Files
swift-mirror/lib/Parse/ParseSIL.cpp
Arnold Schwaighofer 876cea81ae SIL: Add an allowed access kind to the opened value of an open_existential_addr instruction
Once we move to a copy-on-write implementation of existential value buffers we
can no longer consume or destroy values of an opened existential unless the
buffer is uniquely owned.

Therefore we need to track the allowed operation on opened values.

Add qualifiers "mutable_access" and "immutable_access" to open_existential_addr
instructions to indicate the allowed access to the opened value.

Once we move to a copy-on-write implementation, an "open_existential_addr
mutable_access" instruction will ensure unique ownership of the value buffer.
2017-02-15 14:23:12 -08:00

5204 lines
178 KiB
C++

//===--- ParseSIL.cpp - SIL File Parsing logic ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTWalker.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Defer.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/SIL/AbstractionPattern.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/Subsystems.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// SILParserState implementation
//===----------------------------------------------------------------------===//
namespace swift {
class SILParserTUState {
public:
SILParserTUState(SILModule &M) : M(M) {}
~SILParserTUState();
SILModule &M;
/// This is all of the forward referenced functions with
/// the location for where the reference is.
llvm::DenseMap<Identifier,
std::pair<SILFunction*, SourceLoc>> ForwardRefFns;
/// A list of all functions forward-declared by a sil_scope.
llvm::DenseSet<SILFunction *> PotentialZombieFns;
/// A map from textual .sil scope number to SILDebugScopes.
llvm::DenseMap<unsigned, SILDebugScope *> ScopeSlots;
/// Did we parse a sil_stage for this module?
bool DidParseSILStage = false;
DiagnosticEngine *Diags = nullptr;
};
} // namespace swift
SILParserState::SILParserState(SILModule *M) : M(M) {
S = M ? new SILParserTUState(*M) : nullptr;
}
SILParserState::~SILParserState() {
delete S;
}
SILParserTUState::~SILParserTUState() {
if (!ForwardRefFns.empty())
for (auto Entry : ForwardRefFns)
if (Entry.second.second.isValid())
Diags->diagnose(Entry.second.second, diag::sil_use_of_undefined_value,
Entry.first.str());
// Turn any debug-info-only function declarations into zombies.
for (auto *Fn : PotentialZombieFns)
if (Fn->isExternalDeclaration()) {
Fn->setInlined();
M.eraseFunction(Fn);
}
}
//===----------------------------------------------------------------------===//
// SILParser
//===----------------------------------------------------------------------===//
namespace {
struct ParsedSubstitution {
SourceLoc loc;
Type replacement;
};
struct ParsedSpecAttr {
ArrayRef<RequirementRepr> requirements;
bool exported;
SILSpecializeAttr::SpecializationKind kind;
};
class SILParser {
friend Parser;
public:
Parser &P;
SILModule &SILMod;
SILParserTUState &TUState;
SILFunction *F = nullptr;
GenericEnvironment *GenericEnv = nullptr;
FunctionOwnershipEvaluator OwnershipEvaluator;
private:
/// HadError - Have we seen an error parsing this function?
bool HadError = false;
/// Data structures used to perform name lookup of basic blocks.
llvm::DenseMap<Identifier, SILBasicBlock*> BlocksByName;
llvm::DenseMap<SILBasicBlock*,
std::pair<SourceLoc, Identifier>> UndefinedBlocks;
/// Data structures used to perform name lookup for local values.
llvm::StringMap<ValueBase*> LocalValues;
llvm::StringMap<SourceLoc> ForwardRefLocalValues;
/// A callback to be invoked every time a type was deserialized.
std::function<void(Type)> ParsedTypeCallback;
bool performTypeLocChecking(TypeLoc &T, bool IsSILType,
GenericEnvironment *GenericEnv = nullptr,
DeclContext *DC = nullptr);
void convertRequirements(SILFunction *F, ArrayRef<RequirementRepr> From,
SmallVectorImpl<Requirement> &To);
ProtocolConformance *
parseProtocolConformanceHelper(ProtocolDecl *&proto,
GenericEnvironment *GenericEnv,
bool localScope);
public:
SILParser(Parser &P)
: P(P), SILMod(*P.SIL->M), TUState(*P.SIL->S),
ParsedTypeCallback([](Type ty) {}) {}
/// diagnoseProblems - After a function is fully parse, emit any diagnostics
/// for errors and return true if there were any.
bool diagnoseProblems();
/// getGlobalNameForReference - Given a reference to a global name, look it
/// up and return an appropriate SIL function.
SILFunction *getGlobalNameForReference(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc,
bool IgnoreFwdRef = false);
/// getGlobalNameForDefinition - Given a definition of a global name, look
/// it up and return an appropriate SIL function.
SILFunction *getGlobalNameForDefinition(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc);
/// getBBForDefinition - Return the SILBasicBlock for a definition of the
/// specified block.
SILBasicBlock *getBBForDefinition(Identifier Name, SourceLoc Loc);
/// getBBForReference - return the SILBasicBlock of the specified name. The
/// source location is used to diagnose a failure if the block ends up never
/// being defined.
SILBasicBlock *getBBForReference(Identifier Name, SourceLoc Loc);
struct UnresolvedValueName {
StringRef Name;
SourceLoc NameLoc;
bool isUndef() const { return Name == "undef"; }
};
/// getLocalValue - Get a reference to a local value with the specified name
/// and type.
SILValue getLocalValue(UnresolvedValueName Name, SILType Type,
SILLocation L, SILBuilder &B);
/// setLocalValue - When an instruction or block argument is defined, this
/// method is used to register it and update our symbol table.
void setLocalValue(ValueBase *Value, StringRef Name, SourceLoc NameLoc);
SILDebugLocation getDebugLoc(SILBuilder & B, SILLocation Loc) {
return SILDebugLocation(Loc, F->getDebugScope());
}
/// @{ Primitive parsing.
/// \verbatim
/// sil-identifier ::= [A-Za-z_0-9]+
/// \endverbatim
bool parseSILIdentifier(Identifier &Result, SourceLoc &Loc,
const Diagnostic &D);
template<typename ...DiagArgTypes, typename ...ArgTypes>
bool parseSILIdentifier(Identifier &Result, Diag<DiagArgTypes...> ID,
ArgTypes... Args) {
SourceLoc L;
return parseSILIdentifier(Result, L, Diagnostic(ID, Args...));
}
template<typename ...DiagArgTypes, typename ...ArgTypes>
bool parseSILIdentifier(Identifier &Result, SourceLoc &L,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseSILIdentifier(Result, L, Diagnostic(ID, Args...));
}
bool parseVerbatim(StringRef identifier);
template <typename T> bool parseInteger(T &Result, const Diagnostic &D) {
if (!P.Tok.is(tok::integer_literal)) {
P.diagnose(P.Tok, D);
return true;
}
P.Tok.getText().getAsInteger(0, Result);
P.consumeToken(tok::integer_literal);
return false;
}
/// @}
/// @{ Type parsing.
bool parseASTType(CanType &result);
bool parseASTType(CanType &result, SourceLoc &TypeLoc) {
TypeLoc = P.Tok.getLoc();
return parseASTType(result);
}
bool parseSILOwnership(Optional<ValueOwnershipKind> &OwnershipKind) {
// We pare here @ <identifier>.
if (P.consumeIf(tok::at_sign) && P.Tok.isNot(tok::identifier)) {
// Add error here.
return true;
}
OwnershipKind =
llvm::StringSwitch<Optional<ValueOwnershipKind>>(P.Tok.getText())
.Case("trivial",
Optional<ValueOwnershipKind>(ValueOwnershipKind::Trivial))
.Case("unowned",
Optional<ValueOwnershipKind>(ValueOwnershipKind::Unowned))
.Case("owned",
Optional<ValueOwnershipKind>(ValueOwnershipKind::Owned))
.Case("guaranteed", Optional<ValueOwnershipKind>(
ValueOwnershipKind::Guaranteed))
.Default(None);
if (OwnershipKind.hasValue()) {
P.consumeToken();
return false;
}
return true;
}
bool parseSILType(SILType &Result,
GenericEnvironment *&genericEnv,
bool IsFuncDecl = false);
bool parseSILType(SILType &Result) {
GenericEnvironment *IgnoredEnv;
return parseSILType(Result, IgnoredEnv);
}
bool parseSILType(SILType &Result, SourceLoc &TypeLoc) {
TypeLoc = P.Tok.getLoc();
return parseSILType(Result);
}
bool parseSILType(SILType &Result, SourceLoc &TypeLoc,
GenericEnvironment *&GenericEnv) {
TypeLoc = P.Tok.getLoc();
return parseSILType(Result, GenericEnv);
}
/// @}
bool parseSILDottedPath(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values);
bool parseSILDottedPath(ValueDecl *&Decl) {
SmallVector<ValueDecl *, 4> values;
return parseSILDottedPath(Decl, values);
}
bool parseSILDottedPathWithoutPound(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values);
bool parseSILDottedPathWithoutPound(ValueDecl *&Decl) {
SmallVector<ValueDecl *, 4> values;
return parseSILDottedPathWithoutPound(Decl, values);
}
/// At the time of calling this function, we may not have the type of the
/// Decl yet. So we return a SILDeclRef on the first lookup result and also
/// return all the lookup results. After parsing the expected type, the
/// caller of this function can choose the one that has the expected type.
bool parseSILDeclRef(SILDeclRef &Result,
SmallVectorImpl<ValueDecl *> &values);
bool parseSILDeclRef(SILDeclRef &Result) {
SmallVector<ValueDecl *, 4> values;
return parseSILDeclRef(Result, values);
}
bool parseSILDeclRef(SILDeclRef &Member, bool FnTypeRequired);
bool parseGlobalName(Identifier &Name);
bool parseValueName(UnresolvedValueName &Name);
bool parseValueRef(SILValue &Result, SILType Ty, SILLocation Loc,
SILBuilder &B);
bool parseTypedValueRef(SILValue &Result, SourceLoc &Loc, SILBuilder &B);
bool parseTypedValueRef(SILValue &Result, SILBuilder &B) {
SourceLoc Tmp;
return parseTypedValueRef(Result, Tmp, B);
}
bool parseSILOpcode(ValueKind &Opcode, SourceLoc &OpcodeLoc,
StringRef &OpcodeName);
bool parseSILDebugVar(SILDebugVariable &Var);
/// \brief Parses the basic block arguments as part of branch instruction.
bool parseSILBBArgsAtBranch(SmallVector<SILValue, 6> &Args, SILBuilder &B);
bool parseSILLocation(SILLocation &L);
bool parseScopeRef(SILDebugScope *&DS);
bool parseSILDebugLocation(SILLocation &L, SILBuilder &B,
bool parsedComma = false);
bool parseSILInstruction(SILBasicBlock *BB, SILBuilder &B);
bool parseCallInstruction(SILLocation InstLoc,
ValueKind Opcode, SILBuilder &B,
SILInstruction *&ResultVal);
bool parseSILFunctionRef(SILLocation InstLoc,
SILBuilder &B, SILInstruction *&ResultVal);
bool parseSILBasicBlock(SILBuilder &B);
bool isStartOfSILInstruction();
bool parseSubstitutions(SmallVectorImpl<ParsedSubstitution> &parsed,
GenericEnvironment *GenericEnv=nullptr);
ProtocolConformance *parseProtocolConformance(ProtocolDecl *&proto,
GenericEnvironment *&genericEnv,
bool localScope);
ProtocolConformance *parseProtocolConformance() {
ProtocolDecl *dummy;
GenericEnvironment *env;
return parseProtocolConformance(dummy, env, true);
}
Optional<llvm::coverage::Counter>
parseSILCoverageExpr(llvm::coverage::CounterExpressionBuilder &Builder);
};
} // end anonymous namespace
bool SILParser::parseSILIdentifier(Identifier &Result, SourceLoc &Loc,
const Diagnostic &D) {
switch (P.Tok.getKind()) {
case tok::identifier:
Result = P.Context.getIdentifier(P.Tok.getText());
break;
case tok::string_literal: {
// Drop the double quotes.
StringRef rawString = P.Tok.getText().drop_front().drop_back();
Result = P.Context.getIdentifier(rawString);
break;
}
case tok::oper_binary_unspaced: // fixme?
case tok::oper_binary_spaced:
// A binary operator can be part of a SILDeclRef.
Result = P.Context.getIdentifier(P.Tok.getText());
break;
case tok::kw_deinit:
Result = P.Context.Id_deinit;
break;
case tok::kw_init:
Result = P.Context.Id_init;
break;
case tok::kw_subscript:
Result = P.Context.Id_subscript;
break;
default:
// If it's some other keyword, grab an identifier for it.
if (P.Tok.isKeyword()) {
Result = P.Context.getIdentifier(P.Tok.getText());
break;
}
P.diagnose(P.Tok, D);
return true;
}
Loc = P.Tok.getLoc();
P.consumeToken();
return false;
}
bool SILParser::parseVerbatim(StringRef name) {
Identifier tok;
SourceLoc loc;
if (parseSILIdentifier(tok, loc, diag::expected_tok_in_sil_instr, name)) {
return true;
}
if (tok.str() != name) {
P.diagnose(loc, diag::expected_tok_in_sil_instr, name);
return true;
}
return false;
}
/// diagnoseProblems - After a function is fully parse, emit any diagnostics
/// for errors and return true if there were any.
bool SILParser::diagnoseProblems() {
// Check for any uses of basic blocks that were not defined.
if (!UndefinedBlocks.empty()) {
// FIXME: These are going to come out in nondeterministic order.
for (auto Entry : UndefinedBlocks)
P.diagnose(Entry.second.first, diag::sil_undefined_basicblock_use,
Entry.second.second);
HadError = true;
}
if (!ForwardRefLocalValues.empty()) {
// FIXME: These are going to come out in nondeterministic order.
for (auto &Entry : ForwardRefLocalValues)
P.diagnose(Entry.second, diag::sil_use_of_undefined_value,
Entry.first());
HadError = true;
}
return HadError;
}
/// getGlobalNameForDefinition - Given a definition of a global name, look
/// it up and return an appropriate SIL function.
SILFunction *SILParser::getGlobalNameForDefinition(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc) {
// Check to see if a function of this name has been forward referenced. If so
// complete the forward reference.
auto It = TUState.ForwardRefFns.find(Name);
if (It != TUState.ForwardRefFns.end()) {
SILFunction *Fn = It->second.first;
// Verify that the types match up.
if (Fn->getLoweredFunctionType() != Ty) {
P.diagnose(Loc, diag::sil_value_use_type_mismatch, Name.str(),
Fn->getLoweredFunctionType(), Ty);
P.diagnose(It->second.second, diag::sil_prior_reference);
auto loc = RegularLocation(Loc);
Fn =
SILMod.createFunction(SILLinkage::Private, "", Ty, nullptr, loc,
IsNotBare, IsNotTransparent, IsNotFragile);
Fn->setDebugScope(new (SILMod) SILDebugScope(loc, Fn));
}
assert(Fn->isExternalDeclaration() && "Forward defns cannot have bodies!");
TUState.ForwardRefFns.erase(It);
// Move the function to this position in the module.
SILMod.getFunctionList().remove(Fn);
SILMod.getFunctionList().push_back(Fn);
return Fn;
}
auto loc = RegularLocation(Loc);
// If we don't have a forward reference, make sure the function hasn't been
// defined already.
if (SILMod.lookUpFunction(Name.str()) != nullptr) {
P.diagnose(Loc, diag::sil_value_redefinition, Name.str());
auto *fn =
SILMod.createFunction(SILLinkage::Private, "", Ty, nullptr, loc,
IsNotBare, IsNotTransparent, IsNotFragile);
fn->setDebugScope(new (SILMod) SILDebugScope(loc, fn));
return fn;
}
// Otherwise, this definition is the first use of this name.
auto *fn = SILMod.createFunction(SILLinkage::Private, Name.str(), Ty,
nullptr, loc, IsNotBare,
IsNotTransparent, IsNotFragile);
fn->setDebugScope(new (SILMod) SILDebugScope(loc, fn));
return fn;
}
/// getGlobalNameForReference - Given a reference to a global name, look it
/// up and return an appropriate SIL function.
SILFunction *SILParser::getGlobalNameForReference(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc,
bool IgnoreFwdRef) {
auto loc = RegularLocation(Loc);
// Check to see if we have a function by this name already.
if (SILFunction *FnRef = SILMod.lookUpFunction(Name.str())) {
// If so, check for matching types.
if (FnRef->getLoweredFunctionType() != Ty) {
P.diagnose(Loc, diag::sil_value_use_type_mismatch,
Name.str(), FnRef->getLoweredFunctionType(), Ty);
FnRef =
SILMod.createFunction(SILLinkage::Private, "", Ty, nullptr, loc,
IsNotBare, IsNotTransparent, IsNotFragile);
FnRef->setDebugScope(new (SILMod) SILDebugScope(loc, FnRef));
}
return FnRef;
}
// If we didn't find a function, create a new one - it must be a forward
// reference.
auto *Fn = SILMod.createFunction(SILLinkage::Private, Name.str(), Ty,
nullptr, loc, IsNotBare,
IsNotTransparent, IsNotFragile);
Fn->setDebugScope(new (SILMod) SILDebugScope(loc, Fn));
TUState.ForwardRefFns[Name] = { Fn, IgnoreFwdRef ? SourceLoc() : Loc };
TUState.Diags = &P.Diags;
return Fn;
}
/// getBBForDefinition - Return the SILBasicBlock for a definition of the
/// specified block.
SILBasicBlock *SILParser::getBBForDefinition(Identifier Name, SourceLoc Loc) {
// If there was no name specified for this block, just create a new one.
if (Name.empty())
return F->createBasicBlock();
SILBasicBlock *&BB = BlocksByName[Name];
// If the block has never been named yet, just create it.
if (BB == nullptr)
return BB = F->createBasicBlock();
// If it already exists, it was either a forward reference or a redefinition.
// If it is a forward reference, it should be in our undefined set.
if (!UndefinedBlocks.erase(BB)) {
// If we have a redefinition, return a new BB to avoid inserting
// instructions after the terminator.
P.diagnose(Loc, diag::sil_basicblock_redefinition, Name);
HadError = true;
return F->createBasicBlock();
}
// FIXME: Splice the block to the end of the function so they come out in the
// right order.
return BB;
}
/// getBBForReference - return the SILBasicBlock of the specified name. The
/// source location is used to diagnose a failure if the block ends up never
/// being defined.
SILBasicBlock *SILParser::getBBForReference(Identifier Name, SourceLoc Loc) {
// If the block has already been created, use it.
SILBasicBlock *&BB = BlocksByName[Name];
if (BB != nullptr)
return BB;
// Otherwise, create it and remember that this is a forward reference so
// that we can diagnose use without definition problems.
BB = F->createBasicBlock();
UndefinedBlocks[BB] = {Loc, Name};
return BB;
}
/// sil-global-name:
/// '@' identifier
bool SILParser::parseGlobalName(Identifier &Name) {
return P.parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseSILIdentifier(Name, diag::expected_sil_value_name);
}
/// getLocalValue - Get a reference to a local value with the specified name
/// and type.
SILValue SILParser::getLocalValue(UnresolvedValueName Name, SILType Type,
SILLocation Loc, SILBuilder &B) {
if (Name.isUndef())
return SILUndef::get(Type, &SILMod);
// Check to see if this is already defined.
ValueBase *&Entry = LocalValues[Name.Name];
if (Entry) {
// If this value is already defined, check it to make sure types match.
SILType EntryTy = Entry->getType();
if (EntryTy != Type) {
HadError = true;
P.diagnose(Name.NameLoc, diag::sil_value_use_type_mismatch, Name.Name,
EntryTy.getSwiftRValueType(), Type.getSwiftRValueType());
// Make sure to return something of the requested type.
return new (SILMod) GlobalAddrInst(getDebugLoc(B, Loc), Type);
}
return SILValue(Entry);
}
// Otherwise, this is a forward reference. Create a dummy node to represent
// it until we see a real definition.
ForwardRefLocalValues[Name.Name] = Name.NameLoc;
Entry = new (SILMod) GlobalAddrInst(getDebugLoc(B, Loc), Type);
return Entry;
}
/// setLocalValue - When an instruction or block argument is defined, this
/// method is used to register it and update our symbol table.
void SILParser::setLocalValue(ValueBase *Value, StringRef Name,
SourceLoc NameLoc) {
ValueBase *&Entry = LocalValues[Name];
// If this value was already defined, it is either a redefinition, or a
// specification for a forward referenced value.
if (Entry) {
if (!ForwardRefLocalValues.erase(Name)) {
P.diagnose(NameLoc, diag::sil_value_redefinition, Name);
HadError = true;
return;
}
// If the forward reference was of the wrong type, diagnose this now.
if (Entry->getType() != Value->getType()) {
P.diagnose(NameLoc, diag::sil_value_def_type_mismatch, Name,
Entry->getType().getSwiftRValueType(),
Value->getType().getSwiftRValueType());
HadError = true;
} else {
// Forward references only live here if they have a single result.
Entry->replaceAllUsesWith(Value);
}
Entry = Value;
return;
}
// Otherwise, just store it in our map.
Entry = Value;
}
//===----------------------------------------------------------------------===//
// SIL Parsing Logic
//===----------------------------------------------------------------------===//
/// parseSILLinkage - Parse a linkage specifier if present.
/// sil-linkage:
/// /*empty*/ // default depends on whether this is a definition
/// 'public'
/// 'hidden'
/// 'shared'
/// 'private'
/// 'public_external'
/// 'hidden_external'
/// 'private_external'
static bool parseSILLinkage(Optional<SILLinkage> &Result, Parser &P) {
// Begin by initializing result to our base value of None.
Result = None;
// Unfortunate collision with access control keywords.
if (P.Tok.is(tok::kw_public)) {
Result = SILLinkage::Public;
P.consumeToken();
return false;
}
// Unfortunate collision with access control keywords.
if (P.Tok.is(tok::kw_private)) {
Result = SILLinkage::Private;
P.consumeToken();
return false;
}
// If we do not have an identifier, bail. All SILLinkages that we are parsing
// are identifiers.
if (P.Tok.isNot(tok::identifier))
return false;
// Then use a string switch to try and parse the identifier.
Result = llvm::StringSwitch<Optional<SILLinkage>>(P.Tok.getText())
.Case("hidden", SILLinkage::Hidden)
.Case("shared", SILLinkage::Shared)
.Case("public_external", SILLinkage::PublicExternal)
.Case("hidden_external", SILLinkage::HiddenExternal)
.Case("shared_external", SILLinkage::SharedExternal)
.Case("private_external", SILLinkage::PrivateExternal)
.Default(None);
// If we succeed, consume the token.
if (Result) {
P.consumeToken(tok::identifier);
}
return false;
}
/// Given whether it's known to be a definition, resolve an optional
/// SIL linkage to a real one.
static SILLinkage resolveSILLinkage(Optional<SILLinkage> linkage,
bool isDefinition) {
if (linkage.hasValue()) {
return linkage.getValue();
} else if (isDefinition) {
return SILLinkage::DefaultForDefinition;
} else {
return SILLinkage::DefaultForDeclaration;
}
}
static bool parseSILOptional(StringRef &Result, SILParser &SP) {
if (SP.P.consumeIf(tok::l_square)) {
Identifier Id;
SP.parseSILIdentifier(Id, diag::expected_in_attribute_list);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
Result = Id.str();
return true;
}
return false;
}
/// Parse an option attribute ('[' Expected ']')?
static bool parseSILOptional(bool &Result, SILParser &SP, StringRef Expected) {
StringRef Optional;
if (parseSILOptional(Optional, SP)) {
if (Optional != Expected)
return true;
Result = true;
}
return false;
}
namespace {
/// A helper class to perform lookup of IdentTypes in the
/// current parser scope.
class IdentTypeReprLookup : public ASTWalker {
Parser &P;
public:
IdentTypeReprLookup(Parser &P) : P(P) {}
bool walkToTypeReprPre(TypeRepr *Ty) {
auto *T = dyn_cast_or_null<IdentTypeRepr>(Ty);
auto Comp = T->getComponentRange().front();
if (auto Entry = P.lookupInScope(Comp->getIdentifier()))
if (isa<TypeDecl>(Entry)) {
Comp->setValue(Entry);
return false;
}
return true;
}
};
} // end anonymous namespace
/// Remap RequirementReps to Requirements.
void SILParser::convertRequirements(SILFunction *F,
ArrayRef<RequirementRepr> From,
SmallVectorImpl<Requirement> &To) {
if (From.empty()) {
To.clear();
return;
}
auto *GenericEnv = F->getGenericEnvironment();
assert(GenericEnv);
IdentTypeReprLookup PerformLookup(P);
// Use parser lexical scopes to resolve references
// to the generic parameters.
auto ResolveToInterfaceType = [&](TypeLoc Ty) -> Type {
Ty.getTypeRepr()->walk(PerformLookup);
performTypeLocChecking(Ty, /* IsSIL */ false);
assert(Ty.getType());
return GenericEnv->mapTypeOutOfContext(Ty.getType()->getCanonicalType());
};
for (auto &Req : From) {
if (Req.getKind() == RequirementReprKind::SameType) {
auto FirstType = ResolveToInterfaceType(Req.getFirstTypeLoc());
auto SecondType = ResolveToInterfaceType(Req.getSecondTypeLoc());
Requirement ConvertedRequirement(RequirementKind::SameType, FirstType,
SecondType);
To.push_back(ConvertedRequirement);
continue;
}
if (Req.getKind() == RequirementReprKind::TypeConstraint) {
auto FirstType = ResolveToInterfaceType(Req.getFirstTypeLoc());
auto SecondType = ResolveToInterfaceType(Req.getSecondTypeLoc());
Requirement ConvertedRequirement(RequirementKind::Conformance, FirstType,
SecondType);
To.push_back(ConvertedRequirement);
continue;
}
if (Req.getKind() == RequirementReprKind::LayoutConstraint) {
auto Subject = ResolveToInterfaceType(Req.getSubjectLoc());
Requirement ConvertedRequirement(RequirementKind::Layout, Subject,
Req.getLayoutConstraint());
To.push_back(ConvertedRequirement);
continue;
}
llvm_unreachable("Unsupported requirement kind");
}
}
static bool parseDeclSILOptional(bool *isTransparent, bool *isFragile,
IsThunk_t *isThunk, bool *isGlobalInit,
Inline_t *inlineStrategy, bool *isLet,
SmallVectorImpl<std::string> *Semantics,
SmallVectorImpl<ParsedSpecAttr> *SpecAttrs,
ValueDecl **ClangDecl,
EffectsKind *MRK, SILParser &SP) {
while (SP.P.consumeIf(tok::l_square)) {
if (isLet && SP.P.Tok.is(tok::kw_let)) {
*isLet = true;
SP.P.consumeToken(tok::kw_let);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
continue;
}
else if (SP.P.Tok.isNot(tok::identifier)) {
SP.P.diagnose(SP.P.Tok, diag::expected_in_attribute_list);
return true;
} else if (isTransparent && SP.P.Tok.getText() == "transparent")
*isTransparent = true;
else if (isFragile && SP.P.Tok.getText() == "fragile")
*isFragile = true;
else if (isThunk && SP.P.Tok.getText() == "thunk")
*isThunk = IsThunk;
else if (isThunk && SP.P.Tok.getText() == "reabstraction_thunk")
*isThunk = IsReabstractionThunk;
else if (isGlobalInit && SP.P.Tok.getText() == "global_init")
*isGlobalInit = true;
else if (inlineStrategy && SP.P.Tok.getText() == "noinline")
*inlineStrategy = NoInline;
else if (inlineStrategy && SP.P.Tok.getText() == "always_inline")
*inlineStrategy = AlwaysInline;
else if (MRK && SP.P.Tok.getText() == "readnone")
*MRK = EffectsKind::ReadNone;
else if (MRK && SP.P.Tok.getText() == "readonly")
*MRK = EffectsKind::ReadOnly;
else if (MRK && SP.P.Tok.getText() == "readwrite")
*MRK = EffectsKind::ReadWrite;
else if (Semantics && SP.P.Tok.getText() == "_semantics") {
SP.P.consumeToken(tok::identifier);
if (SP.P.Tok.getKind() != tok::string_literal) {
SP.P.diagnose(SP.P.Tok, diag::expected_in_attribute_list);
return true;
}
// Drop the double quotes.
StringRef rawString = SP.P.Tok.getText().drop_front().drop_back();
Semantics->push_back(rawString);
SP.P.consumeToken(tok::string_literal);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
continue;
}
else if (SpecAttrs && SP.P.Tok.getText() == "_specialize") {
SourceLoc AtLoc = SP.P.Tok.getLoc();
SourceLoc Loc(AtLoc);
// Parse a _specialized attribute, building a parsed substitution list
// and pushing a new ParsedSpecAttr on the SpecAttrs list. Conformances
// cannot be generated until the function declaration is fully parsed so
// that the function's generic signature can be consulted.
ParsedSpecAttr SpecAttr;
SpecAttr.requirements = {};
SpecAttr.exported = false;
SpecAttr.kind = SILSpecializeAttr::SpecializationKind::Full;
SpecializeAttr *Attr;
if (!SP.P.parseSpecializeAttribute(tok::r_square, AtLoc, Loc, Attr))
return true;
// Convert SpecializeAttr into ParsedSpecAttr.
SpecAttr.requirements = Attr->getTrailingWhereClause()->getRequirements();
SpecAttr.kind = Attr->getSpecializationKind() ==
swift::SpecializeAttr::SpecializationKind::Full
? SILSpecializeAttr::SpecializationKind::Full
: SILSpecializeAttr::SpecializationKind::Partial;
SpecAttr.exported = Attr->isExported();
SpecAttrs->emplace_back(SpecAttr);
continue;
}
else if (ClangDecl && SP.P.Tok.getText() == "clang") {
SP.P.consumeToken(tok::identifier);
if (SP.parseSILDottedPathWithoutPound(*ClangDecl))
return true;
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
continue;
}
else {
SP.P.diagnose(SP.P.Tok, diag::expected_in_attribute_list);
return true;
}
SP.P.consumeToken(tok::identifier);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
}
return false;
}
bool SILParser::performTypeLocChecking(TypeLoc &T, bool IsSILType,
GenericEnvironment *GenericEnv,
DeclContext *DC) {
// Do some type checking / name binding for the parsed type.
assert(P.SF.ASTStage == SourceFile::Parsing &&
"Unexpected stage during parsing!");
if (GenericEnv == nullptr)
GenericEnv = this->GenericEnv;
if (!DC)
DC = &P.SF;
return swift::performTypeLocChecking(P.Context, T,
/*isSILMode=*/true, IsSILType,
GenericEnv, DC);
}
/// Find the top-level ValueDecl or Module given a name.
static llvm::PointerUnion<ValueDecl*, ModuleDecl*> lookupTopDecl(Parser &P,
Identifier Name) {
// Use UnqualifiedLookup to look through all of the imports.
// We have to lie and say we're done with parsing to make this happen.
assert(P.SF.ASTStage == SourceFile::Parsing &&
"Unexpected stage during parsing!");
llvm::SaveAndRestore<SourceFile::ASTStage_t> ASTStage(P.SF.ASTStage,
SourceFile::Parsed);
UnqualifiedLookup DeclLookup(Name, &P.SF, nullptr);
assert(DeclLookup.isSuccess() && DeclLookup.Results.size() == 1);
ValueDecl *VD = DeclLookup.Results.back().getValueDecl();
return VD;
}
/// Find the ValueDecl given an interface type and a member name.
static ValueDecl *lookupMember(Parser &P, Type Ty, Identifier Name,
SourceLoc Loc,
SmallVectorImpl<ValueDecl *> &Lookup,
bool ExpectMultipleResults) {
Type CheckTy = Ty;
if (auto MetaTy = CheckTy->getAs<AnyMetatypeType>())
CheckTy = MetaTy->getInstanceType();
if (auto nominal = CheckTy->getAnyNominal()) {
auto found = nominal->lookupDirect(Name);
Lookup.append(found.begin(), found.end());
} else if (auto moduleTy = CheckTy->getAs<ModuleType>()) {
moduleTy->getModule()->lookupValue({ }, Name, NLKind::QualifiedLookup,
Lookup);
} else {
P.diagnose(Loc, diag::sil_member_lookup_bad_type, Name, Ty);
return nullptr;
}
if (Lookup.empty() || (!ExpectMultipleResults && Lookup.size() != 1)) {
P.diagnose(Loc, diag::sil_named_member_decl_not_found, Name, Ty);
return nullptr;
}
return Lookup[0];
}
bool SILParser::parseASTType(CanType &result) {
ParserResult<TypeRepr> parsedType = P.parseType();
if (parsedType.isNull()) return true;
TypeLoc loc = parsedType.get();
if (performTypeLocChecking(loc, /*IsSILType=*/ false))
return true;
result = loc.getType()->getCanonicalType();
// Invoke the callback on the parsed type.
ParsedTypeCallback(loc.getType());
return false;
}
/// sil-type:
/// '$' '*'? attribute-list (generic-params)? type
///
bool SILParser::parseSILType(SILType &Result,
GenericEnvironment *&GenericEnv,
bool IsFuncDecl){
GenericEnv = nullptr;
if (P.parseToken(tok::sil_dollar, diag::expected_sil_type))
return true;
// If we have a '*', then this is an address type.
SILValueCategory category = SILValueCategory::Object;
if (P.Tok.isAnyOperator() && P.Tok.getText().startswith("*")) {
category = SILValueCategory::Address;
P.consumeStartingCharacterOfCurrentToken();
}
// Parse attributes.
SourceLoc inoutLoc;
TypeAttributes attrs;
P.parseTypeAttributeList(inoutLoc, attrs);
// Global functions are implicitly @convention(thin) if not specified otherwise.
if (IsFuncDecl && !attrs.has(TAK_convention)) {
// Use a random location.
attrs.setAttr(TAK_convention, P.PreviousLoc);
attrs.convention = "thin";
}
ParserResult<TypeRepr> TyR = P.parseType(diag::expected_sil_type,
/*handleCodeCompletion*/ true,
/*isSILFuncDecl*/ IsFuncDecl);
if (TyR.isNull())
return true;
// Resolve the generic environments for parsed generic function and box types.
class HandleSILGenericParamsWalker : public ASTWalker {
ASTContext &C;
SourceFile *SF;
public:
HandleSILGenericParamsWalker(ASTContext &C,
SourceFile *SF)
: C(C), SF(SF)
{}
bool walkToTypeReprPre(TypeRepr *T) override {
if (auto fnType = dyn_cast<FunctionTypeRepr>(T)) {
if (auto generics = fnType->getGenericParams()) {
auto env = handleSILGenericParams(C, generics, SF);
fnType->setGenericEnvironment(env);
}
}
if (auto boxType = dyn_cast<SILBoxTypeRepr>(T)) {
if (auto generics = boxType->getGenericParams()) {
auto env = handleSILGenericParams(C, generics, SF);
boxType->setGenericEnvironment(env);
}
}
return true;
}
};
TyR.get()
->walk(HandleSILGenericParamsWalker(P.Context, &P.SF));
// Save the top-level function generic environment if there was one.
if (auto fnType = dyn_cast<FunctionTypeRepr>(TyR.get()))
if (auto env = fnType->getGenericEnvironment())
GenericEnv = env;
// Apply attributes to the type.
TypeLoc Ty = P.applyAttributeToType(TyR.get(), inoutLoc, attrs);
if (performTypeLocChecking(Ty, /*IsSILType=*/true, nullptr))
return true;
Result = SILType::getPrimitiveType(Ty.getType()->getCanonicalType(),
category);
// Invoke the callback on the parsed type.
ParsedTypeCallback(Ty.getType());
return false;
}
bool SILParser::parseSILDottedPath(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values) {
if (P.parseToken(tok::pound, diag::expected_sil_constant))
return true;
return parseSILDottedPathWithoutPound(Decl, values);
}
bool SILParser::parseSILDottedPathWithoutPound(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values) {
// Handle sil-dotted-path.
Identifier Id;
SmallVector<Identifier, 4> FullName;
SmallVector<SourceLoc, 4> Locs;
do {
Locs.push_back(P.Tok.getLoc());
if (parseSILIdentifier(Id, diag::expected_sil_constant))
return true;
FullName.push_back(Id);
} while (P.consumeIf(tok::period));
// Look up ValueDecl from a dotted path.
ValueDecl *VD;
llvm::PointerUnion<ValueDecl*, ModuleDecl *> Res = lookupTopDecl(P, FullName[0]);
// It is possible that the last member lookup can return multiple lookup
// results. One example is the overloaded member functions.
if (Res.is<ModuleDecl*>()) {
assert(FullName.size() > 1 &&
"A single module is not a full path to SILDeclRef");
auto Mod = Res.get<ModuleDecl*>();
values.clear();
VD = lookupMember(P, ModuleType::get(Mod), FullName[1], Locs[1], values,
FullName.size() == 2/*ExpectMultipleResults*/);
for (unsigned I = 2, E = FullName.size(); I < E; I++) {
values.clear();
VD = lookupMember(P, VD->getInterfaceType(), FullName[I], Locs[I], values,
I == FullName.size() - 1/*ExpectMultipleResults*/);
}
} else {
VD = Res.get<ValueDecl*>();
for (unsigned I = 1, E = FullName.size(); I < E; I++) {
values.clear();
VD = lookupMember(P, VD->getInterfaceType(), FullName[I], Locs[I], values,
I == FullName.size() - 1/*ExpectMultipleResults*/);
}
}
Decl = VD;
return false;
}
static AccessorKind getAccessorKind(StringRef ident) {
return llvm::StringSwitch<AccessorKind>(ident)
.Case("getter", AccessorKind::IsGetter)
.Case("setter", AccessorKind::IsSetter)
.Case("addressor", AccessorKind::IsAddressor)
.Case("mutableAddressor", AccessorKind::IsMutableAddressor)
.Case("materializeForSet", AccessorKind::IsMaterializeForSet)
.Default(AccessorKind::NotAccessor);
}
/// sil-decl-ref ::= '#' sil-identifier ('.' sil-identifier)* sil-decl-subref?
/// sil-decl-subref ::= '!' sil-decl-subref-part ('.' sil-decl-uncurry-level)?
/// ('.' sil-decl-lang)?
/// sil-decl-subref ::= '!' sil-decl-uncurry-level ('.' sil-decl-lang)?
/// sil-decl-subref ::= '!' sil-decl-lang
/// sil-decl-subref-part ::= 'getter'
/// sil-decl-subref-part ::= 'setter'
/// sil-decl-subref-part ::= 'materializeForSet'
/// sil-decl-subref-part ::= 'allocator'
/// sil-decl-subref-part ::= 'initializer'
/// sil-decl-subref-part ::= 'enumelt'
/// sil-decl-subref-part ::= 'destroyer'
/// sil-decl-subref-part ::= 'globalaccessor'
/// sil-decl-uncurry-level ::= [0-9]+
/// sil-decl-lang ::= 'foreign'
bool SILParser::parseSILDeclRef(SILDeclRef &Result,
SmallVectorImpl<ValueDecl *> &values) {
ValueDecl *VD;
if (parseSILDottedPath(VD, values))
return true;
// Initialize Kind, uncurryLevel and IsObjC.
SILDeclRef::Kind Kind = SILDeclRef::Kind::Func;
unsigned uncurryLevel = 0;
bool IsObjC = false;
ResilienceExpansion expansion = ResilienceExpansion::Minimal;
if (!P.consumeIf(tok::sil_exclamation)) {
// Construct SILDeclRef.
Result = SILDeclRef(VD, Kind, expansion, uncurryLevel, IsObjC);
return false;
}
// Handle sil-constant-kind-and-uncurry-level.
// ParseState indicates the value we just handled.
// 1 means we just handled Kind, 2 means we just handled uncurryLevel.
// We accept func|getter|setter|...|foreign or an integer when ParseState is
// 0; accept foreign or an integer when ParseState is 1; accept foreign when
// ParseState is 2.
unsigned ParseState = 0;
Identifier Id;
do {
if (P.Tok.is(tok::identifier)) {
auto IdLoc = P.Tok.getLoc();
if (parseSILIdentifier(Id, diag::expected_sil_constant))
return true;
AccessorKind accessorKind;
if (!ParseState && Id.str() == "func") {
Kind = SILDeclRef::Kind::Func;
ParseState = 1;
} else if (!ParseState &&
(accessorKind = getAccessorKind(Id.str()))
!= AccessorKind::NotAccessor) {
auto storageDecl = dyn_cast<AbstractStorageDecl>(VD);
auto accessor = (storageDecl
? storageDecl->getAccessorFunction(accessorKind)
: nullptr);
if (!accessor) {
P.diagnose(IdLoc, diag::referenced_value_no_accessor, 0);
return true;
}
Kind = SILDeclRef::Kind::Func;
VD = accessor;
// Update values for this accessor kind.
for (unsigned I = 0, E = values.size(); I < E; I++)
if (auto otherDecl = dyn_cast<AbstractStorageDecl>(values[I]))
if (auto otherAccessor = otherDecl->getAccessorFunction(accessorKind))
values[I] = otherAccessor;
ParseState = 1;
} else if (!ParseState && Id.str() == "allocator") {
Kind = SILDeclRef::Kind::Allocator;
ParseState = 1;
} else if (!ParseState && Id.str() == "initializer") {
Kind = SILDeclRef::Kind::Initializer;
ParseState = 1;
} else if (!ParseState && Id.str() == "enumelt") {
Kind = SILDeclRef::Kind::EnumElement;
ParseState = 1;
} else if (!ParseState && Id.str() == "destroyer") {
Kind = SILDeclRef::Kind::Destroyer;
ParseState = 1;
} else if (!ParseState && Id.str() == "deallocator") {
Kind = SILDeclRef::Kind::Deallocator;
ParseState = 1;
} else if (!ParseState && Id.str() == "globalaccessor") {
Kind = SILDeclRef::Kind::GlobalAccessor;
ParseState = 1;
} else if (!ParseState && Id.str() == "globalgetter") {
Kind = SILDeclRef::Kind::GlobalGetter;
ParseState = 1;
} else if (!ParseState && Id.str() == "ivardestroyer") {
Kind = SILDeclRef::Kind::IVarDestroyer;
ParseState = 1;
} else if (!ParseState && Id.str() == "ivarinitializer") {
Kind = SILDeclRef::Kind::IVarInitializer;
ParseState = 1;
} else if (!ParseState && Id.str() == "defaultarg") {
Kind = SILDeclRef::Kind::IVarInitializer;
ParseState = 1;
} else if (!ParseState && Id.str() == "propertyinit") {
Kind = SILDeclRef::Kind::StoredPropertyInitializer;
ParseState = 1;
} else if (Id.str() == "foreign") {
IsObjC = true;
break;
} else
break;
} else if (ParseState < 2 && P.Tok.is(tok::integer_literal)) {
P.Tok.getText().getAsInteger(0, uncurryLevel);
P.consumeToken(tok::integer_literal);
ParseState = 2;
} else
// TODO: resilience expansion?
break;
} while (P.consumeIf(tok::period));
// Construct SILDeclRef.
Result = SILDeclRef(VD, Kind, expansion, uncurryLevel, IsObjC);
return false;
}
/// parseValueName - Parse a value name without a type available yet.
///
/// sil-value-name:
/// sil-local-name
/// 'undef'
///
bool SILParser::parseValueName(UnresolvedValueName &Result) {
Result.Name = P.Tok.getText();
if (P.Tok.is(tok::kw_undef)) {
Result.NameLoc = P.consumeToken(tok::kw_undef);
return false;
}
// Parse the local-name.
if (P.parseToken(tok::sil_local_name, Result.NameLoc,
diag::expected_sil_value_name))
return true;
return false;
}
/// parseValueRef - Parse a value, given a contextual type.
///
/// sil-value-ref:
/// sil-local-name
///
bool SILParser::parseValueRef(SILValue &Result, SILType Ty,
SILLocation Loc, SILBuilder &B) {
UnresolvedValueName Name;
if (parseValueName(Name)) return true;
Result = getLocalValue(Name, Ty, Loc, B);
return false;
}
/// parseTypedValueRef - Parse a type/value reference pair.
///
/// sil-typed-valueref:
/// sil-value-ref ':' sil-type
///
bool SILParser::parseTypedValueRef(SILValue &Result, SourceLoc &Loc,
SILBuilder &B) {
Loc = P.Tok.getLoc();
UnresolvedValueName Name;
SILType Ty;
if (parseValueName(Name) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
parseSILType(Ty))
return true;
Result = getLocalValue(Name, Ty, RegularLocation(Loc), B);
return false;
}
/// getInstructionKind - This method maps the string form of a SIL instruction
/// opcode to an enum.
bool SILParser::parseSILOpcode(ValueKind &Opcode, SourceLoc &OpcodeLoc,
StringRef &OpcodeName) {
OpcodeLoc = P.Tok.getLoc();
OpcodeName = P.Tok.getText();
// Parse this textually to avoid Swift keywords (like 'return') from
// interfering with opcode recognition.
Optional<ValueKind> MaybeOpcode =
llvm::StringSwitch<Optional<ValueKind>>(OpcodeName)
#define INST(Id, Parent, TextualName, MemBehavior, MayRelease) \
.Case(#TextualName, ValueKind::Id)
#include "swift/SIL/SILNodes.def"
.Default(None);
if (!MaybeOpcode) {
P.diagnose(OpcodeLoc, diag::expected_sil_instr_opcode);
return true;
}
Opcode = MaybeOpcode.getValue();
P.consumeToken();
return false;
}
static bool peekSILDebugLocation(Parser &P) {
auto T = P.peekToken().getText();
return P.Tok.is(tok::comma) && (T == "loc" || T == "scope");
}
bool SILParser::parseSILDebugVar(SILDebugVariable &Var) {
while (P.Tok.is(tok::comma) && !peekSILDebugLocation(P)) {
P.consumeToken();
StringRef Key = P.Tok.getText();
if (Key == "name") {
P.consumeToken();
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string");
return true;
}
// Drop the double quotes.
StringRef Val = P.Tok.getText().drop_front().drop_back();
Var.Name = Val;
} else if (Key == "argno") {
P.consumeToken();
if (P.Tok.getKind() != tok::integer_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
if (P.Tok.getText().getAsInteger(0, Var.ArgNo))
return true;
} else if (Key == "let") {
Var.Constant = true;
} else if (Key == "var") {
Var.Constant = false;
} else if (Key == "loc") {
Var.Constant = false;
} else {
P.diagnose(P.Tok, diag::sil_dbg_unknown_key, Key);
return true;
}
P.consumeToken();
}
return false;
}
bool SILParser::parseSILBBArgsAtBranch(SmallVector<SILValue, 6> &Args,
SILBuilder &B) {
if (P.Tok.is(tok::l_paren)) {
SourceLoc LParenLoc = P.consumeToken(tok::l_paren);
SourceLoc RParenLoc;
if (P.parseList(tok::r_paren, LParenLoc, RParenLoc,
/*AllowSepAfterLast=*/false,
diag::sil_basicblock_arg_rparen,
[&]() -> ParserStatus {
SILValue Arg;
SourceLoc ArgLoc;
if (parseTypedValueRef(Arg, ArgLoc, B))
return makeParserError();
Args.push_back(Arg);
return makeParserSuccess();
}).isError())
return true;
}
return false;
}
/// Parse the substitution list for an apply instruction or
/// specialized protocol conformance.
bool SILParser::parseSubstitutions(SmallVectorImpl<ParsedSubstitution> &parsed,
GenericEnvironment *GenericEnv) {
// Check for an opening '<' bracket.
if (!P.Tok.isContextualPunctuator("<"))
return false;
P.consumeToken();
// Parse a list of Substitutions.
do {
SourceLoc Loc = P.Tok.getLoc();
// Parse substitution as AST type.
ParserResult<TypeRepr> TyR = P.parseType();
if (TyR.isNull())
return true;
TypeLoc Ty = TyR.get();
if (performTypeLocChecking(Ty, /*IsSILType=*/ false, GenericEnv))
return true;
parsed.push_back({Loc, Ty.getType()});
} while (P.consumeIf(tok::comma));
// Consume the closing '>'.
if (!P.Tok.isContextualPunctuator(">")) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, ">");
return true;
}
P.consumeToken();
return false;
}
/// Collect conformances by looking up the conformance from replacement
/// type and protocol decl.
static bool getConformancesForSubstitution(Parser &P,
ArrayRef<ProtocolDecl *> protocols,
Type subReplacement,
SourceLoc loc,
SmallVectorImpl<ProtocolConformanceRef> &conformances) {
auto M = P.SF.getParentModule();
for (auto proto : protocols) {
auto conformance = M->lookupConformance(subReplacement, proto, nullptr);
if (conformance) {
conformances.push_back(*conformance);
continue;
}
P.diagnose(loc, diag::sil_substitution_mismatch, subReplacement,
proto->getName());
return true;
}
return false;
}
/// Reconstruct AST substitutions from parsed substitutions using archetypes
/// from a SILFunctionType.
bool getApplySubstitutionsFromParsed(
SILParser &SP,
GenericEnvironment *env,
ArrayRef<ParsedSubstitution> parses,
SmallVectorImpl<Substitution> &subs) {
if (parses.empty()) {
assert(!env);
return false;
}
assert(env);
auto loc = parses[0].loc;
// Collect conformance requirements in a convenient form.
llvm::DenseMap<TypeBase *, SmallVector<ProtocolDecl *, 2>> conformsTo;
for (auto reqt : env->getGenericSignature()->getRequirements()) {
if (reqt.getKind() == RequirementKind::Conformance) {
auto canTy = reqt.getFirstType()->getCanonicalType();
auto nominal = reqt.getSecondType()->getAnyNominal();
conformsTo[canTy.getPointer()].push_back(cast<ProtocolDecl>(nominal));
}
}
// The replacement is for the corresponding dependent type by ordering.
for (auto depTy : env->getGenericSignature()->getAllDependentTypes()) {
auto canTy = depTy->getCanonicalType().getPointer();
if (parses.empty()) {
SP.P.diagnose(loc, diag::sil_missing_substitutions);
return true;
}
auto parsed = parses.front();
parses = parses.slice(1);
SmallVector<ProtocolConformanceRef, 2> conformances;
if (getConformancesForSubstitution(SP.P, conformsTo[canTy],
parsed.replacement,
parsed.loc, conformances))
return true;
subs.push_back({parsed.replacement,
SP.P.Context.AllocateCopy(conformances)});
}
if (!parses.empty()) {
SP.P.diagnose(loc, diag::sil_too_many_substitutions);
return true;
}
return false;
}
static ArrayRef<ProtocolConformanceRef>
collectExistentialConformances(Parser &P, CanType conformingType, SourceLoc loc,
CanType protocolType) {
SmallVector<ProtocolDecl *, 2> protocols;
bool isExistential = protocolType->isAnyExistentialType(protocols);
assert(isExistential);
(void)isExistential;
if (protocols.empty())
return {};
SmallVector<ProtocolConformanceRef, 2> conformances;
getConformancesForSubstitution(P, protocols, conformingType,
loc, conformances);
return P.Context.AllocateCopy(conformances);
}
/// sil-loc ::= 'loc' string-literal ':' [0-9]+ ':' [0-9]+
bool SILParser::parseSILLocation(SILLocation &Loc) {
SILLocation::DebugLoc L;
if (parseVerbatim("loc"))
return true;
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string");
return true;
}
// Drop the double quotes.
StringRef File = P.Tok.getText().drop_front().drop_back();
L.Filename = P.Context.getIdentifier(File).str().data();
P.consumeToken(tok::string_literal);
if (P.parseToken(tok::colon, diag::expected_colon_in_sil_location))
return true;
if (parseInteger(L.Line, diag::sil_invalid_line_in_sil_location))
return true;
if (P.parseToken(tok::colon, diag::expected_colon_in_sil_location))
return true;
if (parseInteger(L.Column, diag::sil_invalid_column_in_sil_location))
return true;
Loc.setDebugInfoLoc(L);
return false;
}
bool SILParser::parseScopeRef(SILDebugScope *&DS) {
unsigned Slot;
SourceLoc SlotLoc = P.Tok.getLoc();
if (parseInteger(Slot, diag::sil_invalid_scope_slot))
return true;
DS = TUState.ScopeSlots[Slot];
if (!DS) {
P.diagnose(SlotLoc, diag::sil_scope_undeclared, Slot);
return true;
}
return false;
}
/// (',' sil-loc)? (',' sil-scope-ref)?
bool SILParser::parseSILDebugLocation(SILLocation &L, SILBuilder &B,
bool parsedComma) {
// Parse the debug information, if any.
if (P.Tok.is(tok::comma)) {
P.consumeToken();
parsedComma = true;
}
if (!parsedComma)
return false;
bool requireScope = false;
if (P.Tok.getText() == "loc") {
if (parseSILLocation(L))
return true;
if (P.Tok.is(tok::comma)) {
P.consumeToken();
requireScope = true;
}
}
if (P.Tok.getText() == "scope" || requireScope) {
parseVerbatim("scope");
SILDebugScope *DS = nullptr;
if (parseScopeRef(DS))
return true;
if (DS)
B.setCurrentDebugScope(DS);
}
return false;
}
static bool parseLoadOwnershipQualifier(LoadOwnershipQualifier &Result,
SILParser &P) {
StringRef Str;
// If we do not parse '[' ... ']', we have unqualified. Set value and return.
if (!parseSILOptional(Str, P)) {
Result = LoadOwnershipQualifier::Unqualified;
return false;
}
// Then try to parse one of our other qualifiers. We do not support parsing
// unqualified here so we use that as our fail value.
auto Tmp = llvm::StringSwitch<LoadOwnershipQualifier>(Str)
.Case("take", LoadOwnershipQualifier::Take)
.Case("copy", LoadOwnershipQualifier::Copy)
.Case("trivial", LoadOwnershipQualifier::Trivial)
.Default(LoadOwnershipQualifier::Unqualified);
// Thus return true (following the conventions in this file) if we fail.
if (Tmp == LoadOwnershipQualifier::Unqualified)
return true;
// Otherwise, assign Result and return false.
Result = Tmp;
return false;
}
static bool parseStoreOwnershipQualifier(StoreOwnershipQualifier &Result,
SILParser &P) {
StringRef Str;
// If we do not parse '[' ... ']', we have unqualified. Set value and return.
if (!parseSILOptional(Str, P)) {
Result = StoreOwnershipQualifier::Unqualified;
return false;
}
// Then try to parse one of our other qualifiers. We do not support parsing
// unqualified here so we use that as our fail value.
auto Tmp = llvm::StringSwitch<StoreOwnershipQualifier>(Str)
.Case("init", StoreOwnershipQualifier::Init)
.Case("assign", StoreOwnershipQualifier::Assign)
.Case("trivial", StoreOwnershipQualifier::Trivial)
.Default(StoreOwnershipQualifier::Unqualified);
// Thus return true (following the conventions in this file) if we fail.
if (Tmp == StoreOwnershipQualifier::Unqualified)
return true;
// Otherwise, assign Result and return false.
Result = Tmp;
return false;
}
bool SILParser::parseSILDeclRef(SILDeclRef &Member, bool FnTypeRequired) {
SourceLoc TyLoc;
SmallVector<ValueDecl *, 4> values;
if (parseSILDeclRef(Member, values))
return true;
// : ( or : < means that what follows is function type.
if (!P.Tok.is(tok::colon))
return false;
if (FnTypeRequired &&
!P.peekToken().is(tok::l_paren) &&
!P.peekToken().isContextualPunctuator("<"))
return false;
// Type of the SILDeclRef is optional to be compatible with the old format.
if (!P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")) {
// Parse the type for SILDeclRef.
Optional<Scope> GenericsScope;
GenericsScope.emplace(&P, ScopeKind::Generics);
ParserResult<TypeRepr> TyR = P.parseType();
GenericsScope.reset();
if (TyR.isNull())
return true;
TypeLoc Ty = TyR.get();
// The type can be polymorphic.
GenericEnvironment *genericEnv = nullptr;
if (auto fnType = dyn_cast<FunctionTypeRepr>(TyR.get())) {
if (auto generics = fnType->getGenericParams()) {
assert(!Ty.wasValidated() && Ty.getType().isNull());
genericEnv = handleSILGenericParams(P.Context, generics, &P.SF);
fnType->setGenericEnvironment(genericEnv);
}
}
if (performTypeLocChecking(Ty, /*IsSILType=*/ false, genericEnv))
return true;
// Pick the ValueDecl that has the right type.
ValueDecl *TheDecl = nullptr;
auto declTy = Ty.getType()->getCanonicalType();
auto unlabeledDecl =
declTy->getUnlabeledType(P.Context)->getCanonicalType();
for (unsigned I = 0, E = values.size(); I < E; I++) {
auto lookupTy = values[I]->getInterfaceType();
auto unlabeledLookup =
lookupTy->getUnlabeledType(P.Context)->getCanonicalType();
if (unlabeledDecl == unlabeledLookup) {
TheDecl = values[I];
// Update SILDeclRef to point to the right Decl.
Member.loc = TheDecl;
break;
}
if (values.size() == 1 && !TheDecl) {
P.diagnose(TyLoc, diag::sil_member_decl_type_mismatch, declTy,
lookupTy);
return true;
}
}
if (!TheDecl) {
P.diagnose(TyLoc, diag::sil_member_decl_not_found);
return true;
}
}
return false;
}
/// sil-instruction-def ::= (sil-value-name '=')? sil-instruction
/// (',' sil-scope-ref)? (',' sil-loc)?
bool SILParser::parseSILInstruction(SILBasicBlock *BB, SILBuilder &B) {
// We require SIL instructions to be at the start of a line to assist
// recovery.
if (!P.Tok.isAtStartOfLine()) {
P.diagnose(P.Tok, diag::expected_sil_instr_start_of_line);
return true;
}
StringRef ResultName;
SourceLoc ResultNameLoc;
// If the instruction has a name '%foo =', parse it.
if (P.Tok.is(tok::sil_local_name)) {
ResultName = P.Tok.getText();
ResultNameLoc = P.Tok.getLoc();
P.consumeToken(tok::sil_local_name);
if (P.parseToken(tok::equal, diag::expected_equal_in_sil_instr))
return true;
}
ValueKind Opcode;
SourceLoc OpcodeLoc;
StringRef OpcodeName;
// Parse the opcode name.
if (parseSILOpcode(Opcode, OpcodeLoc, OpcodeName))
return true;
B.setInsertionPoint(BB);
SmallVector<SILValue, 4> OpList;
SILValue Val;
SILLocation InstLoc = RegularLocation(OpcodeLoc);
auto parseCastConsumptionKind = [&](Identifier name, SourceLoc loc,
CastConsumptionKind &out) -> bool {
auto kind = llvm::StringSwitch<Optional<CastConsumptionKind>>(name.str())
.Case("take_always", CastConsumptionKind::TakeAlways)
.Case("take_on_success", CastConsumptionKind::TakeOnSuccess)
.Case("copy_on_success", CastConsumptionKind::CopyOnSuccess)
.Default(None);
if (kind) {
out = kind.getValue();
return false;
}
P.diagnose(loc, diag::expected_tok_in_sil_instr, "cast consumption kind");
return true;
};
auto parseOpenExistAddrKind = [&](Identifier name, SourceLoc loc,
OpenedExistentialAccess &out) -> bool {
auto kind =
llvm::StringSwitch<Optional<OpenedExistentialAccess>>(name.str())
.Case("mutable_access", OpenedExistentialAccess::Mutable)
.Case("immutable_access", OpenedExistentialAccess::Immutable)
.Default(None);
if (kind) {
out = kind.getValue();
return false;
}
P.diagnose(loc, diag::expected_tok_in_sil_instr,
"opened existential access kind");
return true;
};
// Validate the opcode name, and do opcode-specific parsing logic based on the
// opcode we find.
SILInstruction *ResultVal;
switch (Opcode) {
case ValueKind::SILPHIArgument:
case ValueKind::SILFunctionArgument:
case ValueKind::SILUndef:
llvm_unreachable("not an instruction");
case ValueKind::AllocBoxInst: {
SILType Ty;
if (parseSILType(Ty)) return true;
SILDebugVariable VarInfo;
if (parseSILDebugVar(VarInfo))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createAllocBox(InstLoc, Ty.castTo<SILBoxType>(), VarInfo);
break;
}
case ValueKind::ApplyInst:
case ValueKind::PartialApplyInst:
case ValueKind::TryApplyInst:
if (parseCallInstruction(InstLoc, Opcode, B, ResultVal))
return true;
break;
case ValueKind::IntegerLiteralInst: {
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
bool Negative = false;
if (P.Tok.isAnyOperator() && P.Tok.getText() == "-") {
Negative = true;
P.consumeToken();
}
if (P.Tok.getKind() != tok::integer_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
auto intTy = Ty.getAs<BuiltinIntegerType>();
if (!intTy) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
APInt value(intTy->getGreatestWidth(), 0);
bool error = P.Tok.getText().getAsInteger(0, value);
assert(!error && "integer_literal token did not parse as APInt?!");
(void)error;
if (Negative)
value = -value;
if (value.getBitWidth() != intTy->getGreatestWidth())
value = value.zextOrTrunc(intTy->getGreatestWidth());
P.consumeToken(tok::integer_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIntegerLiteral(InstLoc, Ty, value);
break;
}
case ValueKind::FloatLiteralInst: {
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
// The value is expressed as bits.
if (P.Tok.getKind() != tok::integer_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
auto floatTy = Ty.getAs<BuiltinFloatType>();
if (!floatTy) {
P.diagnose(P.Tok, diag::sil_float_literal_not_float_type);
return true;
}
APInt bits(floatTy->getBitWidth(), 0);
bool error = P.Tok.getText().getAsInteger(0, bits);
assert(!error && "float_literal token did not parse as APInt?!");
(void)error;
if (bits.getBitWidth() != floatTy->getBitWidth())
bits = bits.zextOrTrunc(floatTy->getBitWidth());
APFloat value(floatTy->getAPFloatSemantics(), bits);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createFloatLiteral(InstLoc, Ty, value);
P.consumeToken(tok::integer_literal);
break;
}
case ValueKind::StringLiteralInst: {
if (P.Tok.getKind() != tok::identifier) {
P.diagnose(P.Tok, diag::sil_string_no_encoding);
return true;
}
StringLiteralInst::Encoding encoding;
if (P.Tok.getText() == "utf8") {
encoding = StringLiteralInst::Encoding::UTF8;
} else if (P.Tok.getText() == "utf16") {
encoding = StringLiteralInst::Encoding::UTF16;
} else if (P.Tok.getText() == "objc_selector") {
encoding = StringLiteralInst::Encoding::ObjCSelector;
} else {
P.diagnose(P.Tok, diag::sil_string_invalid_encoding, P.Tok.getText());
return true;
}
P.consumeToken(tok::identifier);
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string");
return true;
}
// Drop the double quotes.
StringRef rawString = P.Tok.getText().drop_front().drop_back();
// Ask the lexer to interpret the entire string as a literal segment.
SmallVector<char, 128> stringBuffer;
StringRef string = P.L->getEncodedStringSegment(rawString, stringBuffer);
P.consumeToken(tok::string_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createStringLiteral(InstLoc, string, encoding);
break;
}
case ValueKind::AllocValueBufferInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createAllocValueBuffer(InstLoc, Ty, Val);
break;
}
case ValueKind::ProjectValueBufferInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectValueBuffer(InstLoc, Ty, Val);
break;
}
case ValueKind::DeallocValueBufferInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocValueBuffer(InstLoc, Ty, Val);
break;
}
case ValueKind::ProjectBoxInst: {
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
if (!P.Tok.is(tok::integer_literal)) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
unsigned Index;
bool error = P.Tok.getText().getAsInteger(0, Index);
assert(!error && "project_box index did not parse as integer?!");
(void)error;
P.consumeToken(tok::integer_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectBox(InstLoc, Val, Index);
break;
}
case ValueKind::ProjectExistentialBoxInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectExistentialBox(InstLoc, Ty, Val);
break;
}
case ValueKind::FunctionRefInst:
if (parseSILFunctionRef(InstLoc, B, ResultVal))
return true;
break;
case ValueKind::BuiltinInst: {
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr,"builtin name");
return true;
}
StringRef Str = P.Tok.getText();
Identifier Id = P.Context.getIdentifier(Str.substr(1, Str.size()-2));
P.consumeToken(tok::string_literal);
// Find the builtin in the Builtin module
SmallVector<ValueDecl*, 2> foundBuiltins;
P.Context.TheBuiltinModule->lookupMember(foundBuiltins,
P.Context.TheBuiltinModule, Id,
Identifier());
if (foundBuiltins.empty()) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr,"builtin name");
return true;
}
assert(foundBuiltins.size() == 1 && "ambiguous builtin name?!");
auto *builtinFunc = cast<FuncDecl>(foundBuiltins[0]);
GenericEnvironment *genericEnv = builtinFunc->getGenericEnvironment();
SmallVector<ParsedSubstitution, 4> parsedSubs;
SmallVector<Substitution, 4> subs;
if (parseSubstitutions(parsedSubs))
return true;
if (!parsedSubs.empty()) {
if (!genericEnv) {
P.diagnose(P.Tok, diag::sil_substitutions_on_non_polymorphic_type);
return true;
}
if (getApplySubstitutionsFromParsed(*this, genericEnv, parsedSubs, subs))
return true;
}
if (P.Tok.getKind() != tok::l_paren) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "(");
return true;
}
P.consumeToken(tok::l_paren);
SmallVector<SILValue, 4> Args;
while (true) {
if (P.consumeIf(tok::r_paren))
break;
SILValue Val;
if (parseTypedValueRef(Val, B))
return true;
Args.push_back(Val);
if (P.consumeIf(tok::comma))
continue;
if (P.consumeIf(tok::r_paren))
break;
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "(' or ',");
return true;
}
if (P.Tok.getKind() != tok::colon) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, ":");
return true;
}
P.consumeToken(tok::colon);
SILType ResultTy;
if (parseSILType(ResultTy))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createBuiltin(InstLoc, Id, ResultTy, subs, Args);
break;
}
case ValueKind::OpenExistentialAddrInst:
case ValueKind::OpenExistentialBoxInst:
case ValueKind::OpenExistentialMetatypeInst:
case ValueKind::OpenExistentialRefInst:
case ValueKind::OpenExistentialOpaqueInst: {
SILType Ty;
Identifier ToToken;
SourceLoc ToLoc;
OpenedExistentialAccess accessKind;
Identifier accessKindToken;
SourceLoc accessKindLoc;
if (Opcode == ValueKind::OpenExistentialAddrInst) {
if (parseSILIdentifier(accessKindToken, accessKindLoc,
diag::expected_tok_in_sil_instr,
"opened existential access kind") ||
parseOpenExistAddrKind(accessKindToken, accessKindLoc, accessKind))
return true;
}
if (parseTypedValueRef(Val, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILType(Ty))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
switch (Opcode) {
case ValueKind::OpenExistentialAddrInst:
ResultVal = B.createOpenExistentialAddr(InstLoc, Val, Ty, accessKind);
break;
case ValueKind::OpenExistentialMetatypeInst:
ResultVal = B.createOpenExistentialMetatype(InstLoc, Val, Ty);
break;
case ValueKind::OpenExistentialRefInst:
ResultVal = B.createOpenExistentialRef(InstLoc, Val, Ty);
break;
case ValueKind::OpenExistentialBoxInst:
ResultVal = B.createOpenExistentialBox(InstLoc, Val, Ty);
break;
case ValueKind::OpenExistentialOpaqueInst:
ResultVal = B.createOpenExistentialOpaque(InstLoc, Val, Ty);
break;
default:
llvm_unreachable("Inner switch out of sync with outer switch");
}
break;
}
#define UNARY_INSTRUCTION(ID) \
case ValueKind::ID##Inst: \
if (parseTypedValueRef(Val, B)) return true; \
if (parseSILDebugLocation(InstLoc, B)) return true; \
ResultVal = B.create##ID(InstLoc, Val); \
break;
#define REFCOUNTING_INSTRUCTION(ID) \
case ValueKind::ID##Inst: { \
Atomicity atomicity = Atomicity::Atomic; \
StringRef Optional; \
if (parseSILOptional(Optional, *this)) { \
if (Optional == "nonatomic") { \
atomicity = Atomicity::NonAtomic; \
} else { \
return true; \
} \
} \
if (parseTypedValueRef(Val, B)) \
return true; \
if (parseSILDebugLocation(InstLoc, B)) \
return true; \
ResultVal = B.create##ID(InstLoc, Val, atomicity); \
} break;
UNARY_INSTRUCTION(FixLifetime)
UNARY_INSTRUCTION(CopyBlock)
UNARY_INSTRUCTION(IsUnique)
UNARY_INSTRUCTION(IsUniqueOrPinned)
UNARY_INSTRUCTION(DestroyAddr)
UNARY_INSTRUCTION(CopyValue)
UNARY_INSTRUCTION(CopyUnownedValue)
UNARY_INSTRUCTION(DestroyValue)
UNARY_INSTRUCTION(CondFail)
UNARY_INSTRUCTION(EndBorrowArgument)
UNARY_INSTRUCTION(UnmanagedReleaseValue)
UNARY_INSTRUCTION(UnmanagedRetainValue)
UNARY_INSTRUCTION(UnmanagedAutoreleaseValue)
REFCOUNTING_INSTRUCTION(StrongPin)
REFCOUNTING_INSTRUCTION(StrongRetain)
REFCOUNTING_INSTRUCTION(StrongRelease)
REFCOUNTING_INSTRUCTION(StrongUnpin)
REFCOUNTING_INSTRUCTION(StrongRetainUnowned)
REFCOUNTING_INSTRUCTION(UnownedRetain)
REFCOUNTING_INSTRUCTION(UnownedRelease)
REFCOUNTING_INSTRUCTION(AutoreleaseValue)
REFCOUNTING_INSTRUCTION(SetDeallocating)
REFCOUNTING_INSTRUCTION(ReleaseValue)
REFCOUNTING_INSTRUCTION(RetainValue)
#undef UNARY_INSTRUCTION
#undef REFCOUNTING_INSTRUCTION
case ValueKind::DebugValueInst:
case ValueKind::DebugValueAddrInst: {
SILDebugVariable VarInfo;
if (parseTypedValueRef(Val, B) ||
parseSILDebugVar(VarInfo) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (Opcode == ValueKind::DebugValueInst)
ResultVal = B.createDebugValue(InstLoc, Val, VarInfo);
else
ResultVal = B.createDebugValueAddr(InstLoc, Val, VarInfo);
break;
}
case ValueKind::LoadInst: {
LoadOwnershipQualifier Qualifier;
SourceLoc AddrLoc;
if (parseLoadOwnershipQualifier(Qualifier, *this) ||
parseTypedValueRef(Val, AddrLoc, B) || parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createLoad(InstLoc, Val, Qualifier);
break;
}
case ValueKind::LoadBorrowInst: {
SourceLoc AddrLoc;
if (parseTypedValueRef(Val, AddrLoc, B) || parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createLoadBorrow(InstLoc, Val);
break;
}
case ValueKind::BeginBorrowInst: {
SourceLoc AddrLoc;
if (parseTypedValueRef(Val, AddrLoc, B) || parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createBeginBorrow(InstLoc, Val);
break;
}
case ValueKind::LoadUnownedInst:
case ValueKind::LoadWeakInst: {
bool isTake = false;
SourceLoc addrLoc;
if (parseSILOptional(isTake, *this, "take") ||
parseTypedValueRef(Val, addrLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (Opcode == ValueKind::LoadUnownedInst) {
if (!Val->getType().is<UnownedStorageType>()) {
P.diagnose(addrLoc, diag::sil_operand_not_unowned_address, "source",
OpcodeName);
}
ResultVal = B.createLoadUnowned(InstLoc, Val, IsTake_t(isTake));
} else {
if (!Val->getType().is<WeakStorageType>()) {
P.diagnose(addrLoc, diag::sil_operand_not_weak_address, "source",
OpcodeName);
}
ResultVal = B.createLoadWeak(InstLoc, Val, IsTake_t(isTake));
}
break;
}
case ValueKind::MarkDependenceInst: {
SILValue Base;
if (parseTypedValueRef(Val, B) ||
parseVerbatim("on") ||
parseTypedValueRef(Base, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMarkDependence(InstLoc, Val, Base);
break;
}
// Conversion instructions.
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::UncheckedTrivialBitCastInst:
case ValueKind::UncheckedBitwiseCastInst:
case ValueKind::UpcastInst:
case ValueKind::AddressToPointerInst:
case ValueKind::BridgeObjectToRefInst:
case ValueKind::BridgeObjectToWordInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::RefToUnownedInst:
case ValueKind::UnownedToRefInst:
case ValueKind::RefToUnmanagedInst:
case ValueKind::UnmanagedToRefInst:
case ValueKind::ThinFunctionToPointerInst:
case ValueKind::PointerToThinFunctionInst:
case ValueKind::ThinToThickFunctionInst:
case ValueKind::ThickToObjCMetatypeInst:
case ValueKind::ObjCToThickMetatypeInst:
case ValueKind::ConvertFunctionInst:
case ValueKind::ObjCExistentialMetatypeToObjectInst:
case ValueKind::ObjCMetatypeToObjectInst: {
SILType Ty;
Identifier ToToken;
SourceLoc ToLoc;
if (parseTypedValueRef(Val, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
switch (Opcode) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::UncheckedRefCastInst:
ResultVal = B.createUncheckedRefCast(InstLoc, Val, Ty);
break;
case ValueKind::UncheckedAddrCastInst:
ResultVal = B.createUncheckedAddrCast(InstLoc, Val, Ty);
break;
case ValueKind::UncheckedTrivialBitCastInst:
ResultVal = B.createUncheckedTrivialBitCast(InstLoc, Val, Ty);
break;
case ValueKind::UncheckedBitwiseCastInst:
ResultVal = B.createUncheckedBitwiseCast(InstLoc, Val, Ty);
break;
case ValueKind::UpcastInst:
ResultVal = B.createUpcast(InstLoc, Val, Ty);
break;
case ValueKind::ConvertFunctionInst:
ResultVal = B.createConvertFunction(InstLoc, Val, Ty);
break;
case ValueKind::AddressToPointerInst:
ResultVal = B.createAddressToPointer(InstLoc, Val, Ty);
break;
case ValueKind::BridgeObjectToRefInst:
ResultVal = B.createBridgeObjectToRef(InstLoc, Val, Ty);
break;
case ValueKind::BridgeObjectToWordInst:
ResultVal = B.createBridgeObjectToWord(InstLoc, Val);
break;
case ValueKind::RefToRawPointerInst:
ResultVal = B.createRefToRawPointer(InstLoc, Val, Ty);
break;
case ValueKind::RawPointerToRefInst:
ResultVal = B.createRawPointerToRef(InstLoc, Val, Ty);
break;
case ValueKind::RefToUnownedInst:
ResultVal = B.createRefToUnowned(InstLoc, Val, Ty);
break;
case ValueKind::UnownedToRefInst:
ResultVal = B.createUnownedToRef(InstLoc, Val, Ty);
break;
case ValueKind::RefToUnmanagedInst:
ResultVal = B.createRefToUnmanaged(InstLoc, Val, Ty);
break;
case ValueKind::UnmanagedToRefInst:
ResultVal = B.createUnmanagedToRef(InstLoc, Val, Ty);
break;
case ValueKind::ThinFunctionToPointerInst:
ResultVal = B.createThinFunctionToPointer(InstLoc, Val, Ty);
break;
case ValueKind::PointerToThinFunctionInst:
ResultVal = B.createPointerToThinFunction(InstLoc, Val, Ty);
break;
case ValueKind::ThinToThickFunctionInst:
ResultVal = B.createThinToThickFunction(InstLoc, Val, Ty);
break;
case ValueKind::ThickToObjCMetatypeInst:
ResultVal = B.createThickToObjCMetatype(InstLoc, Val, Ty);
break;
case ValueKind::ObjCToThickMetatypeInst:
ResultVal = B.createObjCToThickMetatype(InstLoc, Val, Ty);
break;
case ValueKind::ObjCMetatypeToObjectInst:
ResultVal = B.createObjCMetatypeToObject(InstLoc, Val, Ty);
break;
case ValueKind::ObjCExistentialMetatypeToObjectInst:
ResultVal = B.createObjCExistentialMetatypeToObject(InstLoc, Val, Ty);
break;
}
break;
}
case ValueKind::PointerToAddressInst: {
SILType Ty;
Identifier ToToken;
SourceLoc ToLoc;
bool isStrict = false;
if (parseTypedValueRef(Val, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILOptional(isStrict, *this, "strict") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
ResultVal = B.createPointerToAddress(InstLoc, Val, Ty, isStrict);
break;
}
case ValueKind::RefToBridgeObjectInst: {
SILValue BitsVal;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(BitsVal, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createRefToBridgeObject(InstLoc, Val, BitsVal);
break;
}
// Indirect checked conversion instructions.
case ValueKind::UnconditionalCheckedCastAddrInst:
case ValueKind::CheckedCastAddrBranchInst:
case ValueKind::UncheckedRefCastAddrInst: {
CastConsumptionKind consumptionKind;
if (Opcode == ValueKind::UncheckedRefCastAddrInst)
consumptionKind = CastConsumptionKind::TakeAlways;
else {
Identifier consumptionKindToken;
SourceLoc consumptionKindLoc;
if (parseSILIdentifier(consumptionKindToken, consumptionKindLoc,
diag::expected_tok_in_sil_instr,
"cast consumption kind") ||
parseCastConsumptionKind(consumptionKindToken,
consumptionKindLoc,
consumptionKind))
return true;
}
auto parseFormalTypeAndValue = [&](CanType &formalType,
SILValue &value) -> bool {
return (parseASTType(formalType) ||
parseVerbatim("in") ||
parseTypedValueRef(value, B));
};
CanType sourceType, targetType;
SILValue sourceAddr, destAddr;
if (parseFormalTypeAndValue(sourceType, sourceAddr) ||
parseVerbatim("to") ||
parseFormalTypeAndValue(targetType, destAddr))
return true;
if (Opcode == ValueKind::UncheckedRefCastAddrInst) {
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUncheckedRefCastAddr(InstLoc,
sourceAddr, sourceType,
destAddr, targetType);
break;
} else if (Opcode == ValueKind::UnconditionalCheckedCastAddrInst) {
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUnconditionalCheckedCastAddr(InstLoc,
consumptionKind,
sourceAddr, sourceType,
destAddr, targetType);
break;
}
// The conditional cast still needs its branch destinations.
Identifier successBBName, failureBBName;
SourceLoc successBBLoc, failureBBLoc;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(successBBName, successBBLoc,
diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(failureBBName, failureBBLoc,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createCheckedCastAddrBranch(InstLoc, consumptionKind,
sourceAddr, sourceType,
destAddr, targetType,
getBBForReference(successBBName, successBBLoc),
getBBForReference(failureBBName, failureBBLoc));
break;
}
// Checked Conversion instructions.
case ValueKind::UnconditionalCheckedCastInst:
case ValueKind::CheckedCastBranchInst: {
SILType ty;
SILValue destVal;
Identifier toToken;
SourceLoc toLoc;
bool isExact = false;
if (Opcode == ValueKind::CheckedCastBranchInst &&
parseSILOptional(isExact, *this, "exact"))
return true;
if (parseTypedValueRef(Val, B) ||
parseVerbatim("to") ||
parseSILType(ty))
return true;
// An unconditional cast instruction is finished here.
if (Opcode == ValueKind::UnconditionalCheckedCastInst) {
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUnconditionalCheckedCast(InstLoc, Val, ty);
break;
}
// The conditional cast still needs its branch destinations.
Identifier successBBName, failureBBName;
SourceLoc successBBLoc, failureBBLoc;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(successBBName, successBBLoc,
diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(failureBBName, failureBBLoc,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createCheckedCastBranch(InstLoc, isExact, Val, ty,
getBBForReference(successBBName, successBBLoc),
getBBForReference(failureBBName, failureBBLoc));
break;
}
case ValueKind::MarkUninitializedInst: {
if (P.parseToken(tok::l_square, diag::expected_tok_in_sil_instr, "["))
return true;
Identifier KindId;
SourceLoc KindLoc = P.Tok.getLoc();
if (P.consumeIf(tok::kw_var))
KindId = P.Context.getIdentifier("var");
else if (P.parseIdentifier(KindId, KindLoc,
diag::expected_tok_in_sil_instr, "kind"))
return true;
if (P.parseToken(tok::r_square, diag::expected_tok_in_sil_instr, "]"))
return true;
MarkUninitializedInst::Kind Kind;
if (KindId.str() == "var")
Kind = MarkUninitializedInst::Var;
else if (KindId.str() == "rootself")
Kind = MarkUninitializedInst::RootSelf;
else if (KindId.str() == "derivedself")
Kind = MarkUninitializedInst::DerivedSelf;
else if (KindId.str() == "derivedselfonly")
Kind = MarkUninitializedInst::DerivedSelfOnly;
else if (KindId.str() == "delegatingself")
Kind = MarkUninitializedInst::DelegatingSelf;
else {
P.diagnose(KindLoc, diag::expected_tok_in_sil_instr,
"var, rootself, derivedself, derivedselfonly, "
"or delegatingself");
return true;
}
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMarkUninitialized(InstLoc, Val, Kind);
break;
}
case ValueKind::MarkUninitializedBehaviorInst: {
UnresolvedValueName InitStorageFuncName, StorageName,
SetterFuncName, SelfName;
SmallVector<ParsedSubstitution, 4> ParsedInitStorageSubs,
ParsedSetterSubs;
GenericEnvironment *InitStorageEnv, *SetterEnv;
SILType InitStorageTy, SetterTy;
// mark_uninitialized_behavior %init<Subs>(%storage) : $T -> U,
// %set<Subs>(%self) : $V -> W
if (parseValueName(InitStorageFuncName)
|| parseSubstitutions(ParsedInitStorageSubs)
|| P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")
|| parseValueName(StorageName)
|| P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr, ")")
|| P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")
|| parseSILType(InitStorageTy, InitStorageEnv)
|| P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")
|| parseValueName(SetterFuncName)
|| parseSubstitutions(ParsedSetterSubs)
|| P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")
|| parseValueName(SelfName)
|| P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr, ")")
|| P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")
|| parseSILType(SetterTy, SetterEnv)
|| parseSILDebugLocation(InstLoc, B))
return true;
// Resolve the types of the operands.
SILValue InitStorageFunc = getLocalValue(InitStorageFuncName,
InitStorageTy, InstLoc, B);
SILValue SetterFunc = getLocalValue(SetterFuncName, SetterTy, InstLoc, B);
SmallVector<Substitution, 4> InitStorageSubs, SetterSubs;
if (getApplySubstitutionsFromParsed(*this, InitStorageEnv,
ParsedInitStorageSubs, InitStorageSubs)
|| getApplySubstitutionsFromParsed(*this, SetterEnv,
ParsedSetterSubs, SetterSubs))
return true;
auto SubstInitStorageTy = InitStorageTy.castTo<SILFunctionType>()
->substGenericArgs(B.getModule(), InitStorageSubs);
auto SubstSetterTy = SetterTy.castTo<SILFunctionType>()
->substGenericArgs(B.getModule(), SetterSubs);
// Derive the storage type from the initStorage method.
auto StorageTy = SILType::getPrimitiveAddressType(
SubstInitStorageTy->getSingleResult().getType());
auto Storage = getLocalValue(StorageName, StorageTy, InstLoc, B);
SILFunctionConventions substConv(SubstSetterTy, B.getModule());
auto SelfTy = substConv.getSILType(SubstSetterTy->getSelfParameter());
auto Self = getLocalValue(SelfName, SelfTy, InstLoc, B);
auto PropTy = SubstInitStorageTy->getParameters()[0]
.getSILStorageType()
.getAddressType();
ResultVal = B.createMarkUninitializedBehavior(InstLoc,
InitStorageFunc,
InitStorageSubs,
Storage,
SetterFunc,
SetterSubs,
Self,
PropTy);
break;
}
case ValueKind::MarkFunctionEscapeInst: {
SmallVector<SILValue, 4> OpList;
do {
if (parseTypedValueRef(Val, B)) return true;
OpList.push_back(Val);
} while (!peekSILDebugLocation(P) && P.consumeIf(tok::comma));
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMarkFunctionEscape(InstLoc, OpList);
break;
}
case ValueKind::StoreInst: {
UnresolvedValueName From;
SourceLoc ToLoc, AddrLoc;
Identifier ToToken;
SILValue AddrVal;
StoreOwnershipQualifier Qualifier;
if (parseValueName(From) ||
parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr,
"to"))
return true;
if (parseStoreOwnershipQualifier(Qualifier, *this))
return true;
if (parseTypedValueRef(AddrVal, AddrLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (!AddrVal->getType().isAddress()) {
P.diagnose(AddrLoc, diag::sil_operand_not_address, "destination",
OpcodeName);
return true;
}
SILType ValType = AddrVal->getType().getObjectType();
ResultVal = B.createStore(InstLoc, getLocalValue(From, ValType, InstLoc, B),
AddrVal, Qualifier);
break;
}
case ValueKind::EndBorrowInst: {
UnresolvedValueName BorrowedFromName, BorrowedValueName;
SourceLoc ToLoc;
Identifier ToToken;
SILType BorrowedFromTy, BorrowedValueTy;
if (parseValueName(BorrowedValueName) ||
parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr,
"from") ||
parseValueName(BorrowedFromName) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
parseSILType(BorrowedValueTy) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(BorrowedFromTy) || parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "from") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "from");
return true;
}
SILValue BorrowedValue =
getLocalValue(BorrowedValueName, BorrowedValueTy, InstLoc, B);
SILValue BorrowedFrom =
getLocalValue(BorrowedFromName, BorrowedFromTy, InstLoc, B);
ResultVal = B.createEndBorrow(InstLoc, BorrowedValue, BorrowedFrom);
break;
}
case ValueKind::StoreBorrowInst:
case ValueKind::AssignInst:
case ValueKind::StoreUnownedInst:
case ValueKind::StoreWeakInst: {
UnresolvedValueName from;
SourceLoc toLoc, addrLoc;
Identifier toToken;
SILValue addrVal;
bool isInit = false;
if (parseValueName(from) ||
parseSILIdentifier(toToken, toLoc,
diag::expected_tok_in_sil_instr, "to") ||
((Opcode == ValueKind::StoreWeakInst ||
Opcode == ValueKind::StoreUnownedInst) &&
parseSILOptional(isInit, *this, "initialization")) ||
parseTypedValueRef(addrVal, addrLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (toToken.str() != "to") {
P.diagnose(toLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (!addrVal->getType().isAddress()) {
P.diagnose(addrLoc, diag::sil_operand_not_address,
"destination", OpcodeName);
return true;
}
if (Opcode == ValueKind::StoreBorrowInst) {
SILType valueTy = addrVal->getType().getObjectType();
ResultVal = B.createStoreBorrow(
InstLoc, getLocalValue(from, valueTy, InstLoc, B), addrVal);
break;
}
if (Opcode == ValueKind::StoreUnownedInst) {
auto refType = addrVal->getType().getAs<UnownedStorageType>();
if (!refType) {
P.diagnose(addrLoc, diag::sil_operand_not_unowned_address,
"destination", OpcodeName);
return true;
}
auto valueTy = SILType::getPrimitiveObjectType(refType.getReferentType());
ResultVal = B.createStoreUnowned(InstLoc,
getLocalValue(from, valueTy, InstLoc, B),
addrVal, IsInitialization_t(isInit));
break;
}
if (Opcode == ValueKind::StoreWeakInst) {
auto refType = addrVal->getType().getAs<WeakStorageType>();
if (!refType) {
P.diagnose(addrLoc, diag::sil_operand_not_weak_address,
"destination", OpcodeName);
return true;
}
auto valueTy = SILType::getPrimitiveObjectType(refType.getReferentType());
ResultVal = B.createStoreWeak(InstLoc,
getLocalValue(from, valueTy, InstLoc, B),
addrVal, IsInitialization_t(isInit));
break;
}
SILType ValType = addrVal->getType().getObjectType();
assert(Opcode == ValueKind::AssignInst);
ResultVal = B.createAssign(InstLoc,
getLocalValue(from, ValType, InstLoc, B),
addrVal);
break;
}
case ValueKind::AllocStackInst:
case ValueKind::MetatypeInst: {
SILType Ty;
if (parseSILType(Ty))
return true;
if (Opcode == ValueKind::AllocStackInst) {
SILDebugVariable VarInfo;
if (parseSILDebugVar(VarInfo) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createAllocStack(InstLoc, Ty, VarInfo);
} else {
assert(Opcode == ValueKind::MetatypeInst);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMetatype(InstLoc, Ty);
}
break;
}
case ValueKind::AllocRefInst:
case ValueKind::AllocRefDynamicInst: {
bool IsObjC = false;
bool OnStack = false;
SmallVector<SILType, 2> ElementTypes;
SmallVector<SILValue, 2> ElementCounts;
StringRef Optional;
while (P.consumeIf(tok::l_square)) {
Identifier Id;
parseSILIdentifier(Id, diag::expected_in_attribute_list);
StringRef Optional = Id.str();
if (Optional == "objc") {
IsObjC = true;
} else if (Optional == "stack") {
OnStack = true;
} else if (Optional == "tail_elems") {
SILType ElemTy;
if (parseSILType(ElemTy) ||
!P.Tok.isAnyOperator() ||
P.Tok.getText() != "*")
return true;
P.consumeToken();
SILValue ElemCount;
if (parseTypedValueRef(ElemCount, B))
return true;
ElementTypes.push_back(ElemTy);
ElementCounts.push_back(ElemCount);
} else {
return true;
}
P.parseToken(tok::r_square, diag::expected_in_attribute_list);
}
SILValue Metadata;
if (Opcode == ValueKind::AllocRefDynamicInst) {
if (parseTypedValueRef(Metadata, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
}
SILType ObjectType;
if (parseSILType(ObjectType))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
if (IsObjC && ElementTypes.size() != 0) {
P.diagnose(P.Tok, diag::sil_objc_with_tail_elements);
return true;
}
if (Opcode == ValueKind::AllocRefDynamicInst) {
if (OnStack)
return true;
ResultVal = B.createAllocRefDynamic(InstLoc, Metadata, ObjectType,
IsObjC, ElementTypes, ElementCounts);
} else {
ResultVal = B.createAllocRef(InstLoc, ObjectType, IsObjC, OnStack,
ElementTypes, ElementCounts);
}
break;
}
case ValueKind::DeallocStackInst:
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocStack(InstLoc, Val);
break;
case ValueKind::DeallocRefInst: {
bool OnStack = false;
if (parseSILOptional(OnStack, *this, "stack"))
return true;
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocRef(InstLoc, Val, OnStack);
break;
}
case ValueKind::DeallocPartialRefInst: {
SILValue Metatype, Instance;
if (parseTypedValueRef(Instance, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(Metatype, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocPartialRef(InstLoc, Instance, Metatype);
break;
}
case ValueKind::DeallocBoxInst:
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocBox(InstLoc, Val);
break;
case ValueKind::ValueMetatypeInst:
case ValueKind::ExistentialMetatypeInst: {
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
switch (Opcode) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::ValueMetatypeInst:
ResultVal = B.createValueMetatype(InstLoc, Ty, Val);
break;
case ValueKind::ExistentialMetatypeInst:
ResultVal = B.createExistentialMetatype(InstLoc, Ty, Val);
break;
case ValueKind::DeallocBoxInst:
ResultVal = B.createDeallocBox(InstLoc, Val);
break;
}
break;
}
case ValueKind::DeallocExistentialBoxInst: {
CanType ConcreteTy;
if (parseTypedValueRef(Val, B)
|| P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")
|| P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$")
|| parseASTType(ConcreteTy)
|| parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocExistentialBox(InstLoc, ConcreteTy, Val);
break;
}
case ValueKind::TupleInst: {
// Tuple instructions have two different syntaxes, one for simple tuple
// types, one for complicated ones.
if (P.Tok.isNot(tok::sil_dollar)) {
// If there is no type, parse the simple form.
if (P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
// TODO: Check for a type here. This is how tuples with "interesting"
// types are described.
// This form is used with tuples that have elements with no names or
// default values.
SmallVector<TupleTypeElt, 4> TypeElts;
if (P.Tok.isNot(tok::r_paren)) {
do {
if (parseTypedValueRef(Val, B)) return true;
OpList.push_back(Val);
TypeElts.push_back(Val->getType().getSwiftRValueType());
} while (P.consumeIf(tok::comma));
}
HadError |= P.parseToken(tok::r_paren,
diag::expected_tok_in_sil_instr,")");
auto Ty = TupleType::get(TypeElts, P.Context);
auto Ty2 = SILType::getPrimitiveObjectType(Ty->getCanonicalType());
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createTuple(InstLoc, Ty2, OpList);
break;
}
// Otherwise, parse the fully general form.
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
TupleType *TT = Ty.getAs<TupleType>();
if (TT == nullptr) {
P.diagnose(OpcodeLoc, diag::expected_tuple_type_in_tuple);
return true;
}
SmallVector<TupleTypeElt, 4> TypeElts;
if (P.Tok.isNot(tok::r_paren)) {
do {
if (TypeElts.size() > TT->getNumElements()) {
P.diagnose(P.Tok, diag::sil_tuple_inst_wrong_value_count,
TT->getNumElements());
return true;
}
Type EltTy = TT->getElement(TypeElts.size()).getType();
if (parseValueRef(Val,
SILType::getPrimitiveObjectType(EltTy->getCanonicalType()),
RegularLocation(P.Tok.getLoc()), B))
return true;
OpList.push_back(Val);
TypeElts.push_back(Val->getType().getSwiftRValueType());
} while (P.consumeIf(tok::comma));
}
HadError |= P.parseToken(tok::r_paren,
diag::expected_tok_in_sil_instr,")");
if (TypeElts.size() != TT->getNumElements()) {
P.diagnose(OpcodeLoc, diag::sil_tuple_inst_wrong_value_count,
TT->getNumElements());
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createTuple(InstLoc, Ty, OpList);
break;
}
case ValueKind::EnumInst: {
SILType Ty;
SILDeclRef Elt;
SILValue Operand;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(Elt))
return true;
if (P.Tok.is(tok::comma) && !peekSILDebugLocation(P)) {
P.consumeToken(tok::comma);
if (parseTypedValueRef(Operand, B))
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createEnum(InstLoc, Operand,
cast<EnumElementDecl>(Elt.getDecl()), Ty);
break;
}
case ValueKind::InitEnumDataAddrInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::UncheckedTakeEnumDataAddrInst: {
SILValue Operand;
SILDeclRef EltRef;
if (parseTypedValueRef(Operand, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(EltRef) ||
parseSILDebugLocation(InstLoc, B))
return true;
EnumElementDecl *Elt = cast<EnumElementDecl>(EltRef.getDecl());
auto ResultTy = Operand->getType().getEnumElementType(Elt, SILMod);
switch (Opcode) {
case swift::ValueKind::InitEnumDataAddrInst:
ResultVal = B.createInitEnumDataAddr(InstLoc, Operand, Elt, ResultTy);
break;
case swift::ValueKind::UncheckedTakeEnumDataAddrInst:
ResultVal = B.createUncheckedTakeEnumDataAddr(InstLoc, Operand, Elt,
ResultTy);
break;
case swift::ValueKind::UncheckedEnumDataInst:
ResultVal = B.createUncheckedEnumData(InstLoc, Operand, Elt, ResultTy);
break;
default:
llvm_unreachable("switch out of sync");
}
break;
}
case ValueKind::InjectEnumAddrInst: {
SILValue Operand;
SILDeclRef EltRef;
if (parseTypedValueRef(Operand, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(EltRef) ||
parseSILDebugLocation(InstLoc, B))
return true;
EnumElementDecl *Elt = cast<EnumElementDecl>(EltRef.getDecl());
ResultVal = B.createInjectEnumAddr(InstLoc, Operand, Elt);
break;
}
case ValueKind::TupleElementAddrInst:
case ValueKind::TupleExtractInst: {
SourceLoc NameLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
unsigned Field = 0;
TupleType *TT = Val->getType().getAs<TupleType>();
if (P.Tok.isNot(tok::integer_literal) ||
P.Tok.getText().getAsInteger(10, Field) ||
Field >= TT->getNumElements()) {
P.diagnose(P.Tok, diag::sil_tuple_inst_wrong_field);
return true;
}
P.consumeToken(tok::integer_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
auto ResultTy = TT->getElement(Field).getType()->getCanonicalType();
if (Opcode == ValueKind::TupleElementAddrInst)
ResultVal = B.createTupleElementAddr(InstLoc, Val, Field,
SILType::getPrimitiveAddressType(ResultTy));
else
ResultVal = B.createTupleExtract(InstLoc, Val, Field,
SILType::getPrimitiveObjectType(ResultTy));
break;
}
case ValueKind::ReturnInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createReturn(InstLoc, Val);
break;
}
case ValueKind::ThrowInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createThrow(InstLoc, Val);
break;
}
case ValueKind::BranchInst: {
Identifier BBName;
SourceLoc NameLoc;
if (parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name))
return true;
SmallVector<SILValue, 6> Args;
if (parseSILBBArgsAtBranch(Args, B))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
// Note, the basic block here could be a reference to an undefined
// basic block, which will be parsed later on.
ResultVal = B.createBranch(InstLoc, getBBForReference(BBName, NameLoc),
Args);
break;
}
case ValueKind::CondBranchInst: {
UnresolvedValueName Cond;
Identifier BBName, BBName2;
SourceLoc NameLoc, NameLoc2;
SmallVector<SILValue, 6> Args, Args2;
if (parseValueName(Cond) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name) ||
parseSILBBArgsAtBranch(Args, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName2, NameLoc2,
diag::expected_sil_block_name) ||
parseSILBBArgsAtBranch(Args2, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
auto I1Ty =
SILType::getBuiltinIntegerType(1, BB->getParent()->getASTContext());
SILValue CondVal = getLocalValue(Cond, I1Ty, InstLoc, B);
ResultVal = B.createCondBranch(InstLoc, CondVal,
getBBForReference(BBName, NameLoc),
Args,
getBBForReference(BBName2, NameLoc2),
Args2);
break;
}
case ValueKind::UnreachableInst:
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUnreachable(InstLoc);
break;
case ValueKind::ClassMethodInst:
case ValueKind::SuperMethodInst:
case ValueKind::DynamicMethodInst: {
bool IsVolatile = false;
if (parseSILOptional(IsVolatile, *this, "volatile"))
return true;
SILDeclRef Member;
SILType MethodTy;
SourceLoc TyLoc;
SmallVector<ValueDecl *, 4> values;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
if (parseSILDeclRef(Member, true))
return true;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(MethodTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
switch (Opcode) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::ClassMethodInst:
ResultVal = B.createClassMethod(InstLoc, Val, Member, MethodTy,
IsVolatile);
break;
case ValueKind::SuperMethodInst:
ResultVal = B.createSuperMethod(InstLoc, Val, Member, MethodTy,
IsVolatile);
break;
case ValueKind::DynamicMethodInst:
ResultVal = B.createDynamicMethod(InstLoc, Val, Member, MethodTy,
IsVolatile);
break;
}
break;
}
case ValueKind::WitnessMethodInst: {
bool IsVolatile = false;
if (parseSILOptional(IsVolatile, *this, "volatile"))
return true;
CanType LookupTy;
SILDeclRef Member;
SILType MethodTy;
SourceLoc TyLoc;
if (P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(LookupTy) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
if (parseSILDeclRef(Member, true))
return true;
// Optional operand.
SILValue Operand;
if (P.Tok.is(tok::comma)) {
P.consumeToken(tok::comma);
if (parseTypedValueRef(Operand, B))
return true;
}
if (P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(MethodTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
// If LookupTy is a non-archetype, look up its conformance.
ProtocolDecl *proto
= dyn_cast<ProtocolDecl>(Member.getDecl()->getDeclContext());
if (!proto) {
P.diagnose(TyLoc, diag::sil_witness_method_not_protocol);
return true;
}
ProtocolConformanceRef Conformance(proto);
if (!isa<ArchetypeType>(LookupTy)) {
auto lookup = P.SF.getParentModule()->lookupConformance(
LookupTy, proto, nullptr);
if (!lookup) {
P.diagnose(TyLoc, diag::sil_witness_method_type_does_not_conform);
return true;
}
Conformance = ProtocolConformanceRef(*lookup);
}
ResultVal = B.createWitnessMethod(InstLoc, LookupTy, Conformance, Member,
MethodTy, IsVolatile);
break;
}
case ValueKind::CopyAddrInst: {
bool IsTake = false, IsInit = false;
UnresolvedValueName SrcLName;
SILValue DestLVal;
SourceLoc ToLoc, DestLoc;
Identifier ToToken;
if (parseSILOptional(IsTake, *this, "take") || parseValueName(SrcLName) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILOptional(IsInit, *this, "initialization") ||
parseTypedValueRef(DestLVal, DestLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (!DestLVal->getType().isAddress()) {
P.diagnose(DestLoc, diag::sil_invalid_instr_operands);
return true;
}
SILValue SrcLVal = getLocalValue(SrcLName, DestLVal->getType(), InstLoc, B);
ResultVal = B.createCopyAddr(InstLoc, SrcLVal, DestLVal,
IsTake_t(IsTake),
IsInitialization_t(IsInit));
break;
}
case ValueKind::BindMemoryInst: {
SILValue IndexVal;
Identifier ToToken;
SourceLoc ToLoc;
SILType EltTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILType(EltTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
ResultVal = B.createBindMemory(InstLoc, Val, IndexVal, EltTy);
break;
}
case ValueKind::StructInst: {
SILType StructTy;
if (parseSILType(StructTy) ||
P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
// Parse a list of SILValue.
if (P.Tok.isNot(tok::r_paren)) {
do {
if (parseTypedValueRef(Val, B)) return true;
OpList.push_back(Val);
} while (P.consumeIf(tok::comma));
}
if (P.parseToken(tok::r_paren,
diag::expected_tok_in_sil_instr,")") ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createStruct(InstLoc, StructTy, OpList);
break;
}
case ValueKind::StructElementAddrInst:
case ValueKind::StructExtractInst: {
ValueDecl *FieldV;
SourceLoc NameLoc = P.Tok.getLoc();
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDottedPath(FieldV) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (!FieldV || !isa<VarDecl>(FieldV)) {
P.diagnose(NameLoc, diag::sil_struct_inst_wrong_field);
return true;
}
VarDecl *Field = cast<VarDecl>(FieldV);
// FIXME: substitution means this type should be explicit to improve
// performance.
auto ResultTy = Val->getType().getFieldType(Field, SILMod);
if (Opcode == ValueKind::StructElementAddrInst)
ResultVal = B.createStructElementAddr(InstLoc, Val, Field,
ResultTy.getAddressType());
else
ResultVal = B.createStructExtract(InstLoc, Val, Field,
ResultTy.getObjectType());
break;
}
case ValueKind::RefElementAddrInst: {
ValueDecl *FieldV;
SourceLoc NameLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDottedPath(FieldV) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (!FieldV || !isa<VarDecl>(FieldV)) {
P.diagnose(NameLoc, diag::sil_ref_inst_wrong_field);
return true;
}
VarDecl *Field = cast<VarDecl>(FieldV);
auto ResultTy = Val->getType().getFieldType(Field, SILMod);
ResultVal = B.createRefElementAddr(InstLoc, Val, Field, ResultTy);
break;
}
case ValueKind::RefTailAddrInst: {
SourceLoc NameLoc;
SILType ResultObjTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ResultObjTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
SILType ResultTy = ResultObjTy.getAddressType();
ResultVal = B.createRefTailAddr(InstLoc, Val, ResultTy);
break;
}
case ValueKind::IsNonnullInst: {
SourceLoc Loc;
if (parseTypedValueRef(Val, Loc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIsNonnull(InstLoc, Val);
break;
}
case ValueKind::IndexAddrInst: {
SILValue IndexVal;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIndexAddr(InstLoc, Val, IndexVal);
break;
}
case ValueKind::TailAddrInst: {
SILValue IndexVal;
SILType ResultObjTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ResultObjTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
SILType ResultTy = ResultObjTy.getAddressType();
ResultVal = B.createTailAddr(InstLoc, Val, IndexVal, ResultTy);
break;
}
case ValueKind::IndexRawPointerInst: {
SILValue IndexVal;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIndexRawPointer(InstLoc, Val, IndexVal);
break;
}
case ValueKind::ObjCProtocolInst: {
Identifier ProtocolName;
SILType Ty;
if (P.parseToken(tok::pound, diag::expected_sil_constant) ||
parseSILIdentifier(ProtocolName, diag::expected_sil_constant) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Find the decl for the protocol name.
ValueDecl *VD;
SmallVector<ValueDecl*, 4> CurModuleResults;
// Perform a module level lookup on the first component of the
// fully-qualified name.
P.SF.getParentModule()->lookupValue(ModuleDecl::AccessPathTy(), ProtocolName,
NLKind::UnqualifiedLookup,
CurModuleResults);
assert(CurModuleResults.size() == 1);
VD = CurModuleResults[0];
ResultVal = B.createObjCProtocol(InstLoc, cast<ProtocolDecl>(VD), Ty);
break;
}
case ValueKind::AllocGlobalInst: {
Identifier GlobalName;
SourceLoc IdLoc;
if (P.parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseSILIdentifier(GlobalName, IdLoc, diag::expected_sil_value_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Go through list of global variables in the SILModule.
SILGlobalVariable *global = SILMod.lookUpGlobalVariable(GlobalName.str());
if (!global) {
P.diagnose(IdLoc, diag::sil_global_variable_not_found, GlobalName);
return true;
}
ResultVal = B.createAllocGlobal(InstLoc, global);
break;
}
case ValueKind::GlobalAddrInst: {
Identifier GlobalName;
SourceLoc IdLoc;
SILType Ty;
if (P.parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseSILIdentifier(GlobalName, IdLoc, diag::expected_sil_value_name) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Go through list of global variables in the SILModule.
SILGlobalVariable *global = SILMod.lookUpGlobalVariable(GlobalName.str());
if (!global) {
P.diagnose(IdLoc, diag::sil_global_variable_not_found, GlobalName);
return true;
}
if (global->getLoweredType().getAddressType() != Ty) {
P.diagnose(IdLoc, diag::sil_value_use_type_mismatch, GlobalName.str(),
global->getLoweredType().getSwiftRValueType(),
Ty.getSwiftRValueType());
return true;
}
ResultVal = B.createGlobalAddr(InstLoc, global);
break;
}
case ValueKind::SelectEnumInst:
case ValueKind::SelectEnumAddrInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<EnumElementDecl*, UnresolvedValueName>, 4>
CaseValueNames;
Optional<UnresolvedValueName> DefaultValueName;
while (P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
// Parse 'default' sil-value.
UnresolvedValueName tmp;
if (P.consumeIf(tok::kw_default)) {
if (parseValueName(tmp))
return true;
DefaultValueName = tmp;
break;
}
// Parse 'case' sil-decl-ref ':' sil-value.
if (P.consumeIf(tok::kw_case)) {
SILDeclRef ElemRef;
if (parseSILDeclRef(ElemRef))
return true;
assert(ElemRef.hasDecl() && isa<EnumElementDecl>(ElemRef.getDecl()));
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseValueName(tmp);
CaseValueNames.push_back(std::make_pair(
cast<EnumElementDecl>(ElemRef.getDecl()),
tmp));
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
// Parse the type of the result operands.
SILType ResultType;
if (P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")
|| parseSILType(ResultType) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Resolve the results.
SmallVector<std::pair<EnumElementDecl*, SILValue>, 4> CaseValues;
SILValue DefaultValue;
if (DefaultValueName)
DefaultValue = getLocalValue(*DefaultValueName, ResultType, InstLoc, B);
for (auto &caseName : CaseValueNames)
CaseValues.push_back(std::make_pair(
caseName.first,
getLocalValue(caseName.second, ResultType, InstLoc, B)));
if (Opcode == ValueKind::SelectEnumInst)
ResultVal = B.createSelectEnum(InstLoc, Val, ResultType,
DefaultValue, CaseValues);
else
ResultVal = B.createSelectEnumAddr(InstLoc, Val, ResultType,
DefaultValue, CaseValues);
break;
}
case ValueKind::SwitchEnumInst:
case ValueKind::SwitchEnumAddrInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
SILBasicBlock *DefaultBB = nullptr;
while (!peekSILDebugLocation(P) && P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
// Parse 'default' sil-identifier.
if (P.consumeIf(tok::kw_default)) {
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
DefaultBB = getBBForReference(BBName, BBLoc);
break;
}
// Parse 'case' sil-decl-ref ':' sil-identifier.
if (P.consumeIf(tok::kw_case)) {
SILDeclRef ElemRef;
if (parseSILDeclRef(ElemRef))
return true;
assert(ElemRef.hasDecl() && isa<EnumElementDecl>(ElemRef.getDecl()));
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
CaseBBs.push_back( {cast<EnumElementDecl>(ElemRef.getDecl()),
getBBForReference(BBName, BBLoc)} );
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
if (Opcode == ValueKind::SwitchEnumInst)
ResultVal = B.createSwitchEnum(InstLoc, Val, DefaultBB, CaseBBs);
else
ResultVal = B.createSwitchEnumAddr(InstLoc, Val, DefaultBB, CaseBBs);
break;
}
case ValueKind::SwitchValueInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<SILValue, SILBasicBlock *>, 4> CaseBBs;
SILBasicBlock *DefaultBB = nullptr;
while (!peekSILDebugLocation(P) && P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
SILValue CaseVal;
// Parse 'default' sil-identifier.
if (P.consumeIf(tok::kw_default)) {
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
DefaultBB = getBBForReference(BBName, BBLoc);
break;
}
// Parse 'case' value-ref ':' sil-identifier.
if (P.consumeIf(tok::kw_case)) {
if (parseValueRef(CaseVal, Val->getType(),
RegularLocation(P.Tok.getLoc()), B)) {
// TODO: Issue a proper error message here
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "reference to a value");
return true;
}
auto intTy = Val->getType().getAs<BuiltinIntegerType>();
auto functionTy = Val->getType().getAs<SILFunctionType>();
if (!intTy && !functionTy) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
if (intTy) {
// If it is a switch on an integer type, check that all case values
// are integer literals or undef.
if (!isa<SILUndef>(CaseVal)) {
auto *IL = dyn_cast<IntegerLiteralInst>(CaseVal);
if (!IL) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
APInt CaseValue = IL->getValue();
if (CaseValue.getBitWidth() != intTy->getGreatestWidth())
CaseVal = B.createIntegerLiteral(
IL->getLoc(), Val->getType(),
CaseValue.zextOrTrunc(intTy->getGreatestWidth()));
}
}
if (functionTy) {
// If it is a switch on a function type, check that all case values
// are function references or undef.
if (!isa<SILUndef>(CaseVal)) {
auto *FR = dyn_cast<FunctionRefInst>(CaseVal);
if (!FR) {
if (auto *CF = dyn_cast<ConvertFunctionInst>(CaseVal)) {
FR = dyn_cast<FunctionRefInst>(CF->getOperand());
}
}
if (!FR) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
}
}
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
CaseBBs.push_back({CaseVal, getBBForReference(BBName, BBLoc)});
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createSwitchValue(InstLoc, Val, DefaultBB, CaseBBs);
break;
}
case ValueKind::SelectValueInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<UnresolvedValueName, UnresolvedValueName>, 4>
CaseValueAndResultNames;
Optional<UnresolvedValueName> DefaultResultName;
while (P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
// Parse 'default' sil-value.
UnresolvedValueName tmp;
if (P.consumeIf(tok::kw_default)) {
if (parseValueName(tmp))
return true;
DefaultResultName = tmp;
break;
}
// Parse 'case' sil-decl-ref ':' sil-value.
if (P.consumeIf(tok::kw_case)) {
UnresolvedValueName casevalue;
parseValueName(casevalue);
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseValueName(tmp);
CaseValueAndResultNames.push_back(std::make_pair(
casevalue,
tmp));
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
if (!DefaultResultName) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "default");
return true;
}
// Parse the type of the result operands.
SILType ResultType;
if (P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(ResultType) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Resolve the results.
SmallVector<std::pair<SILValue, SILValue>, 4> CaseValues;
SILValue DefaultValue;
if (DefaultResultName)
DefaultValue = getLocalValue(*DefaultResultName, ResultType, InstLoc, B);
SILType ValType = Val->getType();
for (auto &caseName : CaseValueAndResultNames)
CaseValues.push_back(std::make_pair(
getLocalValue(caseName.first, ValType, InstLoc, B),
getLocalValue(caseName.second, ResultType, InstLoc, B)));
ResultVal = B.createSelectValue(InstLoc, Val, ResultType,
DefaultValue, CaseValues);
break;
}
case ValueKind::DeinitExistentialAddrInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeinitExistentialAddr(InstLoc, Val);
break;
}
case ValueKind::InitExistentialAddrInst: {
CanType Ty;
SourceLoc TyLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(Ty, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Lower the type at the abstraction level of the existential.
auto archetype
= ArchetypeType::getOpened(Val->getType().getSwiftRValueType())
->getCanonicalType();
SILType LoweredTy = SILMod.Types.getLoweredType(
Lowering::AbstractionPattern(archetype), Ty)
.getAddressType();
// Collect conformances for the type.
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, Ty, TyLoc,
Val->getType().getSwiftRValueType());
ResultVal = B.createInitExistentialAddr(InstLoc, Val, Ty, LoweredTy,
conformances);
break;
}
case ValueKind::AllocExistentialBoxInst: {
SILType ExistentialTy;
CanType ConcreteFormalTy;
SourceLoc TyLoc;
if (parseSILType(ExistentialTy) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(ConcreteFormalTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Collect conformances for the type.
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, ConcreteFormalTy, TyLoc,
ExistentialTy.getSwiftRValueType());
ResultVal = B.createAllocExistentialBox(InstLoc, ExistentialTy,
ConcreteFormalTy, conformances);
break;
}
case ValueKind::InitExistentialRefInst: {
CanType FormalConcreteTy;
SILType ExistentialTy;
SourceLoc TyLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(FormalConcreteTy, TyLoc) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ExistentialTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, FormalConcreteTy, TyLoc,
ExistentialTy.getSwiftRValueType());
// FIXME: Conformances in InitExistentialRefInst is currently not included
// in SIL.rst.
ResultVal = B.createInitExistentialRef(InstLoc, ExistentialTy,
FormalConcreteTy, Val,
conformances);
break;
}
case ValueKind::InitExistentialMetatypeInst: {
SourceLoc TyLoc;
SILType ExistentialTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ExistentialTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
auto baseExType = ExistentialTy.getSwiftRValueType();
auto formalConcreteType = Val->getType().getSwiftRValueType();
while (auto instExType = dyn_cast<ExistentialMetatypeType>(baseExType)) {
baseExType = instExType.getInstanceType();
formalConcreteType =
cast<MetatypeType>(formalConcreteType).getInstanceType();
}
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, formalConcreteType, TyLoc,
ExistentialTy.getSwiftRValueType());
ResultVal = B.createInitExistentialMetatype(InstLoc, Val, ExistentialTy,
conformances);
break;
}
case ValueKind::DynamicMethodBranchInst: {
SILDeclRef Member;
Identifier BBName, BBName2;
SourceLoc NameLoc, NameLoc2;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(Member) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName2, NameLoc2,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDynamicMethodBranch(InstLoc, Val, Member,
getBBForReference(BBName, NameLoc),
getBBForReference(BBName2,
NameLoc2));
break;
}
case ValueKind::ProjectBlockStorageInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectBlockStorage(InstLoc, Val);
break;
}
case ValueKind::InitBlockStorageHeaderInst: {
Identifier invoke, type;
SourceLoc invokeLoc, typeLoc;
UnresolvedValueName invokeName;
SILType invokeTy;
GenericEnvironment *invokeGenericEnv;
SILType blockType;
SmallVector<ParsedSubstitution, 4> parsedSubs;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(invoke, invokeLoc,
diag::expected_tok_in_sil_instr, "invoke") ||
parseValueName(invokeName) ||
parseSubstitutions(parsedSubs) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(invokeTy, invokeGenericEnv) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(type, typeLoc,
diag::expected_tok_in_sil_instr, "type") ||
parseSILType(blockType) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (invoke.str() != "invoke") {
P.diagnose(invokeLoc, diag::expected_tok_in_sil_instr, "invoke");
return true;
}
if (type.str() != "type") {
P.diagnose(invokeLoc, diag::expected_tok_in_sil_instr, "type");
return true;
}
auto invokeVal = getLocalValue(invokeName, invokeTy, InstLoc, B);
SmallVector<Substitution, 4> subs;
if (!parsedSubs.empty()) {
if (!invokeGenericEnv) {
P.diagnose(typeLoc, diag::sil_substitutions_on_non_polymorphic_type);
return true;
}
if (getApplySubstitutionsFromParsed(*this,
invokeGenericEnv,
parsedSubs, subs))
return true;
}
ResultVal = B.createInitBlockStorageHeader(InstLoc, Val, invokeVal,
blockType, subs);
break;
}
}
// Store the named value if we had a name.
if (ResultNameLoc.isValid())
setLocalValue(ResultVal, ResultName, ResultNameLoc);
return false;
}
bool SILParser::parseCallInstruction(SILLocation InstLoc,
ValueKind Opcode, SILBuilder &B,
SILInstruction *&ResultVal) {
UnresolvedValueName FnName;
SmallVector<UnresolvedValueName, 4> ArgNames;
auto PartialApplyConvention = ParameterConvention::Direct_Owned;
bool IsNonThrowingApply = false;
StringRef AttrName;
if (parseSILOptional(AttrName, *this)) {
if (AttrName.equals("nothrow"))
IsNonThrowingApply = true;
else if (AttrName.equals("callee_guaranteed"))
PartialApplyConvention = ParameterConvention::Direct_Guaranteed;
else
return true;
}
if (parseValueName(FnName))
return true;
SmallVector<ParsedSubstitution, 4> parsedSubs;
if (parseSubstitutions(parsedSubs))
return true;
if (P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
if (P.Tok.isNot(tok::r_paren)) {
do {
UnresolvedValueName Arg;
if (parseValueName(Arg)) return true;
ArgNames.push_back(Arg);
} while (P.consumeIf(tok::comma));
}
SILType Ty;
SourceLoc TypeLoc;
GenericEnvironment *GenericEnv = nullptr;
if (P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr, ")") ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(Ty, TypeLoc, GenericEnv))
return true;
auto FTI = Ty.getAs<SILFunctionType>();
if (!FTI) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind, "be a function");
return true;
}
SmallVector<Substitution, 4> subs;
if (!parsedSubs.empty()) {
if (!GenericEnv) {
P.diagnose(TypeLoc, diag::sil_substitutions_on_non_polymorphic_type);
return true;
}
if (getApplySubstitutionsFromParsed(*this, GenericEnv, parsedSubs, subs))
return true;
}
SILValue FnVal = getLocalValue(FnName, Ty, InstLoc, B);
SILType FnTy = FnVal->getType();
CanSILFunctionType substFTI = FTI;
if (!subs.empty()) {
auto silFnTy = FnTy.castTo<SILFunctionType>();
substFTI
= silFnTy->substGenericArgs(SILMod, subs);
FnTy = SILType::getPrimitiveObjectType(substFTI);
}
SILFunctionConventions substConv(substFTI, B.getModule());
switch (Opcode) {
default: llvm_unreachable("Unexpected case");
case ValueKind::ApplyInst : {
if (parseSILDebugLocation(InstLoc, B))
return true;
if (substConv.getNumSILArguments() != ArgNames.size()) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind,
"to have the same number of arg names as arg types");
return true;
}
unsigned ArgNo = 0;
SmallVector<SILValue, 4> Args;
for (auto &ArgName : ArgNames) {
SILType expectedTy = substConv.getSILArgumentType(ArgNo++);
Args.push_back(getLocalValue(ArgName, expectedTy, InstLoc, B));
}
ResultVal =
B.createApply(InstLoc, FnVal, FnTy, substConv.getSILResultType(), subs,
Args, IsNonThrowingApply);
break;
}
case ValueKind::PartialApplyInst: {
if (parseSILDebugLocation(InstLoc, B))
return true;
if (substFTI->getParameters().size() < ArgNames.size()) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind,
"have the right argument types");
return true;
}
// Compute the result type of the partial_apply, based on which arguments
// are getting applied.
SmallVector<SILValue, 4> Args;
unsigned ArgNo = substConv.getNumSILArguments() - ArgNames.size();
for (auto &ArgName : ArgNames) {
SILType expectedTy = substConv.getSILArgumentType(ArgNo++);
Args.push_back(getLocalValue(ArgName, expectedTy, InstLoc, B));
}
SILType closureTy =
SILBuilder::getPartialApplyResultType(Ty, ArgNames.size(), SILMod, subs,
PartialApplyConvention);
// FIXME: Why the arbitrary order difference in IRBuilder type argument?
ResultVal = B.createPartialApply(InstLoc, FnVal, FnTy,
subs, Args, closureTy);
break;
}
case ValueKind::TryApplyInst: {
Identifier normalBBName, errorBBName;
SourceLoc normalBBLoc, errorBBLoc;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseVerbatim("normal") ||
parseSILIdentifier(normalBBName, normalBBLoc,
diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseVerbatim("error") ||
parseSILIdentifier(errorBBName, errorBBLoc,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (substConv.getNumSILArguments() != ArgNames.size()) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind,
"to have the same number of arg names as arg types");
return true;
}
unsigned argNo = 0;
SmallVector<SILValue, 4> args;
for (auto &argName : ArgNames) {
SILType expectedTy = substConv.getSILArgumentType(argNo++);
args.push_back(getLocalValue(argName, expectedTy, InstLoc, B));
}
SILBasicBlock *normalBB = getBBForReference(normalBBName, normalBBLoc);
SILBasicBlock *errorBB = getBBForReference(errorBBName, errorBBLoc);
ResultVal = B.createTryApply(InstLoc, FnVal, FnTy,
subs, args, normalBB, errorBB);
break;
}
}
return false;
}
bool SILParser::parseSILFunctionRef(SILLocation InstLoc,
SILBuilder &B, SILInstruction *&ResultVal) {
Identifier Name;
SILType Ty;
SourceLoc Loc = P.Tok.getLoc();
if (parseGlobalName(Name) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
auto FnTy = Ty.getAs<SILFunctionType>();
if (!FnTy || !Ty.isObject()) {
P.diagnose(Loc, diag::expected_sil_function_type);
return true;
}
ResultVal = B.createFunctionRef(InstLoc,
getGlobalNameForReference(Name, FnTy, Loc));
return false;
}
/// True if the current token sequence looks like the start of a SIL
/// instruction, either:
/// %name
/// or:
/// identifier | keyword
/// where identifier is not followed by a '(' or ':', which would indicate
/// a basic block.
bool SILParser::isStartOfSILInstruction() {
if (P.Tok.is(tok::sil_local_name))
return true;
if (P.Tok.is(tok::identifier) || P.Tok.isKeyword()) {
auto &peek = P.peekToken();
return !peek.is(tok::l_paren) && !peek.is(tok::colon);
}
return false;
}
/// sil-basic-block:
/// sil-instruction+
/// identifier sil-bb-argument-list? ':' sil-instruction+
/// sil-bb-argument-list:
/// '(' sil-typed-valueref (',' sil-typed-valueref)+ ')'
bool SILParser::parseSILBasicBlock(SILBuilder &B) {
SILBasicBlock *BB;
// The basic block name is optional.
if (P.Tok.is(tok::sil_local_name)) {
BB = getBBForDefinition(Identifier(), SourceLoc());
} else {
Identifier BBName;
SourceLoc NameLoc;
if (parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name))
return true;
BB = getBBForDefinition(BBName, NameLoc);
// For now, since we always assume that PHIArguments have
// ValueOwnershipKind::Any, do not parse or do anything special. Eventually
// we will parse the convention.
bool IsEntry = BB->isEntry();
// If there is a basic block argument list, process it.
if (P.consumeIf(tok::l_paren)) {
do {
SILType Ty;
Optional<ValueOwnershipKind> OwnershipKind;
SourceLoc NameLoc;
StringRef Name = P.Tok.getText();
if (P.parseToken(tok::sil_local_name, NameLoc,
diag::expected_sil_value_name) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref))
return true;
// If SILOwnership is enabled and we are not assuming that we are
// parsing unqualified SIL, look for printed value ownership kinds.
if (!F->getModule()
.getOptions()
.AssumeUnqualifiedOwnershipWhenParsing &&
F->getModule().getOptions().EnableSILOwnership &&
parseSILOwnership(OwnershipKind))
return true;
if (parseSILType(Ty))
return true;
SILArgument *Arg;
if (IsEntry) {
Arg = BB->createFunctionArgument(Ty);
} else {
Arg = BB->createPHIArgument(
Ty, OwnershipKind.getValueOr(
ValueOwnershipKind(ValueOwnershipKind::Any)));
}
setLocalValue(Arg, Name, NameLoc);
} while (P.consumeIf(tok::comma));
if (P.parseToken(tok::r_paren, diag::sil_basicblock_arg_rparen))
return true;
}
if (P.parseToken(tok::colon, diag::expected_sil_block_colon))
return true;
}
// Make sure the block is at the end of the function so that forward
// references don't affect block layout.
F->getBlocks().remove(BB);
F->getBlocks().push_back(BB);
bool AssumeUnqualifiedOwnershipWhenParsing =
F->getModule().getOptions().AssumeUnqualifiedOwnershipWhenParsing;
if (AssumeUnqualifiedOwnershipWhenParsing) {
F->setUnqualifiedOwnership();
}
do {
if (parseSILInstruction(BB, B))
return true;
// Evaluate how the just parsed instruction effects this functions Ownership
// Qualification. For more details, see the comment on the
// FunctionOwnershipEvaluator class.
SILInstruction *ParsedInst = &*BB->rbegin();
if (!AssumeUnqualifiedOwnershipWhenParsing &&
!OwnershipEvaluator.evaluate(ParsedInst)) {
P.diagnose(ParsedInst->getLoc().getSourceLoc(),
diag::found_unqualified_instruction_in_qualified_function,
F->getName());
}
} while (isStartOfSILInstruction());
return false;
}
/// decl-sil: [[only in SIL mode]]
/// 'sil' sil-linkage '@' identifier ':' sil-type decl-sil-body?
/// decl-sil-body:
/// '{' sil-basic-block+ '}'
bool Parser::parseDeclSIL() {
// Inform the lexer that we're lexing the body of the SIL declaration. Do
// this before we consume the 'sil' token so that all later tokens are
// properly handled.
Lexer::SILBodyRAII Tmp(*L);
consumeToken(tok::kw_sil);
SILParser FunctionState(*this);
Optional<SILLinkage> FnLinkage;
Identifier FnName;
SILType FnType;
SourceLoc FnNameLoc;
Scope S(this, ScopeKind::TopLevel);
bool isTransparent = false;
bool isFragile = false;
IsThunk_t isThunk = IsNotThunk;
bool isGlobalInit = false;
Inline_t inlineStrategy = InlineDefault;
SmallVector<std::string, 1> Semantics;
SmallVector<ParsedSpecAttr, 4> SpecAttrs;
ValueDecl *ClangDecl = nullptr;
EffectsKind MRK = EffectsKind::Unspecified;
if (parseSILLinkage(FnLinkage, *this) ||
parseDeclSILOptional(&isTransparent, &isFragile, &isThunk, &isGlobalInit,
&inlineStrategy, nullptr, &Semantics, &SpecAttrs,
&ClangDecl, &MRK, FunctionState) ||
parseToken(tok::at_sign, diag::expected_sil_function_name) ||
parseIdentifier(FnName, FnNameLoc, diag::expected_sil_function_name) ||
parseToken(tok::colon, diag::expected_sil_type))
return true;
{
// Construct a Scope for the function body so TypeAliasDecl can be added to
// the scope.
Scope Body(this, ScopeKind::FunctionBody);
GenericEnvironment *GenericEnv;
if (FunctionState.parseSILType(FnType, GenericEnv, true /*IsFuncDecl*/))
return true;
auto SILFnType = FnType.getAs<SILFunctionType>();
if (!SILFnType || !FnType.isObject()) {
diagnose(FnNameLoc, diag::expected_sil_function_type);
return true;
}
FunctionState.F =
FunctionState.getGlobalNameForDefinition(FnName, SILFnType, FnNameLoc);
FunctionState.F->setBare(IsBare);
FunctionState.F->setTransparent(IsTransparent_t(isTransparent));
FunctionState.F->setFragile(IsFragile_t(isFragile));
FunctionState.F->setThunk(IsThunk_t(isThunk));
FunctionState.F->setGlobalInit(isGlobalInit);
FunctionState.F->setInlineStrategy(inlineStrategy);
FunctionState.F->setEffectsKind(MRK);
if (ClangDecl)
FunctionState.F->setClangNodeOwner(ClangDecl);
for (auto &Attr : Semantics) {
FunctionState.F->addSemanticsAttr(Attr);
}
// Now that we have a SILFunction parse the body, if present.
bool isDefinition = false;
SourceLoc LBraceLoc = Tok.getLoc();
if (consumeIf(tok::l_brace)) {
isDefinition = true;
FunctionState.GenericEnv = GenericEnv;
FunctionState.F->setGenericEnvironment(GenericEnv);
if (GenericEnv && !SpecAttrs.empty()) {
for (auto &Attr : SpecAttrs) {
SmallVector<Requirement, 4> requirements;
// Resolve types and convert requirements.
FunctionState.convertRequirements(FunctionState.F,
Attr.requirements, requirements);
FunctionState.F->addSpecializeAttr(SILSpecializeAttr::create(
FunctionState.F->getModule(), requirements, Attr.exported,
Attr.kind));
}
}
// Parse the basic block list.
FunctionState.OwnershipEvaluator.reset(FunctionState.F);
SILOpenedArchetypesTracker OpenedArchetypesTracker(*FunctionState.F);
SILBuilder B(*FunctionState.F, /*isParsing*/ true);
// Track the archetypes just like SILGen. This
// is required for adding typedef operands to instructions.
B.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
// Define a callback to be invoked on the deserialized types.
auto OldParsedTypeCallback = FunctionState.ParsedTypeCallback;
SWIFT_DEFER {
FunctionState.ParsedTypeCallback = OldParsedTypeCallback;
};
FunctionState.ParsedTypeCallback = [&OpenedArchetypesTracker,
&FunctionState](Type ty) {
OpenedArchetypesTracker.registerUsedOpenedArchetypes(ty);
};
do {
if (FunctionState.parseSILBasicBlock(B))
return true;
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
// Check that there are no unresolved forward definitions of opened
// archetypes.
if (OpenedArchetypesTracker.hasUnresolvedOpenedArchetypeDefinitions())
llvm_unreachable(
"All forward definitions of opened archetypes should be resolved");
}
FunctionState.F->setLinkage(resolveSILLinkage(FnLinkage, isDefinition));
}
if (FunctionState.diagnoseProblems())
return true;
// If SIL parsing succeeded, verify the generated SIL.
if (!FunctionState.P.Diags.hadAnyError())
FunctionState.F->verify();
// Link the static initializer for global variables.
for (SILGlobalVariable &v : FunctionState.SILMod.getSILGlobals()) {
if (v.getInitializer())
if (FnName.str() == v.getInitializer()->getName())
v.setInitializer(FunctionState.F);
}
return false;
}
/// decl-sil-stage: [[only in SIL mode]]
/// 'sil_stage' ('raw' | 'canonical')
bool Parser::parseDeclSILStage() {
SourceLoc stageLoc = consumeToken(tok::kw_sil_stage);
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::expected_sil_stage_name);
return true;
}
SILStage stage;
if (Tok.isContextualKeyword("raw")) {
stage = SILStage::Raw;
consumeToken();
} else if (Tok.isContextualKeyword("canonical")) {
stage = SILStage::Canonical;
consumeToken();
} else if (Tok.isContextualKeyword("lowered")) {
stage = SILStage::Lowered;
consumeToken();
} else {
diagnose(Tok, diag::expected_sil_stage_name);
consumeToken();
return true;
}
if (SIL->S->DidParseSILStage) {
diagnose(stageLoc, diag::multiple_sil_stage_decls);
return false;
}
SIL->M->setStage(stage);
SIL->S->DidParseSILStage = true;
return false;
}
/// decl-sil-global: [[only in SIL mode]]
/// 'sil_global' sil-linkage @name : sil-type [external]
bool Parser::parseSILGlobal() {
consumeToken(tok::kw_sil_global);
Optional<SILLinkage> GlobalLinkage;
Identifier GlobalName;
SILType GlobalType;
SourceLoc NameLoc;
bool isFragile = false;
bool isLet = false;
// Inform the lexer that we're lexing the body of the SIL declaration.
Lexer::SILBodyRAII Tmp(*L);
Scope S(this, ScopeKind::TopLevel);
SILParser State(*this);
if (parseSILLinkage(GlobalLinkage, *this) ||
parseDeclSILOptional(nullptr, &isFragile, nullptr, nullptr,
nullptr, &isLet, nullptr, nullptr, nullptr,
nullptr, State) ||
parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseIdentifier(GlobalName, NameLoc, diag::expected_sil_value_name) ||
parseToken(tok::colon, diag::expected_sil_type))
return true;
if (State.parseSILType(GlobalType))
return true;
// Non-external global variables are definitions by default.
if (!GlobalLinkage.hasValue())
GlobalLinkage = SILLinkage::DefaultForDefinition;
// FIXME: check for existing global variable?
auto *GV = SILGlobalVariable::create(*SIL->M, GlobalLinkage.getValue(),
(IsFragile_t)isFragile,
GlobalName.str(),GlobalType,
RegularLocation(NameLoc));
GV->setLet(isLet);
// Parse static initializer if exists.
if (State.P.consumeIf(tok::comma)) {
Identifier Name;
SILType Ty;
SourceLoc Loc = State.P.Tok.getLoc();
if (State.parseGlobalName(Name) ||
State.P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
State.parseSILType(Ty))
return true;
auto FnTy = Ty.getAs<SILFunctionType>();
if (!FnTy || !Ty.isObject()) {
State.P.diagnose(Loc, diag::expected_sil_function_type);
return true;
}
GV->setInitializer(State.getGlobalNameForReference(Name, FnTy, Loc));
}
return false;
}
/// decl-sil-vtable: [[only in SIL mode]]
/// 'sil_vtable' ClassName decl-sil-vtable-body
/// decl-sil-vtable-body:
/// '{' sil-vtable-entry* '}'
/// sil-vtable-entry:
/// SILDeclRef ':' SILFunctionName
bool Parser::parseSILVTable() {
consumeToken(tok::kw_sil_vtable);
SILParser VTableState(*this);
// Parse the class name.
Identifier Name;
SourceLoc Loc;
if (VTableState.parseSILIdentifier(Name, Loc,
diag::expected_sil_value_name))
return true;
// Find the class decl.
llvm::PointerUnion<ValueDecl*, ModuleDecl *> Res = lookupTopDecl(*this, Name);
assert(Res.is<ValueDecl*>() && "Class look-up should return a Decl");
ValueDecl *VD = Res.get<ValueDecl*>();
if (!VD) {
diagnose(Loc, diag::sil_vtable_class_not_found, Name);
return true;
}
ClassDecl *theClass = dyn_cast<ClassDecl>(VD);
if (!theClass) {
diagnose(Loc, diag::sil_vtable_class_not_found, Name);
return true;
}
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
// We need to turn on InSILBody to parse SILDeclRef.
Lexer::SILBodyRAII Tmp(*L);
Scope S(this, ScopeKind::TopLevel);
// Parse the entry list.
std::vector<SILVTable::Entry> vtableEntries;
if (Tok.isNot(tok::r_brace)) {
do {
SILDeclRef Ref;
Identifier FuncName;
SourceLoc FuncLoc;
if (VTableState.parseSILDeclRef(Ref, true))
return true;
SILFunction *Func = nullptr;
Optional<SILLinkage> Linkage = SILLinkage::Private;
if (Tok.is(tok::kw_nil)) {
consumeToken();
} else {
if (parseToken(tok::colon, diag::expected_sil_vtable_colon) ||
parseSILLinkage(Linkage, *this) ||
VTableState.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_vtable_func_not_found, FuncName);
return true;
}
if (!Linkage)
Linkage = stripExternalFromLinkage(Func->getLinkage());
}
vtableEntries.emplace_back(Ref, Func, Linkage.getValue());
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
SILVTable::create(*SIL->M, theClass, vtableEntries);
return false;
}
static ProtocolDecl *parseProtocolDecl(Parser &P, SILParser &SP) {
Identifier DeclName;
SourceLoc DeclLoc;
if (SP.parseSILIdentifier(DeclName, DeclLoc, diag::expected_sil_value_name))
return nullptr;
// Find the protocol decl. The protocol can be imported.
llvm::PointerUnion<ValueDecl*, ModuleDecl *> Res = lookupTopDecl(P, DeclName);
assert(Res.is<ValueDecl*>() && "Protocol look-up should return a Decl");
ValueDecl *VD = Res.get<ValueDecl*>();
if (!VD) {
P.diagnose(DeclLoc, diag::sil_witness_protocol_not_found, DeclName);
return nullptr;
}
ProtocolDecl *proto = dyn_cast<ProtocolDecl>(VD);
if (!proto)
P.diagnose(DeclLoc, diag::sil_witness_protocol_not_found, DeclName);
return proto;
}
static AssociatedTypeDecl *parseAssociatedTypeDecl(Parser &P, SILParser &SP,
ProtocolDecl *proto) {
Identifier DeclName;
SourceLoc DeclLoc;
if (SP.parseSILIdentifier(DeclName, DeclLoc, diag::expected_sil_value_name))
return nullptr;
// We can return multiple decls, for now, we use the first lookup result.
// One example is two decls when searching for Generator of Sequence:
// one from Sequence, the other from _Sequence_Type.
SmallVector<ValueDecl *, 4> values;
auto VD = lookupMember(P, proto->getInterfaceType(), DeclName, DeclLoc,
values, true/*ExpectMultipleResults*/);
if (!VD) {
P.diagnose(DeclLoc, diag::sil_witness_assoc_not_found, DeclName);
return nullptr;
}
return dyn_cast<AssociatedTypeDecl>(VD);
}
static NormalProtocolConformance *parseNormalProtocolConformance(Parser &P,
SILParser &SP, Type ConformingTy, ProtocolDecl *&proto) {
Identifier ModuleKeyword, ModuleName;
SourceLoc Loc, KeywordLoc;
proto = parseProtocolDecl(P, SP);
if (!proto)
return nullptr;
if (P.parseIdentifier(ModuleKeyword, KeywordLoc,
diag::expected_tok_in_sil_instr, "module") ||
SP.parseSILIdentifier(ModuleName, Loc,
diag::expected_sil_value_name))
return nullptr;
if (ModuleKeyword.str() != "module") {
P.diagnose(KeywordLoc, diag::expected_tok_in_sil_instr, "module");
return nullptr;
}
// FIXME: we currently emit _CocoaArrayType: _CocoaArrayType.
if (ConformingTy->is<ProtocolType>() &&
ConformingTy->getAs<ProtocolType>()->getDecl() == proto)
return nullptr;
// Calling lookupConformance on a BoundGenericType will return a specialized
// conformance. We use UnboundGenericType to find the normal conformance.
Type lookupTy = ConformingTy;
if (auto bound = lookupTy->getAs<BoundGenericType>())
lookupTy = bound->getDecl()->getDeclaredType();
auto lookup = P.SF.getParentModule()->lookupConformance(
lookupTy, proto, nullptr);
if (!lookup) {
P.diagnose(KeywordLoc, diag::sil_witness_protocol_conformance_not_found);
return nullptr;
}
if (!lookup->isConcrete()) {
P.diagnose(KeywordLoc, diag::sil_witness_protocol_conformance_not_found);
return nullptr;
}
return lookup->getConcrete()->getRootNormalConformance();
}
/// protocol-conformance ::= normal-protocol-conformance
/// protocol-conformance ::=
/// generic-parameter-list? type: 'inherit' '(' protocol-conformance ')'
/// protocol-conformance ::=
/// generic-parameter-list? type: 'specialize' '<' substitution* '>'
/// '(' protocol-conformance ')'
/// normal-protocol-conformance ::=
/// generic-parameter-list? type: protocolName module ModuleName
/// Note that generic-parameter-list is already parsed before calling this.
ProtocolConformance *SILParser::parseProtocolConformance(
ProtocolDecl *&proto,
GenericEnvironment *&genericEnv,
bool localScope) {
// Parse generic params for the protocol conformance. We need to make sure
// they have the right scope.
Optional<Scope> GenericsScope;
if (localScope)
GenericsScope.emplace(&P, ScopeKind::Generics);
// Make sure we don't leave it uninitialized in the caller
genericEnv = nullptr;
auto *genericParams = P.maybeParseGenericParams().getPtrOrNull();
if (genericParams) {
genericEnv = handleSILGenericParams(P.Context, genericParams, &P.SF);
}
ProtocolConformance *retVal =
parseProtocolConformanceHelper(proto, genericEnv, localScope);
if (localScope) {
GenericsScope.reset();
}
return retVal;
}
ProtocolConformance *SILParser::parseProtocolConformanceHelper(
ProtocolDecl *&proto,
GenericEnvironment *witnessEnv,
bool localScope) {
// Parse AST type.
ParserResult<TypeRepr> TyR = P.parseType();
if (TyR.isNull())
return nullptr;
TypeLoc Ty = TyR.get();
if (performTypeLocChecking(Ty, /*IsSILType=*/ false, witnessEnv))
return nullptr;
auto ConformingTy = Ty.getType();
if (P.parseToken(tok::colon, diag::expected_sil_witness_colon))
return nullptr;
if (P.Tok.is(tok::identifier) && P.Tok.getText() == "specialize") {
P.consumeToken();
// Parse substitutions for specialized conformance.
SmallVector<ParsedSubstitution, 4> parsedSubs;
if (parseSubstitutions(parsedSubs, witnessEnv))
return nullptr;
if (P.parseToken(tok::l_paren, diag::expected_sil_witness_lparen))
return nullptr;
ProtocolDecl *dummy;
GenericEnvironment *specializedEnv;
auto genericConform =
parseProtocolConformance(dummy, specializedEnv, localScope);
if (!genericConform)
return nullptr;
if (P.parseToken(tok::r_paren, diag::expected_sil_witness_rparen))
return nullptr;
SmallVector<Substitution, 4> subs;
if (getApplySubstitutionsFromParsed(*this, specializedEnv, parsedSubs,
subs))
return nullptr;
auto result = P.Context.getSpecializedConformance(
ConformingTy, genericConform, subs);
return result;
}
if (P.Tok.is(tok::identifier) && P.Tok.getText() == "inherit") {
P.consumeToken();
if (P.parseToken(tok::l_paren, diag::expected_sil_witness_lparen))
return nullptr;
auto baseConform = parseProtocolConformance();
if (!baseConform)
return nullptr;
if (P.parseToken(tok::r_paren, diag::expected_sil_witness_rparen))
return nullptr;
return P.Context.getInheritedConformance(ConformingTy, baseConform);
}
auto retVal = parseNormalProtocolConformance(P, *this, ConformingTy, proto);
return retVal;
}
/// decl-sil-witness ::= 'sil_witness_table' sil-linkage?
/// normal-protocol-conformance decl-sil-witness-body
/// normal-protocol-conformance ::=
/// generic-parameter-list? type: protocolName module ModuleName
/// decl-sil-witness-body:
/// '{' sil-witness-entry* '}'
/// sil-witness-entry:
/// method SILDeclRef ':' @SILFunctionName
/// associated_type AssociatedTypeDeclName: Type
/// associated_type_protocol (AssocName: ProtocolName):
/// protocol-conformance|dependent
/// base_protocol ProtocolName: protocol-conformance
bool Parser::parseSILWitnessTable() {
consumeToken(tok::kw_sil_witness_table);
SILParser WitnessState(*this);
// Parse the linkage.
Optional<SILLinkage> Linkage;
parseSILLinkage(Linkage, *this);
bool isFragile = false;
if (parseDeclSILOptional(nullptr, &isFragile, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, WitnessState))
return true;
Scope S(this, ScopeKind::TopLevel);
// We should use WitnessTableBody. This ensures that the generic params
// are visible.
Optional<Scope> BodyScope;
BodyScope.emplace(this, ScopeKind::FunctionBody);
// Parse the protocol conformance.
ProtocolDecl *proto;
GenericEnvironment *witnessEnv;
auto conf = WitnessState.parseProtocolConformance(proto,
witnessEnv,
false/*localScope*/);
WitnessState.GenericEnv = witnessEnv;
NormalProtocolConformance *theConformance = conf ?
dyn_cast<NormalProtocolConformance>(conf) : nullptr;
SILWitnessTable *wt = nullptr;
if (theConformance) {
wt = SIL->M->lookUpWitnessTable(theConformance, false);
assert((!wt || wt->isDeclaration()) &&
"Attempting to create duplicate witness table.");
}
// If we don't have an lbrace, then this witness table is a declaration.
if (Tok.getKind() != tok::l_brace) {
// Default to public external linkage.
if (!Linkage)
Linkage = SILLinkage::PublicExternal;
// We ignore empty witness table without normal protocol conformance.
if (!wt && theConformance)
wt = SILWitnessTable::create(*SIL->M, *Linkage, theConformance);
BodyScope.reset();
return false;
}
if (!theConformance) {
diagnose(Tok, diag::sil_witness_protocol_conformance_not_found);
return true;
}
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
// We need to turn on InSILBody to parse SILDeclRef.
Lexer::SILBodyRAII Tmp(*L);
// Parse the entry list.
std::vector<SILWitnessTable::Entry> witnessEntries;
if (Tok.isNot(tok::r_brace)) {
do {
Identifier EntryKeyword;
SourceLoc KeywordLoc;
if (parseIdentifier(EntryKeyword, KeywordLoc,
diag::expected_tok_in_sil_instr,
"method, associated_type, associated_type_protocol, base_protocol"))
return true;
if (EntryKeyword.str() == "base_protocol") {
ProtocolDecl *proto = parseProtocolDecl(*this, WitnessState);
if (!proto)
return true;
if (parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
ProtocolConformance *conform = WitnessState.parseProtocolConformance();
if (!conform) // Ignore this witness entry for now.
continue;
witnessEntries.push_back(SILWitnessTable::BaseProtocolWitness{
proto, conform
});
continue;
}
if (EntryKeyword.str() == "associated_type_protocol") {
if (parseToken(tok::l_paren, diag::expected_sil_witness_lparen))
return true;
AssociatedTypeDecl *assoc = parseAssociatedTypeDecl(*this,
WitnessState, proto);
if (!assoc)
return true;
if (parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
ProtocolDecl *proto = parseProtocolDecl(*this, WitnessState);
if (!proto)
return true;
if (parseToken(tok::r_paren, diag::expected_sil_witness_rparen) ||
parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
ProtocolConformanceRef conformance(proto);
if (Tok.getText() != "dependent") {
auto concrete = WitnessState.parseProtocolConformance();
if (!concrete) // Ignore this witness entry for now.
continue;
conformance = ProtocolConformanceRef(concrete);
} else {
consumeToken();
}
witnessEntries.push_back(SILWitnessTable::AssociatedTypeProtocolWitness{
assoc, proto, ProtocolConformanceRef(conformance)
});
continue;
}
if (EntryKeyword.str() == "associated_type") {
AssociatedTypeDecl *assoc = parseAssociatedTypeDecl(*this,
WitnessState, proto);
if (!assoc)
return true;
if (parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
// Parse AST type.
ParserResult<TypeRepr> TyR = parseType();
if (TyR.isNull())
return true;
TypeLoc Ty = TyR.get();
if (swift::performTypeLocChecking(Context, Ty,
/*isSILMode=*/false,
/*isSILType=*/false,
witnessEnv,
&SF))
return true;
witnessEntries.push_back(SILWitnessTable::AssociatedTypeWitness{
assoc, Ty.getType()->getCanonicalType()
});
continue;
}
if (EntryKeyword.str() != "method") {
diagnose(KeywordLoc, diag::expected_tok_in_sil_instr, "method");
return true;
}
SILDeclRef Ref;
Identifier FuncName;
SourceLoc FuncLoc;
if (WitnessState.parseSILDeclRef(Ref, true) ||
parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
SILFunction *Func = nullptr;
if (Tok.is(tok::kw_nil)) {
consumeToken();
} else {
if (parseToken(tok::at_sign, diag::expected_sil_function_name) ||
WitnessState.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_witness_func_not_found, FuncName);
return true;
}
}
witnessEntries.push_back(SILWitnessTable::MethodWitness{
Ref, Func
});
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
// Default to public linkage.
if (!Linkage)
Linkage = SILLinkage::Public;
if (!wt)
wt = SILWitnessTable::create(*SIL->M, *Linkage, theConformance);
wt->convertToDefinition(witnessEntries, isFragile);
BodyScope.reset();
return false;
}
/// decl-sil-default-witness ::= 'sil_default_witness_table'
/// sil-linkage identifier
/// decl-sil-default-witness-body
/// decl-sil-default-witness-body:
/// '{' sil-default-witness-entry* '}'
/// sil-default-witness-entry:
/// 'method' SILDeclRef ':' @SILFunctionName
/// 'no_default'
bool Parser::parseSILDefaultWitnessTable() {
consumeToken(tok::kw_sil_default_witness_table);
SILParser WitnessState(*this);
// Parse the linkage.
Optional<SILLinkage> Linkage;
parseSILLinkage(Linkage, *this);
Scope S(this, ScopeKind::TopLevel);
// We should use WitnessTableBody. This ensures that the generic params
// are visible.
Optional<Scope> BodyScope;
BodyScope.emplace(this, ScopeKind::FunctionBody);
// Parse the protocol.
ProtocolDecl *protocol = parseProtocolDecl(*this, WitnessState);
// Parse the body.
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
// We need to turn on InSILBody to parse SILDeclRef.
Lexer::SILBodyRAII Tmp(*L);
// Parse the entry list.
std::vector<SILDefaultWitnessTable::Entry> witnessEntries;
if (Tok.isNot(tok::r_brace)) {
do {
Identifier EntryKeyword;
SourceLoc KeywordLoc;
if (parseIdentifier(EntryKeyword, KeywordLoc,
diag::expected_tok_in_sil_instr, "method, no_default"))
return true;
if (EntryKeyword.str() == "no_default") {
witnessEntries.push_back(SILDefaultWitnessTable::Entry());
continue;
}
if (EntryKeyword.str() != "method") {
diagnose(KeywordLoc, diag::expected_tok_in_sil_instr, "method");
return true;
}
SILDeclRef Ref;
Identifier FuncName;
SourceLoc FuncLoc;
if (WitnessState.parseSILDeclRef(Ref, true) ||
parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
if (parseToken(tok::at_sign, diag::expected_sil_function_name) ||
WitnessState.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
SILFunction *Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_witness_func_not_found, FuncName);
return true;
}
witnessEntries.push_back(SILDefaultWitnessTable::Entry{ Ref, Func });
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
// Default to public linkage.
if (!Linkage)
Linkage = SILLinkage::Public;
SILDefaultWitnessTable::create(*SIL->M, *Linkage, protocol, witnessEntries);
BodyScope.reset();
return false;
}
llvm::Optional<llvm::coverage::Counter> SILParser::parseSILCoverageExpr(
llvm::coverage::CounterExpressionBuilder &Builder) {
if (P.Tok.is(tok::integer_literal)) {
unsigned CounterId;
if (parseInteger(CounterId, diag::sil_coverage_invalid_counter))
return None;
return llvm::coverage::Counter::getCounter(CounterId);
}
if (P.Tok.is(tok::identifier)) {
Identifier Zero;
SourceLoc Loc;
if (parseSILIdentifier(Zero, Loc, diag::sil_coverage_invalid_counter))
return None;
if (Zero.str() != "zero") {
P.diagnose(Loc, diag::sil_coverage_invalid_counter);
return None;
}
return llvm::coverage::Counter::getZero();
}
if (P.Tok.is(tok::l_paren)) {
P.consumeToken(tok::l_paren);
auto LHS = parseSILCoverageExpr(Builder);
if (!LHS)
return None;
Identifier Operator;
SourceLoc Loc;
if (P.parseAnyIdentifier(Operator, Loc,
diag::sil_coverage_invalid_operator))
return None;
if (Operator.str() != "+" && Operator.str() != "-") {
P.diagnose(Loc, diag::sil_coverage_invalid_operator);
return None;
}
auto RHS = parseSILCoverageExpr(Builder);
if (!RHS)
return None;
if (P.parseToken(tok::r_paren, diag::sil_coverage_expected_rparen))
return None;
if (Operator.str() == "+")
return Builder.add(*LHS, *RHS);
return Builder.subtract(*LHS, *RHS);
}
P.diagnose(P.Tok, diag::sil_coverage_invalid_counter);
return None;
}
/// decl-sil-coverage-map ::= 'sil_coverage_map' CoveredName CoverageHash
/// decl-sil-coverage-body
/// decl-sil-coverage-body:
/// '{' sil-coverage-entry* '}'
/// sil-coverage-entry:
/// sil-coverage-loc ':' sil-coverage-expr
/// sil-coverage-loc:
/// StartLine ':' StartCol '->' EndLine ':' EndCol
/// sil-coverage-expr:
/// ...
bool Parser::parseSILCoverageMap() {
consumeToken(tok::kw_sil_coverage_map);
SILParser State(*this);
// Parse the filename.
Identifier Filename;
SourceLoc FileLoc;
if (State.parseSILIdentifier(Filename, FileLoc,
diag::expected_sil_value_name))
return true;
// Parse the covered name.
Identifier FuncName;
SourceLoc FuncLoc;
if (State.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
SILFunction *Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_coverage_func_not_found, FuncName);
return true;
}
uint64_t Hash;
if (State.parseInteger(Hash, diag::sil_coverage_invalid_hash))
return true;
if (!Tok.is(tok::l_brace)) {
diagnose(Tok, diag::sil_coverage_expected_lbrace);
return true;
}
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
llvm::coverage::CounterExpressionBuilder Builder;
std::vector<SILCoverageMap::MappedRegion> Regions;
bool BodyHasError = false;
if (Tok.isNot(tok::r_brace)) {
do {
unsigned StartLine, StartCol, EndLine, EndCol;
if (State.parseInteger(StartLine, diag::sil_coverage_expected_loc) ||
parseToken(tok::colon, diag::sil_coverage_expected_loc) ||
State.parseInteger(StartCol, diag::sil_coverage_expected_loc) ||
parseToken(tok::arrow, diag::sil_coverage_expected_arrow) ||
State.parseInteger(EndLine, diag::sil_coverage_expected_loc) ||
parseToken(tok::colon, diag::sil_coverage_expected_loc) ||
State.parseInteger(EndCol, diag::sil_coverage_expected_loc)) {
BodyHasError = true;
break;
}
if (parseToken(tok::colon, diag::sil_coverage_expected_colon)) {
BodyHasError = true;
break;
}
auto Counter = State.parseSILCoverageExpr(Builder);
if (!Counter) {
BodyHasError = true;
break;
}
Regions.emplace_back(StartLine, StartCol, EndLine, EndCol, *Counter);
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
if (BodyHasError)
skipUntilDeclRBrace();
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
if (!BodyHasError)
SILCoverageMap::create(*SIL->M, Filename.str(), FuncName.str(),
Func->isPossiblyUsedExternally(), Hash, Regions,
Builder.getExpressions());
return false;
}
/// sil-scope-ref ::= 'scope' [0-9]+
/// sil-scope ::= 'sil_scope' [0-9]+ '{'
/// debug-loc
/// 'parent' scope-parent
/// ('inlined_at' sil-scope-ref)?
/// '}'
/// scope-parent ::= sil-function-name ':' sil-type
/// scope-parent ::= sil-scope-ref
/// debug-loc ::= 'loc' string-literal ':' [0-9]+ ':' [0-9]+
bool Parser::parseSILScope() {
consumeToken(tok::kw_sil_scope);
SILParser ScopeState(*this);
SourceLoc SlotLoc = Tok.getLoc();
unsigned Slot;
if (ScopeState.parseInteger(Slot, diag::sil_invalid_scope_slot))
return true;
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
StringRef Key = Tok.getText();
RegularLocation Loc{SILLocation::DebugLoc()};
if (Key == "loc")
if (ScopeState.parseSILLocation(Loc))
return true;
ScopeState.parseVerbatim("parent");
Identifier FnName;
SILDebugScope *Parent = nullptr;
SILFunction *ParentFn = nullptr;
if (Tok.is(tok::integer_literal)) {
/// scope-parent ::= sil-scope-ref
if (ScopeState.parseScopeRef(Parent))
return true;
} else {
/// scope-parent ::= sil-function-name
SILType Ty;
SourceLoc FnLoc = Tok.getLoc();
// We need to turn on InSILBody to parse the function reference.
Lexer::SILBodyRAII Tmp(*L);
GenericEnvironment *IgnoredEnv;
Scope S(this, ScopeKind::TopLevel);
Scope Body(this, ScopeKind::FunctionBody);
if ((ScopeState.parseGlobalName(FnName)) ||
parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
ScopeState.parseSILType(Ty, IgnoredEnv, true))
return true;
// The function doesn't exist yet. Create a zombie forward declaration.
auto FnTy = Ty.getAs<SILFunctionType>();
if (!FnTy || !Ty.isObject()) {
diagnose(FnLoc, diag::expected_sil_function_type);
return true;
}
ParentFn = ScopeState.getGlobalNameForReference(FnName, FnTy, FnLoc, true);
ScopeState.TUState.PotentialZombieFns.insert(ParentFn);
}
SILDebugScope *InlinedAt = nullptr;
if (Tok.getText() == "inlined_at") {
consumeToken();
if (ScopeState.parseScopeRef(InlinedAt))
return true;
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
auto &Scope = SIL->S->ScopeSlots[Slot];
if (Scope) {
diagnose(SlotLoc, diag::sil_scope_redefined, Slot);
return true;
}
Scope = new (*SIL->M) SILDebugScope(Loc, ParentFn, Parent, InlinedAt);
return false;
}