mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Make the addSubstitution() and addConformance() methods private, and declare GenericEnvironment and GenericSignature as friends of SubstitutionMap. At some point in the future, we can switch to a more efficient representation of SubstitutionMap, where instead of storing multiple hashtables, we store arrays; the keys are pre-determined.
724 lines
25 KiB
C++
724 lines
25 KiB
C++
//===--- GenericSignature.cpp - Generic Signature AST ---------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the GenericSignature class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/GenericSignatureBuilder.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/Types.h"
|
|
|
|
using namespace swift;
|
|
|
|
GenericSignature::GenericSignature(ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements,
|
|
bool isKnownCanonical)
|
|
: NumGenericParams(params.size()), NumRequirements(requirements.size()),
|
|
CanonicalSignatureOrASTContext()
|
|
{
|
|
auto paramsBuffer = getGenericParamsBuffer();
|
|
for (unsigned i = 0; i < NumGenericParams; ++i) {
|
|
paramsBuffer[i] = params[i];
|
|
}
|
|
|
|
auto reqtsBuffer = getRequirementsBuffer();
|
|
for (unsigned i = 0; i < NumRequirements; ++i) {
|
|
reqtsBuffer[i] = requirements[i];
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Make sure generic parameters are in the right order, and
|
|
// none are missing.
|
|
unsigned depth = 0;
|
|
unsigned count = 0;
|
|
for (auto param : params) {
|
|
if (param->getDepth() != depth) {
|
|
assert(param->getDepth() > depth &&
|
|
"Generic parameter depth mismatch");
|
|
depth = param->getDepth();
|
|
count = 0;
|
|
}
|
|
assert(param->getIndex() == count &&
|
|
"Generic parameter index mismatch");
|
|
count++;
|
|
}
|
|
#endif
|
|
|
|
if (isKnownCanonical)
|
|
CanonicalSignatureOrASTContext = &getASTContext(params, requirements);
|
|
}
|
|
|
|
ArrayRef<GenericTypeParamType *>
|
|
GenericSignature::getInnermostGenericParams() const {
|
|
auto params = getGenericParams();
|
|
|
|
// Find the point at which the depth changes.
|
|
unsigned depth = params.back()->getDepth();
|
|
for (unsigned n = params.size(); n > 0; --n) {
|
|
if (params[n-1]->getDepth() != depth) {
|
|
return params.slice(n);
|
|
}
|
|
}
|
|
|
|
// All parameters are at the same depth.
|
|
return params;
|
|
}
|
|
|
|
std::string GenericSignature::gatherGenericParamBindingsText(
|
|
ArrayRef<Type> types, const TypeSubstitutionMap &substitutions) const {
|
|
llvm::SmallPtrSet<GenericTypeParamType *, 2> knownGenericParams;
|
|
for (auto type : types) {
|
|
type.visit([&](Type type) {
|
|
if (auto gp = type->getAs<GenericTypeParamType>()) {
|
|
knownGenericParams.insert(
|
|
gp->getCanonicalType()->castTo<GenericTypeParamType>());
|
|
}
|
|
});
|
|
}
|
|
|
|
if (knownGenericParams.empty())
|
|
return "";
|
|
|
|
SmallString<128> result;
|
|
for (auto gp : this->getGenericParams()) {
|
|
auto canonGP = gp->getCanonicalType()->castTo<GenericTypeParamType>();
|
|
if (!knownGenericParams.count(canonGP))
|
|
continue;
|
|
|
|
if (result.empty())
|
|
result += " [with ";
|
|
else
|
|
result += ", ";
|
|
result += gp->getName().str();
|
|
result += " = ";
|
|
|
|
auto found = substitutions.find(canonGP);
|
|
if (found == substitutions.end())
|
|
return "";
|
|
|
|
result += found->second.getString();
|
|
}
|
|
|
|
result += "]";
|
|
return result.str().str();
|
|
}
|
|
|
|
ASTContext &GenericSignature::getASTContext(
|
|
ArrayRef<swift::GenericTypeParamType *> params,
|
|
ArrayRef<swift::Requirement> requirements) {
|
|
// The params and requirements cannot both be empty.
|
|
if (!params.empty())
|
|
return params.front()->getASTContext();
|
|
else
|
|
return requirements.front().getFirstType()->getASTContext();
|
|
}
|
|
|
|
GenericSignatureBuilder *GenericSignature::getGenericSignatureBuilder(ModuleDecl &mod) {
|
|
// The generic signature builder is associated with the canonical signature.
|
|
if (!isCanonical())
|
|
return getCanonicalSignature()->getGenericSignatureBuilder(mod);
|
|
|
|
// generic signature builders are stored on the ASTContext.
|
|
return getASTContext().getOrCreateGenericSignatureBuilder(CanGenericSignature(this),
|
|
&mod);
|
|
}
|
|
|
|
bool GenericSignature::isCanonical() const {
|
|
if (CanonicalSignatureOrASTContext.is<ASTContext*>()) return true;
|
|
|
|
return getCanonicalSignature() == this;
|
|
}
|
|
|
|
CanGenericSignature GenericSignature::getCanonical(
|
|
ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements) {
|
|
// Canonicalize the parameters and requirements.
|
|
SmallVector<GenericTypeParamType*, 8> canonicalParams;
|
|
canonicalParams.reserve(params.size());
|
|
for (auto param : params) {
|
|
canonicalParams.push_back(cast<GenericTypeParamType>(param->getCanonicalType()));
|
|
}
|
|
|
|
SmallVector<Requirement, 8> canonicalRequirements;
|
|
canonicalRequirements.reserve(requirements.size());
|
|
for (auto &reqt : requirements) {
|
|
if (reqt.getKind() != RequirementKind::Layout) {
|
|
auto secondTy = reqt.getSecondType();
|
|
canonicalRequirements.push_back(
|
|
Requirement(reqt.getKind(), reqt.getFirstType()->getCanonicalType(),
|
|
secondTy ? secondTy->getCanonicalType() : CanType()));
|
|
} else
|
|
canonicalRequirements.push_back(
|
|
Requirement(reqt.getKind(), reqt.getFirstType()->getCanonicalType(),
|
|
reqt.getLayoutConstraint()));
|
|
}
|
|
auto canSig = get(canonicalParams, canonicalRequirements,
|
|
/*isKnownCanonical=*/true);
|
|
return CanGenericSignature(canSig);
|
|
}
|
|
|
|
CanGenericSignature
|
|
GenericSignature::getCanonicalSignature() const {
|
|
// If we haven't computed the canonical signature yet, do so now.
|
|
if (CanonicalSignatureOrASTContext.isNull()) {
|
|
// Compute the canonical signature.
|
|
CanGenericSignature canSig = getCanonical(getGenericParams(),
|
|
getRequirements());
|
|
|
|
// Record either the canonical signature or an indication that
|
|
// this is the canonical signature.
|
|
if (canSig != this)
|
|
CanonicalSignatureOrASTContext = canSig;
|
|
else
|
|
CanonicalSignatureOrASTContext = &getGenericParams()[0]->getASTContext();
|
|
|
|
// Return the canonical signature.
|
|
return canSig;
|
|
}
|
|
|
|
// A stored ASTContext indicates that this is the canonical
|
|
// signature.
|
|
if (CanonicalSignatureOrASTContext.is<ASTContext*>())
|
|
// TODO: CanGenericSignature should be const-correct.
|
|
return CanGenericSignature(const_cast<GenericSignature*>(this));
|
|
|
|
// Otherwise, return the stored canonical signature.
|
|
return CanGenericSignature(
|
|
CanonicalSignatureOrASTContext.get<GenericSignature*>());
|
|
}
|
|
|
|
GenericEnvironment *GenericSignature::createGenericEnvironment(
|
|
ModuleDecl &mod) {
|
|
auto *builder = getGenericSignatureBuilder(mod);
|
|
return GenericEnvironment::getIncomplete(this, builder);
|
|
}
|
|
|
|
|
|
ASTContext &GenericSignature::getASTContext() const {
|
|
// Canonical signatures store the ASTContext directly.
|
|
if (auto ctx = CanonicalSignatureOrASTContext.dyn_cast<ASTContext *>())
|
|
return *ctx;
|
|
|
|
// For everything else, just get it from the generic parameter.
|
|
return getASTContext(getGenericParams(), getRequirements());
|
|
}
|
|
|
|
Optional<ProtocolConformanceRef>
|
|
GenericSignature::lookupConformance(CanType type, ProtocolDecl *proto) const {
|
|
// FIXME: Actually implement this properly.
|
|
auto *M = proto->getParentModule();
|
|
|
|
if (type->isTypeParameter())
|
|
return ProtocolConformanceRef(proto);
|
|
|
|
return M->lookupConformance(type, proto,
|
|
M->getASTContext().getLazyResolver());
|
|
}
|
|
|
|
bool GenericSignature::enumeratePairedRequirements(
|
|
llvm::function_ref<bool(Type, ArrayRef<Requirement>)> fn) const {
|
|
// We'll be walking through the list of requirements.
|
|
ArrayRef<Requirement> reqs = getRequirements();
|
|
unsigned curReqIdx = 0, numReqs = reqs.size();
|
|
|
|
// ... and walking through the list of generic parameters.
|
|
ArrayRef<GenericTypeParamType *> genericParams = getGenericParams();
|
|
unsigned curGenericParamIdx = 0, numGenericParams = genericParams.size();
|
|
|
|
/// Local function to 'catch up' to the next dependent type we're going to
|
|
/// visit, calling the function for each of the generic parameters in the
|
|
/// generic parameter list prior to this parameter.
|
|
auto enumerateGenericParamsUpToDependentType = [&](CanType depTy) -> bool {
|
|
// Figure out where we should stop when enumerating generic parameters.
|
|
unsigned stopDepth, stopIndex;
|
|
if (auto gp = dyn_cast_or_null<GenericTypeParamType>(depTy)) {
|
|
stopDepth = gp->getDepth();
|
|
stopIndex = gp->getIndex();
|
|
} else {
|
|
stopDepth = genericParams.back()->getDepth() + 1;
|
|
stopIndex = 0;
|
|
}
|
|
|
|
// Enumerate generic parameters up to the stopping point, calling the
|
|
// callback function for each one
|
|
while (curGenericParamIdx != numGenericParams) {
|
|
auto curGenericParam = genericParams[curGenericParamIdx];
|
|
|
|
// If the current generic parameter is before our stopping point, call
|
|
// the function.
|
|
if (curGenericParam->getDepth() < stopDepth ||
|
|
(curGenericParam->getDepth() == stopDepth &&
|
|
curGenericParam->getIndex() < stopIndex)) {
|
|
if (fn(curGenericParam, { })) return true;
|
|
++curGenericParamIdx;
|
|
continue;
|
|
}
|
|
|
|
// If the current generic parameter is at our stopping point, we're
|
|
// done.
|
|
if (curGenericParam->getDepth() == stopDepth &&
|
|
curGenericParam->getIndex() == stopIndex) {
|
|
++curGenericParamIdx;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, there's nothing to do.
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Walk over all of the requirements.
|
|
while (curReqIdx != numReqs) {
|
|
// "Catch up" by enumerating generic parameters up to this dependent type.
|
|
CanType depTy = reqs[curReqIdx].getFirstType()->getCanonicalType();
|
|
if (enumerateGenericParamsUpToDependentType(depTy)) return true;
|
|
|
|
// Utility to skip over non-conformance constraints that apply to this
|
|
// type.
|
|
bool sawSameTypeToConcreteConstraint = false;
|
|
auto skipNonConformanceConstraints = [&] {
|
|
while (curReqIdx != numReqs &&
|
|
reqs[curReqIdx].getKind() != RequirementKind::Conformance &&
|
|
reqs[curReqIdx].getFirstType()->getCanonicalType() == depTy) {
|
|
// Record whether we saw a same-type constraint mentioning this type.
|
|
if (reqs[curReqIdx].getKind() == RequirementKind::SameType &&
|
|
!reqs[curReqIdx].getSecondType()->isTypeParameter())
|
|
sawSameTypeToConcreteConstraint = true;
|
|
|
|
++curReqIdx;
|
|
}
|
|
};
|
|
|
|
// First, skip past any non-conformance constraints on this type.
|
|
skipNonConformanceConstraints();
|
|
|
|
// Collect all of the conformance constraints for this dependent type.
|
|
unsigned startIdx = curReqIdx;
|
|
unsigned endIdx = curReqIdx;
|
|
while (curReqIdx != numReqs &&
|
|
reqs[curReqIdx].getKind() == RequirementKind::Conformance &&
|
|
reqs[curReqIdx].getFirstType()->getCanonicalType() == depTy) {
|
|
++curReqIdx;
|
|
endIdx = curReqIdx;
|
|
}
|
|
|
|
// Skip any trailing non-conformance constraints.
|
|
skipNonConformanceConstraints();
|
|
|
|
// If there were any conformance constraints, or we have a generic
|
|
// parameter we can't skip, invoke the callback.
|
|
if ((startIdx != endIdx ||
|
|
(isa<GenericTypeParamType>(depTy) && !sawSameTypeToConcreteConstraint)) &&
|
|
fn(depTy, reqs.slice(startIdx, endIdx-startIdx)))
|
|
return true;
|
|
}
|
|
|
|
// Catch up on any remaining generic parameters.
|
|
return enumerateGenericParamsUpToDependentType(CanType());
|
|
}
|
|
|
|
void GenericSignature::populateParentMap(SubstitutionMap &subMap) const {
|
|
for (auto reqt : getRequirements()) {
|
|
if (reqt.getKind() != RequirementKind::SameType)
|
|
continue;
|
|
|
|
auto first = reqt.getFirstType();
|
|
auto second = reqt.getSecondType();
|
|
|
|
if (!first->isTypeParameter() || !second->isTypeParameter())
|
|
continue;
|
|
|
|
if (auto *firstMemTy = first->getAs<DependentMemberType>()) {
|
|
subMap.addParent(second->getCanonicalType(),
|
|
firstMemTy->getBase()->getCanonicalType(),
|
|
firstMemTy->getAssocType());
|
|
}
|
|
|
|
if (auto *secondMemTy = second->getAs<DependentMemberType>()) {
|
|
subMap.addParent(first->getCanonicalType(),
|
|
secondMemTy->getBase()->getCanonicalType(),
|
|
secondMemTy->getAssocType());
|
|
}
|
|
}
|
|
}
|
|
|
|
SubstitutionMap
|
|
GenericSignature::getSubstitutionMap(SubstitutionList subs) const {
|
|
SubstitutionMap result;
|
|
|
|
// An empty parameter list gives an empty map.
|
|
if (subs.empty())
|
|
assert(getGenericParams().empty() || areAllParamsConcrete());
|
|
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
auto sub = subs.front();
|
|
subs = subs.slice(1);
|
|
|
|
auto canTy = depTy->getCanonicalType();
|
|
if (isa<SubstitutableType>(canTy))
|
|
result.addSubstitution(cast<SubstitutableType>(canTy),
|
|
sub.getReplacement());
|
|
for (auto conformance : sub.getConformances())
|
|
result.addConformance(canTy, conformance);
|
|
}
|
|
|
|
assert(subs.empty() && "did not use all substitutions?!");
|
|
populateParentMap(result);
|
|
return result;
|
|
}
|
|
|
|
SubstitutionMap
|
|
GenericSignature::
|
|
getSubstitutionMap(TypeSubstitutionFn subs,
|
|
GenericSignature::LookupConformanceFn lookupConformance) const {
|
|
SubstitutionMap subMap;
|
|
|
|
// Enumerate all of the requirements that require substitution.
|
|
enumeratePairedRequirements([&](Type depTy, ArrayRef<Requirement> reqs) {
|
|
auto canTy = depTy->getCanonicalType();
|
|
|
|
// Compute the replacement type.
|
|
Type currentReplacement = depTy.subst(subs, lookupConformance,
|
|
SubstFlags::UseErrorType);
|
|
if (auto substTy = dyn_cast<SubstitutableType>(canTy))
|
|
subMap.addSubstitution(substTy, currentReplacement);
|
|
|
|
// Collect the conformances.
|
|
for (auto req: reqs) {
|
|
assert(req.getKind() == RequirementKind::Conformance);
|
|
auto protoType = req.getSecondType()->castTo<ProtocolType>();
|
|
if (auto conformance = lookupConformance(canTy,
|
|
currentReplacement,
|
|
protoType)) {
|
|
subMap.addConformance(canTy, *conformance);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
});
|
|
|
|
populateParentMap(subMap);
|
|
return subMap;
|
|
}
|
|
|
|
SmallVector<Type, 4> GenericSignature::getAllDependentTypes() const {
|
|
SmallVector<Type, 4> result;
|
|
enumeratePairedRequirements([&](Type type, ArrayRef<Requirement>) {
|
|
result.push_back(type);
|
|
return false;
|
|
});
|
|
|
|
return result;
|
|
}
|
|
|
|
void GenericSignature::
|
|
getSubstitutions(const TypeSubstitutionMap &subs,
|
|
GenericSignature::LookupConformanceFn lookupConformance,
|
|
SmallVectorImpl<Substitution> &result) const {
|
|
getSubstitutions(QueryTypeSubstitutionMap{subs}, lookupConformance,
|
|
result);
|
|
}
|
|
|
|
void GenericSignature::
|
|
getSubstitutions(TypeSubstitutionFn subs,
|
|
GenericSignature::LookupConformanceFn lookupConformance,
|
|
SmallVectorImpl<Substitution> &result) const {
|
|
|
|
// Enumerate all of the requirements that require substitution.
|
|
enumeratePairedRequirements([&](Type depTy, ArrayRef<Requirement> reqs) {
|
|
auto &ctx = getASTContext();
|
|
|
|
// Compute the replacement type.
|
|
Type currentReplacement = depTy.subst(subs, lookupConformance);
|
|
if (!currentReplacement)
|
|
currentReplacement = ErrorType::get(depTy);
|
|
|
|
// Collect the conformances.
|
|
SmallVector<ProtocolConformanceRef, 4> currentConformances;
|
|
for (auto req: reqs) {
|
|
assert(req.getKind() == RequirementKind::Conformance);
|
|
auto protoType = req.getSecondType()->castTo<ProtocolType>();
|
|
if (auto conformance = lookupConformance(depTy->getCanonicalType(),
|
|
currentReplacement,
|
|
protoType)) {
|
|
currentConformances.push_back(*conformance);
|
|
} else {
|
|
if (!currentReplacement->hasError())
|
|
currentReplacement = ErrorType::get(currentReplacement);
|
|
currentConformances.push_back(
|
|
ProtocolConformanceRef(protoType->getDecl()));
|
|
}
|
|
}
|
|
|
|
// Add it to the final substitution list.
|
|
result.push_back({
|
|
currentReplacement,
|
|
ctx.AllocateCopy(currentConformances)
|
|
});
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
void GenericSignature::
|
|
getSubstitutions(const SubstitutionMap &subMap,
|
|
SmallVectorImpl<Substitution> &result) const {
|
|
getSubstitutions(QuerySubstitutionMap{subMap},
|
|
LookUpConformanceInSubstitutionMap(subMap),
|
|
result);
|
|
}
|
|
|
|
bool GenericSignature::requiresClass(Type type, ModuleDecl &mod) {
|
|
if (!type->isTypeParameter()) return false;
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
auto pa = builder.resolveArchetype(type);
|
|
if (!pa) return false;
|
|
|
|
pa = pa->getRepresentative();
|
|
|
|
// If this type was mapped to a concrete type, then there is no
|
|
// requirement.
|
|
if (pa->isConcreteType()) return false;
|
|
|
|
// If there is a superclass bound, then obviously it must be a class.
|
|
if (pa->getSuperclass()) return true;
|
|
|
|
// If any of the protocols are class-bound, then it must be a class.
|
|
for (auto proto : pa->getConformsTo()) {
|
|
if (proto.first->requiresClass()) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine the superclass bound on the given dependent type.
|
|
Type GenericSignature::getSuperclassBound(Type type, ModuleDecl &mod) {
|
|
if (!type->isTypeParameter()) return nullptr;
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
auto pa = builder.resolveArchetype(type);
|
|
if (!pa) return nullptr;
|
|
|
|
pa = pa->getRepresentative();
|
|
|
|
// If this type was mapped to a concrete type, then there is no
|
|
// requirement.
|
|
if (pa->isConcreteType()) return nullptr;
|
|
|
|
// Retrieve the superclass bound.
|
|
return pa->getSuperclass();
|
|
}
|
|
|
|
/// Determine the set of protocols to which the given dependent type
|
|
/// must conform.
|
|
SmallVector<ProtocolDecl *, 2> GenericSignature::getConformsTo(Type type,
|
|
ModuleDecl &mod) {
|
|
if (!type->isTypeParameter()) return { };
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
auto pa = builder.resolveArchetype(type);
|
|
if (!pa) return { };
|
|
|
|
pa = pa->getRepresentative();
|
|
|
|
// If this type was mapped to a concrete type, then there are no
|
|
// requirements.
|
|
if (pa->isConcreteType()) return { };
|
|
|
|
// Retrieve the protocols to which this type conforms.
|
|
SmallVector<ProtocolDecl *, 2> result;
|
|
for (auto proto : pa->getConformsTo())
|
|
result.push_back(proto.first);
|
|
|
|
// Canonicalize the resulting set of protocols.
|
|
ProtocolType::canonicalizeProtocols(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Determine whether the given dependent type is equal to a concrete type.
|
|
bool GenericSignature::isConcreteType(Type type, ModuleDecl &mod) {
|
|
return bool(getConcreteType(type, mod));
|
|
}
|
|
|
|
/// Return the concrete type that the given dependent type is constrained to,
|
|
/// or the null Type if it is not the subject of a concrete same-type
|
|
/// constraint.
|
|
Type GenericSignature::getConcreteType(Type type, ModuleDecl &mod) {
|
|
if (!type->isTypeParameter()) return Type();
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
auto pa = builder.resolveArchetype(type);
|
|
if (!pa) return Type();
|
|
|
|
pa = pa->getRepresentative();
|
|
if (!pa->isConcreteType()) return Type();
|
|
|
|
return pa->getConcreteType();
|
|
}
|
|
|
|
LayoutConstraint GenericSignature::getLayoutConstraint(Type type,
|
|
ModuleDecl &mod) {
|
|
if (!type->isTypeParameter()) return LayoutConstraint();
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
auto pa = builder.resolveArchetype(type);
|
|
if (!pa) return LayoutConstraint();
|
|
|
|
pa = pa->getRepresentative();
|
|
return pa->getLayout();
|
|
}
|
|
|
|
bool GenericSignature::areSameTypeParameterInContext(Type type1, Type type2,
|
|
ModuleDecl &mod) {
|
|
assert(type1->isTypeParameter());
|
|
assert(type2->isTypeParameter());
|
|
|
|
if (type1.getPointer() == type2.getPointer())
|
|
return true;
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
auto pa1 = builder.resolveArchetype(type1);
|
|
assert(pa1 && "not a valid dependent type of this signature?");
|
|
pa1 = pa1->getRepresentative();
|
|
assert(!pa1->isConcreteType());
|
|
|
|
auto pa2 = builder.resolveArchetype(type2);
|
|
assert(pa2 && "not a valid dependent type of this signature?");
|
|
pa2 = pa2->getRepresentative();
|
|
assert(!pa2->isConcreteType());
|
|
|
|
return pa1 == pa2;
|
|
}
|
|
|
|
bool GenericSignature::isCanonicalTypeInContext(Type type, ModuleDecl &mod) {
|
|
// If the type isn't independently canonical, it's certainly not canonical
|
|
// in this context.
|
|
if (!type->isCanonical())
|
|
return false;
|
|
|
|
// All the contextual canonicality rules apply to type parameters, so if the
|
|
// type doesn't involve any type parameters, it's already canonical.
|
|
if (!type->hasTypeParameter())
|
|
return true;
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
return isCanonicalTypeInContext(type, builder);
|
|
}
|
|
|
|
bool GenericSignature::isCanonicalTypeInContext(Type type,
|
|
GenericSignatureBuilder &builder) {
|
|
// If the type isn't independently canonical, it's certainly not canonical
|
|
// in this context.
|
|
if (!type->isCanonical())
|
|
return false;
|
|
|
|
// All the contextual canonicality rules apply to type parameters, so if the
|
|
// type doesn't involve any type parameters, it's already canonical.
|
|
if (!type->hasTypeParameter())
|
|
return true;
|
|
|
|
// Look for non-canonical type parameters.
|
|
return !type.findIf([&](Type component) -> bool {
|
|
if (!component->isTypeParameter()) return false;
|
|
|
|
auto pa = builder.resolveArchetype(component);
|
|
if (!pa) return false;
|
|
|
|
auto rep = pa->getArchetypeAnchor(builder);
|
|
return (rep->isConcreteType() || pa != rep);
|
|
});
|
|
}
|
|
|
|
CanType GenericSignature::getCanonicalTypeInContext(Type type,
|
|
GenericSignatureBuilder &builder) {
|
|
type = type->getCanonicalType();
|
|
|
|
// All the contextual canonicality rules apply to type parameters, so if the
|
|
// type doesn't involve any type parameters, it's already canonical.
|
|
if (!type->hasTypeParameter())
|
|
return CanType(type);
|
|
|
|
// Replace non-canonical type parameters.
|
|
type = type.transformRec([&](TypeBase *component) -> Optional<Type> {
|
|
if (!isa<GenericTypeParamType>(component) &&
|
|
!isa<DependentMemberType>(component))
|
|
return None;
|
|
|
|
// Resolve the potential archetype. This can be null in nested generic
|
|
// types, which we can't immediately canonicalize.
|
|
auto pa = builder.resolveArchetype(Type(component));
|
|
if (!pa) return None;
|
|
|
|
auto rep = pa->getArchetypeAnchor(builder);
|
|
if (rep->isConcreteType()) {
|
|
return getCanonicalTypeInContext(rep->getConcreteType(), builder);
|
|
}
|
|
|
|
return rep->getDependentType(getGenericParams(), /*allowUnresolved*/ false);
|
|
});
|
|
|
|
auto result = type->getCanonicalType();
|
|
|
|
assert(isCanonicalTypeInContext(result, builder));
|
|
return result;
|
|
}
|
|
|
|
CanType GenericSignature::getCanonicalTypeInContext(Type type,
|
|
ModuleDecl &mod) {
|
|
type = type->getCanonicalType();
|
|
|
|
// All the contextual canonicality rules apply to type parameters, so if the
|
|
// type doesn't involve any type parameters, it's already canonical.
|
|
if (!type->hasTypeParameter())
|
|
return CanType(type);
|
|
|
|
auto &builder = *getGenericSignatureBuilder(mod);
|
|
return getCanonicalTypeInContext(type, builder);
|
|
}
|
|
|
|
GenericEnvironment *CanGenericSignature::getGenericEnvironment(
|
|
ModuleDecl &module) const {
|
|
// generic signature builders are stored on the ASTContext.
|
|
return module.getASTContext().getOrCreateCanonicalGenericEnvironment(
|
|
module.getASTContext().getOrCreateGenericSignatureBuilder(*this, &module),
|
|
module);
|
|
}
|
|
|
|
unsigned GenericParamKey::findIndexIn(
|
|
llvm::ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
// For depth 0, we have random access. We perform the extra checking so that
|
|
// we can return
|
|
if (Depth == 0 && Index < genericParams.size() &&
|
|
genericParams[Index] == *this)
|
|
return Index;
|
|
|
|
// At other depths, perform a binary search.
|
|
unsigned result =
|
|
std::lower_bound(genericParams.begin(), genericParams.end(), *this,
|
|
Ordering())
|
|
- genericParams.begin();
|
|
if (result < genericParams.size() && genericParams[result] == *this)
|
|
return result;
|
|
|
|
// We didn't find the parameter we were looking for.
|
|
return genericParams.size();
|
|
}
|