Files
swift-mirror/lib/SILOptimizer/Transforms/ConditionForwarding.cpp
Michael Gottesman ea1f804207 [semantic-sil] Eliminate ValueOwnershipKind::Any from SILPHIArguments in Semantic SIL.
Most of this involved sprinkling ValueOwnershipKind::Owned in many places. In
some of these places, I am sure I was too cavalier and I expect some of them to
be trivial. The verifier will help me to track those down.

On the other hand, I do expect there to be some places where we are willing to
accept guaranteed+trivial or owned+trivial. In those cases, I am going to
provide an aggregate ValueOwnershipKind that will then tell SILArgument that it
should disambiguate using the type. This will eliminate the ackwardness from
such code.

I am going to use a verifier to fix such cases.

This commit also begins the serialization of ValueOwnershipKind of arguments,
but does not implement parsing of value ownership kinds. That and undef are the
last places that we still use ValueOwnershipKind::Any.

rdar://29791263
2017-01-10 20:05:23 -08:00

299 lines
9.6 KiB
C++

//===--- ConditionForwarding.cpp - Forwards conditions --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "condbranch-forwarding"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILUndef.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
namespace {
/// Moves a condition down to a switch_enum and performs jump threading.
/// Example:
///
/// cond_br %c, bb1, bb2
/// bb1:
/// ... // instructions without relevant side-effects
/// %e1 = enum E.caseA
/// br bb3(%e1)
/// bb2:
/// ... // instructions without relevant side-effects
/// %e2 = enum E.caseB
/// br bb3(%e2)
/// bb3(%e : $Enum):
/// ...
/// ... // Any code, including control flow
/// ...
/// switch_enum %e, case E.caseA : bb4, case E.caseB : bb5
/// bb4:
/// ... // bb4 code
/// bb5:
/// ... // bb5 code
///
/// is optimized to
///
/// br bb3
/// bb3(%e : $Enum):
/// ...
/// ... // Any code, including control flow
/// ...
/// cond_br %c, bb1, bb2
/// bb1:
/// ... // instructions without relevant side-effects
/// %e1 = enum E.caseA
/// br bb4(%e1)
/// bb2:
/// ... // instructions without relevant side-effects
/// %e2 = enum E.caseB
/// br bb5(%e2)
/// bb4(%e3 : $Enum):
/// ... // bb4 code
/// bb5(%e4 : $Enum):
/// ... // bb5 code
///
/// A subsequence run of SimplifyCFG can then optimize it to:
///
/// ...
/// ... // Any code, including control flow
/// ...
/// cond_br %c, bb1, bb2
/// bb1:
/// ... // instructions without relevant side-effects
/// %e1 = enum E.caseA
/// ... // bb4 code
/// bb2:
/// ... // instructions without relevant side-effects
/// %e2 = enum E.caseB
/// ... // bb5 code
///
/// This eliminates the switch_enum. Such a pattern occurs when using
/// closed-range iteration, e.g.
/// for i in 0...n { }
///
class ConditionForwarding : public SILFunctionTransform {
public:
ConditionForwarding() {}
private:
bool tryOptimize(SwitchEnumInst *SEI);
/// The entry point to the transformation.
void run() override {
DEBUG(llvm::dbgs() << "** StackPromotion **\n");
bool Changed = false;
SILFunction *F = getFunction();
for (SILBasicBlock &BB : *F) {
if (auto *SEI = dyn_cast<SwitchEnumInst>(BB.getTerminator())) {
Changed |= tryOptimize(SEI);
}
}
if (Changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
}
}
StringRef getName() override { return "ConditionForwarding"; }
};
/// Returns true if all instructions of block \p BB are safe to be moved
/// across other code.
static bool hasNoRelevantSideEffects(SILBasicBlock *BB) {
for (SILInstruction &I : *BB) {
if (I.getMemoryBehavior() == SILInstruction::MemoryBehavior::None)
continue;
if (auto *CF = dyn_cast<CondFailInst>(&I)) {
// Allow cond_fail if the condition is "produced" by a builtin in the
// same basic block.
// Even if we move the whole block across other code, it's still
// guaranteed that the cond_fail is executed before the result of the
// builtin is used.
auto *TEI = dyn_cast<TupleExtractInst>(CF->getOperand());
if (!TEI)
return false;
auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand());
if (!BI || BI->getParent() != BB)
return false;
continue;
}
return false;
}
return true;
}
/// Try to move a condition, e.g. a whole if-then-else structure down to the
/// switch_enum instruction \p SEI. If successful, jump thread and replace
/// \p SEI with the condition.
/// Returns true if the a change was made.
bool ConditionForwarding::tryOptimize(SwitchEnumInst *SEI) {
// The switch_enum argument (an Enum) must be a block argument at the merging
// point of the condition's destinations.
SILArgument *Arg = dyn_cast<SILArgument>(SEI->getOperand());
if (!Arg)
return false;
// The switch_enum must be the only use of the Enum, except it may be used in
// SEI's successors.
for (Operand *ArgUse : Arg->getUses()) {
SILInstruction *ArgUser = ArgUse->getUser();
if (ArgUser == SEI)
continue;
if (isDebugInst(ArgUser))
continue;
if (ArgUser->getParent()->getSinglePredecessorBlock() == SEI->getParent()) {
continue;
}
return false;
}
// No other values, beside the Enum, should be passed from the condition's
// destinations to the merging block.
SILBasicBlock *BB = Arg->getParent();
if (BB->getNumArguments() != 1)
return false;
llvm::SmallVector<SILBasicBlock *, 4> PredBlocks;
// Check if all predecessors of the merging block pass an Enum to its argument
// and have a single predecessor - the block of the condition.
SILBasicBlock *CommonBranchBlock = nullptr;
for (SILBasicBlock *Pred : BB->getPredecessorBlocks()) {
SILBasicBlock *PredPred = Pred->getSinglePredecessorBlock();
if (!PredPred)
return false;
auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
if (!BI)
return false;
auto *EI = dyn_cast<EnumInst>(BI->getArg(0));
if (!EI)
return false;
if (CommonBranchBlock && PredPred != CommonBranchBlock)
return false;
CommonBranchBlock = PredPred;
// We cannot move the block across other code if it has side-effects.
if (!hasNoRelevantSideEffects(Pred))
return false;
PredBlocks.push_back(Pred);
}
// It's important to check this, because only if the merging block has at
// least 2 predecessors, the predecessors don't have dominator children. This
// means that all values in the predecessor blocks cannot be used in other
// blocks.
if (PredBlocks.size() < 2)
return false;
// This optimization works with all kind of terminators, except those which
// have side-effects, like try_apply.
TermInst *Condition = CommonBranchBlock->getTerminator();
if (Condition->getMemoryBehavior() != SILInstruction::MemoryBehavior::None)
return false;
// Are there any other branch block successors beside the predecessors which
// we collected?
if (CommonBranchBlock->getSuccessors().size() != PredBlocks.size())
return false;
// Now do the transformation!
// First thing to do is to replace all uses of the Enum (= the merging block
// argument), as this argument gets deleted.
llvm::SmallPtrSet<SILBasicBlock *, 4> NeedEnumArg;
while (!Arg->use_empty()) {
Operand *ArgUse = *Arg->use_begin();
SILInstruction *ArgUser = ArgUse->getUser();
if (isDebugInst(ArgUser)) {
// Don't care about debug instructions. Just remove them.
ArgUser->eraseFromParent();
continue;
}
SILBasicBlock *UseBlock = ArgUser->getParent();
if (UseBlock->getSinglePredecessorBlock() == SEI->getParent()) {
// The Arg is used in a successor block of the switch_enum. To keep things
// simple, we just create a new block argument and later (see below) we
// pass the corresponding enum to the block. This argument will be deleted
// by a subsequent SimplifyCFG.
SILArgument *NewArg = nullptr;
if (NeedEnumArg.insert(UseBlock).second) {
// The first Enum use in this UseBlock.
NewArg = UseBlock->createPHIArgument(Arg->getType(),
ValueOwnershipKind::Owned);
} else {
// We already inserted the Enum argument for this UseBlock.
assert(UseBlock->getNumArguments() >= 1);
NewArg = UseBlock->getArgument(UseBlock->getNumArguments() - 1);
}
ArgUse->set(NewArg);
continue;
}
assert(ArgUser == SEI);
// We delete the SEI later anyway. Just get rid of the Arg use.
ArgUse->set(SILUndef::get(SEI->getOperand()->getType(),
getFunction()->getModule()));
}
// Redirect the predecessors of the condition's merging block to the
// successors of the switch_enum.
for (SILBasicBlock *Pred : PredBlocks) {
auto *BI = cast<BranchInst>(Pred->getTerminator());
auto *EI = cast<EnumInst>(BI->getArg(0));
SILBasicBlock *SEDest = SEI->getCaseDestination(EI->getElement());
SILBuilder B(BI);
llvm::SmallVector<SILValue, 2> BranchArgs;
unsigned HasEnumArg = NeedEnumArg.count(SEDest);
if (SEDest->getNumArguments() == 1 + HasEnumArg) {
// The successor block has an original argument, which is the Enum's
// payload.
BranchArgs.push_back(EI->getOperand());
}
if (HasEnumArg) {
// The successor block has a new argument (which we created above) where
// we have to pass the Enum.
BranchArgs.push_back(EI);
}
B.createBranch(BI->getLoc(), SEDest, BranchArgs);
BI->eraseFromParent();
}
// Final step: replace the switch_enum by the condition.
SILBuilder B(Condition);
B.createBranch(Condition->getLoc(), BB);
Condition->moveBefore(SEI);
SEI->eraseFromParent();
BB->eraseArgument(0);
return true;
}
} // end anonymous namespace
SILTransform *swift::createConditionForwarding() {
return new ConditionForwarding();
}