfo *Info) {
if (Info->isBuiltinMacro())
return;
auto Loc = Info->getDefinitionLoc();
if (Loc.isInvalid() || ClangSM.getFileID(Loc) != FID)
return;
ClangNode MacroNode = Info;
if (filter(MacroNode)) {
auto Name = Impl.getNameImporter().importMacroName(II, Info);
if (auto *Imported = Impl.importMacro(Name, MacroNode))
receiver(Imported);
}
});
}
// FIXME: Module imports inside that header.
return false;
}
return true; // no info found about that header.
}
void ClangImporter::lookupValue(DeclName name, VisibleDeclConsumer &consumer) {
Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
Impl.lookupValue(table, name, consumer);
return false;
});
}
ClangNode ClangImporter::getEffectiveClangNode(const Decl *decl) const {
// Directly...
if (auto clangNode = decl->getClangNode())
return clangNode;
// Or via the nested "Code" enum.
if (auto *errorWrapper = dyn_cast<StructDecl>(decl)) {
if (auto *code = Impl.lookupErrorCodeEnum(errorWrapper))
if (auto clangNode = code->getClangNode())
return clangNode;
}
return ClangNode();
}
void ClangImporter::lookupTypeDecl(
StringRef rawName, ClangTypeKind kind,
llvm::function_ref<void(TypeDecl *)> receiver) {
clang::DeclarationName clangName(
&Impl.Instance->getASTContext().Idents.get(rawName));
SmallVector<clang::Sema::LookupNameKind, 1> lookupKinds;
switch (kind) {
case ClangTypeKind::Typedef:
lookupKinds.push_back(clang::Sema::LookupOrdinaryName);
break;
case ClangTypeKind::Tag:
lookupKinds.push_back(clang::Sema::LookupTagName);
lookupKinds.push_back(clang::Sema::LookupNamespaceName);
break;
case ClangTypeKind::ObjCProtocol:
lookupKinds.push_back(clang::Sema::LookupObjCProtocolName);
break;
}
// Perform name lookup into the global scope.
auto &sema = Impl.Instance->getSema();
bool foundViaClang = false;
for (auto lookupKind : lookupKinds) {
clang::LookupResult lookupResult(sema, clangName, clang::SourceLocation(),
lookupKind);
if (!Impl.DisableSourceImport &&
sema.LookupName(lookupResult, /*Scope=*/ sema.TUScope)) {
for (auto clangDecl : lookupResult) {
if (!isa<clang::TypeDecl>(clangDecl) &&
!isa<clang::NamespaceDecl>(clangDecl) &&
!isa<clang::ObjCContainerDecl>(clangDecl) &&
!isa<clang::ObjCCompatibleAliasDecl>(clangDecl)) {
continue;
}
Decl *imported = Impl.importDecl(clangDecl, Impl.CurrentVersion);
// Namespaces are imported as extensions for enums.
if (auto ext = dyn_cast_or_null<ExtensionDecl>(imported)) {
imported = ext->getExtendedNominal();
}
// Look through compatibility aliases since we must have mangled the
// underlying type (see ASTMangler::getSpecialManglingContext).
if (auto *alias = dyn_cast_or_null<TypeAliasDecl>(imported)) {
if (alias->isCompatibilityAlias()) {
imported = alias->getUnderlyingType()->getAnyNominal();
assert(imported != nullptr &&
"No underlying decl for a compatibility typealias");
}
}
if (auto *importedType = dyn_cast_or_null<TypeDecl>(imported)) {
foundViaClang = true;
receiver(importedType);
}
}
}
}
// If Clang couldn't find the type, query the DWARFImporterDelegate.
if (!foundViaClang)
Impl.lookupTypeDeclDWARF(rawName, kind, receiver);
}
void ClangImporter::lookupRelatedEntity(
StringRef rawName, ClangTypeKind kind, StringRef relatedEntityKind,
llvm::function_ref<void(TypeDecl *)> receiver) {
using CISTAttr = ClangImporterSynthesizedTypeAttr;
if (relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapper) ||
relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapperAnon)) {
auto underlyingKind = ClangTypeKind::Tag;
if (relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapperAnon)) {
underlyingKind = ClangTypeKind::Typedef;
}
lookupTypeDecl(rawName, underlyingKind,
[this, receiver] (const TypeDecl *foundType) {
auto *enumDecl =
dyn_cast_or_null<clang::EnumDecl>(foundType->getClangDecl());
if (!enumDecl)
return;
if (!Impl.getEnumInfo(enumDecl).isErrorEnum())
return;
auto *enclosingType =
dyn_cast<NominalTypeDecl>(foundType->getDeclContext());
if (!enclosingType)
return;
receiver(enclosingType);
});
}
}
void ClangModuleUnit::lookupVisibleDecls(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer,
NLKind lookupKind) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// FIXME: Respect the access path.
FilteringVisibleDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
actualConsumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
}
}
namespace {
class VectorDeclPtrConsumer : public swift::VisibleDeclConsumer {
public:
SmallVectorImpl<Decl *> &Results;
explicit VectorDeclPtrConsumer(SmallVectorImpl<Decl *> &Decls)
: Results(Decls) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo) override {
Results.push_back(VD);
}
};
} // unnamed namespace
void ClangModuleUnit::getTopLevelDecls(SmallVectorImpl<Decl*> &results) const {
VectorDeclPtrConsumer consumer(results);
FilteringDeclaredDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
const clang::Module *topLevelModule =
clangModule ? clangModule->getTopLevelModule() : nullptr;
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (DarwinLegacyFilterDeclConsumer::needsFiltering(topLevelModule))
actualConsumer = &darwinFilterConsumer;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(topLevelModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
// Add the extensions produced by importing categories.
for (auto category : lookupTable->categories()) {
if (category->getOwningModule() == clangModule) {
if (auto extension = cast_or_null<ExtensionDecl>(
owner.importDecl(category, owner.CurrentVersion,
/*UseCanonical*/false))) {
results.push_back(extension);
}
}
}
auto findEnclosingExtension = [](Decl *importedDecl) -> ExtensionDecl * {
for (auto importedDC = importedDecl->getDeclContext();
!importedDC->isModuleContext();
importedDC = importedDC->getParent()) {
if (auto ext = dyn_cast<ExtensionDecl>(importedDC))
return ext;
}
return nullptr;
};
// Retrieve all of the globals that will be mapped to members.
llvm::SmallPtrSet<ExtensionDecl *, 8> knownExtensions;
for (auto entry : lookupTable->allGlobalsAsMembers()) {
auto decl = cast<clang::NamedDecl *>(entry);
if (decl->getOwningModule() != clangModule) continue;
Decl *importedDecl = owner.importDecl(decl, owner.CurrentVersion);
if (!importedDecl) continue;
// Find the enclosing extension, if there is one.
ExtensionDecl *ext = findEnclosingExtension(importedDecl);
if (ext && knownExtensions.insert(ext).second)
results.push_back(ext);
// If this is a compatibility typealias, the canonical type declaration
// may exist in another extension.
auto alias = dyn_cast<TypeAliasDecl>(importedDecl);
if (!alias || !alias->isCompatibilityAlias()) continue;
auto aliasedTy = alias->getUnderlyingType();
ext = nullptr;
importedDecl = nullptr;
// Note: We can't use getAnyGeneric() here because `aliasedTy`
// might be typealias.
if (auto Ty = dyn_cast<TypeAliasType>(aliasedTy.getPointer()))
importedDecl = Ty->getDecl();
else if (auto Ty = dyn_cast<AnyGenericType>(aliasedTy.getPointer()))
importedDecl = Ty->getDecl();
if (!importedDecl) continue;
ext = findEnclosingExtension(importedDecl);
if (ext && knownExtensions.insert(ext).second)
results.push_back(ext);
}
}
}
ImportDecl *swift::createImportDecl(ASTContext &Ctx,
DeclContext *DC,
ClangNode ClangN,
ArrayRef<clang::Module *> Exported) {
auto *ImportedMod = ClangN.getClangModule();
assert(ImportedMod);
ImportPath::Builder importPath;
auto *TmpMod = ImportedMod;
while (TmpMod) {
// If this is a C++ stdlib module, print its name as `CxxStdlib` instead of
// `std`. `CxxStdlib` is the only accepted spelling of the C++ stdlib module
// name in Swift. In libc++ versions 17-19 there are multiple TLMs, named
// std_vector, std_array etc. We don't support importing those modules, but
// when printing the module interface it'd be weird to print "import
// CxxStdlib" over and over, so those are still printed as "import
// std_vector". This only affects the module interface for CxxStdlib.
Identifier moduleName = !TmpMod->isSubModule() && TmpMod->Name == "std"
? Ctx.Id_CxxStdlib
: Ctx.getIdentifier(TmpMod->Name);
importPath.push_back(moduleName);
TmpMod = TmpMod->Parent;
}
std::reverse(importPath.begin(), importPath.end());
bool IsExported = false;
for (auto *ExportedMod : Exported) {
if (ImportedMod == ExportedMod) {
IsExported = true;
break;
}
}
auto *ID = ImportDecl::create(Ctx, DC, SourceLoc(),
ImportKind::Module, SourceLoc(),
importPath.get(), ClangN);
if (Ctx.ClangImporterOpts.BridgingHeaderIsInternal) {
ID->addAttribute(new (Ctx) AccessControlAttr(
SourceLoc(), SourceRange(), AccessLevel::Internal, /*implicit=*/true));
} else if (IsExported) {
ID->addAttribute(new (Ctx) ExportedAttr(/*IsImplicit=*/false));
}
return ID;
}
static void getImportDecls(ClangModuleUnit *ClangUnit, const clang::Module *M,
SmallVectorImpl<Decl *> &Results) {
assert(M);
SmallVector<clang::Module *, 1> Exported;
M->getExportedModules(Exported);
ASTContext &Ctx = ClangUnit->getASTContext();
for (auto *ImportedMod : M->Imports) {
auto *ID = createImportDecl(Ctx, ClangUnit, ImportedMod, Exported);
Results.push_back(ID);
}
}
void ClangModuleUnit::getDisplayDecls(SmallVectorImpl<Decl*> &results, bool recursive) const {
if (clangModule)
getImportDecls(const_cast<ClangModuleUnit *>(this), clangModule, results);
getTopLevelDecls(results);
}
void ClangModuleUnit::lookupValue(DeclName name, NLKind lookupKind,
OptionSet<ModuleLookupFlags> flags,
SmallVectorImpl<ValueDecl*> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer vectorWriter(results);
FilteringVisibleDeclConsumer filteringConsumer(vectorWriter, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filteringConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *consumer = &filteringConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
consumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupValue(*lookupTable, name, *consumer);
}
}
bool ClangImporter::Implementation::isVisibleClangEntry(
const clang::NamedDecl *clangDecl) {
// For a declaration, check whether the declaration is hidden.
clang::Sema &clangSema = getClangSema();
if (clangSema.isVisible(clangDecl)) return true;
// Is any redeclaration visible?
for (auto redecl : clangDecl->redecls()) {
if (clangSema.isVisible(cast<clang::NamedDecl>(redecl))) return true;
}
return false;
}
bool ClangImporter::Implementation::isVisibleClangEntry(
SwiftLookupTable::SingleEntry entry) {
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
return isVisibleClangEntry(clangDecl);
}
// If it's a macro from a module, check whether the module has been imported.
if (auto moduleMacro = entry.dyn_cast<clang::ModuleMacro *>()) {
clang::Module *module = moduleMacro->getOwningModule();
return module->NameVisibility == clang::Module::AllVisible;
}
return true;
}
TypeDecl *
ClangModuleUnit::lookupNestedType(Identifier name,
const NominalTypeDecl *baseType) const {
// Special case for error code enums: try looking directly into the struct
// first. But only if it looks like a synthesized error wrapped struct.
if (name == getASTContext().Id_Code &&
!baseType->hasClangNode() &&
isa<StructDecl>(baseType)) {
auto *wrapperStruct = cast<StructDecl>(baseType);
if (auto *codeEnum = owner.lookupErrorCodeEnum(wrapperStruct))
return codeEnum;
// Otherwise, fall back and try via lookup table.
}
auto lookupTable = owner.findLookupTable(clangModule);
if (!lookupTable)
return nullptr;
auto baseTypeContext = owner.getEffectiveClangContext(baseType);
if (!baseTypeContext)
return nullptr;
// FIXME: This is very similar to what's in Implementation::lookupValue and
// Implementation::loadAllMembers.
SmallVector<TypeDecl *, 2> results;
for (auto entry : lookupTable->lookup(SerializedSwiftName(name.str()),
baseTypeContext)) {
// If the entry is not visible, skip it.
if (!owner.isVisibleClangEntry(entry)) continue;
auto *clangDecl = entry.dyn_cast<clang::NamedDecl *>();
if (!clangDecl)
continue;
const auto *clangTypeDecl = clangDecl->getMostRecentDecl();
bool anyMatching = false;
TypeDecl *originalDecl = nullptr;
owner.forEachDistinctName(clangTypeDecl,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (anyMatching)
return true;
if (!newName.getDeclName().isSimpleName(name))
return true;
auto decl = dyn_cast_or_null<TypeDecl>(
owner.importDeclReal(clangTypeDecl, nameVersion));
if (!decl)
return false;
if (!originalDecl)
originalDecl = decl;
else if (originalDecl == decl)
return true;
auto *importedContext = decl->getDeclContext()->getSelfNominalTypeDecl();
if (importedContext != baseType)
return true;
assert(decl->getName() == name &&
"importFullName behaved differently from importDecl");
results.push_back(decl);
anyMatching = true;
return true;
});
}
if (results.size() != 1) {
// It's possible that two types were import-as-member'd onto the same base
// type with the same name. In this case, fall back to regular lookup.
return nullptr;
}
return results.front();
}
void ClangImporter::loadExtensions(NominalTypeDecl *nominal,
unsigned previousGeneration) {
// Determine the effective Clang context for this Swift nominal type.
auto effectiveClangContext = Impl.getEffectiveClangContext(nominal);
if (!effectiveClangContext) return;
// For an Objective-C class, import all of the visible categories.
if (auto objcClass = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
effectiveClangContext.getAsDeclContext())) {
SmallVector<clang::NamedDecl *, 4> DelayedCategories;
// Simply importing the categories adds them to the list of extensions.
for (const auto *Cat : objcClass->known_categories()) {
if (getClangSema().isVisible(Cat)) {
Impl.importDeclReal(Cat, Impl.CurrentVersion);
}
}
}
// Dig through each of the Swift lookup tables, creating extensions
// where needed.
(void)Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
// FIXME: If we already looked at this for this generation,
// skip.
for (auto entry : table.allGlobalsAsMembersInContext(effectiveClangContext)) {
// If the entry is not visible, skip it.
if (!Impl.isVisibleClangEntry(entry)) continue;
if (auto decl = entry.dyn_cast<clang::NamedDecl *>()) {
// Import the context of this declaration, which has the
// side effect of creating instantiations.
(void)Impl.importDeclContextOf(decl, effectiveClangContext);
} else {
llvm_unreachable("Macros cannot be imported as members.");
}
}
return false;
});
}
void ClangImporter::loadObjCMethods(
NominalTypeDecl *typeDecl,
ObjCSelector selector,
bool isInstanceMethod,
unsigned previousGeneration,
llvm::TinyPtrVector<AbstractFunctionDecl *> &methods) {
// TODO: We don't currently need to load methods from imported ObjC protocols.
auto classDecl = dyn_cast<ClassDecl>(typeDecl);
if (!classDecl)
return;
const auto *objcClass =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
if (!objcClass)
return;
// Collect the set of visible Objective-C methods with this selector.
clang::Selector clangSelector = Impl.exportSelector(selector);
AbstractFunctionDecl *method = nullptr;
auto *objcMethod = objcClass->lookupMethod(
clangSelector, isInstanceMethod,
/*shallowCategoryLookup=*/false,
/*followSuper=*/false);
if (objcMethod) {
// If we found a property accessor, import the property.
if (objcMethod->isPropertyAccessor())
(void)Impl.importDecl(objcMethod->findPropertyDecl(true),
Impl.CurrentVersion);
method = dyn_cast_or_null<AbstractFunctionDecl>(
Impl.importDecl(objcMethod, Impl.CurrentVersion));
}
// If we didn't find anything, we're done.
if (method == nullptr)
return;
// If we did find something, it might be a duplicate of something we found
// earlier, because we aren't tracking generation counts for Clang modules.
// Filter out the duplicates.
// FIXME: We shouldn't need to do this.
if (!llvm::is_contained(methods, method))
methods.push_back(method);
}
void
ClangModuleUnit::lookupClassMember(ImportPath::Access accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer consumer(results);
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupObjCMembers(*lookupTable, name, consumer);
}
}
void ClangModuleUnit::lookupClassMembers(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupAllObjCMembers(*lookupTable, consumer);
}
}
void ClangModuleUnit::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Map the selector into a Clang selector.
auto clangSelector = owner.exportSelector(selector);
if (clangSelector.isNull()) return;
// Collect all of the Objective-C methods with this selector.
SmallVector<clang::ObjCMethodDecl *, 8> objcMethods;
auto &clangSema = owner.getClangSema();
auto &clangObjc = clangSema.ObjC();
clangObjc.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/true,
/*CheckTheOther=*/false);
clangObjc.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/false,
/*CheckTheOther=*/false);
// Import the methods.
auto &clangCtx = clangSema.getASTContext();
for (auto objcMethod : objcMethods) {
// Verify that this method came from this module.
auto owningClangModule = getClangTopLevelOwningModule(objcMethod, clangCtx);
if (owningClangModule != clangModule) continue;
if (shouldSuppressDeclImport(objcMethod))
continue;
// If we found a property accessor, import the property.
if (objcMethod->isPropertyAccessor())
(void)owner.importDecl(objcMethod->findPropertyDecl(true),
owner.CurrentVersion);
Decl *imported = owner.importDecl(objcMethod, owner.CurrentVersion);
if (!imported) continue;
if (auto func = dyn_cast<AbstractFunctionDecl>(imported))
results.push_back(func);
// If there is an alternate declaration, also look at it.
for (auto alternate : owner.getAlternateDecls(imported)) {
if (auto func = dyn_cast<AbstractFunctionDecl>(alternate))
results.push_back(func);
}
}
}
void ClangModuleUnit::lookupAvailabilityDomains(
Identifier identifier, SmallVectorImpl<AvailabilityDomain> &results) const {
auto domainName = identifier.str();
auto &ctx = getASTContext();
auto &clangASTContext = getClangASTContext();
auto domainInfo = clangASTContext.getFeatureAvailInfo(domainName);
if (domainInfo.Kind == clang::FeatureAvailKind::None)
return;
auto *varDecl = dyn_cast_or_null<clang::VarDecl>(domainInfo.Decl);
if (!varDecl)
return;
// The decl that was found may belong to a different Clang module.
if (varDecl->getOwningModule() != getClangModule())
return;
auto *imported = dyn_cast_or_null<ValueDecl>(
ctx.getClangModuleLoader()->importDeclDirectly(varDecl));
if (!imported)
return;
auto customDomain = AvailabilityDomain::forCustom(imported);
ASSERT(customDomain);
results.push_back(*customDomain);
}
void ClangModuleUnit::collectLinkLibraries(
ModuleDecl::LinkLibraryCallback callback) const {
if (!clangModule)
return;
// Skip this lib name in favor of export_as name.
if (clangModule->UseExportAsModuleLinkName)
return;
for (auto clangLinkLib : clangModule->LinkLibraries)
callback(LinkLibrary{clangLinkLib.Library,
clangLinkLib.IsFramework ? LibraryKind::Framework
: LibraryKind::Library,
/*static=*/false});
}
StringRef ClangModuleUnit::getFilename() const {
if (!clangModule) {
StringRef SinglePCH = owner.getSinglePCHImport();
if (SinglePCH.empty())
return "<imports>";
else
return SinglePCH;
}
if (auto F = clangModule->getASTFile())
return F->getName();
return StringRef();
}
StringRef ClangModuleUnit::getLoadedFilename() const {
if (auto F = clangModule->getASTFile())
return F->getName();
return StringRef();
}
clang::TargetInfo &ClangImporter::getModuleAvailabilityTarget() const {
return Impl.Instance->getTarget();
}
clang::TargetInfo &ClangImporter::getTargetInfo() const {
return Impl.getCodeGenTargetInfo();
}
clang::ASTContext &ClangImporter::getClangASTContext() const {
return Impl.getClangASTContext();
}
clang::Preprocessor &ClangImporter::getClangPreprocessor() const {
return Impl.getClangPreprocessor();
}
const clang::CompilerInstance &ClangImporter::getClangInstance() const {
return *Impl.Instance;
}
const clang::Module *ClangImporter::getClangOwningModule(ClangNode Node) const {
return Impl.getClangOwningModule(Node);
}
const clang::Module *
ClangImporter::Implementation::getClangOwningModule(ClangNode Node) const {
return ::getClangOwningModule(Node, getClangASTContext());
}
bool ClangImporter::hasTypedef(const clang::Decl *typeDecl) const {
return Impl.DeclsWithSuperfluousTypedefs.count(typeDecl);
}
clang::Sema &ClangImporter::getClangSema() const {
return Impl.getClangSema();
}
clang::CodeGenOptions &ClangImporter::getCodeGenOpts() const {
return Impl.getCodeGenOptions();
}
std::string ClangImporter::getClangModuleHash() const {
return Impl.Invocation->getModuleHash(Impl.Instance->getDiagnostics());
}
std::vector<std::string>
ClangImporter::getSwiftExplicitModuleDirectCC1Args() const {
llvm::SmallVector<const char*> clangArgs;
clangArgs.reserve(Impl.ClangArgs.size());
llvm::for_each(Impl.ClangArgs, [&](const std::string &Arg) {
clangArgs.push_back(Arg.c_str());
});
clang::CompilerInvocation instance;
clang::DiagnosticOptions diagOpts;
clang::DiagnosticsEngine clangDiags(new clang::DiagnosticIDs(), diagOpts,
new clang::IgnoringDiagConsumer());
bool success = clang::CompilerInvocation::CreateFromArgs(instance, clangArgs,
clangDiags);
(void)success;
assert(success && "clang options from clangImporter failed to parse");
if (!Impl.SwiftContext.CASOpts.EnableCaching)
return instance.getCC1CommandLine();
// Clear some options that are not needed.
instance.clearImplicitModuleBuildOptions();
// CASOpts are forwarded from swift arguments.
instance.getCASOpts() = clang::CASOptions();
// HeaderSearchOptions.
// Clang search options are only used by scanner and clang importer from main
// module should not using search paths to find modules.
auto &HSOpts = instance.getHeaderSearchOpts();
HSOpts.VFSOverlayFiles.clear();
HSOpts.UserEntries.clear();
HSOpts.SystemHeaderPrefixes.clear();
// FrontendOptions.
auto &FEOpts = instance.getFrontendOpts();
FEOpts.IncludeTimestamps = false;
FEOpts.ModuleMapFiles.clear();
// APINotesOptions.
instance.getAPINotesOpts().ModuleSearchPaths.clear();
// IndexStorePath is forwarded from swift.
FEOpts.IndexStorePath.clear();
// PreprocessorOptions.
// Cannot clear macros as the main module clang importer doesn't have clang
// include tree created and it has to be created from command-line. However,
// include files are no collected into CASFS so they will not be found so
// clear them to avoid problem.
auto &PPOpts = instance.getPreprocessorOpts();
PPOpts.MacroIncludes.clear();
PPOpts.Includes.clear();
// Clear benign CodeGenOptions.
clang::tooling::dependencies::resetBenignCodeGenOptions(
clang::frontend::ActionKind::GenerateModule, instance.getLangOpts(),
instance.getCodeGenOpts());
// FileSystemOptions.
auto &FSOpts = instance.getFileSystemOpts();
FSOpts.WorkingDir.clear();
if (!Impl.SwiftContext.SearchPathOpts.ScannerPrefixMapper.empty()) {
// Remap all the paths if requested.
llvm::PrefixMapper Mapper;
clang::tooling::dependencies::DepscanPrefixMapping::configurePrefixMapper(
Impl.SwiftContext.SearchPathOpts.ScannerPrefixMapper, Mapper);
clang::tooling::dependencies::DepscanPrefixMapping::remapInvocationPaths(
instance, Mapper);
instance.getFrontendOpts().PathPrefixMappings.clear();
}
return instance.getCC1CommandLine();
}
std::optional<Decl *>
ClangImporter::importDeclCached(const clang::NamedDecl *ClangDecl) {
return Impl.importDeclCached(ClangDecl, Impl.CurrentVersion);
}
void ClangImporter::printStatistics() const {
Impl.Instance->getASTReader()->PrintStats();
}
void ClangImporter::verifyAllModules() {
#ifndef NDEBUG
if (Impl.VerifiedDeclsCounter == Impl.ImportedDecls.size())
return;
// Collect the Decls before verifying them; the act of verifying may cause
// more decls to be imported and modify the map while we are iterating it.
size_t verifiedCounter = Impl.ImportedDecls.size();
SmallVector<Decl *, 8> Decls;
for (auto &I : Impl.ImportedDecls)
if (I.first.second == Impl.CurrentVersion)
if (Decl *D = I.second)
Decls.push_back(D);
for (auto D : Decls)
verify(D);
Impl.VerifiedDeclsCounter = verifiedCounter;
#endif
}
const clang::Type *
ClangImporter::parseClangFunctionType(StringRef typeStr,
SourceLoc loc) const {
auto &sema = Impl.getClangSema();
StringRef filename = Impl.SwiftContext.SourceMgr.getDisplayNameForLoc(loc);
// TODO: Obtain a clang::SourceLocation from the swift::SourceLoc we have
auto parsedType = sema.ParseTypeFromStringCallback(typeStr, filename, {});
if (!parsedType.isUsable())
return nullptr;
clang::QualType resultType = clang::Sema::GetTypeFromParser(parsedType.get());
auto *typePtr = resultType.getTypePtrOrNull();
if (typePtr && (typePtr->isFunctionPointerType()
|| typePtr->isBlockPointerType()))
return typePtr;
return nullptr;
}
void ClangImporter::printClangType(const clang::Type *type,
llvm::raw_ostream &os) const {
auto policy = clang::PrintingPolicy(getClangASTContext().getLangOpts());
clang::QualType(type, 0).print(os, policy);
}
//===----------------------------------------------------------------------===//
// ClangModule Implementation
//===----------------------------------------------------------------------===//
static_assert(IsTriviallyDestructible<ClangModuleUnit>::value,
"ClangModuleUnits are BumpPtrAllocated; the d'tor is not called");
ClangModuleUnit::ClangModuleUnit(ModuleDecl &M,
ClangImporter::Implementation &owner,
const clang::Module *clangModule)
: LoadedFile(FileUnitKind::ClangModule, M), owner(owner),
clangModule(clangModule) {
// Capture the file metadata before it goes away.
if (clangModule)
ASTSourceDescriptor = {*const_cast<clang::Module *>(clangModule)};
}
StringRef ClangModuleUnit::getModuleDefiningPath() const {
if (!clangModule || clangModule->DefinitionLoc.isInvalid())
return "";
auto &clangSourceMgr = owner.getClangASTContext().getSourceManager();
return clangSourceMgr.getFilename(clangModule->DefinitionLoc);
}
std::optional<clang::ASTSourceDescriptor>
ClangModuleUnit::getASTSourceDescriptor() const {
if (clangModule) {
assert(ASTSourceDescriptor.getModuleOrNull() == clangModule);
return ASTSourceDescriptor;
}
return std::nullopt;
}
bool ClangModuleUnit::hasClangModule(ModuleDecl *M) {
for (auto F : M->getFiles()) {
if (isa<ClangModuleUnit>(F))
return true;
}
return false;
}
bool ClangModuleUnit::isTopLevel() const {
return !clangModule || !clangModule->isSubModule();
}
bool ClangModuleUnit::isSystemModule() const {
return clangModule && clangModule->IsSystem;
}
clang::ASTContext &ClangModuleUnit::getClangASTContext() const {
return owner.getClangASTContext();
}
StringRef ClangModuleUnit::getExportedModuleName() const {
if (clangModule && !clangModule->ExportAsModule.empty())
return clangModule->ExportAsModule;
// Return module real name (see FileUnit::getExportedModuleName)
return getParentModule()->getRealName().str();
}
ModuleDecl *ClangModuleUnit::getOverlayModule() const {
if (!clangModule)
return nullptr;
if (owner.DisableOverlayModules)
return nullptr;
if (!isTopLevel()) {
// FIXME: Is this correct for submodules?
auto topLevel = clangModule->getTopLevelModule();
auto wrapper = owner.getWrapperForModule(topLevel);
return wrapper->getOverlayModule();
}
if (!overlayModule.getInt()) {
// FIXME: Include proper source location.
ModuleDecl *M = getParentModule();
ASTContext &Ctx = M->getASTContext();
ModuleDecl *overlay = nullptr;
// During compilation of a textual interface with no formal C++ interop mode,
// i.e. it was built without C++ interop, avoid querying the 'CxxStdlib' overlay
// for it, since said overlay was not used during compilation of this module.
if (!importer::isCxxStdModule(clangModule) || Ctx.LangOpts.FormalCxxInteropMode)
overlay = Ctx.getOverlayModule(this);
if (overlay) {
Ctx.addLoadedModule(overlay);
} else {
// FIXME: This is the awful legacy of the old implementation of overlay
// loading laid bare. Because the previous implementation used
// ASTContext::getModuleByIdentifier, it consulted the clang importer
// recursively which forced the current module, its dependencies, and
// the overlays of those dependencies to load and
// become visible in the current context. All of the callers of
// ClangModuleUnit::getOverlayModule are relying on this behavior, and
// untangling them is going to take a heroic amount of effort.
// Clang module loading should *never* *ever* be allowed to load unrelated
// Swift modules.
ImportPath::Module::Builder builder(M->getName());
(void) owner.loadModule(SourceLoc(), std::move(builder).get());
}
// If this Clang module is a part of the C++ stdlib, and we haven't loaded
// the overlay for it so far, it is a split libc++ module (e.g. std_vector).
// Load the CxxStdlib overlay explicitly.
if (!overlay && importer::isCxxStdModule(clangModule) &&
Ctx.LangOpts.FormalCxxInteropMode) {
ImportPath::Module::Builder builder(Ctx.Id_CxxStdlib);
overlay = owner.loadModule(SourceLoc(), std::move(builder).get());
}
auto mutableThis = const_cast<ClangModuleUnit *>(this);
mutableThis->overlayModule.setPointerAndInt(overlay, true);
}
return overlayModule.getPointer();
}
void ClangModuleUnit::getImportedModules(
SmallVectorImpl<ImportedModule> &imports,
ModuleDecl::ImportFilter filter) const {
// Bail out if we /only/ want ImplementationOnly imports; Clang modules never
// have any of these.
if (filter.containsOnly(ModuleDecl::ImportFilterKind::ImplementationOnly))
return;
// [NOTE: Pure-Clang-modules-privately-import-stdlib]:
// Needed for implicitly synthesized conformances.
if (filter.contains(ModuleDecl::ImportFilterKind::Default))
if (auto stdlib = owner.getStdlibModule())
imports.push_back({ImportPath::Access(), stdlib});
SmallVector<clang::Module *, 8> imported;
if (!clangModule) {
// This is the special "imported headers" module.
if (filter.contains(ModuleDecl::ImportFilterKind::Exported)) {
imported.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
}
} else {
clangModule->getExportedModules(imported);
if (filter.contains(ModuleDecl::ImportFilterKind::Default)) {
// Copy in any modules that are imported but not exported.
llvm::SmallPtrSet<clang::Module *, 8> knownModules(imported.begin(),
imported.end());
if (!filter.contains(ModuleDecl::ImportFilterKind::Exported)) {
// Remove the exported ones now that we're done with them.
imported.clear();
}
llvm::copy_if(clangModule->Imports, std::back_inserter(imported),
[&](clang::Module *mod) {
return !knownModules.insert(mod).second;
});
// FIXME: The parent module isn't exactly a private import, but it is
// needed for link dependencies.
if (clangModule->Parent)
imported.push_back(clangModule->Parent);
}
}
auto topLevelOverlay = getOverlayModule();
for (auto importMod : imported) {
auto wrapper = owner.getWrapperForModule(importMod);
auto actualMod = wrapper->getOverlayModule();
if (!actualMod) {
// HACK: Deal with imports of submodules by importing the top-level module
// as well.
auto importTopLevel = importMod->getTopLevelModule();
if (importTopLevel != importMod) {
if (!clangModule || importTopLevel != clangModule->getTopLevelModule()){
auto topLevelWrapper = owner.getWrapperForModule(importTopLevel);
imports.push_back({ ImportPath::Access(),
topLevelWrapper->getParentModule() });
}
}
actualMod = wrapper->getParentModule();
} else if (actualMod == topLevelOverlay) {
actualMod = wrapper->getParentModule();
}
assert(actualMod && "Missing imported overlay");
imports.push_back({ImportPath::Access(), actualMod});
}
}
void ClangModuleUnit::getImportedModulesForLookup(
SmallVectorImpl<ImportedModule> &imports) const {
// Reuse our cached list of imports if we have one.
if (importedModulesForLookup.has_value()) {
imports.append(importedModulesForLookup->begin(),
importedModulesForLookup->end());
return;
}
size_t firstImport = imports.size();
SmallVector<clang::Module *, 8> imported;
const clang::Module *topLevel;
ModuleDecl *topLevelOverlay = getOverlayModule();
if (!clangModule) {
// This is the special "imported headers" module.
imported.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
topLevel = nullptr;
} else {
clangModule->getExportedModules(imported);
topLevel = clangModule->getTopLevelModule();
// If this is a C++ module, implicitly import the Cxx module, which contains
// definitions of Swift protocols that C++ types might conform to, such as
// CxxSequence.
if (owner.SwiftContext.LangOpts.EnableCXXInterop &&
requiresCPlusPlus(clangModule) && clangModule->Name != CXX_SHIM_NAME) {
auto *cxxModule =
owner.SwiftContext.getModuleByIdentifier(owner.SwiftContext.Id_Cxx);
if (cxxModule)
imports.push_back({ImportPath::Access(), cxxModule});
}
}
if (imported.empty()) {
importedModulesForLookup = ArrayRef<ImportedModule>();
return;
}
SmallPtrSet<clang::Module *, 32> seen{imported.begin(), imported.end()};
SmallVector<clang::Module *, 8> tmpBuf;
llvm::SmallSetVector<clang::Module *, 8> topLevelImported;
// Get the transitive set of top-level imports. That is, if a particular
// import is a top-level import, add it. Otherwise, keep searching.
while (!imported.empty()) {
clang::Module *next = imported.pop_back_val();
// HACK: Deal with imports of submodules by importing the top-level module
// as well, unless it's the top-level module we're currently in.
clang::Module *nextTopLevel = next->getTopLevelModule();
if (nextTopLevel != topLevel) {
topLevelImported.insert(nextTopLevel);
// Don't continue looking through submodules of modules that have
// overlays. The overlay might shadow things.
auto wrapper = owner.getWrapperForModule(nextTopLevel);
if (wrapper->getOverlayModule())
continue;
}
// Only look through the current module if it's not top-level.
if (nextTopLevel == next)
continue;
next->getExportedModules(tmpBuf);
for (clang::Module *nextImported : tmpBuf) {
if (seen.insert(nextImported).second)
imported.push_back(nextImported);
}
tmpBuf.clear();
}
for (auto importMod : topLevelImported) {
auto wrapper = owner.getWrapperForModule(importMod);
ModuleDecl *actualMod = nullptr;
if (owner.SwiftContext.LangOpts.EnableCXXInterop && topLevel &&
isCxxStdModule(topLevel) && wrapper->clangModule &&
isCxxStdModule(wrapper->clangModule)) {
// The CxxStdlib overlay re-exports the clang module std, which in libc++
// versions 17-19 re-exports top-level modules for different std headers
// (std_string, std_vector, etc). The overlay module for each of the std
// modules is the CxxStdlib module itself. Make sure we return the actual
// clang modules (std_xyz) as transitive dependencies instead of just
// CxxStdlib itself.
actualMod = wrapper->getParentModule();
} else {
actualMod = wrapper->getOverlayModule();
if (!actualMod || actualMod == topLevelOverlay)
actualMod = wrapper->getParentModule();
}
assert(actualMod && "Missing imported overlay");
imports.push_back({ImportPath::Access(), actualMod});
}
// Cache our results for use next time.
auto importsToCache = llvm::ArrayRef(imports).slice(firstImport);
importedModulesForLookup = getASTContext().AllocateCopy(importsToCache);
}
void ClangImporter::getMangledName(raw_ostream &os,
const clang::NamedDecl *clangDecl) const {
if (!Impl.Mangler)
Impl.Mangler.reset(getClangASTContext().createMangleContext());
return Impl.getMangledName(Impl.Mangler.get(), clangDecl, os);
}
void ClangImporter::Implementation::getMangledName(
clang::MangleContext *mangler, const clang::NamedDecl *clangDecl,
raw_ostream &os) {
if (auto ctor = dyn_cast<clang::CXXConstructorDecl>(clangDecl)) {
auto ctorGlobalDecl =
clang::GlobalDecl(ctor, clang::CXXCtorType::Ctor_Complete);
mangler->mangleCXXName(ctorGlobalDecl, os);
} else if (mangler->shouldMangleDeclName(clangDecl)) {
mangler->mangleName(clangDecl, os);
} else {
os << clangDecl->getName();
}
}
void ClangImporter::Implementation::configureOptionsForCodeGen(
clang::DiagnosticsEngine &Diags, clang::CompilerInvocation *CI) {
clang::TargetInfo *targetInfo = nullptr;
if (CI) {
TargetOpts.reset(new clang::TargetOptions(std::move(CI->getTargetOpts())));
CodeGenOpts.reset(
new clang::CodeGenOptions(std::move(CI->getCodeGenOpts())));
targetInfo = clang::TargetInfo::CreateTargetInfo(Diags, *TargetOpts);
// Ensure the target info has configured target-specific defines
std::string defineBuffer;
llvm::raw_string_ostream predefines(defineBuffer);
clang::MacroBuilder builder(predefines);
targetInfo->getTargetDefines(Instance->getLangOpts(), builder);
} else {
targetInfo =
clang::TargetInfo::CreateTargetInfo(Diags, Invocation->getTargetOpts());
}
CodeGenTargetInfo.reset(targetInfo);
}
clang::CodeGenOptions &
ClangImporter::Implementation::getCodeGenOptions() const {
if (CodeGenOpts) {
return *CodeGenOpts.get();
}
return Invocation->getCodeGenOpts();
}
// ---------------------------------------------------------------------------
// Swift lookup tables
// ---------------------------------------------------------------------------
SwiftLookupTable *ClangImporter::Implementation::findLookupTable(
const clang::Module *clangModule) {
// If the Clang module is null, use the bridging header lookup table.
if (!clangModule)
return BridgingHeaderLookupTable.get();
// Submodules share lookup tables with their parents.
if (clangModule->isSubModule())
return findLookupTable(clangModule->getTopLevelModule());
// Look for a Clang module with this name.
auto known = LookupTables.find(clangModule->Name);
if (known == LookupTables.end()) return nullptr;
return known->second.get();
}
SwiftLookupTable *
ClangImporter::Implementation::findLookupTable(const clang::Decl *decl) {
// Contents of a C++ namespace are added to the __ObjC module.
bool isWithinNamespace = false;
auto declContext = decl->getDeclContext();
while (!declContext->isTranslationUnit()) {
if (declContext->isNamespace()) {
isWithinNamespace = true;
break;
}
declContext = declContext->getParent();
}
clang::Module *owningModule = nullptr;
if (!isWithinNamespace) {
// Members of class template specializations don't have an owning module.
if (auto spec = dyn_cast<clang::ClassTemplateSpecializationDecl>(decl))
owningModule = spec->getSpecializedTemplate()->getOwningModule();
else
owningModule = decl->getOwningModule();
}
return findLookupTable(owningModule);
}
bool ClangImporter::Implementation::forEachLookupTable(
llvm::function_ref<bool(SwiftLookupTable &table)> fn) {
// Visit the bridging header's lookup table.
if (fn(*BridgingHeaderLookupTable)) return true;
// Collect and sort the set of module names.
SmallVector<StringRef, 4> moduleNames;
for (const auto &entry : LookupTables) {
moduleNames.push_back(entry.first);
}
llvm::array_pod_sort(moduleNames.begin(), moduleNames.end());
// Visit the lookup tables.
for (auto moduleName : moduleNames) {
if (fn(*LookupTables[moduleName])) return true;
}
return false;
}
bool ClangImporter::Implementation::lookupValue(SwiftLookupTable &table,
DeclName name,
VisibleDeclConsumer &consumer) {
auto &clangCtx = getClangASTContext();
auto clangTU = clangCtx.getTranslationUnitDecl();
auto *importer =
static_cast<ClangImporter *>(SwiftContext.getClangModuleLoader());
bool declFound = false;
if (name.isOperator()) {
for (auto entry : table.lookupMemberOperators(name.getBaseName())) {
if (isVisibleClangEntry(entry)) {
if (auto decl = dyn_cast_or_null<ValueDecl>(
importDeclReal(entry->getMostRecentDecl(), CurrentVersion))) {
consumer.foundDecl(decl, DeclVisibilityKind::VisibleAtTopLevel);
declFound = true;
}
}
}
// If CXXInterop is enabled we need to check the modified operator name as
// well
if (SwiftContext.LangOpts.EnableCXXInterop) {
auto funcBaseName = DeclBaseName(
getOperatorName(SwiftContext, name.getBaseName().getIdentifier()));
for (auto entry : table.lookupMemberOperators(funcBaseName)) {
if (isVisibleClangEntry(entry)) {
if (auto func = dyn_cast_or_null<FuncDecl>(
importDeclReal(entry->getMostRecentDecl(), CurrentVersion))) {
if (auto synthesizedOperator =
importer->getCXXSynthesizedOperatorFunc(func)) {
consumer.foundDecl(synthesizedOperator,
DeclVisibilityKind::VisibleAtTopLevel);
declFound = true;
}
}
}
}
}
}
for (auto entry : table.lookup(name.getBaseName(), clangTU)) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(entry)) continue;
ValueDecl *decl = nullptr;
// If it's a Clang declaration, try to import it.
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
bool isNamespace = isa<clang::NamespaceDecl>(clangDecl);
Decl *realDecl =
importDeclReal(clangDecl->getMostRecentDecl(), CurrentVersion,
/*useCanonicalDecl*/ !isNamespace);
if (!realDecl)
continue;
decl = cast<ValueDecl>(realDecl);
if (!decl) continue;
} else if (!name.isSpecial()) {
// Try to import a macro.
if (auto modMacro = entry.dyn_cast<clang::ModuleMacro *>())
decl = importMacro(name.getBaseIdentifier(), modMacro);
else if (auto clangMacro = entry.dyn_cast<clang::MacroInfo *>())
decl = importMacro(name.getBaseIdentifier(), clangMacro);
else
llvm_unreachable("new kind of lookup table entry");
if (!decl) continue;
} else {
continue;
}
// If we found a declaration from the standard library, make sure
// it does not show up in the lookup results for the imported
// module.
if (decl->getDeclContext()->isModuleScopeContext() &&
decl->getModuleContext() == getStdlibModule())
continue;
// If the name matched, report this result.
bool anyMatching = false;
// Use the base name for operators; they likely won't have parameters.
auto foundDeclName = decl->getName();
if (foundDeclName.isOperator())
foundDeclName = foundDeclName.getBaseName();
if (foundDeclName.matchesRef(name) &&
decl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(decl, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
// If there is an alternate declaration and the name matches,
// report this result.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getName().matchesRef(name) &&
alternate->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternate, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
}
// Visit auxiliary declarations to check for name matches.
decl->visitAuxiliaryDecls([&](Decl *aux) {
if (auto auxValue = dyn_cast<ValueDecl>(aux)) {
if (auxValue->getName().matchesRef(name) &&
auxValue->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(auxValue, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
}
});
// If we have a declaration and nothing matched so far, try the names used
// in other versions of Swift.
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
const clang::NamedDecl *recentClangDecl =
clangDecl->getMostRecentDecl();
CurrentVersion.forEachOtherImportNameVersion(
[&](ImportNameVersion nameVersion) {
if (anyMatching)
return;
// Check to see if the name and context match what we expect.
ImportedName newName = importFullName(recentClangDecl, nameVersion);
if (!newName.getDeclName().matchesRef(name))
return;
// If we asked for an async import and didn't find one, skip this.
// This filters out duplicates.
if (nameVersion.supportsConcurrency() &&
!newName.getAsyncInfo())
return;
const clang::DeclContext *clangDC =
newName.getEffectiveContext().getAsDeclContext();
if (!clangDC || !clangDC->isFileContext())
return;
// Then try to import the decl under the alternate name.
auto alternateNamedDecl =
cast_or_null<ValueDecl>(importDeclReal(recentClangDecl,
nameVersion));
if (!alternateNamedDecl || alternateNamedDecl == decl)
return;
assert(alternateNamedDecl->getName().matchesRef(name) &&
"importFullName behaved differently from importDecl");
if (alternateNamedDecl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternateNamedDecl,
DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
});
}
declFound = declFound || anyMatching;
}
return declFound;
}
void ClangImporter::Implementation::lookupVisibleDecls(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for namespace-scope entities with each base name.
for (auto baseName : baseNames) {
DeclBaseName name = baseName.toDeclBaseName(SwiftContext);
if (!lookupValue(table, name, consumer) &&
SwiftContext.LangOpts.EnableExperimentalEagerClangModuleDiagnostics) {
diagnoseTopLevelValue(name);
}
}
}
void ClangImporter::Implementation::lookupObjCMembers(
SwiftLookupTable &table,
DeclName name,
VisibleDeclConsumer &consumer) {
for (auto clangDecl : table.lookupObjCMembers(name.getBaseName())) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(clangDecl)) continue;
forEachDistinctName(clangDecl,
[&](ImportedName importedName,
ImportNameVersion nameVersion) -> bool {
// Import the declaration.
auto decl =
cast_or_null<ValueDecl>(importDeclReal(clangDecl, nameVersion));
if (!decl)
return false;
// If the name we found matches, report the declaration.
// FIXME: If we didn't need to check alternate decls here, we could avoid
// importing the member at all by checking importedName ahead of time.
if (decl->getName().matchesRef(name)) {
consumer.foundDecl(decl, DeclVisibilityKind::DynamicLookup,
DynamicLookupInfo::AnyObject);
}
// Check for an alternate declaration; if its name matches,
// report it.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getName().matchesRef(name)) {
consumer.foundDecl(alternate, DeclVisibilityKind::DynamicLookup,
DynamicLookupInfo::AnyObject);
}
}
return true;
});
}
}
void ClangImporter::Implementation::lookupAllObjCMembers(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for Objective-C members with each base name.
for (auto baseName : baseNames) {
lookupObjCMembers(table, baseName.toDeclBaseName(SwiftContext), consumer);
}
}
void ClangImporter::Implementation::diagnoseTopLevelValue(
const DeclName &name) {
forEachLookupTable([&](SwiftLookupTable &table) -> bool {
for (const auto &entry :
table.lookup(name.getBaseName(),
EffectiveClangContext(
getClangASTContext().getTranslationUnitDecl()))) {
diagnoseTargetDirectly(importDiagnosticTargetFromLookupTableEntry(entry));
}
return false;
});
}
void ClangImporter::Implementation::diagnoseMemberValue(
const DeclName &name, const clang::DeclContext *container) {
forEachLookupTable([&](SwiftLookupTable &table) -> bool {
for (const auto &entry :
table.lookup(name.getBaseName(), EffectiveClangContext(container))) {
if (clang::NamedDecl *nd = cast<clang::NamedDecl *>(entry)) {
// We are only interested in members of a particular context,
// skip other contexts.
if (nd->getDeclContext() != container)
continue;
diagnoseTargetDirectly(
importDiagnosticTargetFromLookupTableEntry(entry));
}
// If the entry is not a NamedDecl, it is a form of macro, which cannot be
// a member value.
}
return false;
});
}
void ClangImporter::Implementation::diagnoseTargetDirectly(
ImportDiagnosticTarget target) {
if (const clang::Decl *decl = target.dyn_cast<const clang::Decl *>()) {
Walker.TraverseDecl(const_cast<clang::Decl *>(decl));
} else if (const clang::MacroInfo *macro =
target.dyn_cast<const clang::MacroInfo *>()) {
Walker.VisitMacro(macro);
}
}
ImportDiagnosticTarget
ClangImporter::Implementation::importDiagnosticTargetFromLookupTableEntry(
SwiftLookupTable::SingleEntry entry) {
if (clang::NamedDecl *decl = entry.dyn_cast<clang::NamedDecl *>()) {
return decl;
} else if (const clang::MacroInfo *macro =
entry.dyn_cast<clang::MacroInfo *>()) {
return macro;
} else if (const clang::ModuleMacro *macro =
entry.dyn_cast<clang::ModuleMacro *>()) {
return macro->getMacroInfo();
}
llvm_unreachable("SwiftLookupTable::Single entry must be a NamedDecl, "
"MacroInfo or ModuleMacro pointer");
}
static void diagnoseForeignReferenceTypeFixit(ClangImporter::Implementation &Impl,
HeaderLoc loc, Diagnostic diag) {
auto importedLoc =
Impl.SwiftContext.getClangModuleLoader()->importSourceLocation(loc.clangLoc);
Impl.diagnose(loc, diag).fixItInsert(
importedLoc, "SWIFT_SHARED_REFERENCE(<#retain#>, <#release#>) ");
}
bool ClangImporter::Implementation::emitDiagnosticsForTarget(
ImportDiagnosticTarget target, clang::SourceLocation fallbackLoc) {
for (auto it = ImportDiagnostics[target].rbegin();
it != ImportDiagnostics[target].rend(); ++it) {
clang::SourceLocation loc = it->loc.isValid() ? it->loc : fallbackLoc;
HeaderLoc hdrLoc(loc);
if (const auto *declTarget = target.dyn_cast<const clang::Decl *>()) {
if (const auto *func = llvm::dyn_cast<clang::FunctionDecl>(declTarget)) {
if (func->isTemplateInstantiation()) {
if (const auto *pattern = func->getTemplateInstantiationPattern()) {
std::pair<const clang::FunctionDecl *, DiagID> key = {
pattern, it->diag.getID()};
if (!DiagnosedTemplateDiagnostics.insert(key).second)
continue;
hdrLoc = HeaderLoc(pattern->getLocation());
}
}
}
}
if (it->diag.getID() == diag::record_not_automatically_importable.ID) {
diagnoseForeignReferenceTypeFixit(*this, hdrLoc, it->diag);
} else {
diagnose(hdrLoc, it->diag);
}
}
return ImportDiagnostics[target].size();
}
static SmallVector<SwiftLookupTable::SingleEntry, 4>
lookupInClassTemplateSpecialization(
ASTContext &ctx, const clang::ClassTemplateSpecializationDecl *clangDecl,
DeclName name) {
// TODO: we could make this faster if we can cache class templates in the
// lookup table as well.
// Import all the names to figure out which ones we're looking for.
SmallVector<SwiftLookupTable::SingleEntry, 4> found;
for (auto member : clangDecl->decls()) {
auto namedDecl = dyn_cast<clang::NamedDecl>(member);
if (!namedDecl)
continue;
auto memberName = ctx.getClangModuleLoader()->importName(namedDecl);
if (!memberName)
continue;
// Use the base names here because *sometimes* our input name won't have
// any arguments.
if (name.getBaseName().compare(memberName.getBaseName()) == 0)
found.push_back(namedDecl);
}
return found;
}
static bool isDirectLookupMemberContext(const clang::Decl *foundClangDecl,
const clang::Decl *memberContext,
const clang::Decl *parent) {
if (memberContext->getCanonicalDecl() == parent->getCanonicalDecl())
return true;
if (auto namespaceDecl = dyn_cast<clang::NamespaceDecl>(memberContext)) {
if (namespaceDecl->isInline()) {
if (auto memberCtxParent =
dyn_cast<clang::Decl>(namespaceDecl->getParent()))
return isDirectLookupMemberContext(foundClangDecl, memberCtxParent,
parent);
}
}
// Enum constant decl can be found in the parent context of the enum decl.
if (auto *ED = dyn_cast<clang::EnumDecl>(memberContext)) {
if (isa<clang::EnumConstantDecl>(foundClangDecl)) {
if (auto *firstDecl = dyn_cast<clang::Decl>(ED->getDeclContext()))
return firstDecl->getCanonicalDecl() == parent->getCanonicalDecl();
}
}
return false;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
ClangDirectLookupRequest::evaluate(Evaluator &evaluator,
ClangDirectLookupDescriptor desc) const {
auto &ctx = desc.decl->getASTContext();
auto *clangDecl = desc.clangDecl;
// Class templates aren't in the lookup table.
if (auto spec = dyn_cast<clang::ClassTemplateSpecializationDecl>(clangDecl))
return lookupInClassTemplateSpecialization(ctx, spec, desc.name);
SwiftLookupTable *lookupTable = nullptr;
if (isa<clang::NamespaceDecl>(clangDecl)) {
// DeclContext of a namespace imported into Swift is the __ObjC module.
lookupTable = ctx.getClangModuleLoader()->findLookupTable(nullptr);
} else {
auto *clangModule =
getClangOwningModule(clangDecl, clangDecl->getASTContext());
lookupTable = ctx.getClangModuleLoader()->findLookupTable(clangModule);
}
auto foundDecls = lookupTable->lookup(
SerializedSwiftName(desc.name.getBaseName()), EffectiveClangContext());
// Make sure that `clangDecl` is the parent of all the members we found.
SmallVector<SwiftLookupTable::SingleEntry, 4> filteredDecls;
llvm::copy_if(foundDecls, std::back_inserter(filteredDecls),
[clangDecl](SwiftLookupTable::SingleEntry decl) {
auto foundClangDecl = decl.dyn_cast<clang::NamedDecl *>();
if (!foundClangDecl)
return false;
auto first = foundClangDecl->getDeclContext();
auto second = cast<clang::DeclContext>(clangDecl);
if (auto firstDecl = dyn_cast<clang::Decl>(first)) {
if (auto secondDecl = dyn_cast<clang::Decl>(second))
return isDirectLookupMemberContext(foundClangDecl,
firstDecl, secondDecl);
else
return false;
}
return first == second;
});
return filteredDecls;
}
namespace {
/// Collects name lookup results into the given tiny vector, for use in the
/// various Clang importer lookup routines.
class CollectLookupResults {
DeclName name;
TinyPtrVector<ValueDecl *> &result;
public:
CollectLookupResults(DeclName name, TinyPtrVector<ValueDecl *> &result)
: name(name), result(result) { }
void add(ValueDecl *imported) {
result.push_back(imported);
// Expand any macros introduced by the Clang importer.
imported->visitAuxiliaryDecls([&](Decl *decl) {
auto valueDecl = dyn_cast<ValueDecl>(decl);
if (!valueDecl)
return;
// Bail out if the auxiliary decl was not produced by a macro.
auto module = decl->getDeclContext()->getParentModule();
auto *sf = module->getSourceFileContainingLocation(decl->getLoc());
if (!sf || sf->Kind != SourceFileKind::MacroExpansion)
return;
// Only produce results that match the requested name.
if (!valueDecl->getName().matchesRef(name))
return;
result.push_back(valueDecl);
});
}
};
}
TinyPtrVector<ValueDecl *> CXXNamespaceMemberLookup::evaluate(
Evaluator &evaluator, CXXNamespaceMemberLookupDescriptor desc) const {
EnumDecl *namespaceDecl = desc.namespaceDecl;
DeclName name = desc.name;
auto *clangNamespaceDecl =
cast<clang::NamespaceDecl>(namespaceDecl->getClangDecl());
auto &ctx = namespaceDecl->getASTContext();
TinyPtrVector<ValueDecl *> result;
CollectLookupResults collector(name, result);
llvm::SmallPtrSet<clang::NamedDecl *, 8> importedDecls;
for (auto redecl : clangNamespaceDecl->redecls()) {
auto allResults = evaluateOrDefault(
ctx.evaluator, ClangDirectLookupRequest({namespaceDecl, redecl, name}),
{});
for (auto found : allResults) {
auto clangMember = cast<clang::NamedDecl *>(found);
auto it = importedDecls.insert(clangMember);
// Skip over members already found during lookup in
// prior redeclarations.
if (!it.second)
continue;
if (auto import =
ctx.getClangModuleLoader()->importDeclDirectly(clangMember))
collector.add(cast<ValueDecl>(import));
}
}
return result;
}
static const llvm::StringMap<std::vector<int>> STLConditionalParams{
{"basic_string", {0}},
{"vector", {0}},
{"array", {0}},
{"inplace_vector", {0}},
{"deque", {0}},
{"forward_list", {0}},
{"list", {0}},
{"set", {0}},
{"flat_set", {0}},
{"unordered_set", {0}},
{"multiset", {0}},
{"flat_multiset", {0}},
{"unordered_multiset", {0}},
{"stack", {0}},
{"queue", {0}},
{"priority_queue", {0}},
{"tuple", {0}},
{"variant", {0}},
{"optional", {0}},
{"pair", {0, 1}},
{"expected", {0, 1}},
{"map", {0, 1}},
{"flat_map", {0, 1}},
{"unordered_map", {0, 1}},
{"multimap", {0, 1}},
{"flat_multimap", {0, 1}},
{"unordered_multimap", {0, 1}},
};
template <typename Kind>
static std::optional<Kind> checkConditionalParams(
clang::RecordDecl *recordDecl, const std::vector<int> &STLParams,
std::set<StringRef> &conditionalParams,
std::function<std::optional<Kind>(clang::TemplateArgument &, StringRef)>
&checkArg) {
auto specDecl = cast<clang::ClassTemplateSpecializationDecl>(recordDecl);
SmallVector<std::pair<unsigned, StringRef>, 4> argumentsToCheck;
bool hasInjectedSTLAnnotation = !STLParams.empty();
while (specDecl) {
auto templateDecl = specDecl->getSpecializedTemplate();
if (hasInjectedSTLAnnotation) {
auto params = templateDecl->getTemplateParameters();
for (auto idx : STLParams)
argumentsToCheck.push_back(
std::make_pair(idx, params->getParam(idx)->getName()));
} else {
for (auto [idx, param] :
llvm::enumerate(*templateDecl->getTemplateParameters())) {
if (conditionalParams.erase(param->getName()))
argumentsToCheck.push_back(std::make_pair(idx, param->getName()));
}
}
auto &argList = specDecl->getTemplateArgs();
for (auto argToCheck : argumentsToCheck) {
auto arg = argList[argToCheck.first];
llvm::SmallVector<clang::TemplateArgument, 1> nonPackArgs;
if (arg.getKind() == clang::TemplateArgument::Pack) {
auto pack = arg.getPackAsArray();
nonPackArgs.assign(pack.begin(), pack.end());
} else
nonPackArgs.push_back(arg);
for (auto nonPackArg : nonPackArgs) {
auto result = checkArg(nonPackArg, argToCheck.second);
if (result.has_value())
return result.value();
}
}
if (hasInjectedSTLAnnotation)
break;
clang::DeclContext *dc = specDecl;
specDecl = nullptr;
while ((dc = dc->getParent())) {
specDecl = dyn_cast<clang::ClassTemplateSpecializationDecl>(dc);
if (specDecl)
break;
}
}
return std::nullopt;
}
static std::set<StringRef>
getConditionalAttrParams(const clang::RecordDecl *decl, StringRef attrName) {
std::set<StringRef> result;
if (!decl->hasAttrs())
return result;
for (auto attr : decl->getAttrs()) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr)) {
StringRef params = swiftAttr->getAttribute();
if (params.consume_front(attrName)) {
auto commaPos = params.find(',');
StringRef nextParam = params.take_front(commaPos);
while (!nextParam.empty() && commaPos != StringRef::npos) {
result.insert(nextParam.trim());
params = params.drop_front(nextParam.size() + 1);
commaPos = params.find(',');
nextParam = params.take_front(commaPos);
}
}
}
}
return result;
}
static std::set<StringRef>
getConditionalEscapableAttrParams(const clang::RecordDecl *decl) {
return getConditionalAttrParams(decl, "escapable_if:");
}
static std::set<StringRef>
getConditionalCopyableAttrParams(const clang::RecordDecl *decl) {
return getConditionalAttrParams(decl, "copyable_if:");
}
CxxEscapability
ClangTypeEscapability::evaluate(Evaluator &evaluator,
EscapabilityLookupDescriptor desc) const {
bool hadUnknown = false;
auto evaluateEscapability = [&](const clang::Type *type) {
auto escapability = evaluateOrDefault(
evaluator,
ClangTypeEscapability({type, desc.impl, desc.annotationOnly}),
CxxEscapability::Unknown);
if (escapability == CxxEscapability::Unknown)
hadUnknown = true;
return escapability;
};
auto desugared = desc.type->getUnqualifiedDesugaredType();
if (const auto *recordType = desugared->getAs<clang::RecordType>()) {
auto recordDecl = recordType->getDecl();
if (hasNonEscapableAttr(recordDecl))
return CxxEscapability::NonEscapable;
if (hasEscapableAttr(recordDecl))
return CxxEscapability::Escapable;
auto injectedStlAnnotation =
recordDecl->isInStdNamespace()
? STLConditionalParams.find(recordDecl->getName())
: STLConditionalParams.end();
auto STLParams = injectedStlAnnotation != STLConditionalParams.end()
? injectedStlAnnotation->second
: std::vector<int>();
auto conditionalParams = getConditionalEscapableAttrParams(recordDecl);
if (!STLParams.empty() || !conditionalParams.empty()) {
HeaderLoc loc{recordDecl->getLocation()};
std::function checkArgEscapability =
[&](clang::TemplateArgument &arg,
StringRef argToCheck) -> std::optional<CxxEscapability> {
if (arg.getKind() != clang::TemplateArgument::Type && desc.impl) {
desc.impl->diagnose(loc, diag::type_template_parameter_expected,
argToCheck);
return CxxEscapability::Unknown;
}
auto argEscapability = evaluateEscapability(
arg.getAsType()->getUnqualifiedDesugaredType());
if (argEscapability == CxxEscapability::NonEscapable)
return CxxEscapability::NonEscapable;
return std::nullopt;
};
auto result = checkConditionalParams<CxxEscapability>(
recordDecl, STLParams, conditionalParams, checkArgEscapability);
if (result.has_value())
return result.value();
if (desc.impl)
for (auto name : conditionalParams)
desc.impl->diagnose(loc, diag::unknown_template_parameter, name);
return hadUnknown ? CxxEscapability::Unknown : CxxEscapability::Escapable;
}
if (desc.annotationOnly)
return CxxEscapability::Unknown;
auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(recordDecl);
if (recordDecl->getDefinition() &&
(!cxxRecordDecl || cxxRecordDecl->isAggregate())) {
if (cxxRecordDecl) {
for (auto base : cxxRecordDecl->bases()) {
auto baseEscapability = evaluateEscapability(
base.getType()->getUnqualifiedDesugaredType());
if (baseEscapability == CxxEscapability::NonEscapable)
return CxxEscapability::NonEscapable;
}
}
for (auto field : recordDecl->fields()) {
auto fieldEscapability = evaluateEscapability(
field->getType()->getUnqualifiedDesugaredType());
if (fieldEscapability == CxxEscapability::NonEscapable)
return CxxEscapability::NonEscapable;
}
return hadUnknown ? CxxEscapability::Unknown : CxxEscapability::Escapable;
}
}
if (desugared->isArrayType()) {
auto elemTy = cast<clang::ArrayType>(desugared)
->getElementType()
->getUnqualifiedDesugaredType();
return evaluateOrDefault(
evaluator,
ClangTypeEscapability({elemTy, desc.impl, desc.annotationOnly}),
CxxEscapability::Unknown);
}
if (const auto *vecTy = desugared->getAs<clang::VectorType>()) {
return evaluateOrDefault(
evaluator,
ClangTypeEscapability(
{vecTy->getElementType()->getUnqualifiedDesugaredType(), desc.impl,
desc.annotationOnly}),
CxxEscapability::Unknown);
}
// Base cases
if (desugared->isAnyPointerType() || desugared->isBlockPointerType() ||
desugared->isMemberPointerType() || desugared->isReferenceType())
return desc.annotationOnly ? CxxEscapability::Unknown
: CxxEscapability::NonEscapable;
if (desugared->isScalarType())
return CxxEscapability::Escapable;
return CxxEscapability::Unknown;
}
void swift::simple_display(llvm::raw_ostream &out,
EscapabilityLookupDescriptor desc) {
out << "Computing escapability for type '";
out << clang::QualType(desc.type, 0).getAsString();
out << "'";
}
SourceLoc swift::extractNearestSourceLoc(EscapabilityLookupDescriptor) {
return SourceLoc();
}
// Just create a specialized function decl for "__swift_interopStaticCast"
// using the types base and derived.
static
DeclRefExpr *getInteropStaticCastDeclRefExpr(ASTContext &ctx,
const clang::Module *owningModule,
Type base, Type derived) {
if (base->isForeignReferenceType() && derived->isForeignReferenceType()) {
base = base->wrapInPointer(PTK_UnsafePointer);
derived = derived->wrapInPointer(PTK_UnsafePointer);
}
// Lookup our static cast helper function in the C++ shim module.
auto wrapperModule = ctx.getLoadedModule(ctx.getIdentifier(CXX_SHIM_NAME));
assert(wrapperModule &&
"CxxShim module is required when using members of a base class. "
"Make sure you `import CxxShim`.");
SmallVector<ValueDecl *, 1> results;
ctx.lookupInModule(wrapperModule, "__swift_interopStaticCast", results);
assert(
results.size() == 1 &&
"Did you forget to define a __swift_interopStaticCast helper function?");
FuncDecl *staticCastFn = cast<FuncDecl>(results.back());
// Now we have to force instantiate this. We can't let the type checker do
// this yet because it can't infer the "To" type.
auto subst =
SubstitutionMap::get(staticCastFn->getGenericSignature(), {derived, base},
LookUpConformanceInModule());
auto functionTemplate = const_cast<clang::FunctionTemplateDecl *>(
cast<clang::FunctionTemplateDecl>(staticCastFn->getClangDecl()));
auto spec = ctx.getClangModuleLoader()->instantiateCXXFunctionTemplate(
ctx, functionTemplate, subst);
auto specializedStaticCastFn =
cast<FuncDecl>(ctx.getClangModuleLoader()->importDeclDirectly(spec));
auto staticCastRefExpr = new (ctx)
DeclRefExpr(ConcreteDeclRef(specializedStaticCastFn), DeclNameLoc(),
/*implicit*/ true);
staticCastRefExpr->setType(specializedStaticCastFn->getInterfaceType());
return staticCastRefExpr;
}
// Create the following expressions:
// %0 = Builtin.addressof(&self)
// %1 = Builtin.reinterpretCast<UnsafeMutablePointer<Derived>>(%0)
// %2 = __swift_interopStaticCast<UnsafeMutablePointer<Base>?>(%1)
// %3 = %2!
// return %3.pointee
static
MemberRefExpr *getSelfInteropStaticCast(FuncDecl *funcDecl,
NominalTypeDecl *baseStruct,
NominalTypeDecl *derivedStruct) {
auto &ctx = funcDecl->getASTContext();
auto mutableSelf = [&ctx](FuncDecl *funcDecl) {
auto selfDecl = funcDecl->getImplicitSelfDecl();
auto selfRef =
new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/ true);
selfRef->setType(LValueType::get(selfDecl->getInterfaceType()));
return selfRef;
}(funcDecl);
auto createCallToBuiltin = [&](Identifier name, ArrayRef<Type> substTypes,
Argument arg) {
auto builtinFn = cast<FuncDecl>(getBuiltinValueDecl(ctx, name));
auto substMap =
SubstitutionMap::get(builtinFn->getGenericSignature(), substTypes,
LookUpConformanceInModule());
ConcreteDeclRef builtinFnRef(builtinFn, substMap);
auto builtinFnRefExpr =
new (ctx) DeclRefExpr(builtinFnRef, DeclNameLoc(), /*implicit*/ true);
auto fnType = builtinFn->getInterfaceType();
if (auto genericFnType = dyn_cast<GenericFunctionType>(fnType.getPointer()))
fnType = genericFnType->substGenericArgs(substMap);
builtinFnRefExpr->setType(fnType);
auto *argList = ArgumentList::createImplicit(ctx, {arg});
auto callExpr = CallExpr::create(ctx, builtinFnRefExpr, argList, /*implicit*/ true);
callExpr->setThrows(nullptr);
return callExpr;
};
auto rawSelfPointer = createCallToBuiltin(
ctx.getIdentifier("addressof"), {derivedStruct->getSelfInterfaceType()},
Argument::implicitInOut(ctx, mutableSelf));
rawSelfPointer->setType(ctx.TheRawPointerType);
auto derivedPtrType = derivedStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer);
auto selfPointer =
createCallToBuiltin(ctx.getIdentifier("reinterpretCast"),
{ctx.TheRawPointerType, derivedPtrType},
Argument::unlabeled(rawSelfPointer));
selfPointer->setType(derivedPtrType);
auto staticCastRefExpr = getInteropStaticCastDeclRefExpr(
ctx, baseStruct->getClangDecl()->getOwningModule(),
baseStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer),
derivedStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer));
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {selfPointer});
auto casted = CallExpr::createImplicit(ctx, staticCastRefExpr, argList);
// This will be "Optional<UnsafeMutablePointer<Base>>"
casted->setType(cast<FunctionType>(staticCastRefExpr->getType().getPointer())
->getResult());
casted->setThrows(nullptr);
SubstitutionMap pointeeSubst = SubstitutionMap::get(
ctx.getUnsafeMutablePointerDecl()->getGenericSignature(),
{baseStruct->getSelfInterfaceType()},
LookUpConformanceInModule());
VarDecl *pointeePropertyDecl =
ctx.getPointerPointeePropertyDecl(PTK_UnsafeMutablePointer);
auto pointeePropertyRefExpr = new (ctx) MemberRefExpr(
casted, SourceLoc(),
ConcreteDeclRef(pointeePropertyDecl, pointeeSubst), DeclNameLoc(),
/*implicit=*/true);
pointeePropertyRefExpr->setType(
LValueType::get(baseStruct->getSelfInterfaceType()));
return pointeePropertyRefExpr;
}
// Find the base C++ method called by the base function we want to synthesize
// the derived thunk for.
// The base C++ method is either the original C++ method that corresponds
// to the imported base member, or it's the synthesized C++ method thunk
// used in another synthesized derived thunk that acts as a base member here.
const clang::CXXMethodDecl *getCalledBaseCxxMethod(FuncDecl *baseMember) {
if (baseMember->getClangDecl())
return dyn_cast<clang::CXXMethodDecl>(baseMember->getClangDecl());
// Another synthesized derived thunk is used as a base member here,
// so extract its synthesized C++ method.
auto body = baseMember->getBody();
if (body->getElements().empty())
return nullptr;
ReturnStmt *returnStmt = dyn_cast_or_null<ReturnStmt>(
body->getElements().front().dyn_cast<Stmt *>());
if (!returnStmt)
return nullptr;
Expr *returnExpr = returnStmt->getResult();
// Look through a potential 'reinterpretCast' that can be used
// to cast UnsafeMutablePointer to UnsafePointer in the synthesized
// Swift body for `.pointee`.
if (auto *ce = dyn_cast<CallExpr>(returnExpr)) {
if (auto *v = ce->getCalledValue()) {
if (v->getModuleContext() ==
baseMember->getASTContext().TheBuiltinModule &&
v->getBaseName().userFacingName() == "reinterpretCast") {
returnExpr = ce->getArgs()->get(0).getExpr();
}
}
}
// A member ref expr for `.pointee` access can be wrapping a call
// when looking through the synthesized Swift body for `.pointee`
// accessor.
if (MemberRefExpr *mre = dyn_cast<MemberRefExpr>(returnExpr))
returnExpr = mre->getBase();
auto *callExpr = dyn_cast<CallExpr>(returnExpr);
if (!callExpr)
return nullptr;
auto *cv = callExpr->getCalledValue();
if (!cv)
return nullptr;
if (!cv->getClangDecl())
return nullptr;
return dyn_cast<clang::CXXMethodDecl>(cv->getClangDecl());
}
// Construct a Swift method that represents the synthesized C++ method
// that invokes the base C++ method.
static FuncDecl *synthesizeBaseFunctionDeclCall(ClangImporter &impl,
ASTContext &ctx,
NominalTypeDecl *derivedStruct,
NominalTypeDecl *baseStruct,
FuncDecl *baseMember) {
auto *cxxMethod = getCalledBaseCxxMethod(baseMember);
if (!cxxMethod)
return nullptr;
auto *newClangMethod =
SwiftDeclSynthesizer(&impl).synthesizeCXXForwardingMethod(
cast<clang::CXXRecordDecl>(derivedStruct->getClangDecl()),
cast<clang::CXXRecordDecl>(baseStruct->getClangDecl()), cxxMethod,
ForwardingMethodKind::Base);
if (!newClangMethod)
return nullptr;
return cast_or_null<FuncDecl>(
ctx.getClangModuleLoader()->importDeclDirectly(newClangMethod));
}
// Generates the body of a derived method, that invokes the base
// method.
// The method's body takes the following form:
// return self.__synthesizedBaseCall_fn(args...)
static std::pair<BraceStmt *, bool>
synthesizeBaseClassMethodBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto funcDecl = cast<FuncDecl>(afd);
auto derivedStruct =
cast<NominalTypeDecl>(funcDecl->getDeclContext()->getAsDecl());
auto baseMember = static_cast<FuncDecl *>(context);
auto baseStruct =
cast<NominalTypeDecl>(baseMember->getDeclContext()->getAsDecl());
auto forwardedFunc = synthesizeBaseFunctionDeclCall(
*static_cast<ClangImporter *>(ctx.getClangModuleLoader()), ctx,
derivedStruct, baseStruct, baseMember);
if (!forwardedFunc) {
ctx.Diags.diagnose(SourceLoc(), diag::failed_base_method_call_synthesis,
funcDecl, baseStruct);
auto body = BraceStmt::create(ctx, SourceLoc(), {}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
SmallVector<Expr *, 8> forwardingParams;
for (auto param : *funcDecl->getParameters()) {
auto paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(param->getTypeInContext());
forwardingParams.push_back(paramRefExpr);
}
Argument selfArg = [&]() {
auto *selfDecl = funcDecl->getImplicitSelfDecl();
auto selfExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
if (funcDecl->isMutating()) {
selfExpr->setType(LValueType::get(selfDecl->getInterfaceType()));
return Argument::implicitInOut(ctx, selfExpr);
}
selfExpr->setType(selfDecl->getTypeInContext());
return Argument::unlabeled(selfExpr);
}();
auto *baseMemberExpr =
new (ctx) DeclRefExpr(ConcreteDeclRef(forwardedFunc), DeclNameLoc(),
/*Implicit=*/true);
baseMemberExpr->setType(forwardedFunc->getInterfaceType());
auto baseMemberDotCallExpr =
DotSyntaxCallExpr::create(ctx, baseMemberExpr, SourceLoc(), selfArg);
baseMemberDotCallExpr->setType(baseMember->getMethodInterfaceType());
baseMemberDotCallExpr->setThrows(nullptr);
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, forwardingParams);
auto *baseMemberCallExpr = CallExpr::createImplicit(
ctx, baseMemberDotCallExpr, argList);
baseMemberCallExpr->setType(baseMember->getResultInterfaceType());
baseMemberCallExpr->setThrows(nullptr);
auto *returnStmt = ReturnStmt::createImplicit(ctx, baseMemberCallExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
// How should the synthesized C++ method that returns the field of interest
// from the base class should return the value - by value, or by reference.
enum ReferenceReturnTypeBehaviorForBaseAccessorSynthesis {
ReturnByValue,
ReturnByReference,
ReturnByMutableReference
};
// Synthesize a C++ method that returns the field of interest from the base
// class. This lets Clang take care of the cast from the derived class
// to the base class while the field is accessed.
static clang::CXXMethodDecl *synthesizeCxxBaseGetterAccessorMethod(
ClangImporter &impl, const clang::CXXRecordDecl *derivedClass,
const clang::CXXRecordDecl *baseClass, const clang::FieldDecl *field,
ValueDecl *retainOperationFn,
ReferenceReturnTypeBehaviorForBaseAccessorSynthesis behavior) {
auto &clangCtx = impl.getClangASTContext();
auto &clangSema = impl.getClangSema();
// Create a new method in the derived class that calls the base method.
auto name = field->getDeclName();
if (name.isIdentifier()) {
std::string newName;
llvm::raw_string_ostream os(newName);
os << (behavior == ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByMutableReference
? "__synthesizedBaseSetterAccessor_"
: "__synthesizedBaseGetterAccessor_")
<< name.getAsIdentifierInfo()->getName();
name = clang::DeclarationName(
&impl.getClangPreprocessor().getIdentifierTable().get(os.str()));
}
auto returnType = field->getType();
if (returnType->isReferenceType())
returnType = returnType->getPointeeType();
auto valueReturnType = returnType;
if (behavior !=
ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::ReturnByValue) {
returnType = clangCtx.getRValueReferenceType(
behavior == ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByReference
? returnType.withConst()
: returnType);
}
clang::FunctionProtoType::ExtProtoInfo info;
if (behavior != ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByMutableReference)
info.TypeQuals.addConst();
info.ExceptionSpec.Type = clang::EST_NoThrow;
auto ftype = clangCtx.getFunctionType(returnType, {}, info);
auto newMethod = clang::CXXMethodDecl::Create(
clangCtx, const_cast<clang::CXXRecordDecl *>(derivedClass),
field->getSourceRange().getBegin(),
clang::DeclarationNameInfo(name, clang::SourceLocation()), ftype,
clangCtx.getTrivialTypeSourceInfo(ftype), clang::SC_None,
/*UsesFPIntrin=*/false, /*isInline=*/true,
clang::ConstexprSpecKind::Unspecified, field->getSourceRange().getEnd());
newMethod->setImplicit();
newMethod->setImplicitlyInline();
newMethod->setAccess(clang::AccessSpecifier::AS_public);
if (retainOperationFn) {
// Return an FRT field at +1.
newMethod->addAttr(clang::CFReturnsRetainedAttr::CreateImplicit(clangCtx));
}
// Create a new Clang diagnostic pool to capture any diagnostics
// emitted during the construction of the method.
clang::sema::DelayedDiagnosticPool diagPool{
clangSema.DelayedDiagnostics.getCurrentPool()};
auto diagState = clangSema.DelayedDiagnostics.push(diagPool);
// Returns the expression that accesses the base field from derived type.
auto createFieldAccess = [&]() -> clang::Expr * {
auto *thisExpr = clang::CXXThisExpr::Create(
clangCtx, clang::SourceLocation(), newMethod->getThisType(),
/*IsImplicit=*/false);
clang::QualType baseClassPtr = clangCtx.getRecordType(baseClass);
baseClassPtr.addConst();
baseClassPtr = clangCtx.getPointerType(baseClassPtr);
clang::CastKind Kind;
clang::CXXCastPath Path;
clangSema.CheckPointerConversion(thisExpr, baseClassPtr, Kind, Path,
/*IgnoreBaseAccess=*/false,
/*Diagnose=*/true);
auto conv = clangSema.ImpCastExprToType(thisExpr, baseClassPtr, Kind,
clang::VK_PRValue, &Path);
if (!conv.isUsable())
return nullptr;
auto memberExpr = clangSema.BuildMemberExpr(
conv.get(), /*isArrow=*/true, clang::SourceLocation(),
clang::NestedNameSpecifierLoc(), clang::SourceLocation(),
const_cast<clang::FieldDecl *>(field),
clang::DeclAccessPair::make(const_cast<clang::FieldDecl *>(field),
clang::AS_public),
/*HadMultipleCandidates=*/false,
clang::DeclarationNameInfo(field->getDeclName(),
clang::SourceLocation()),
valueReturnType, clang::VK_LValue, clang::OK_Ordinary);
auto returnCast = clangSema.ImpCastExprToType(memberExpr, valueReturnType,
clang::CK_LValueToRValue,
clang::VK_PRValue);
if (!returnCast.isUsable())
return nullptr;
return returnCast.get();
};
llvm::SmallVector<clang::Stmt *, 2> body;
if (retainOperationFn) {
// Check if the returned value needs to be retained. This might occur if the
// field getter is returning a shared reference type using, as it needs to
// perform the retain to match the expected @owned convention.
auto *retainClangFn =
dyn_cast<clang::FunctionDecl>(retainOperationFn->getClangDecl());
if (!retainClangFn) {
return nullptr;
}
auto *fnRef = new (clangCtx) clang::DeclRefExpr(
clangCtx, const_cast<clang::FunctionDecl *>(retainClangFn), false,
retainClangFn->getType(), clang::ExprValueKind::VK_LValue,
clang::SourceLocation());
auto fieldExpr = createFieldAccess();
if (!fieldExpr)
return nullptr;
auto retainCall = clangSema.BuildResolvedCallExpr(
fnRef, const_cast<clang::FunctionDecl *>(retainClangFn),
clang::SourceLocation(), {fieldExpr}, clang::SourceLocation());
if (!retainCall.isUsable())
return nullptr;
body.push_back(retainCall.get());
}
// Construct the method's body.
auto fieldExpr = createFieldAccess();
if (!fieldExpr)
return nullptr;
auto returnStmt = clang::ReturnStmt::Create(clangCtx, clang::SourceLocation(),
fieldExpr, nullptr);
body.push_back(returnStmt);
// Check if there were any Clang errors during the construction
// of the method body.
clangSema.DelayedDiagnostics.popWithoutEmitting(diagState);
if (!diagPool.empty())
return nullptr;
newMethod->setBody(body.size() > 1
? clang::CompoundStmt::Create(
clangCtx, body, clang::FPOptionsOverride(),
clang::SourceLocation(), clang::SourceLocation())
: body[0]);
return newMethod;
}
// Generates the body of a derived method, that invokes the base
// field getter or the base subscript.
// The method's body takes the following form:
// return self.__synthesizedBaseCall_fn(args...)
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldGetterOrAddressGetterBody(AbstractFunctionDecl *afd,
void *context,
AccessorKind kind) {
assert(kind == AccessorKind::Get || kind == AccessorKind::Address ||
kind == AccessorKind::MutableAddress);
ASTContext &ctx = afd->getASTContext();
AccessorDecl *getterDecl = cast<AccessorDecl>(afd);
AbstractStorageDecl *baseClassVar = static_cast<AbstractStorageDecl *>(context);
NominalTypeDecl *baseStruct =
cast<NominalTypeDecl>(baseClassVar->getDeclContext()->getAsDecl());
NominalTypeDecl *derivedStruct =
cast<NominalTypeDecl>(getterDecl->getDeclContext()->getAsDecl());
const clang::Decl *baseClangDecl;
if (baseClassVar->getClangDecl())
baseClangDecl = baseClassVar->getClangDecl();
else
baseClangDecl = getCalledBaseCxxMethod(baseClassVar->getAccessor(kind));
clang::CXXMethodDecl *baseGetterCxxMethod = nullptr;
if (auto *md = dyn_cast_or_null<clang::CXXMethodDecl>(baseClangDecl)) {
// Subscript operator, or `.pointee` wrapper is represented through a
// generated C++ method call that calls the base operator.
baseGetterCxxMethod =
SwiftDeclSynthesizer(
static_cast<ClangImporter *>(ctx.getClangModuleLoader()))
.synthesizeCXXForwardingMethod(
cast<clang::CXXRecordDecl>(derivedStruct->getClangDecl()),
cast<clang::CXXRecordDecl>(baseStruct->getClangDecl()), md,
ForwardingMethodKind::Base,
getterDecl->getResultInterfaceType()->isForeignReferenceType()
? ReferenceReturnTypeBehaviorForBaseMethodSynthesis::
RemoveReferenceIfPointer
: (kind != AccessorKind::Get
? ReferenceReturnTypeBehaviorForBaseMethodSynthesis::
KeepReference
: ReferenceReturnTypeBehaviorForBaseMethodSynthesis::
RemoveReference),
/*forceConstQualifier=*/kind != AccessorKind::MutableAddress);
} else if (auto *fd = dyn_cast_or_null<clang::FieldDecl>(baseClangDecl)) {
ValueDecl *retainOperationFn = nullptr;
// Check if this field getter is returning a retainable FRT.
if (getterDecl->getResultInterfaceType()->isForeignReferenceType()) {
auto retainOperation = evaluateOrDefault(
ctx.evaluator,
CustomRefCountingOperation({getterDecl->getResultInterfaceType()
->lookThroughAllOptionalTypes()
->getClassOrBoundGenericClass(),
CustomRefCountingOperationKind::retain}),
{});
if (retainOperation.kind ==
CustomRefCountingOperationResult::foundOperation) {
retainOperationFn = retainOperation.operation;
}
}
// Field getter is represented through a generated
// C++ method call that returns the value of the base field.
baseGetterCxxMethod = synthesizeCxxBaseGetterAccessorMethod(
*static_cast<ClangImporter *>(ctx.getClangModuleLoader()),
cast<clang::CXXRecordDecl>(derivedStruct->getClangDecl()),
cast<clang::CXXRecordDecl>(baseStruct->getClangDecl()), fd,
retainOperationFn,
kind == AccessorKind::Get
? ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::ReturnByValue
: (kind == AccessorKind::Address
? ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByReference
: ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByMutableReference));
}
if (!baseGetterCxxMethod) {
ctx.Diags.diagnose(SourceLoc(), diag::failed_base_method_call_synthesis,
getterDecl, baseStruct);
auto body = BraceStmt::create(ctx, SourceLoc(), {}, SourceLoc(),
/*implicit=*/true);
return {body, true};
}
auto *baseGetterMethod = cast<FuncDecl>(
ctx.getClangModuleLoader()->importDeclDirectly(baseGetterCxxMethod));
Argument selfArg = [&]() {
auto selfDecl = getterDecl->getImplicitSelfDecl();
auto selfExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
if (kind == AccessorKind::MutableAddress) {
selfExpr->setType(LValueType::get(selfDecl->getInterfaceType()));
return Argument::implicitInOut(ctx, selfExpr);
}
selfExpr->setType(selfDecl->getTypeInContext());
return Argument::unlabeled(selfExpr);
}();
auto *baseMemberExpr =
new (ctx) DeclRefExpr(ConcreteDeclRef(baseGetterMethod), DeclNameLoc(),
/*Implicit=*/true);
baseMemberExpr->setType(baseGetterMethod->getInterfaceType());
auto baseMemberDotCallExpr =
DotSyntaxCallExpr::create(ctx, baseMemberExpr, SourceLoc(), selfArg);
baseMemberDotCallExpr->setType(baseGetterMethod->getMethodInterfaceType());
baseMemberDotCallExpr->setThrows(nullptr);
ArgumentList *argumentList;
if (isa<SubscriptDecl>(baseClassVar)) {
auto paramDecl = getterDecl->getParameters()->get(0);
auto paramRefExpr = new (ctx) DeclRefExpr(paramDecl, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(paramDecl->getTypeInContext());
argumentList = ArgumentList::forImplicitUnlabeled(ctx, {paramRefExpr});
} else {
argumentList = ArgumentList::forImplicitUnlabeled(ctx, {});
}
auto *baseMemberCallExpr =
CallExpr::createImplicit(ctx, baseMemberDotCallExpr, argumentList);
Type resultType = baseGetterMethod->getResultInterfaceType();
baseMemberCallExpr->setType(resultType);
baseMemberCallExpr->setThrows(nullptr);
Expr *returnExpr = baseMemberCallExpr;
// Cast an 'address' result from a mutable pointer if needed.
if (kind == AccessorKind::Address &&
baseGetterMethod->getResultInterfaceType()->isUnsafeMutablePointer()) {
auto finalResultType = getterDecl->getResultInterfaceType();
returnExpr = SwiftDeclSynthesizer::synthesizeReturnReinterpretCast(
ctx, baseGetterMethod->getResultInterfaceType(), finalResultType,
returnExpr);
}
auto *returnStmt = ReturnStmt::createImplicit(ctx, returnExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldGetterBody(AbstractFunctionDecl *afd, void *context) {
return synthesizeBaseClassFieldGetterOrAddressGetterBody(afd, context,
AccessorKind::Get);
}
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldAddressGetterBody(AbstractFunctionDecl *afd,
void *context) {
return synthesizeBaseClassFieldGetterOrAddressGetterBody(
afd, context, AccessorKind::Address);
}
// For setters we have to pass self as a pointer and then emit an assign:
// %0 = Builtin.addressof(&self)
// %1 = Builtin.reinterpretCast<UnsafeMutablePointer<Derived>>(%0)
// %2 = __swift_interopStaticCast<UnsafeMutablePointer<Base>?>(%1)
// %3 = %2!
// %4 = %3.pointee
// assign newValue to %4
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldSetterBody(AbstractFunctionDecl *afd, void *context) {
auto setterDecl = cast<AccessorDecl>(afd);
AbstractStorageDecl *baseClassVar = static_cast<AbstractStorageDecl *>(context);
ASTContext &ctx = setterDecl->getASTContext();
NominalTypeDecl *baseStruct =
cast<NominalTypeDecl>(baseClassVar->getDeclContext()->getAsDecl());
NominalTypeDecl *derivedStruct =
cast<NominalTypeDecl>(setterDecl->getDeclContext()->getAsDecl());
auto *pointeePropertyRefExpr =
getSelfInteropStaticCast(setterDecl, baseStruct, derivedStruct);
Expr *storedRef = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
auto paramDecl = setterDecl->getParameters()->get(1);
auto paramRefExpr = new (ctx) DeclRefExpr(paramDecl,
DeclNameLoc(),
/*Implicit=*/ true);
paramRefExpr->setType(paramDecl->getTypeInContext());
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {paramRefExpr});
storedRef = SubscriptExpr::create(ctx, pointeePropertyRefExpr, argList, subscript);
storedRef->setType(LValueType::get(subscript->getElementInterfaceType()));
} else {
// If the base class var has a clang decl, that means it's an access into a
// stored field. Otherwise, we're looking into another base class, so it's a
// another synthesized accessor.
AccessSemantics accessKind = baseClassVar->getClangDecl()
? AccessSemantics::DirectToStorage
: AccessSemantics::DirectToImplementation;
storedRef =
new (ctx) MemberRefExpr(pointeePropertyRefExpr, SourceLoc(), baseClassVar,
DeclNameLoc(), /*Implicit=*/true, accessKind);
storedRef->setType(LValueType::get(cast<VarDecl>(baseClassVar)->getTypeInContext()));
}
auto newValueParamRefExpr =
new (ctx) DeclRefExpr(setterDecl->getParameters()->get(0), DeclNameLoc(),
/*Implicit=*/true);
newValueParamRefExpr->setType(setterDecl->getParameters()->get(0)->getTypeInContext());
auto assignExpr =
new (ctx) AssignExpr(storedRef, SourceLoc(), newValueParamRefExpr,
/*implicit*/ true);
assignExpr->setType(TupleType::getEmpty(ctx));
auto body = BraceStmt::create(ctx, SourceLoc(), {assignExpr}, SourceLoc(),
/*implicit*/ true);
return {body, /*isTypeChecked=*/true};
}
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldAddressSetterBody(AbstractFunctionDecl *afd,
void *context) {
return synthesizeBaseClassFieldGetterOrAddressGetterBody(
afd, context, AccessorKind::MutableAddress);
}
static SmallVector<AccessorDecl *, 2>
makeBaseClassMemberAccessors(DeclContext *declContext,
AbstractStorageDecl *computedVar,
AbstractStorageDecl *baseClassVar) {
auto &ctx = declContext->getASTContext();
auto computedType = computedVar->getInterfaceType();
auto contextTy = declContext->mapTypeIntoEnvironment(computedType);
// Use 'address' or 'mutableAddress' accessors for non-copyable
// types, unless the base accessor returns it by value.
bool useAddress = contextTy->isNoncopyable() &&
(baseClassVar->getReadImpl() == ReadImplKind::Stored ||
baseClassVar->getAccessor(AccessorKind::Address));
ParameterList *bodyParams = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
computedType = computedType->getAs<FunctionType>()->getResult();
auto idxParam = subscript->getIndices()->get(0);
bodyParams = ParameterList::create(ctx, { idxParam });
} else {
bodyParams = ParameterList::createEmpty(ctx);
}
auto getterDecl = AccessorDecl::create(
ctx,
/*FuncLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
useAddress ? AccessorKind::Address : AccessorKind::Get, computedVar,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false,
/*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(), bodyParams,
useAddress ? computedType->wrapInPointer(PTK_UnsafePointer)
: computedType,
declContext);
getterDecl->setIsTransparent(true);
getterDecl->copyFormalAccessFrom(computedVar);
getterDecl->setBodySynthesizer(useAddress
? synthesizeBaseClassFieldAddressGetterBody
: synthesizeBaseClassFieldGetterBody,
baseClassVar);
if (baseClassVar->getWriteImpl() == WriteImplKind::Immutable)
return {getterDecl};
auto newValueParam =
new (ctx) ParamDecl(SourceLoc(), SourceLoc(), Identifier(), SourceLoc(),
ctx.getIdentifier("newValue"), declContext);
newValueParam->setSpecifier(ParamSpecifier::Default);
newValueParam->setInterfaceType(computedType);
SmallVector<ParamDecl *, 2> setterParamDecls;
if (!useAddress)
setterParamDecls.push_back(newValueParam);
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar))
setterParamDecls.push_back(subscript->getIndices()->get(0));
ParameterList *setterBodyParams =
ParameterList::create(ctx, setterParamDecls);
auto setterDecl = AccessorDecl::create(
ctx,
/*FuncLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
useAddress ? AccessorKind::MutableAddress : AccessorKind::Set,
computedVar,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false,
/*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(), setterBodyParams,
useAddress ? computedType->wrapInPointer(PTK_UnsafeMutablePointer)
: TupleType::getEmpty(ctx),
declContext);
setterDecl->setIsTransparent(true);
setterDecl->copyFormalAccessFrom(computedVar);
setterDecl->setBodySynthesizer(useAddress
? synthesizeBaseClassFieldAddressSetterBody
: synthesizeBaseClassFieldSetterBody,
baseClassVar);
setterDecl->setSelfAccessKind(SelfAccessKind::Mutating);
return {getterDecl, setterDecl};
}
// Clone attributes that have been imported from Clang.
void cloneImportedAttributes(ValueDecl *fromDecl, ValueDecl* toDecl) {
ASTContext &context = fromDecl->getASTContext();
for (auto attr : fromDecl->getAttrs()) {
switch (attr->getKind()) {
case DeclAttrKind::Available: {
toDecl->addAttribute(cast<AvailableAttr>(attr)->clone(context, true));
break;
}
case DeclAttrKind::Custom: {
CustomAttr *cAttr = cast<CustomAttr>(attr);
toDecl->addAttribute(
CustomAttr::create(context, SourceLoc(), cAttr->getTypeExpr(),
/*owner*/ toDecl, cAttr->getInitContext(),
cAttr->getArgs(), /*implicit*/ true));
break;
}
case DeclAttrKind::DiscardableResult: {
toDecl->addAttribute(new (context) DiscardableResultAttr(true));
break;
}
case DeclAttrKind::Effects: {
toDecl->addAttribute(cast<EffectsAttr>(attr)->clone(context));
break;
}
case DeclAttrKind::Final: {
toDecl->addAttribute(new (context) FinalAttr(true));
break;
}
case DeclAttrKind::Transparent: {
toDecl->addAttribute(new (context) TransparentAttr(true));
break;
}
case DeclAttrKind::WarnUnqualifiedAccess: {
toDecl->addAttribute(new (context) WarnUnqualifiedAccessAttr(true));
break;
}
default:
break;
}
}
}
static ValueDecl *cloneBaseMemberDecl(ValueDecl *decl, DeclContext *newContext,
ClangInheritanceInfo inheritance) {
AccessLevel access = inheritance.accessForBaseDecl(decl);
ASTContext &context = decl->getASTContext();
if (auto fn = dyn_cast<FuncDecl>(decl)) {
// TODO: function templates are specialized during type checking so to
// support these we need to tell Swift to type check the synthesized bodies.
// TODO: we also currently don't support static functions. That shouldn't be
// too hard.
if (fn->isStatic() ||
isa_and_nonnull<clang::FunctionTemplateDecl>(fn->getClangDecl()))
return nullptr;
if (auto cxxMethod =
dyn_cast_or_null<clang::CXXMethodDecl>(fn->getClangDecl())) {
// FIXME: if this function has rvalue this, we won't be able to synthesize
// the accessor correctly (https://github.com/apple/swift/issues/69745).
if (cxxMethod->getRefQualifier() == clang::RefQualifierKind::RQ_RValue)
return nullptr;
}
auto out = FuncDecl::createImplicit(
context, fn->getStaticSpelling(), fn->getName(),
fn->getNameLoc(), fn->hasAsync(), fn->hasThrows(),
fn->getThrownInterfaceType(),
fn->getGenericParams(), fn->getParameters(),
fn->getResultInterfaceType(), newContext);
cloneImportedAttributes(decl, out);
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
out->setBodySynthesizer(synthesizeBaseClassMethodBody, fn);
out->setSelfAccessKind(fn->getSelfAccessKind());
return out;
}
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
auto contextTy =
newContext->mapTypeIntoEnvironment(subscript->getElementInterfaceType());
// Subscripts that return non-copyable types are not yet supported.
// See: https://github.com/apple/swift/issues/70047.
if (contextTy->isNoncopyable())
return nullptr;
auto out = SubscriptDecl::create(
subscript->getASTContext(), subscript->getName(), subscript->getStaticLoc(),
subscript->getStaticSpelling(), subscript->getSubscriptLoc(),
subscript->getIndices(), subscript->getNameLoc(), subscript->getElementInterfaceType(),
newContext, subscript->getGenericParams());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
out->setAccessors(SourceLoc(),
makeBaseClassMemberAccessors(newContext, out, subscript),
SourceLoc());
out->setImplInfo(subscript->getImplInfo());
return out;
}
if (auto var = dyn_cast<VarDecl>(decl)) {
auto oldContext = var->getDeclContext();
auto oldTypeDecl = oldContext->getSelfNominalTypeDecl();
// FIXME: this is a workaround for rdar://128013193
if (oldTypeDecl->getAttrs().hasAttribute<MoveOnlyAttr>() &&
context.LangOpts.CxxInteropUseOpaquePointerForMoveOnly)
return nullptr;
auto rawMemory = allocateMemoryForDecl<VarDecl>(var->getASTContext(),
sizeof(VarDecl), false);
auto out =
new (rawMemory) VarDecl(var->isStatic(), var->getIntroducer(),
var->getLoc(), var->getName(), newContext);
out->setInterfaceType(var->getInterfaceType());
out->setIsObjC(var->isObjC());
out->setIsDynamic(var->isDynamic());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
out->getASTContext().evaluator.cacheOutput(HasStorageRequest{out}, false);
auto accessors = makeBaseClassMemberAccessors(newContext, out, var);
out->setAccessors(SourceLoc(), accessors, SourceLoc());
auto isMutable = var->getWriteImpl() == WriteImplKind::Immutable
? StorageIsNotMutable : StorageIsMutable;
out->setImplInfo(
accessors[0]->getAccessorKind() == AccessorKind::Address
? (accessors.size() > 1
? StorageImplInfo(ReadImplKind::Address,
WriteImplKind::MutableAddress,
ReadWriteImplKind::MutableAddress)
: StorageImplInfo(ReadImplKind::Address))
: StorageImplInfo::getComputed(isMutable));
out->setIsSetterMutating(true);
return out;
}
if (auto typeAlias = dyn_cast<TypeAliasDecl>(decl)) {
auto rawMemory = allocateMemoryForDecl<TypeAliasDecl>(
typeAlias->getASTContext(), sizeof(TypeAliasDecl), false);
auto out = new (rawMemory)
TypeAliasDecl(typeAlias->getStartLoc(), typeAlias->getEqualLoc(),
typeAlias->getName(), typeAlias->getNameLoc(),
typeAlias->getGenericParams(), newContext);
out->setUnderlyingType(typeAlias->getUnderlyingType());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
return out;
}
if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
auto rawMemory = allocateMemoryForDecl<TypeAliasDecl>(
typeDecl->getASTContext(), sizeof(TypeAliasDecl), false);
auto out = new (rawMemory) TypeAliasDecl(
typeDecl->getLoc(), typeDecl->getLoc(), typeDecl->getName(),
typeDecl->getLoc(), nullptr, newContext);
out->setUnderlyingType(typeDecl->getDeclaredInterfaceType());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
return out;
}
return nullptr;
}
TinyPtrVector<ValueDecl *> ClangRecordMemberLookup::evaluate(
Evaluator &evaluator, ClangRecordMemberLookupDescriptor desc) const {
NominalTypeDecl *recordDecl = desc.recordDecl;
NominalTypeDecl *inheritingDecl = desc.inheritingDecl;
DeclName name = desc.name;
ClangInheritanceInfo inheritance = desc.inheritance;
auto &ctx = recordDecl->getASTContext();
// Whether to skip non-public members. Feature::ImportNonPublicCxxMembers says
// to import all non-public members by default; if that is disabled, we only
// import non-public members annotated with SWIFT_PRIVATE_FILEID (since those
// are the only classes that need non-public members.)
auto *cxxRecordDecl =
dyn_cast<clang::CXXRecordDecl>(inheritingDecl->getClangDecl());
auto skipIfNonPublic =
!ctx.LangOpts.hasFeature(Feature::ImportNonPublicCxxMembers) &&
cxxRecordDecl && importer::getPrivateFileIDAttrs(cxxRecordDecl).empty();
auto directResults = evaluateOrDefault(
ctx.evaluator,
ClangDirectLookupRequest({recordDecl, recordDecl->getClangDecl(), name}),
{});
// The set of declarations we found.
TinyPtrVector<ValueDecl *> result;
CollectLookupResults collector(name, result);
// Find the results that are actually a member of "recordDecl".
ClangModuleLoader *clangModuleLoader = ctx.getClangModuleLoader();
for (auto foundEntry : directResults) {
auto found = cast<clang::NamedDecl *>(foundEntry);
if (dyn_cast<clang::Decl>(found->getDeclContext()) !=
recordDecl->getClangDecl())
continue;
// We should not import 'found' if the following are all true:
//
// - Feature::ImportNonPublicCxxMembers is not enabled
// - 'found' is not a member of a SWIFT_PRIVATE_FILEID-annotated class
// - 'found' is a non-public member.
// - 'found' is not a non-inherited FieldDecl; we must import private
// fields because they may affect implicit conformances that iterate
// through all of a struct's fields, e.g., Sendable (#76892).
//
// Note that we can skip inherited FieldDecls because implicit conformances
// handle those separately.
//
// The first two conditions are captured by skipIfNonPublic. The next two
// are conveyed by the following:
auto nonPublic = found->getAccess() == clang::AS_private ||
found->getAccess() == clang::AS_protected;
auto noninheritedField = !inheritance && isa<clang::FieldDecl>(found);
if (skipIfNonPublic && nonPublic && !noninheritedField)
continue;
// Don't import constructors on foreign reference types.
if (isa<clang::CXXConstructorDecl>(found) && isa<ClassDecl>(recordDecl))
continue;
auto imported = clangModuleLoader->importDeclDirectly(found);
if (!imported)
continue;
// If this member is found due to inheritance, clone it from the base class
// by synthesizing getters and setters.
if (inheritance) {
imported = clangModuleLoader->importBaseMemberDecl(
cast<ValueDecl>(imported), inheritingDecl, inheritance);
if (!imported)
continue;
}
collector.add(cast<ValueDecl>(imported));
}
if (inheritance) {
// For inherited members, add members that are synthesized eagerly, such as
// subscripts. This is not necessary for non-inherited members because those
// should already be in the lookup table.
for (auto member :
cast<NominalTypeDecl>(recordDecl)->getCurrentMembersWithoutLoading()) {
auto namedMember = dyn_cast<ValueDecl>(member);
if (!namedMember || !namedMember->hasName() ||
namedMember->getName().getBaseName() != name ||
clangModuleLoader->getOriginalForClonedMember(namedMember))
continue;
auto *imported = clangModuleLoader->importBaseMemberDecl(
namedMember, inheritingDecl, inheritance);
if (!imported)
continue;
collector.add(imported);
}
}
// If this is a C++ record, look through any base classes.
const clang::CXXRecordDecl *cxxRecord;
if ((cxxRecord = dyn_cast<clang::CXXRecordDecl>(recordDecl->getClangDecl())) &&
cxxRecord->isCompleteDefinition()) {
// Capture the arity of already found members in the
// current record, to avoid adding ambiguous members
// from base classes.
llvm::SmallSet<DeclName, 4> foundMethodNames;
for (const auto *valueDecl : result)
foundMethodNames.insert(valueDecl->getName());
for (auto base : cxxRecord->bases()) {
if (skipIfNonPublic && base.getAccessSpecifier() != clang::AS_public)
continue;
clang::QualType baseType = base.getType();
if (auto spectType = dyn_cast<clang::TemplateSpecializationType>(baseType))
baseType = spectType->desugar();
if (!isa<clang::RecordType>(baseType.getCanonicalType()))
continue;
auto *baseRecord = baseType->getAs<clang::RecordType>()->getDecl();
if (isSymbolicCircularBase(cxxRecord, baseRecord))
// Skip circular bases to avoid unbounded recursion
continue;
if (auto import = clangModuleLoader->importDeclDirectly(baseRecord)) {
// If we are looking up the base class, go no further. We will have
// already found it during the other lookup.
if (cast<ValueDecl>(import)->getName() == name)
continue;
auto baseInheritance = ClangInheritanceInfo(inheritance, base);
// Add Clang members that are imported lazily.
auto baseResults = evaluateOrDefault(
ctx.evaluator,
ClangRecordMemberLookup({cast<NominalTypeDecl>(import), name,
inheritingDecl, baseInheritance}),
{});
for (auto foundInBase : baseResults) {
// Do not add duplicate entry with the same DeclName,
// as that would cause an ambiguous lookup.
if (foundMethodNames.count(foundInBase->getName()))
continue;
collector.add(foundInBase);
}
}
}
}
return result;
}
IterableDeclContext *IterableDeclContext::getImplementationContext() {
if (auto implDecl = getDecl()->getObjCImplementationDecl())
if (auto implExt = dyn_cast<ExtensionDecl>(implDecl))
return implExt;
return this;
}
namespace {
struct OrderDecls {
bool operator () (Decl *lhs, Decl *rhs) const {
if (lhs->getDeclContext()->getModuleScopeContext()
== rhs->getDeclContext()->getModuleScopeContext()) {
auto &SM = lhs->getASTContext().SourceMgr;
return SM.isBeforeInBuffer(lhs->getLoc(), rhs->getLoc());
}
auto lhsFile =
dyn_cast<SourceFile>(lhs->getDeclContext()->getModuleScopeContext());
auto rhsFile =
dyn_cast<SourceFile>(rhs->getDeclContext()->getModuleScopeContext());
if (!lhsFile)
return false;
if (!rhsFile)
return true;
return lhsFile->getFilename() < rhsFile->getFilename();
}
};
}
static ObjCInterfaceAndImplementation
constructResult(const llvm::TinyPtrVector<Decl *> &interfaces,
llvm::TinyPtrVector<Decl *> &impls,
Decl *diagnoseOn, Identifier categoryName) {
if (interfaces.empty() || impls.empty())
return ObjCInterfaceAndImplementation();
if (impls.size() > 1) {
llvm::sort(impls, OrderDecls());
auto &diags = interfaces.front()->getASTContext().Diags;
for (auto extraImpl : llvm::ArrayRef<Decl *>(impls).drop_front()) {
auto attr = extraImpl->getAttrs().getAttribute<ObjCImplementationAttr>();
attr->setInvalid();
// @objc @implementations for categories are diagnosed as category
// conflicts, so we're only concerned with main class bodies and
// non-category implementations here.
if (categoryName.empty() || !isa<ExtensionDecl>(impls.front())) {
diags.diagnose(attr->getLocation(), diag::objc_implementation_two_impls,
diagnoseOn)
.fixItRemove(attr->getRangeWithAt());
diags.diagnose(impls.front(), diag::previous_objc_implementation);
}
}
}
return ObjCInterfaceAndImplementation(interfaces, impls.front());
}
static bool isImplValid(ExtensionDecl *ext) {
auto attr = ext->getAttrs().getAttribute<ObjCImplementationAttr>();
if (!attr)
return false;
// Clients using the stable syntax shouldn't have a category name on the attr.
// This is diagnosed in AttributeChecker::visitObjCImplementationAttr().
if (!attr->isEarlyAdopter() && !attr->CategoryName.empty())
return false;
return !attr->isCategoryNameInvalid();
}
static ObjCInterfaceAndImplementation
findContextInterfaceAndImplementation(DeclContext *dc) {
if (!dc)
return {};
ClassDecl *classDecl = dc->getSelfClassDecl();
if (!classDecl || !classDecl->hasClangNode())
// Only extensions of ObjC classes can have @_objcImplementations.
return {};
// We know the class we're trying to work with. Next, the category name.
Identifier categoryName;
if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
assert(ext);
if (!ext->hasClangNode() && !isImplValid(ext))
return {};
categoryName = ext->getObjCCategoryName();
} else {
// Must be an imported class. Look for its main implementation.
assert(isa_and_nonnull<ClassDecl>(dc));
categoryName = Identifier();
}
// Now let's look up the interfaces for this...
auto interfaceDecls = classDecl->getImportedObjCCategory(categoryName);
// And the implementations.
llvm::TinyPtrVector<Decl *> implDecls;
for (ExtensionDecl *ext : classDecl->getExtensions()) {
if (ext->isObjCImplementation()
&& ext->getObjCCategoryName() == categoryName
&& isImplValid(ext))
implDecls.push_back(ext);
}
return constructResult(interfaceDecls, implDecls, classDecl, categoryName);
}
static void lookupRelatedFuncs(AbstractFunctionDecl *func,
SmallVectorImpl<ValueDecl *> &results) {
DeclName swiftName;
if (auto accessor = dyn_cast<AccessorDecl>(func))
swiftName = accessor->getStorage()->getName();
else
swiftName = func->getName();
if (auto ty = func->getDeclContext()->getSelfNominalTypeDecl()) {
NLOptions options = NL_IgnoreAccessControl | NL_IgnoreMissingImports;
ty->lookupQualified({ ty }, DeclNameRef(swiftName), func->getLoc(),
NL_QualifiedDefault | options, results);
}
else {
ASTContext &ctx = func->getASTContext();
UnqualifiedLookupOptions options =
UnqualifiedLookupFlags::IgnoreAccessControl;
UnqualifiedLookupDescriptor descriptor(
DeclNameRef(ctx, Identifier(), swiftName), func->getDeclContext(),
func->getLoc(), options);
auto lookup = evaluateOrDefault(func->getASTContext().evaluator,
UnqualifiedLookupRequest{descriptor}, {});
for (const auto &result : lookup) {
results.push_back(result.getValueDecl());
}
}
}
static ObjCInterfaceAndImplementation
findFunctionInterfaceAndImplementation(AbstractFunctionDecl *func) {
if (!func)
return {};
// If this isn't either a clang import or an implementation, there's no point
// doing any work here.
if (!func->hasClangNode() && !func->isObjCImplementation())
return {};
OptionalEnum<AccessorKind> accessorKind;
if (auto accessor = dyn_cast<AccessorDecl>(func))
accessorKind = accessor->getAccessorKind();
StringRef clangName = func->getCDeclName();
if (clangName.empty())
return {};
SmallVector<ValueDecl *, 4> results;
lookupRelatedFuncs(func, results);
// Classify the `results` as either the interface or an implementation.
// (Multiple implementations are invalid but utterable.)
Decl *interface = nullptr;
TinyPtrVector<Decl *> impls;
for (ValueDecl *result : results) {
AbstractFunctionDecl *resultFunc = nullptr;
if (accessorKind) {
if (auto resultStorage = dyn_cast<AbstractStorageDecl>(result))
resultFunc = resultStorage->getAccessor(*accessorKind);
}
else
resultFunc = dyn_cast<AbstractFunctionDecl>(result);
if (!resultFunc)
continue;
if (resultFunc->getCDeclName() != clangName)
continue;
if (resultFunc->hasClangNode()) {
if (interface) {
// This clang name is overloaded. That should only happen with C++
// functions/methods, which aren't currently supported.
return {};
}
interface = result;
} else if (resultFunc->isObjCImplementation()) {
impls.push_back(result);
}
}
// If we found enough decls to construct a result, `func` should be among them
// somewhere.
assert(interface == nullptr || impls.empty() ||
interface == func || llvm::is_contained(impls, func));
return constructResult({ interface }, impls, interface,
/*categoryName=*/Identifier());
}
ObjCInterfaceAndImplementation ObjCInterfaceAndImplementationRequest::
evaluate(Evaluator &evaluator, Decl *decl) const {
ASSERT(ABIRoleInfo(decl).providesAPI()
&& "@interface request for ABI-only decl?");
// Types and extensions have direct links to their counterparts through the
// `@_objcImplementation` attribute. Let's resolve that.
// (Also directing nulls here, where they'll early-return.)
if (auto ty = dyn_cast_or_null<NominalTypeDecl>(decl))
return findContextInterfaceAndImplementation(ty);
else if (auto ext = dyn_cast<ExtensionDecl>(decl))
return findContextInterfaceAndImplementation(ext);
// Abstract functions have to be matched through their @_cdecl attributes.
else if (auto func = dyn_cast<AbstractFunctionDecl>(decl))
return findFunctionInterfaceAndImplementation(func);
return {};
}
void swift::simple_display(llvm::raw_ostream &out,
const ObjCInterfaceAndImplementation &pair) {
if (pair.empty()) {
out << "no clang interface or @_objcImplementation";
return;
}
out << "@implementation ";
simple_display(out, pair.implementationDecl);
out << " matches clang interfaces ";
simple_display(out, pair.interfaceDecls);
}
SourceLoc
swift::extractNearestSourceLoc(const ObjCInterfaceAndImplementation &pair) {
if (pair.implementationDecl)
return SourceLoc();
return extractNearestSourceLoc(pair.implementationDecl);
}
llvm::TinyPtrVector<Decl *> Decl::getAllImplementedObjCDecls() const {
if (hasClangNode())
// This *is* the interface, if there is one.
return {};
// ABI-only attributes don't have an `@implementation`, so query the API
// counterpart and map the results back to ABI decls.
auto abiRole = ABIRoleInfo(this);
if (!abiRole.providesAPI() && abiRole.getCounterpart()) {
auto interfaceDecls =
abiRole.getCounterpart()->getAllImplementedObjCDecls();
// Map the APIs back to their ABI counterparts (often a no-op)
for (auto &interfaceDecl : interfaceDecls) {
interfaceDecl = ABIRoleInfo(interfaceDecl).getCounterpart();
}
return interfaceDecls;
}
ObjCInterfaceAndImplementationRequest req{const_cast<Decl *>(this)};
auto result = evaluateOrDefault(getASTContext().evaluator, req, {});
return result.interfaceDecls;
}
DeclContext *DeclContext::getImplementedObjCContext() const {
if (auto ED = dyn_cast<ExtensionDecl>(this))
if (auto impl = dyn_cast_or_null<DeclContext>(ED->getImplementedObjCDecl()))
return impl;
return const_cast<DeclContext *>(this);
}
Decl *Decl::getObjCImplementationDecl() const {
if (!hasClangNode())
// This *is* the implementation, if it has one.
return nullptr;
// ABI-only attributes don't have an `@implementation`, so query the API
// counterpart and map the results back to ABI decls.
auto abiRole = ABIRoleInfo(this);
if (!abiRole.providesAPI() && abiRole.getCounterpart()) {
auto implDecl = abiRole.getCounterpart()->getObjCImplementationDecl();
return ABIRoleInfo(implDecl).getCounterpart();
}
ObjCInterfaceAndImplementationRequest req{const_cast<Decl *>(this)};
auto result = evaluateOrDefault(getASTContext().evaluator, req, {});
return result.implementationDecl;
}
llvm::TinyPtrVector<Decl *>
ClangCategoryLookupRequest::evaluate(Evaluator &evaluator,
ClangCategoryLookupDescriptor desc) const {
const ClassDecl *CD = desc.classDecl;
Identifier categoryName = desc.categoryName;
auto clangClass =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(CD->getClangDecl());
if (!clangClass)
return {};
auto importCategory = [&](const clang::ObjCCategoryDecl *clangCat) -> Decl * {
return CD->getASTContext().getClangModuleLoader()
->importDeclDirectly(clangCat);
};
if (categoryName.empty()) {
// No category name, so we want the decl for the `@interface` in
// `clangClass`, as well as any class extensions.
llvm::TinyPtrVector<Decl *> results;
results.push_back(const_cast<ClassDecl *>(CD));
auto importer =
static_cast<ClangImporter *>(CD->getASTContext().getClangModuleLoader());
ClangImporter::Implementation &impl = importer->Impl;
for (auto clangExt : clangClass->known_extensions()) {
if (impl.getClangSema().isVisible(clangExt))
results.push_back(importCategory(clangExt));
}
return results;
}
auto ident = &clangClass->getASTContext().Idents.get(categoryName.str());
auto clangCategory = clangClass->FindCategoryDeclaration(ident);
if (!clangCategory)
return {};
return { importCategory(clangCategory) };
}
llvm::TinyPtrVector<Decl *>
ClassDecl::getImportedObjCCategory(Identifier name) const {
ClangCategoryLookupDescriptor desc{this, name};
return evaluateOrDefault(getASTContext().evaluator,
ClangCategoryLookupRequest(desc),
{});
}
void swift::simple_display(llvm::raw_ostream &out,
const ClangCategoryLookupDescriptor &desc) {
out << "Looking up @interface for ";
if (!desc.categoryName.empty()) {
out << "category ";
simple_display(out, desc.categoryName);
}
else {
out << "main body";
}
out << " of ";
simple_display(out, desc.classDecl);
}
SourceLoc
swift::extractNearestSourceLoc(const ClangCategoryLookupDescriptor &desc) {
return extractNearestSourceLoc(desc.classDecl);
}
TinyPtrVector<ValueDecl *>
ClangImporter::Implementation::loadNamedMembers(
const IterableDeclContext *IDC, DeclBaseName N, uint64_t extra) {
auto *D = IDC->getDecl();
auto *DC = D->getInnermostDeclContext();
auto *CD = D->getClangDecl();
auto *CDC = cast_or_null<clang::DeclContext>(CD);
auto *nominal = DC->getSelfNominalTypeDecl();
auto effectiveClangContext = getEffectiveClangContext(nominal);
// There are 3 cases:
//
// - The decl is from a bridging header, CMO is Some(nullptr)
// which denotes the __ObjC Swift module and its associated
// BridgingHeaderLookupTable.
//
// - The decl is from a clang module, CMO is Some(M) for non-null
// M and we can use the table for that module.
//
// - The decl is a forward declaration, CMO is None, which should
// never be the case if we got here (someone is asking for members).
//
// findLookupTable, below, handles the first two cases; we assert on the
// third.
std::optional<clang::Module *> CMO;
if (CD)
CMO = getClangSubmoduleForDecl(CD);
else {
// IDC is an extension containing globals imported as members, so it doesn't
// have a clang node but the submodule pointer has been stashed in `extra`.
CMO = reinterpret_cast<clang::Module *>(static_cast<uintptr_t>(extra));
}
assert(CMO && "loadNamedMembers on a forward-declared Decl");
auto table = findLookupTable(*CMO);
assert(table && "clang module without lookup table");
assert(!isa_and_nonnull<clang::NamespaceDecl>(CD)
&& "Namespace members should be loaded via a request.");
assert(!CD || isa<clang::ObjCContainerDecl>(CD));
// Force the members of the entire inheritance hierarchy to be loaded and
// deserialized before loading the named member of a class. This warms up
// ClangImporter::Implementation::MembersForNominal, used for computing
// property overrides.
//
// FIXME: If getOverriddenDecl() kicked off a request for imported decls,
// we could postpone this until overrides are actually requested.
if (auto *classDecl = dyn_cast<ClassDecl>(D))
if (auto *superclassDecl = classDecl->getSuperclassDecl())
(void) const_cast<ClassDecl *>(superclassDecl)->lookupDirect(N);
// TODO: update this to use the requestified lookup.
TinyPtrVector<ValueDecl *> Members;
// Lookup actual, factual clang-side members of the context. No need to do
// this if we're handling an import-as-member extension.
if (CD) {
for (auto entry : table->lookup(SerializedSwiftName(N),
effectiveClangContext)) {
if (!isa<clang::NamedDecl *>(entry))
continue;
auto member = cast<clang::NamedDecl *>(entry);
if (!isVisibleClangEntry(member)) continue;
// Skip Decls from different clang::DeclContexts
if (member->getDeclContext() != CDC) continue;
SmallVector<Decl*, 4> tmp;
insertMembersAndAlternates(member, tmp, DC);
for (auto *TD : tmp) {
if (auto *V = dyn_cast<ValueDecl>(TD)) {
// Skip ValueDecls if they import under different names.
if (V->getBaseName() == N) {
Members.push_back(V);
}
}
// If the property's accessors have alternate decls, we might have
// to import those too.
if (auto *ASD = dyn_cast<AbstractStorageDecl>(TD)) {
for (auto *AD : ASD->getAllAccessors()) {
for (auto *D : getAlternateDecls(AD)) {
if (D->getBaseName() == N)
Members.push_back(D);
}
}
}
}
}
}
for (auto entry : table->lookupGlobalsAsMembers(SerializedSwiftName(N),
effectiveClangContext)) {
if (!isa<clang::NamedDecl *>(entry))
continue;
auto member = cast<clang::NamedDecl *>(entry);
if (!isVisibleClangEntry(member)) continue;
// Skip Decls from different clang::DeclContexts. We don't do this for
// import-as-member extensions because we don't know what decl context to
// expect; for instance, an enum constant is inside the enum decl, not in
// the translation unit.
if (CDC && member->getDeclContext() != CDC) continue;
SmallVector<Decl*, 4> tmp;
insertMembersAndAlternates(member, tmp, DC);
for (auto *TD : tmp) {
if (auto *V = dyn_cast<ValueDecl>(TD)) {
// Skip ValueDecls if they import under different names.
if (V->getBaseName() == N) {
Members.push_back(V);
}
}
}
}
if (CD && N.isConstructor()) {
if (auto *classDecl = dyn_cast<ClassDecl>(D)) {
SmallVector<Decl *, 4> ctors;
importInheritedConstructors(cast<clang::ObjCInterfaceDecl>(CD),
classDecl, ctors);
for (auto ctor : ctors)
Members.push_back(cast<ValueDecl>(ctor));
}
}
if (CD && !isa<ProtocolDecl>(D)) {
if (auto *OCD = dyn_cast<clang::ObjCContainerDecl>(CD)) {
SmallVector<Decl *, 1> newMembers;
importMirroredProtocolMembers(OCD, DC, N, newMembers);
for (auto member : newMembers)
Members.push_back(cast<ValueDecl>(member));
}
}
return Members;
}
EffectiveClangContext ClangImporter::Implementation::getEffectiveClangContext(
const NominalTypeDecl *nominal) {
// If we have a Clang declaration, look at it to determine the
// effective Clang context.
if (auto constClangDecl = nominal->getClangDecl()) {
auto clangDecl = const_cast<clang::Decl *>(constClangDecl);
if (auto dc = dyn_cast<clang::DeclContext>(clangDecl))
return EffectiveClangContext(dc);
if (auto typedefName = dyn_cast<clang::TypedefNameDecl>(clangDecl))
return EffectiveClangContext(typedefName);
return EffectiveClangContext();
}
// If it's an @objc entity, go look for it.
// Note that we're stepping lightly here to avoid computing isObjC()
// too early.
if (isa<ClassDecl>(nominal) &&
(nominal->getAttrs().hasAttribute<ObjCAttr>() ||
(!nominal->getParentSourceFile() && nominal->isObjC()))) {
// Map the name. If we can't represent the Swift name in Clang.
Identifier name = nominal->getName();
if (auto objcAttr = nominal->getAttrs().getAttribute<ObjCAttr>()) {
if (auto objcName = objcAttr->getName()) {
if (objcName->getNumArgs() == 0) {
// This is an error if not 0, but it should be caught later.
name = objcName->getSimpleName();
}
}
}
auto clangName = exportName(name);
if (!clangName)
return EffectiveClangContext();
// Perform name lookup into the global scope.
auto &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, clangName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, /*Scope=*/nullptr)) {
// FIXME: Filter based on access path? C++ access control?
for (auto clangDecl : lookupResult) {
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl))
return EffectiveClangContext(objcClass);
/// FIXME: Other type declarations should also be okay?
}
}
// For source compatibility reasons, fall back to the Swift name.
//
// This is how people worked around not being able to import-as-member onto
// Swift types by their ObjC name before the above code to handle ObjCAttr
// was added.
if (name != nominal->getName())
clangName = exportName(nominal->getName());
lookupResult.clear();
lookupResult.setLookupName(clangName);
// FIXME: This loop is duplicated from above, but doesn't obviously factor
// out in a nice way.
if (sema.LookupName(lookupResult, /*Scope=*/nullptr)) {
// FIXME: Filter based on access path? C++ access control?
for (auto clangDecl : lookupResult) {
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl))
return EffectiveClangContext(objcClass);
/// FIXME: Other type declarations should also be okay?
}
}
}
return EffectiveClangContext();
}
void ClangImporter::dumpSwiftLookupTables() const {
Impl.dumpSwiftLookupTables();
}
void ClangImporter::Implementation::dumpSwiftLookupTables() {
// Sort the module names so we can print in a deterministic order.
SmallVector<StringRef, 4> moduleNames;
for (const auto &lookupTable : LookupTables) {
moduleNames.push_back(lookupTable.first);
}
array_pod_sort(moduleNames.begin(), moduleNames.end());
// Print out the lookup tables for the various modules.
for (auto moduleName : moduleNames) {
llvm::errs() << "<<" << moduleName << " lookup table>>\n";
auto &lookupTable = LookupTables[moduleName];
lookupTable->deserializeAll();
lookupTable->dump(llvm::errs());
}
llvm::errs() << "<<Bridging header lookup table>>\n";
BridgingHeaderLookupTable->dump(llvm::errs());
}
DeclName ClangImporter::
importName(const clang::NamedDecl *D,
clang::DeclarationName preferredName) {
return Impl.importFullName(D, Impl.CurrentVersion, preferredName).
getDeclName();
}
std::optional<Type>
ClangImporter::importFunctionReturnType(const clang::FunctionDecl *clangDecl,
DeclContext *dc) {
bool isInSystemModule =
cast<ClangModuleUnit>(dc->getModuleScopeContext())->isSystemModule();
bool allowNSUIntegerAsInt =
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule, clangDecl);
if (auto imported =
Impl.importFunctionReturnType(dc, clangDecl, allowNSUIntegerAsInt)
.getType())
return imported;
return {};
}
Type ClangImporter::importVarDeclType(
const clang::VarDecl *decl, VarDecl *swiftDecl, DeclContext *dc) {
if (decl->getTemplateInstantiationPattern())
Impl.getClangSema().InstantiateVariableDefinition(
decl->getLocation(),
const_cast<clang::VarDecl *>(decl));
// If the declaration is const, consider it audited.
// We can assume that loading a const global variable doesn't
// involve an ownership transfer.
bool isAudited = decl->getType().isConstQualified();
auto declType = decl->getType();
// Special case: NS Notifications
if (isNSNotificationGlobal(decl))
if (auto newtypeDecl = findSwiftNewtype(decl, Impl.getClangSema(),
Impl.CurrentVersion))
declType = Impl.getClangASTContext().getTypedefType(newtypeDecl);
bool isInSystemModule =
cast<ClangModuleUnit>(dc->getModuleScopeContext())->isSystemModule();
// Note that we deliberately don't bridge most globals because we want to
// preserve pointer identity.
auto importedType =
Impl.importType(declType,
(isAudited ? ImportTypeKind::AuditedVariable
: ImportTypeKind::Variable),
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
isInSystemModule, Bridgeability::None,
getImportTypeAttrs(decl));
if (!importedType)
return ErrorType::get(Impl.SwiftContext);
if (importedType.isImplicitlyUnwrapped())
swiftDecl->setImplicitlyUnwrappedOptional(true);
return importedType.getType();
}
bool ClangImporter::isInOverlayModuleForImportedModule(
const DeclContext *overlayDC,
const DeclContext *importedDC) {
overlayDC = overlayDC->getModuleScopeContext();
importedDC = importedDC->getModuleScopeContext();
auto importedClangModuleUnit = dyn_cast<ClangModuleUnit>(importedDC);
if (!importedClangModuleUnit || !importedClangModuleUnit->getClangModule())
return false;
auto overlayModule = overlayDC->getParentModule();
if (overlayModule == importedClangModuleUnit->getOverlayModule())
return true;
// Is this a private module that's re-exported to the public (overlay) name?
auto clangModule =
importedClangModuleUnit->getClangModule()->getTopLevelModule();
return !clangModule->ExportAsModule.empty() &&
clangModule->ExportAsModule == overlayModule->getName().str();
}
/// Extract the specified-or-defaulted -module-cache-path that winds up in
/// the clang importer, for reuse as the .swiftmodule cache path when
/// building a ModuleInterfaceLoader.
std::string
swift::getModuleCachePathFromClang(const clang::CompilerInstance &Clang) {
if (!Clang.hasPreprocessor())
return "";
std::string SpecificModuleCachePath =
Clang.getPreprocessor().getHeaderSearchInfo().getModuleCachePath().str();
// The returned-from-clang module cache path includes a suffix directory
// that is specific to the clang version and invocation; we want the
// directory above that.
return llvm::sys::path::parent_path(SpecificModuleCachePath).str();
}
clang::FunctionDecl *ClangImporter::instantiateCXXFunctionTemplate(
ASTContext &ctx, clang::FunctionTemplateDecl *func, SubstitutionMap subst) {
SmallVector<clang::TemplateArgument, 4> templateSubst;
std::unique_ptr<TemplateInstantiationError> error =
ctx.getClangTemplateArguments(func->getTemplateParameters(),
subst.getReplacementTypes(), templateSubst);
auto getFuncName = [&]() -> std::string {
std::string funcName;
llvm::raw_string_ostream funcNameStream(funcName);
func->printQualifiedName(funcNameStream);
return funcName;
};
if (error) {
std::string failedTypesStr;
llvm::raw_string_ostream failedTypesStrStream(failedTypesStr);
llvm::interleaveComma(error->failedTypes, failedTypesStrStream);
// TODO: Use the location of the apply here.
// TODO: This error message should not reference implementation details.
// See: https://github.com/apple/swift/pull/33053#discussion_r477003350
Impl.diagnose(HeaderLoc(func->getBeginLoc()),
diag::unable_to_convert_generic_swift_types, getFuncName(),
failedTypesStr);
return nullptr;
}
// Instantiate a specialization of this template using the substitution map.
auto *templateArgList = clang::TemplateArgumentList::CreateCopy(
func->getASTContext(), templateSubst);
auto diagnoseSubstFail = [&]() {
std::string templateParams;
llvm::raw_string_ostream templateParamsStream(templateParams);
llvm::interleaveComma(templateArgList->asArray(), templateParamsStream,
[&](const clang::TemplateArgument &arg) {
arg.print(func->getASTContext().getPrintingPolicy(),
templateParamsStream,
/*IncludeType*/ true);
});
Impl.diagnose(HeaderLoc(func->getBeginLoc()),
diag::unable_to_substitute_cxx_function_template,
getFuncName(), templateParams);
};
auto &sema = getClangInstance().getSema();
auto *spec = sema.InstantiateFunctionDeclaration(func, templateArgList,
clang::SourceLocation());
if (!spec || spec->isInvalidDecl()) {
diagnoseSubstFail();
return nullptr;
}
sema.InstantiateFunctionDefinition(clang::SourceLocation(), spec);
// Even if the declaration can be instantiated, the definition may contain
// a substitution failure that renders spec invalid as a side-effect.
if (spec->isInvalidDecl()) {
diagnoseSubstFail();
return nullptr;
}
return spec;
}
StructDecl *
ClangImporter::instantiateCXXClassTemplate(
clang::ClassTemplateDecl *decl,
ArrayRef<clang::TemplateArgument> arguments) {
void *InsertPos = nullptr;
auto *ctsd = decl->findSpecialization(arguments, InsertPos);
if (!ctsd) {
ctsd = clang::ClassTemplateSpecializationDecl::Create(
decl->getASTContext(), decl->getTemplatedDecl()->getTagKind(),
decl->getDeclContext(), decl->getTemplatedDecl()->getBeginLoc(),
decl->getLocation(), decl, arguments, /*StrictPackMatch*/ false,
nullptr);
decl->AddSpecialization(ctsd, InsertPos);
}
auto CanonType = decl->getASTContext().getTypeDeclType(ctsd);
assert(isa<clang::RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType");
return dyn_cast_or_null<StructDecl>(
Impl.importDecl(ctsd, Impl.CurrentVersion));
}
// On Windows and 32-bit platforms we need to force "Int" to actually be
// re-imported as "Int." This is needed because otherwise, we cannot round-trip
// "Int" and "UInt". For example, on Windows, "Int" will be imported into C++ as
// "long long" and then back into Swift as "Int64" not "Int."
static ValueDecl *rewriteIntegerTypes(SubstitutionMap subst, ValueDecl *oldDecl,
AbstractFunctionDecl *newDecl) {
auto originalFnSubst = cast<AbstractFunctionDecl>(oldDecl)
->getInterfaceType()
->getAs<GenericFunctionType>()
->substGenericArgs(subst);
// The constructor type is a function type as follows:
// (CType.Type) -> (Generic) -> CType
// And a method's function type is as follows:
// (inout CType) -> (Generic) -> Void
// In either case, we only want the result of that function type because that
// is the function type with the generic params that need to be substituted:
// (Generic) -> CType
if (isa<ConstructorDecl>(oldDecl) || oldDecl->isInstanceMember() ||
oldDecl->isStatic())
originalFnSubst = cast<FunctionType>(originalFnSubst->getResult().getPointer());
SmallVector<ParamDecl *, 4> fixedParameters;
unsigned parameterIndex = 0;
for (auto *newFnParam : *newDecl->getParameters()) {
// If the user substituted this param with an (U)Int, use (U)Int.
auto substParamType =
originalFnSubst->getParams()[parameterIndex].getParameterType();
if (substParamType->isEqual(newDecl->getASTContext().getIntType()) ||
substParamType->isEqual(newDecl->getASTContext().getUIntType())) {
auto intParam =
ParamDecl::cloneWithoutType(newDecl->getASTContext(), newFnParam);
intParam->setInterfaceType(substParamType);
fixedParameters.push_back(intParam);
} else {
fixedParameters.push_back(newFnParam);
}
parameterIndex++;
}
auto fixedParams =
ParameterList::create(newDecl->getASTContext(), fixedParameters);
newDecl->setParameters(fixedParams);
// Now fix the result type:
if (originalFnSubst->getResult()->isEqual(
newDecl->getASTContext().getIntType()) ||
originalFnSubst->getResult()->isEqual(
newDecl->getASTContext().getUIntType())) {
// Constructors don't have a result.
if (auto func = dyn_cast<FuncDecl>(newDecl)) {
// We have to rebuild the whole function.
auto newFnDecl = FuncDecl::createImported(
func->getASTContext(), func->getNameLoc(),
func->getName(), func->getNameLoc(),
func->hasAsync(), func->hasThrows(),
func->getThrownInterfaceType(),
fixedParams, originalFnSubst->getResult(),
/*genericParams=*/nullptr, func->getDeclContext(), newDecl->getClangDecl());
if (func->isStatic()) newFnDecl->setStatic();
if (func->isImportAsStaticMember()) newFnDecl->setImportAsStaticMember();
if (func->getImportAsMemberStatus().isInstance()) {
newFnDecl->setSelfAccessKind(func->getSelfAccessKind());
newFnDecl->setSelfIndex(func->getSelfIndex());
}
return newFnDecl;
}
}
return newDecl;
}
static Argument createSelfArg(FuncDecl *fnDecl) {
ASTContext &ctx = fnDecl->getASTContext();
auto selfDecl = fnDecl->getImplicitSelfDecl();
auto selfRefExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
if (!fnDecl->isMutating()) {
selfRefExpr->setType(selfDecl->getInterfaceType());
return Argument::unlabeled(selfRefExpr);
}
selfRefExpr->setType(LValueType::get(selfDecl->getInterfaceType()));
return Argument::implicitInOut(ctx, selfRefExpr);
}
// Synthesize a thunk body for the function created in
// "addThunkForDependentTypes". This will just cast all params and forward them
// along to the specialized function. It will also cast the result before
// returning it.
static std::pair<BraceStmt *, bool>
synthesizeDependentTypeThunkParamForwarding(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto thunkDecl = cast<FuncDecl>(afd);
auto specializedFuncDecl = static_cast<FuncDecl *>(context);
SmallVector<Argument, 8> forwardingParams;
unsigned paramIndex = 0;
for (auto param : *thunkDecl->getParameters()) {
if (isa<MetatypeType>(param->getInterfaceType().getPointer())) {
paramIndex++;
continue;
}
auto paramTy = param->getTypeInContext();
auto isInOut = param->isInOut();
auto specParamTy =
specializedFuncDecl->getParameters()->get(paramIndex)
->getTypeInContext();
Expr *paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(isInOut ? LValueType::get(paramTy) : paramTy);
Argument arg = [&]() {
if (isInOut) {
assert(specParamTy->isEqual(paramTy));
return Argument::implicitInOut(ctx, paramRefExpr);
}
Expr *argExpr = nullptr;
if (specParamTy->isEqual(paramTy)) {
argExpr = paramRefExpr;
} else {
argExpr = ForcedCheckedCastExpr::createImplicit(ctx, paramRefExpr,
specParamTy);
}
return Argument::unlabeled(argExpr);
}();
forwardingParams.push_back(arg);
paramIndex++;
}
Expr *specializedFuncDeclRef = new (ctx) DeclRefExpr(ConcreteDeclRef(specializedFuncDecl),
DeclNameLoc(), true);
specializedFuncDeclRef->setType(specializedFuncDecl->getInterfaceType());
if (specializedFuncDecl->isInstanceMember()) {
auto selfArg = createSelfArg(thunkDecl);
auto *memberCall = DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef,
SourceLoc(), selfArg);
memberCall->setThrows(nullptr);
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
} else if (specializedFuncDecl->isStatic()) {
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
auto selfType = cast<NominalTypeDecl>(thunkDecl->getDeclContext()->getAsDecl())->getDeclaredInterfaceType();
auto selfTypeExpr = TypeExpr::createImplicit(selfType, ctx);
auto *memberCall =
DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef, SourceLoc(),
Argument::unlabeled(selfTypeExpr));
memberCall->setThrows(nullptr);
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
}
auto argList = ArgumentList::createImplicit(ctx, forwardingParams);
auto *specializedFuncCallExpr = CallExpr::createImplicit(ctx, specializedFuncDeclRef, argList);
specializedFuncCallExpr->setType(specializedFuncDecl->getResultInterfaceType());
specializedFuncCallExpr->setThrows(nullptr);
Expr *resultExpr = nullptr;
if (specializedFuncCallExpr->getType()->isEqual(
thunkDecl->getResultInterfaceType())) {
resultExpr = specializedFuncCallExpr;
} else {
resultExpr = ForcedCheckedCastExpr::createImplicit(
ctx, specializedFuncCallExpr, thunkDecl->getResultInterfaceType());
}
auto *returnStmt = ReturnStmt::createImplicit(ctx, resultExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
// Create a thunk to map functions with dependent types to their specialized
// version. For example, create a thunk with type (Any) -> Any to wrap a
// specialized function template with type (Dependent<T>) -> Dependent<T>.
static ValueDecl *addThunkForDependentTypes(FuncDecl *oldDecl,
FuncDecl *newDecl) {
bool updatedAnyParams = false;
SmallVector<ParamDecl *, 4> fixedParameters;
unsigned parameterIndex = 0;
for (auto *newFnParam : *newDecl->getParameters()) {
// If the un-specialized function had a parameter with type "Any" preserve
// that parameter. Otherwise, use the new function parameter.
auto oldParamType = oldDecl->getParameters()->get(parameterIndex)->getInterfaceType();
if (oldParamType->isEqual(newDecl->getASTContext().getAnyExistentialType())) {
updatedAnyParams = true;
auto newParam =
ParamDecl::cloneWithoutType(newDecl->getASTContext(), newFnParam);
newParam->setInterfaceType(oldParamType);
fixedParameters.push_back(newParam);
} else {
fixedParameters.push_back(newFnParam);
}
parameterIndex++;
}
// If we don't need this thunk, bail out.
if (!updatedAnyParams &&
!oldDecl->getResultInterfaceType()->isEqual(
oldDecl->getASTContext().getAnyExistentialType()))
return newDecl;
auto fixedParams =
ParameterList::create(newDecl->getASTContext(), fixedParameters);
Type fixedResultType;
if (oldDecl->getResultInterfaceType()->isEqual(
oldDecl->getASTContext().getAnyExistentialType()))
fixedResultType = oldDecl->getASTContext().getAnyExistentialType();
else
fixedResultType = newDecl->getResultInterfaceType();
// We have to rebuild the whole function.
auto newFnDecl = FuncDecl::createImplicit(
newDecl->getASTContext(), newDecl->getStaticSpelling(),
newDecl->getName(), newDecl->getNameLoc(), newDecl->hasAsync(),
newDecl->hasThrows(), newDecl->getThrownInterfaceType(),
/*genericParams=*/nullptr, fixedParams,
fixedResultType, newDecl->getDeclContext());
newFnDecl->copyFormalAccessFrom(newDecl);
newFnDecl->setBodySynthesizer(synthesizeDependentTypeThunkParamForwarding, newDecl);
newFnDecl->setSelfAccessKind(newDecl->getSelfAccessKind());
if (newDecl->isStatic()) newFnDecl->setStatic();
newFnDecl->addAttribute(new (newDecl->getASTContext())
TransparentAttr(/*IsImplicit=*/true));
return newFnDecl;
}
// Synthesizes the body of a thunk that takes extra metatype arguments and
// skips over them to forward them along to the FuncDecl contained by context.
// This is used when importing a C++ templated function where the template params
// are not used in the function signature. We supply the type params as explicit
// metatype arguments to aid in typechecking, but they shouldn't be forwarded to
// the corresponding C++ function.
static std::pair<BraceStmt *, bool>
synthesizeForwardingThunkBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto thunkDecl = cast<FuncDecl>(afd);
auto specializedFuncDecl = static_cast<FuncDecl *>(context);
SmallVector<Argument, 8> forwardingParams;
for (auto param : *thunkDecl->getParameters()) {
if (isa<MetatypeType>(param->getInterfaceType().getPointer())) {
continue;
}
auto paramTy = param->getTypeInContext();
auto isInOut = param->isInOut();
Expr *paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(isInOut ? LValueType::get(paramTy) : paramTy);
auto arg = isInOut ? Argument::implicitInOut(ctx, paramRefExpr)
: Argument::unlabeled(paramRefExpr);
forwardingParams.push_back(arg);
}
Expr *specializedFuncDeclRef = new (ctx) DeclRefExpr(ConcreteDeclRef(specializedFuncDecl),
DeclNameLoc(), true);
specializedFuncDeclRef->setType(specializedFuncDecl->getInterfaceType());
if (specializedFuncDecl->isInstanceMember()) {
auto selfArg = createSelfArg(thunkDecl);
auto *memberCall = DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef,
SourceLoc(), selfArg);
memberCall->setThrows(nullptr);
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
} else if (specializedFuncDecl->isStatic()) {
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
auto selfType = cast<NominalTypeDecl>(thunkDecl->getDeclContext()->getAsDecl())->getDeclaredInterfaceType();
auto selfTypeExpr = TypeExpr::createImplicit(selfType, ctx);
auto *memberCall =
DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef, SourceLoc(),
Argument::unlabeled(selfTypeExpr));
memberCall->setThrows(nullptr);
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
}
auto argList = ArgumentList::createImplicit(ctx, forwardingParams);
auto *specializedFuncCallExpr = CallExpr::createImplicit(ctx, specializedFuncDeclRef, argList);
specializedFuncCallExpr->setType(thunkDecl->getResultInterfaceType());
specializedFuncCallExpr->setThrows(nullptr);
auto *returnStmt = ReturnStmt::createImplicit(ctx, specializedFuncCallExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
static ValueDecl *generateThunkForExtraMetatypes(SubstitutionMap subst,
FuncDecl *oldDecl,
FuncDecl *newDecl) {
// We added additional metatype parameters to aid template
// specialization, which are no longer now that we've specialized
// this function. Create a thunk that only forwards the original
// parameters along to the clang function.
SmallVector<ParamDecl *, 4> newParams;
for (auto param : *newDecl->getParameters()) {
auto *newParamDecl = ParamDecl::clone(newDecl->getASTContext(), param);
newParams.push_back(newParamDecl);
}
auto originalFnSubst = cast<AbstractFunctionDecl>(oldDecl)
->getInterfaceType()
->getAs<GenericFunctionType>()
->substGenericArgs(subst);
// The constructor type is a function type as follows:
// (CType.Type) -> (Generic) -> CType
// And a method's function type is as follows:
// (inout CType) -> (Generic) -> Void
// In either case, we only want the result of that function type because that
// is the function type with the generic params that need to be substituted:
// (Generic) -> CType
if (isa<ConstructorDecl>(oldDecl) || oldDecl->isInstanceMember() ||
oldDecl->isStatic())
originalFnSubst = cast<FunctionType>(originalFnSubst->getResult().getPointer());
for (auto paramTy : originalFnSubst->getParams()) {
if (!paramTy.getPlainType()->is<MetatypeType>())
continue;
auto dc = newDecl->getDeclContext();
auto paramVarDecl =
new (newDecl->getASTContext()) ParamDecl(
SourceLoc(), SourceLoc(), Identifier(), SourceLoc(),
newDecl->getASTContext().getIdentifier("_"), dc);
paramVarDecl->setInterfaceType(paramTy.getPlainType());
paramVarDecl->setSpecifier(ParamSpecifier::Default);
newParams.push_back(paramVarDecl);
}
auto *newParamList =
ParameterList::create(newDecl->getASTContext(), SourceLoc(), newParams, SourceLoc());
auto thunk = FuncDecl::createImplicit(
newDecl->getASTContext(), newDecl->getStaticSpelling(), oldDecl->getName(),
newDecl->getNameLoc(), newDecl->hasAsync(), newDecl->hasThrows(),
newDecl->getThrownInterfaceType(),
/*genericParams=*/nullptr, newParamList,
newDecl->getResultInterfaceType(), newDecl->getDeclContext());
thunk->copyFormalAccessFrom(newDecl);
thunk->setBodySynthesizer(synthesizeForwardingThunkBody, newDecl);
thunk->setSelfAccessKind(newDecl->getSelfAccessKind());
if (newDecl->isStatic()) thunk->setStatic();
thunk->addAttribute(new (newDecl->getASTContext())
TransparentAttr(/*IsImplicit=*/true));
return thunk;
}
ConcreteDeclRef
ClangImporter::getCXXFunctionTemplateSpecialization(SubstitutionMap subst,
ValueDecl *decl) {
PrettyStackTraceDeclAndSubst trace("specializing", subst, decl);
assert(isa<clang::FunctionTemplateDecl>(decl->getClangDecl()) &&
"This API should only be used with function templates.");
// If we hit some instantiation failure and expect the compiler to imminently
// terminate (with an error), return some reasonable-looking placeholder value
// in the meantime because callers expect this function to return some
// non-empty ConcreteDeclRef.
auto failurePlaceholder = [&]() { return ConcreteDeclRef(decl); };
auto *newFn =
decl->getASTContext()
.getClangModuleLoader()
->instantiateCXXFunctionTemplate(
decl->getASTContext(),
const_cast<clang::FunctionTemplateDecl *>(
cast<clang::FunctionTemplateDecl>(decl->getClangDecl())),
subst);
if (!newFn)
return failurePlaceholder();
auto [fnIt, inserted] =
Impl.specializedFunctionTemplates.try_emplace(newFn, nullptr);
if (!inserted)
return ConcreteDeclRef(fnIt->second);
auto *newDecl = cast_or_null<ValueDecl>(
decl->getASTContext().getClangModuleLoader()->importDeclDirectly(newFn));
if (!newDecl)
return failurePlaceholder();
if (auto *fn = dyn_cast<AbstractFunctionDecl>(newDecl)) {
if (!subst.empty()) {
newDecl = rewriteIntegerTypes(subst, decl, fn);
}
}
if (auto *fn = dyn_cast<FuncDecl>(decl)) {
newDecl = addThunkForDependentTypes(fn, cast<FuncDecl>(newDecl));
if (newFn->getNumParams() != fn->getParameters()->size()) {
newDecl = generateThunkForExtraMetatypes(subst, fn,
cast<FuncDecl>(newDecl));
}
}
fnIt->getSecond() = newDecl;
return ConcreteDeclRef(newDecl);
}
FuncDecl *ClangImporter::getCXXSynthesizedOperatorFunc(FuncDecl *decl) {
// `decl` is not an operator, it is a regular function which has a
// name that starts with `__operator`. We were asked for a
// corresponding synthesized Swift operator, so let's retrieve it.
// The synthesized Swift operator was added as an alternative decl
// for `func`.
auto alternateDecls = Impl.getAlternateDecls(decl);
// Did we actually synthesize an operator for `func`?
if (alternateDecls.empty())
return nullptr;
// If we did, then we should have only synthesized one.
assert(alternateDecls.size() == 1 &&
"expected only the synthesized operator as an alternative");
auto synthesizedOperator = alternateDecls.front();
assert(synthesizedOperator->isOperator() &&
"expected the alternative to be a synthesized operator");
return cast<FuncDecl>(synthesizedOperator);
}
bool ClangImporter::isSynthesizedAndVisibleFromAllModules(
const clang::Decl *decl) {
return Impl.synthesizedAndAlwaysVisibleDecls.contains(decl);
}
bool ClangImporter::isCXXMethodMutating(const clang::CXXMethodDecl *method) {
if (isa<clang::CXXConstructorDecl>(method) || !method->isConst())
return true;
if (isAnnotatedWith(method, "mutating"))
return true;
if (method->getParent()->hasMutableFields()) {
if (isAnnotatedWith(method, "nonmutating"))
return false;
// FIXME(rdar://91961524): figure out a way to handle mutable fields
// without breaking classes from the C++ standard library (e.g.
// `std::string` which has a mutable member in old libstdc++ version used on
// CentOS 7)
return false;
}
return false;
}
bool ClangImporter::isUnsafeCXXMethod(const FuncDecl *func) {
if (!func->hasClangNode())
return false;
auto clangDecl = func->getClangNode().getAsDecl();
if (!clangDecl)
return false;
auto cxxMethod = dyn_cast<clang::CXXMethodDecl>(clangDecl);
if (!cxxMethod)
return false;
if (!func->hasName())
return false;
auto id = func->getBaseName().userFacingName();
return id.starts_with("__") && id.ends_with("Unsafe");
}
bool ClangImporter::isAnnotatedWith(const clang::CXXMethodDecl *method,
StringRef attr) {
return method->hasAttrs() &&
llvm::any_of(method->getAttrs(), [attr](clang::Attr *a) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(a)) {
return swiftAttr->getAttribute() == attr;
}
return false;
});
}
FuncDecl *
ClangImporter::getDefaultArgGenerator(const clang::ParmVarDecl *param) {
auto it = Impl.defaultArgGenerators.find(param);
if (it != Impl.defaultArgGenerators.end())
return it->second;
return nullptr;
}
FuncDecl *
ClangImporter::getAvailabilityDomainPredicate(const clang::VarDecl *var) {
auto it = Impl.availabilityDomainPredicates.find(var);
if (it != Impl.availabilityDomainPredicates.end())
return it->second;
return nullptr;
}
SwiftLookupTable *
ClangImporter::findLookupTable(const clang::Module *clangModule) {
return Impl.findLookupTable(clangModule);
}
/// Determine the effective Clang context for the given Swift nominal type.
EffectiveClangContext
ClangImporter::getEffectiveClangContext(const NominalTypeDecl *nominal) {
return Impl.getEffectiveClangContext(nominal);
}
Decl *ClangImporter::importDeclDirectly(const clang::NamedDecl *decl) {
return Impl.importDecl(decl, Impl.CurrentVersion);
}
ValueDecl *ClangImporter::Implementation::importBaseMemberDecl(
ValueDecl *decl, DeclContext *newContext,
ClangInheritanceInfo inheritance) {
// Make sure we don't clone the decl again for this class, as that would
// result in multiple definitions of the same symbol.
std::pair<ValueDecl *, DeclContext *> key = {decl, newContext};
auto known = clonedBaseMembers.find(key);
if (known == clonedBaseMembers.end()) {
ValueDecl *cloned = cloneBaseMemberDecl(decl, newContext, inheritance);
handleAmbiguousSwiftName(cloned);
known = clonedBaseMembers.insert({key, cloned}).first;
clonedMembers.insert(std::make_pair(cloned, decl));
}
return known->second;
}
ValueDecl *ClangImporter::Implementation::getOriginalForClonedMember(
const ValueDecl *decl) {
// If this is a cloned decl, we don't want to reclone it
// Otherwise, we may end up with multiple copies of the same method
if (!decl->hasClangNode()) {
// Skip decls with a clang node as those will never be a clone
auto result = clonedMembers.find(decl);
if (result != clonedMembers.end())
return result->getSecond();
}
return nullptr;
}
size_t ClangImporter::Implementation::getImportedBaseMemberDeclArity(
const ValueDecl *valueDecl) {
if (auto *func = dyn_cast<FuncDecl>(valueDecl)) {
if (auto *params = func->getParameters()) {
return params->size();
}
}
return 0;
}
ValueDecl *
ClangImporter::importBaseMemberDecl(ValueDecl *decl, DeclContext *newContext,
ClangInheritanceInfo inheritance) {
return Impl.importBaseMemberDecl(decl, newContext, inheritance);
}
ValueDecl *ClangImporter::getOriginalForClonedMember(const ValueDecl *decl) {
return Impl.getOriginalForClonedMember(decl);
}
void ClangImporter::diagnoseTopLevelValue(const DeclName &name) {
Impl.diagnoseTopLevelValue(name);
}
void ClangImporter::diagnoseMemberValue(const DeclName &name,
const Type &baseType) {
// Return early for any type that namelookup::extractDirectlyReferencedNominalTypes
// does not know how to handle.
if (!(baseType->getAnyNominal() ||
baseType->is<ExistentialType>() ||
baseType->is<UnboundGenericType>() ||
baseType->is<ArchetypeType>() ||
baseType->is<ProtocolCompositionType>() ||
baseType->is<TupleType>()))
return;
SmallVector<NominalTypeDecl *, 4> nominalTypesToLookInto;
namelookup::extractDirectlyReferencedNominalTypes(baseType,
nominalTypesToLookInto);
for (auto containerDecl : nominalTypesToLookInto) {
const clang::Decl *clangContainerDecl = containerDecl->getClangDecl();
if (isa_and_nonnull<clang::DeclContext>(clangContainerDecl)) {
Impl.diagnoseMemberValue(name,
cast<clang::DeclContext>(clangContainerDecl));
}
if (Impl.ImportForwardDeclarations) {
const clang::Decl *clangContainerDecl = containerDecl->getClangDecl();
if (const clang::ObjCInterfaceDecl *objCInterfaceDecl =
llvm::dyn_cast_or_null<clang::ObjCInterfaceDecl>(
clangContainerDecl); objCInterfaceDecl && !objCInterfaceDecl->hasDefinition()) {
// Emit a diagnostic about how the base type represents a forward
// declared ObjC interface and is in all likelihood missing members.
// We only attach this diagnostic in diagnoseMemberValue rather than
// in SwiftDeclConverter because it is only relevant when the user
// tries to access an unavailable member.
Impl.addImportDiagnostic(
objCInterfaceDecl,
Diagnostic(
diag::
placeholder_for_forward_declared_interface_member_access_failure,
objCInterfaceDecl->getName()),
objCInterfaceDecl->getSourceRange().getBegin());
// Emit any diagnostics attached to the source Clang node (ie. forward
// declaration here note)
Impl.diagnoseTargetDirectly(clangContainerDecl);
} else if (const clang::ObjCProtocolDecl *objCProtocolDecl =
llvm::dyn_cast_or_null<clang::ObjCProtocolDecl>(
clangContainerDecl); objCProtocolDecl && !objCProtocolDecl->hasDefinition()) {
// Same as above but for protocols
Impl.addImportDiagnostic(
objCProtocolDecl,
Diagnostic(
diag::
placeholder_for_forward_declared_protocol_member_access_failure,
objCProtocolDecl->getName()),
objCProtocolDecl->getSourceRange().getBegin());
Impl.diagnoseTargetDirectly(clangContainerDecl);
}
}
}
}
SourceLoc ClangImporter::importSourceLocation(clang::SourceLocation loc) {
auto &bufferImporter = Impl.getBufferImporterForDiagnostics();
return bufferImporter.resolveSourceLocation(
getClangASTContext().getSourceManager(), loc);
}
llvm::Expected<llvm::cas::ObjectRef>
ClangImporter::createEmbeddedBridgingHeaderCacheKey(
llvm::cas::ObjectStore &CAS, llvm::cas::ObjectRef ChainedPCHIncludeTree) {
// Create a cache key for looking up embedded bridging header include tree
// from chained bridging header cache key.
return CAS.store({ChainedPCHIncludeTree},
"ChainedHeaderIncludeTree -> EmbeddedHeaderIncludeTree");
}
bool importer::hasImportAsRefAttr(const clang::RecordDecl *decl) {
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "import_reference" ||
// TODO: Remove this once libSwift hosttools no longer
// requires it.
swiftAttr->getAttribute() == "import_as_ref";
return false;
});
}
static bool hasDiamondInheritanceRefType(const clang::CXXRecordDecl *decl) {
if (!decl->hasDefinition() || decl->isDependentType())
return false;
llvm::DenseSet<const clang::CXXRecordDecl *> seenBases;
bool hasRefDiamond = false;
decl->forallBases([&](const clang::CXXRecordDecl *Base) {
if (hasImportAsRefAttr(Base) && !seenBases.insert(Base).second &&
!decl->isVirtuallyDerivedFrom(Base))
hasRefDiamond = true;
return true;
});
return hasRefDiamond;
}
// Returns the given declaration along with all its parent declarations that are
// reference types.
static llvm::SmallVector<const clang::RecordDecl *, 4>
getRefParentDecls(const clang::RecordDecl *decl, ASTContext &ctx,
ClangImporter::Implementation *importerImpl) {
assert(decl && "decl is null inside getRefParentDecls");
llvm::SmallVector<const clang::RecordDecl *, 4> matchingDecls;
if (hasImportAsRefAttr(decl))
matchingDecls.push_back(decl);
if (const auto *cxxRecordDecl = llvm::dyn_cast<clang::CXXRecordDecl>(decl)) {
if (!cxxRecordDecl->hasDefinition())
return matchingDecls;
if (hasDiamondInheritanceRefType(cxxRecordDecl)) {
if (importerImpl) {
if (!importerImpl->DiagnosedCxxRefDecls.count(decl)) {
HeaderLoc loc(decl->getLocation());
importerImpl->diagnose(loc, diag::cant_infer_frt_in_cxx_inheritance,
decl);
importerImpl->DiagnosedCxxRefDecls.insert(decl);
}
}
return matchingDecls;
}
cxxRecordDecl->forallBases([&](const clang::CXXRecordDecl *baseDecl) {
if (hasImportAsRefAttr(baseDecl))
matchingDecls.push_back(baseDecl);
return true;
});
}
return matchingDecls;
}
llvm::SmallVector<ValueDecl *, 1>
importer::getValueDeclsForName(NominalTypeDecl *decl, StringRef name) {
// If the name is empty, don't try to find any decls.
if (name.empty())
return {};
auto &ctx = decl->getASTContext();
auto clangDecl = decl->getClangDecl();
llvm::SmallVector<ValueDecl *, 1> results;
if (name.starts_with(".")) {
// Look for a member of decl instead of a global.
StringRef memberName = name.drop_front(1);
if (memberName.empty())
return {};
auto declName = DeclName(ctx.getIdentifier(memberName));
auto allResults = evaluateOrDefault(
ctx.evaluator, ClangRecordMemberLookup({decl, declName}), {});
return SmallVector<ValueDecl *, 1>(allResults.begin(), allResults.end());
}
auto *clangMod = clangDecl->getOwningModule();
if (clangMod && clangMod->isSubModule())
clangMod = clangMod->getTopLevelModule();
if (clangMod) {
auto parentModule =
ctx.getClangModuleLoader()->getWrapperForModule(clangMod);
ctx.lookupInModule(parentModule, name, results);
} else {
// There is no Clang module for this declaration, so perform lookup from
// the main module. This will find declarations from the bridging header.
namelookup::lookupInModule(
ctx.MainModule, ctx.getIdentifier(name), /*hasModuleSelector=*/false,
results, NLKind::UnqualifiedLookup,
namelookup::ResolutionKind::Overloadable, ctx.MainModule, SourceLoc(),
NL_UnqualifiedDefault);
// Filter out any declarations that didn't come from Clang.
auto newEnd =
std::remove_if(results.begin(), results.end(),
[&](ValueDecl *decl) { return !decl->getClangDecl(); });
results.erase(newEnd, results.end());
}
return results;
}
static const clang::RecordDecl *
getRefParentOrDiag(const clang::RecordDecl *decl, ASTContext &ctx,
ClangImporter::Implementation *importerImpl) {
auto refParentDecls = getRefParentDecls(decl, ctx, importerImpl);
if (refParentDecls.empty())
return nullptr;
std::set<StringRef> uniqueRetainDecls{}, uniqueReleaseDecls{};
constexpr StringRef retainPrefix = "retain:";
constexpr StringRef releasePrefix = "release:";
for (const auto *refParentDecl : refParentDecls) {
assert(refParentDecl && "refParentDecl is null inside getRefParentOrDiag");
for (const auto *attr : refParentDecl->getAttrs()) {
if (const auto swiftAttr = llvm::dyn_cast<clang::SwiftAttrAttr>(attr)) {
const auto &attribute = swiftAttr->getAttribute();
if (attribute.starts_with(retainPrefix))
uniqueRetainDecls.insert(attribute.drop_front(retainPrefix.size()));
else if (attribute.starts_with(releasePrefix))
uniqueReleaseDecls.insert(attribute.drop_front(releasePrefix.size()));
}
}
}
// Ensure that exactly one unique retain function and one unique release
// function are found.
if (uniqueRetainDecls.size() != 1 || uniqueReleaseDecls.size() != 1) {
if (importerImpl) {
if (!importerImpl->DiagnosedCxxRefDecls.count(decl)) {
HeaderLoc loc(decl->getLocation());
importerImpl->diagnose(loc, diag::cant_infer_frt_in_cxx_inheritance,
decl);
importerImpl->DiagnosedCxxRefDecls.insert(decl);
}
}
return nullptr;
}
return refParentDecls.front();
}
// Is this a pointer to a foreign reference type.
// TODO: We need to review functions like this to ensure that
// CxxRecordSemantics::evaluate is consistently invoked wherever we need to
// determine whether a C++ type qualifies as a foreign reference type
// rdar://145184659
static bool isForeignReferenceType(const clang::QualType type) {
if (!type->isPointerType())
return false;
auto pointeeType =
dyn_cast<clang::RecordType>(type->getPointeeType().getCanonicalType());
if (pointeeType == nullptr)
return false;
return hasImportAsRefAttr(pointeeType->getDecl());
}
static bool hasSwiftAttribute(const clang::Decl *decl, StringRef attr) {
if (decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [&](auto *A) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(A))
return swiftAttr->getAttribute() == attr;
return false;
}))
return true;
if (auto *P = dyn_cast<clang::ParmVarDecl>(decl)) {
bool found = false;
findSwiftAttributes(P->getOriginalType(),
[&](const clang::SwiftAttrAttr *swiftAttr) {
found |= swiftAttr->getAttribute() == attr;
});
return found;
}
return false;
}
bool importer::hasOwnedValueAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "import_owned");
}
bool importer::hasUnsafeAPIAttr(const clang::Decl *decl) {
return hasSwiftAttribute(decl, "import_unsafe");
}
bool importer::hasIteratorAPIAttr(const clang::Decl *decl) {
return hasSwiftAttribute(decl, "import_iterator");
}
bool importer::hasNonCopyableAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "~Copyable");
}
bool importer::hasNonEscapableAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "~Escapable");
}
bool importer::hasEscapableAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "Escapable");
}
/// Recursively checks that there are no pointers in any fields or base classes.
/// Does not check C++ records with specific API annotations.
static bool hasPointerInSubobjects(const clang::CXXRecordDecl *decl) {
clang::PrettyStackTraceDecl trace(decl, clang::SourceLocation(),
decl->getASTContext().getSourceManager(),
"looking for pointers in subobjects of");
// Probably a class template that has not yet been specialized:
if (!decl->getDefinition())
return false;
auto checkType = [](clang::QualType t) {
if (t->isPointerType())
return true;
if (auto recordType = dyn_cast<clang::RecordType>(t.getCanonicalType())) {
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordType->getDecl())) {
if (hasImportAsRefAttr(cxxRecord) || hasOwnedValueAttr(cxxRecord) ||
hasUnsafeAPIAttr(cxxRecord))
return false;
if (hasIteratorAPIAttr(cxxRecord) || isIterator(cxxRecord))
return true;
if (hasPointerInSubobjects(cxxRecord))
return true;
}
}
return false;
};
for (auto field : decl->fields()) {
if (checkType(field->getType()))
return true;
}
for (auto base : decl->bases()) {
if (checkType(base.getType()))
return true;
}
return false;
}
bool importer::isViewType(const clang::CXXRecordDecl *decl) {
return !hasOwnedValueAttr(decl) && hasPointerInSubobjects(decl);
}
static bool hasCopyTypeOperations(const clang::CXXRecordDecl *decl) {
if (decl->hasSimpleCopyConstructor())
return true;
return llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isCopyConstructor() && !ctor->isDeleted() &&
!ctor->isIneligibleOrNotSelected() &&
// FIXME: Support default arguments (rdar://142414553)
ctor->getNumParams() == 1 &&
ctor->getAccess() == clang::AccessSpecifier::AS_public;
});
}
static bool hasMoveTypeOperations(const clang::CXXRecordDecl *decl) {
if (decl->hasSimpleMoveConstructor())
return true;
return llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isMoveConstructor() && !ctor->isDeleted() &&
!ctor->isIneligibleOrNotSelected() &&
// FIXME: Support default arguments (rdar://142414553)
ctor->getNumParams() == 1 &&
ctor->getAccess() == clang::AS_public;
});
}
static bool hasDestroyTypeOperations(const clang::CXXRecordDecl *decl) {
if (decl->hasSimpleDestructor())
return true;
if (auto dtor = decl->getDestructor()) {
if (dtor->isDeleted() || dtor->isIneligibleOrNotSelected() ||
dtor->getAccess() != clang::AS_public) {
return false;
}
return true;
}
return false;
}
static bool hasCustomCopyOrMoveConstructor(const clang::CXXRecordDecl *decl) {
return decl->hasUserDeclaredCopyConstructor() ||
decl->hasUserDeclaredMoveConstructor();
}
static bool
hasConstructorWithUnsupportedDefaultArgs(const clang::CXXRecordDecl *decl) {
return llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return (ctor->isCopyConstructor() || ctor->isMoveConstructor()) &&
// FIXME: Support default arguments (rdar://142414553)
ctor->getNumParams() != 1;
});
}
static bool isSwiftClassType(const clang::CXXRecordDecl *decl) {
// Swift type must be annotated with external_source_symbol attribute.
auto essAttr = decl->getAttr<clang::ExternalSourceSymbolAttr>();
if (!essAttr || essAttr->getLanguage() != "Swift" ||
essAttr->getDefinedIn().empty() || essAttr->getUSR().empty())
return false;
// Ensure that the baseclass is swift::RefCountedClass.
auto baseDecl = decl;
do {
if (baseDecl->getNumBases() != 1)
return false;
auto baseClassSpecifier = *baseDecl->bases_begin();
auto Ty = baseClassSpecifier.getType();
auto nextBaseDecl = Ty->getAsCXXRecordDecl();
if (!nextBaseDecl)
return false;
baseDecl = nextBaseDecl;
} while (baseDecl->getName() != "RefCountedClass");
return true;
}
CxxRecordSemanticsKind
CxxRecordSemantics::evaluate(Evaluator &evaluator,
CxxRecordSemanticsDescriptor desc) const {
const auto *decl = desc.decl;
ClangImporter::Implementation *importerImpl = desc.importerImpl;
if (hasImportAsRefAttr(decl) ||
getRefParentOrDiag(decl, desc.ctx, importerImpl))
return CxxRecordSemanticsKind::Reference;
auto cxxDecl = dyn_cast<clang::CXXRecordDecl>(decl);
if (!cxxDecl) {
return CxxRecordSemanticsKind::Value;
}
if (isSwiftClassType(cxxDecl))
return CxxRecordSemanticsKind::SwiftClassType;
if (hasIteratorAPIAttr(cxxDecl) || isIterator(cxxDecl)) {
return CxxRecordSemanticsKind::Iterator;
}
return CxxRecordSemanticsKind::Value;
}
ValueDecl *
CxxRecordAsSwiftType::evaluate(Evaluator &evaluator,
CxxRecordSemanticsDescriptor desc) const {
auto cxxDecl = dyn_cast<clang::CXXRecordDecl>(desc.decl);
if (!cxxDecl)
return nullptr;
if (!isSwiftClassType(cxxDecl))
return nullptr;
SmallVector<ValueDecl *, 1> results;
auto *essaAttr = cxxDecl->getAttr<clang::ExternalSourceSymbolAttr>();
auto *mod = desc.ctx.getModuleByName(essaAttr->getDefinedIn());
if (!mod) {
// TODO: warn about missing 'import'.
return nullptr;
}
// FIXME: Support renamed declarations.
auto swiftName = cxxDecl->getName();
// FIXME: handle nested Swift types once they're supported.
mod->lookupValue(desc.ctx.getIdentifier(swiftName), NLKind::UnqualifiedLookup,
results);
if (results.size() == 1) {
if (isa<ClassDecl>(results[0]))
return results[0];
}
return nullptr;
}
CxxValueSemanticsKind
CxxValueSemantics::evaluate(Evaluator &evaluator,
CxxValueSemanticsDescriptor desc) const {
const auto *type = desc.type;
auto *importerImpl = desc.importerImpl;
auto desugared = type->getUnqualifiedDesugaredType();
const auto *recordType = desugared->getAs<clang::RecordType>();
if (!recordType)
return CxxValueSemanticsKind::Copyable;
auto recordDecl = recordType->getDecl();
// When a reference type is copied, the pointers value is copied rather than
// the objects storage. This means reference types can be imported as
// copyable to Swift, even when they are non-copyable in C++.
if (recordHasReferenceSemantics(recordDecl, importerImpl))
return CxxValueSemanticsKind::Copyable;
if (recordDecl->isInStdNamespace()) {
// Hack for a base type of std::optional from the Microsoft standard
// library.
if (recordDecl->getIdentifier() &&
recordDecl->getName() == "_Optional_construct_base")
return CxxValueSemanticsKind::Copyable;
}
if (!hasNonCopyableAttr(recordDecl)) {
auto injectedStlAnnotation =
recordDecl->isInStdNamespace()
? STLConditionalParams.find(recordDecl->getName())
: STLConditionalParams.end();
auto STLParams = injectedStlAnnotation != STLConditionalParams.end()
? injectedStlAnnotation->second
: std::vector<int>();
auto conditionalParams = getConditionalCopyableAttrParams(recordDecl);
if (!STLParams.empty() || !conditionalParams.empty()) {
HeaderLoc loc{recordDecl->getLocation()};
std::function checkArgValueSemantics =
[&](clang::TemplateArgument &arg,
StringRef argToCheck) -> std::optional<CxxValueSemanticsKind> {
if (arg.getKind() != clang::TemplateArgument::Type && importerImpl) {
importerImpl->diagnose(loc, diag::type_template_parameter_expected,
argToCheck);
return CxxValueSemanticsKind::Unknown;
}
auto argValueSemantics = evaluateOrDefault(
evaluator,
CxxValueSemantics(
{arg.getAsType()->getUnqualifiedDesugaredType(), importerImpl}),
{});
if (argValueSemantics != CxxValueSemanticsKind::Copyable)
return argValueSemantics;
return std::nullopt;
};
auto result = checkConditionalParams<CxxValueSemanticsKind>(
recordDecl, STLParams, conditionalParams, checkArgValueSemantics);
if (result.has_value())
return result.value();
if (importerImpl)
for (auto name : conditionalParams)
importerImpl->diagnose(loc, diag::unknown_template_parameter, name);
return CxxValueSemanticsKind::Copyable;
}
}
const auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(recordDecl);
if (!cxxRecordDecl || !cxxRecordDecl->isCompleteDefinition()) {
if (hasNonCopyableAttr(recordDecl))
return CxxValueSemanticsKind::MoveOnly;
return CxxValueSemanticsKind::Copyable;
}
bool isCopyable = !hasNonCopyableAttr(cxxRecordDecl) &&
hasCopyTypeOperations(cxxRecordDecl);
bool isMovable = hasMoveTypeOperations(cxxRecordDecl);
if (!hasDestroyTypeOperations(cxxRecordDecl) || (!isCopyable && !isMovable)) {
if (hasConstructorWithUnsupportedDefaultArgs(cxxRecordDecl))
return CxxValueSemanticsKind::UnavailableConstructors;
return CxxValueSemanticsKind::MissingLifetimeOperation;
}
if (hasNonCopyableAttr(cxxRecordDecl) && isMovable)
return CxxValueSemanticsKind::MoveOnly;
if (isCopyable)
return CxxValueSemanticsKind::Copyable;
if (isMovable)
return CxxValueSemanticsKind::MoveOnly;
llvm_unreachable("Could not classify C++ type.");
}
void swift::simple_display(llvm::raw_ostream &out,
CxxValueSemanticsDescriptor desc) {
out << "Checking if '";
out << clang::QualType(desc.type, 0).getAsString();
out << "' is copyable or movable.";
}
SourceLoc swift::extractNearestSourceLoc(CxxValueSemanticsDescriptor) {
return SourceLoc();
}
static bool anySubobjectsSelfContained(const clang::CXXRecordDecl *decl) {
// std::pair and std::tuple might have copy and move constructors, or base
// classes with copy and move constructors, but they are not self-contained
// types, e.g. `std::pair<UnsafeType, T>`.
if (decl->isInStdNamespace() &&
(decl->getName() == "pair" || decl->getName() == "tuple"))
return false;
if (!decl->getDefinition())
return false;
if (hasCustomCopyOrMoveConstructor(decl) || hasOwnedValueAttr(decl))
return true;
auto checkType = [](clang::QualType t) {
if (auto recordType = dyn_cast<clang::RecordType>(t.getCanonicalType())) {
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordType->getDecl())) {
return anySubobjectsSelfContained(cxxRecord);
}
}
return false;
};
for (auto field : decl->fields()) {
if (checkType(field->getType()))
return true;
}
for (auto base : decl->bases()) {
if (checkType(base.getType()))
return true;
}
return false;
}
bool IsSafeUseOfCxxDecl::evaluate(Evaluator &evaluator,
SafeUseOfCxxDeclDescriptor desc) const {
const clang::Decl *decl = desc.decl;
if (auto method = dyn_cast<clang::CXXMethodDecl>(decl)) {
// The user explicitly asked us to import this method.
if (hasUnsafeAPIAttr(method))
return true;
// If it's a static method, it cannot project anything. It's fine.
if (method->isOverloadedOperator() || method->isStatic() ||
isa<clang::CXXConstructorDecl>(decl))
return true;
if (isForeignReferenceType(method->getReturnType()))
return true;
// begin and end methods likely return an interator, so they're unsafe. This
// is required so that automatic the conformance to RAC works properly.
if (method->getNameAsString() == "begin" ||
method->getNameAsString() == "end")
return false;
auto parentQualType = method
->getParent()->getTypeForDecl()->getCanonicalTypeUnqualified();
bool parentIsSelfContained =
!isForeignReferenceType(parentQualType) &&
anySubobjectsSelfContained(method->getParent());
// If it returns a pointer or reference from an owned parent, that's a
// projection (unsafe).
if (method->getReturnType()->isPointerType() ||
method->getReturnType()->isReferenceType())
return !parentIsSelfContained;
// Check if it's one of the known unsafe methods we currently
// mark as safe by default.
if (isUnsafeStdMethod(method))
return false;
// Try to figure out the semantics of the return type. If it's a
// pointer/iterator, it's unsafe.
if (auto returnType = dyn_cast<clang::RecordType>(
method->getReturnType().getCanonicalType())) {
if (auto cxxRecordReturnType =
dyn_cast<clang::CXXRecordDecl>(returnType->getDecl())) {
if (isSwiftClassType(cxxRecordReturnType))
return true;
if (hasIteratorAPIAttr(cxxRecordReturnType) ||
isIterator(cxxRecordReturnType))
return false;
// Mark this as safe to help our diganostics down the road.
if (!cxxRecordReturnType->getDefinition()) {
return true;
}
// A projection of a view type (such as a string_view) from a self
// contained parent is a proejction (unsafe).
if (!anySubobjectsSelfContained(cxxRecordReturnType) &&
isViewType(cxxRecordReturnType)) {
return !parentIsSelfContained;
}
}
}
}
// Otherwise, it's safe.
return true;
}
void swift::simple_display(llvm::raw_ostream &out,
CxxRecordSemanticsDescriptor desc) {
out << "Matching API semantics of C++ record '"
<< desc.decl->getNameAsString() << "'.\n";
}
SourceLoc swift::extractNearestSourceLoc(CxxRecordSemanticsDescriptor desc) {
return SourceLoc();
}
void swift::simple_display(llvm::raw_ostream &out,
SafeUseOfCxxDeclDescriptor desc) {
out << "Checking if '";
if (auto namedDecl = dyn_cast<clang::NamedDecl>(desc.decl))
out << namedDecl->getNameAsString();
else
out << "<invalid decl>";
out << "' is safe to use in context.\n";
}
SourceLoc swift::extractNearestSourceLoc(SafeUseOfCxxDeclDescriptor desc) {
return SourceLoc();
}
void swift::simple_display(llvm::raw_ostream &out,
ClangDeclExplicitSafetyDescriptor desc) {
out << "Checking if '";
if (auto namedDecl = dyn_cast<clang::NamedDecl>(desc.decl))
out << namedDecl->getNameAsString();
else
out << "<invalid decl>";
out << "' is explicitly safe.\n";
}
SourceLoc swift::extractNearestSourceLoc(ClangDeclExplicitSafetyDescriptor desc) {
return SourceLoc();
}
CustomRefCountingOperationResult CustomRefCountingOperation::evaluate(
Evaluator &evaluator, CustomRefCountingOperationDescriptor desc) const {
auto swiftDecl = desc.decl;
auto operation = desc.kind;
auto &ctx = swiftDecl->getASTContext();
std::string operationStr = operation == CustomRefCountingOperationKind::retain
? "retain:"
: "release:";
auto decl = cast<clang::RecordDecl>(swiftDecl->getClangDecl());
if (!hasImportAsRefAttr(decl)) {
if (auto parentRefDecl = getRefParentOrDiag(decl, ctx, nullptr))
decl = parentRefDecl;
}
if (!decl->hasAttrs())
return {CustomRefCountingOperationResult::noAttribute, nullptr, ""};
llvm::SmallVector<const clang::SwiftAttrAttr *, 1> retainReleaseAttrs;
for (auto *attr : decl->getAttrs()) {
if (auto swiftAttr = llvm::dyn_cast<clang::SwiftAttrAttr>(attr)) {
if (swiftAttr->getAttribute().starts_with(operationStr)) {
retainReleaseAttrs.push_back(swiftAttr);
}
}
}
if (retainReleaseAttrs.empty())
return {CustomRefCountingOperationResult::noAttribute, nullptr, ""};
if (retainReleaseAttrs.size() > 1)
return {CustomRefCountingOperationResult::tooManyAttributes, nullptr, ""};
auto name = retainReleaseAttrs.front()
->getAttribute()
.drop_front(StringRef(operationStr).size())
.str();
if (name == "immortal")
return {CustomRefCountingOperationResult::immortal, nullptr, name};
llvm::SmallVector<ValueDecl *, 1> results =
getValueDeclsForName(const_cast<ClassDecl*>(swiftDecl), name);
if (results.size() == 1)
return {CustomRefCountingOperationResult::foundOperation, results.front(),
name};
if (results.empty())
return {CustomRefCountingOperationResult::notFound, nullptr, name};
return {CustomRefCountingOperationResult::tooManyFound, nullptr, name};
}
ExplicitSafety ClangDeclExplicitSafety::evaluate(
Evaluator &evaluator, ClangDeclExplicitSafetyDescriptor desc) const {
// FIXME: Also similar to hasPointerInSubobjects
// FIXME: should probably also subsume IsSafeUseOfCxxDecl
if (desc.isClass)
// Safety for class types is handled a bit differently than other types.
// If it is not explicitly marked unsafe, it is always explicitly safe.
return hasSwiftAttribute(desc.decl, "unsafe") ? ExplicitSafety::Unsafe
: ExplicitSafety::Safe;
// Clang record types are considered explicitly unsafe if any of their fields,
// base classes, and template type parameters are unsafe. We use a stack for
// this recursive traversal.
//
// Invariant: if any Decl in the stack is unsafe, then desc.decl is unsafe.
llvm::SmallVector<const clang::Decl *, 4> stack;
// Keep track of which Decls we've seen to avoid cycles.
llvm::SmallDenseSet<const clang::Decl *, 4> seen;
// Check whether a type is unsafe. This function may also push to the stack.
auto isUnsafe = [&](clang::QualType type) -> bool {
auto pointeeType = type->getPointeeType();
if (!pointeeType.isNull()) {
if (pointeeType->isFunctionType())
return false; // Function pointers are not unsafe
auto *recordDecl = pointeeType->getAsRecordDecl();
if (recordDecl && hasImportAsRefAttr(recordDecl))
return false; // Pointers are ok if imported as foreign reference types
return true; // All other pointers are considered unsafe.
}
if (auto *decl = type->getAsTagDecl()) {
// We need to check the safety of the TagDecl corresponding to this type
if (seen.insert(decl).second)
// Only visit decl if we have not seen it before, to avoid cycles
stack.push_back(decl);
}
return false; // This type does not look unsafe on its own
};
stack.push_back(desc.decl);
seen.insert(desc.decl);
while (!stack.empty()) {
const clang::Decl *decl = stack.back();
stack.pop_back();
// Found unsafe; whether decl == desc.decl or not, desc.decl is unsafe
// (see invariant, above)
if (hasSwiftAttribute(decl, "unsafe"))
return ExplicitSafety::Unsafe;
if (hasSwiftAttribute(decl, "safe"))
continue;
// Enums are always safe
if (isa<clang::EnumDecl>(decl))
continue;
auto *recordDecl = dyn_cast<clang::RecordDecl>(decl);
if (!recordDecl) {
if (decl == desc.decl)
// If desc.decl is not a RecordDecl or EnumDecl, safety is unspecified.
return ExplicitSafety::Unspecified;
// If we encountered non-Record non-Enum decl during recursive traversal,
// we need to continue checking safety of other decls.
continue;
}
// Escapability annotations imply that the declaration is safe
if (evaluateOrDefault(
evaluator,
ClangTypeEscapability({recordDecl->getTypeForDecl(), nullptr}),
CxxEscapability::Unknown) != CxxEscapability::Unknown)
continue;
// A template class is unsafe if any of its type arguments are unsafe.
// Note that this does not rely on the record being defined.
if (auto *specDecl =
dyn_cast<clang::ClassTemplateSpecializationDecl>(recordDecl)) {
for (auto arg : specDecl->getTemplateArgs().asArray()) {
switch (arg.getKind()) {
case clang::TemplateArgument::Type:
if (isUnsafe(arg.getAsType()))
return ExplicitSafety::Unsafe;
break;
case clang::TemplateArgument::Pack:
for (auto pkArg : arg.getPackAsArray()) {
if (pkArg.getKind() == clang::TemplateArgument::Type &&
isUnsafe(pkArg.getAsType()))
return ExplicitSafety::Unsafe;
}
break;
default:
continue;
}
}
}
recordDecl = recordDecl->getDefinition();
if (!recordDecl) {
if (decl == desc.decl)
// If desc.decl doesn't have a definition, safety is unspecified.
return ExplicitSafety::Unspecified;
// If we encountered decl without definition during recursive traversal,
// we need to continue checking safety of other decls.
continue;
}
if (auto *cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(recordDecl)) {
for (auto base : cxxRecordDecl->bases()) {
if (isUnsafe(base.getType()))
return ExplicitSafety::Unsafe;
}
}
for (auto *field : recordDecl->fields()) {
if (isUnsafe(field->getType()))
return ExplicitSafety::Unsafe;
}
}
// desc.decl isn't explicitly marked unsafe, and none of the types/decls
// reachable from desc.decl are considered unsafe either. Cases where we would
// consider desc.decl's safety unspecified should have returned early from the
// loop. Thus, we can conclude that desc.decl is safe.
return ExplicitSafety::Safe;
}
bool ClangDeclExplicitSafety::isCached() const {
return isa<clang::RecordDecl>(std::get<0>(getStorage()).decl);
}
const clang::TypedefType *ClangImporter::getTypeDefForCXXCFOptionsDefinition(
const clang::Decl *candidateDecl) {
if (!Impl.SwiftContext.LangOpts.EnableCXXInterop)
return nullptr;
auto enumDecl = dyn_cast<clang::EnumDecl>(candidateDecl);
if (!enumDecl)
return nullptr;
if (!enumDecl->getDeclName().isEmpty())
return nullptr;
const clang::ElaboratedType *elaboratedType =
dyn_cast<clang::ElaboratedType>(enumDecl->getIntegerType().getTypePtr());
if (auto typedefType =
elaboratedType
? dyn_cast<clang::TypedefType>(elaboratedType->desugar())
: dyn_cast<clang::TypedefType>(
enumDecl->getIntegerType().getTypePtr())) {
auto enumExtensibilityAttr =
elaboratedType
? enumDecl->getAttr<clang::EnumExtensibilityAttr>()
: typedefType->getDecl()->getAttr<clang::EnumExtensibilityAttr>();
const bool hasFlagEnumAttr =
elaboratedType ? enumDecl->hasAttr<clang::FlagEnumAttr>()
: typedefType->getDecl()->hasAttr<clang::FlagEnumAttr>();
if (enumExtensibilityAttr &&
enumExtensibilityAttr->getExtensibility() ==
clang::EnumExtensibilityAttr::Open &&
hasFlagEnumAttr) {
return Impl.isUnavailableInSwift(typedefType->getDecl()) ? typedefType
: nullptr;
}
}
return nullptr;
}
bool importer::requiresCPlusPlus(const clang::Module *module) {
// The libc++ modulemap doesn't currently declare the requirement.
if (isCxxStdModule(module))
return true;
// Modulemaps often declare the requirement for the top-level module only.
if (auto parent = module->Parent) {
if (requiresCPlusPlus(parent))
return true;
}
return llvm::any_of(module->Requirements, [](clang::Module::Requirement req) {
return req.FeatureName == "cplusplus";
});
}
bool importer::isCxxStdModule(const clang::Module *module) {
return isCxxStdModule(module->getTopLevelModuleName(),
module->getTopLevelModule()->IsSystem);
}
bool importer::isCxxStdModule(StringRef moduleName, bool IsSystem) {
if (moduleName == "std")
return true;
// In libc++ versions 17-19 the module is split into multiple top-level
// modules (std_vector, std_utility, etc).
if (IsSystem && moduleName.starts_with("std_")) {
if (moduleName == "std_errno_h")
return false;
return true;
}
return false;
}
ImportPath::Builder ClangImporter::Implementation::getSwiftModulePath(const clang::Module *M) {
ImportPath::Builder builder;
while (M) {
if (!M->isSubModule() && M->Name == "std")
builder.push_back(SwiftContext.Id_CxxStdlib);
else
builder.push_back(SwiftContext.getIdentifier(M->Name));
M = M->Parent;
}
std::reverse(builder.begin(), builder.end());
return builder;
}
std::optional<clang::QualType>
importer::getCxxReferencePointeeTypeOrNone(const clang::Type *type) {
if (type->isReferenceType())
return type->getPointeeType();
return {};
}
bool importer::isCxxConstReferenceType(const clang::Type *type) {
auto pointeeType = getCxxReferencePointeeTypeOrNone(type);
return pointeeType && pointeeType->isConstQualified();
}
AccessLevel importer::convertClangAccess(clang::AccessSpecifier access) {
switch (access) {
case clang::AS_public:
// C++ 'public' is actually closer to Swift 'open' than Swift 'public',
// since C++ 'public' does not prevent users from subclassing a type or
// overriding a method. However, subclassing and overriding are currently
// unsupported across the interop boundary, so we conservatively map C++
// 'public' to Swift 'public' in case there are other C++ subtleties that
// are being missed at this time (e.g., C++ 'final' vs Swift 'final').
return AccessLevel::Public;
case clang::AS_protected:
// Swift does not have a notion of protected fields, so map C++ 'protected'
// to Swift 'private'.
return AccessLevel::Private;
case clang::AS_private:
// N.B. Swift 'private' is more restrictive than C++ 'private' because it
// also cares about what source file the member is accessed.
return AccessLevel::Private;
case clang::AS_none:
// The fictional 'none' specifier is given to top-level C++ declarations,
// for which C++ lacks the syntax to give an access specifier. (It may also
// be used in other cases I'm not aware of.) Those declarations are globally
// visible and thus correspond to Swift 'public' (with the same caveats
// about Swift 'public' vs 'open'; see above).
return AccessLevel::Public;
}
}
AccessLevel
ClangInheritanceInfo::accessForBaseDecl(const ValueDecl *baseDecl) const {
if (!isInheriting())
return AccessLevel::Public;
static_assert(AccessLevel::Private < AccessLevel::Public &&
"std::min() relies on this ordering");
auto inherited =
access ? importer::convertClangAccess(*access) : AccessLevel::Private;
return std::min(baseDecl->getFormalAccess(), inherited);
}
void ClangInheritanceInfo::setUnavailableIfNecessary(
const ValueDecl *baseDecl, ValueDecl *clonedDecl) const {
if (!isInheriting())
return;
auto *clangDecl =
dyn_cast_or_null<clang::NamedDecl>(baseDecl->getClangDecl());
if (!clangDecl)
return;
const char *msg = nullptr;
if (clangDecl->getAccess() == clang::AS_private)
msg = "this base member is not accessible because it is private";
else if (isNestedPrivate())
msg = "this base member is not accessible because of private inheritance";
if (msg)
clonedDecl->addAttribute(AvailableAttr::createUniversallyUnavailable(
clonedDecl->getASTContext(), msg));
}
SmallVector<std::pair<StringRef, clang::SourceLocation>, 1>
importer::getPrivateFileIDAttrs(const clang::CXXRecordDecl *decl) {
llvm::SmallVector<std::pair<StringRef, clang::SourceLocation>, 1> files;
constexpr auto prefix = StringRef("private_fileid:");
if (decl->hasAttrs()) {
for (const auto *attr : decl->getAttrs()) {
const auto *swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr);
if (swiftAttr && swiftAttr->getAttribute().starts_with(prefix))
files.push_back({swiftAttr->getAttribute().drop_front(prefix.size()),
attr->getLocation()});
}
}
return files;
}
bool importer::declIsCxxOnly(const Decl *decl) {
if (auto *clangDecl = decl->getClangDecl()) {
return llvm::TypeSwitch<const clang::Decl *, bool>(clangDecl)
.template Case<const clang::NamespaceAliasDecl>(
[](auto) { return true; })
.template Case<const clang::NamespaceDecl>([](auto) { return true; })
// For the issues this filter function was trying to resolve at its
// time of writing, it suffices to only filter out namespaces. But
// there are many other kinds of clang::Decls that only appear in C++.
// This is obvious for some decls, e.g., templates, using directives,
// non-trivial structs, and scoped enums; but it is not obvious for
// other kinds of decls, e.g., an enum member or some variable.
//
// TODO: enumerate those kinds in a more precise and robust way
.Default([](auto) { return false; });
}
return false;
}
bool importer::isClangNamespace(const DeclContext *dc) {
if (const auto *ed = dc->getSelfEnumDecl())
return isa_and_nonnull<clang::NamespaceDecl>(ed->getClangDecl());
return false;
}
bool importer::isSymbolicCircularBase(const clang::CXXRecordDecl *symbolicClass,
const clang::RecordDecl *base) {
auto *classTemplate = symbolicClass->getDescribedClassTemplate();
if (!classTemplate)
return false;
auto *specializedBase =
dyn_cast<clang::ClassTemplateSpecializationDecl>(base);
if (!specializedBase)
return false;
return classTemplate->getCanonicalDecl() ==
specializedBase->getSpecializedTemplate()->getCanonicalDecl();
}
std::optional<ResultConvention>
swift::importer::getCxxRefConventionWithAttrs(const clang::Decl *decl) {
using RC = ResultConvention;
if (auto result =
matchSwiftAttr<RC>(decl, {{"returns_unretained", RC::Unowned},
{"returns_retained", RC::Owned}}))
return result;
const clang::Type *returnTy = nullptr;
if (const auto *func = llvm::dyn_cast<clang::FunctionDecl>(decl))
returnTy = func->getReturnType().getTypePtrOrNull();
else if (const auto *method = llvm::dyn_cast<clang::ObjCMethodDecl>(decl))
returnTy = method->getReturnType().getTypePtrOrNull();
if (!returnTy)
return std::nullopt;
const clang::Type *desugaredReturnTy =
returnTy->getUnqualifiedDesugaredType();
if (const auto *ptrType =
llvm::dyn_cast<clang::PointerType>(desugaredReturnTy)) {
if (const clang::RecordDecl *record =
ptrType->getPointeeType()->getAsRecordDecl()) {
return matchSwiftAttrConsideringInheritance<RC>(
record, {{"returned_as_unretained_by_default", RC::Unowned}});
}
}
return std::nullopt;
}
NominalType *swift::stripInlineNamespaces(NominalType *outer,
NominalType *inner) {
if (!outer || !inner || inner == outer)
return nullptr;
auto CDInner = inner->getDecl()->getClangDecl();
while (inner && isa_and_nonnull<clang::NamespaceDecl>(CDInner) &&
cast<clang::NamespaceDecl>(CDInner)->isInline() &&
inner->getCanonicalType() != outer->getCanonicalType()) {
CDInner = cast<clang::Decl>(CDInner->getDeclContext());
inner = dyn_cast<NominalType>(inner->getParent().getPointer());
}
return inner;
}