Files
swift-mirror/lib/Parse/Parser.cpp
2010-11-11 01:20:36 +00:00

1217 lines
36 KiB
C++

//===--- Parser.cpp - Swift Language Parser -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Swift parser.
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/Parse/Lexer.h"
#include "swift/Sema/Sema.h"
#include "swift/Sema/Scope.h"
#include "swift/AST/ASTConsumer.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Type.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/ADT/NullablePtr.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
using llvm::SMLoc;
using llvm::NullablePtr;
//===----------------------------------------------------------------------===//
// Setup and Helper Methods
//===----------------------------------------------------------------------===//
Parser::Parser(unsigned BufferID, ASTConsumer &consumer)
: Consumer(consumer),
SourceMgr(Consumer.getContext().SourceMgr),
L(*new Lexer(BufferID, SourceMgr)),
S(*new Sema(Consumer.getContext())) {
}
Parser::~Parser() {
delete &L;
delete &S;
}
void Parser::Note(SMLoc Loc, const llvm::Twine &Message) {
SourceMgr.PrintMessage(Loc, Message, "note");
}
void Parser::Warning(SMLoc Loc, const llvm::Twine &Message) {
SourceMgr.PrintMessage(Loc, Message, "warning");
}
void Parser::Error(SMLoc Loc, const llvm::Twine &Message) {
SourceMgr.PrintMessage(Loc, Message, "error");
}
void Parser::ConsumeToken() {
assert(Tok.isNot(tok::eof) && "Lexing past eof!");
L.Lex(Tok);
}
/// SkipUntil - Read tokens until we get to the specified token, then return.
/// Because we cannot guarantee that the token will ever occur, this skips to
/// some likely good stopping point.
///
void Parser::SkipUntil(tok::TokenKind T) {
// tok::unknown is a sentinel that means "don't skip".
if (T == tok::unknown) return;
while (Tok.isNot(tok::eof) && Tok.isNot(T)) {
switch (Tok.getKind()) {
default: ConsumeToken(); break;
// TODO: Handle paren/brace/bracket recovery.
}
}
}
//===----------------------------------------------------------------------===//
// Primitive Parsing
//===----------------------------------------------------------------------===//
/// ParseIdentifier - Consume an identifier if present and return its name in
/// Result. Otherwise, emit an error and return true.
bool Parser::ParseIdentifier(llvm::StringRef &Result,const llvm::Twine &Message,
tok::TokenKind SkipToTok) {
if (Tok.is(tok::identifier)) {
Result = Tok.getText();
ConsumeToken(tok::identifier);
return false;
}
Error(Tok.getLoc(), Message);
return true;
}
/// ParseToken - The parser expects that 'K' is next in the input. If so, it is
/// consumed and false is returned.
///
/// If the input is malformed, this emits the specified error diagnostic.
/// Next, if SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally,
/// true is returned.
bool Parser::ParseToken(tok::TokenKind K, const char *Message,
tok::TokenKind SkipToTok) {
if (Tok.is(K)) {
ConsumeToken(K);
return false;
}
Error(Tok.getLoc(), Message);
SkipUntil(SkipToTok);
// If we skipped ahead to the missing token and found it, consume it as if
// there were no error.
if (K == SkipToTok && Tok.is(SkipToTok))
ConsumeToken();
return true;
}
//===----------------------------------------------------------------------===//
// Decl Parsing
//===----------------------------------------------------------------------===//
/// ParseTranslationUnit
/// translation-unit:
/// decl-top-level*
void Parser::ParseTranslationUnit() {
// Prime the lexer.
ConsumeToken();
{
// The entire translation unit is in a big scope.
Scope OuterScope(S.decl);
while (Tok.isNot(tok::eof)) {
if (Decl *D = ParseDeclTopLevel())
Consumer.HandleTopLevelDecl(D);
}
}
// Notify consumer about the end of the translation unit.
Consumer.HandleEndOfTranslationUnit();
}
/// ParseDeclTopLevel
/// decl-top-level:
/// ';'
/// decl-oneof
/// decl-struct
/// decl-func
/// decl-typealias
/// decl-var
Decl *Parser::ParseDeclTopLevel() {
switch (Tok.getKind()) {
default:
Error(Tok.getLoc(), "expected a top level declaration");
break;
case tok::semi:
ConsumeToken(tok::semi);
return 0; // Could do a top-level semi decl.
case tok::kw_typealias:
if (ParseDeclTypeAlias()) break;
return 0;
case tok::kw_oneof:
if (OneOfDecl *O = ParseDeclOneOf())
return O;
break;
case tok::kw_struct:
if (OneOfDecl *D = ParseDeclStruct())
return D;
break;
case tok::kw_func:
if (FuncDecl *D = ParseDeclFunc()) {
S.decl.ActOnTopLevelDecl(D);
return D;
}
break;
case tok::kw_var:
if (VarDecl *D = ParseDeclVar()) {
S.decl.ActOnTopLevelDecl(D);
return D;
}
break;
}
S.decl.ActOnTopLevelDeclError();
// On error, skip to the next top level declaration.
while (Tok.isNot(tok::eof) && Tok.isNot(tok::kw_var) &&
Tok.isNot(tok::kw_func))
ConsumeToken();
return 0;
}
/// ParseAttribute
/// attribute:
/// 'infix' '=' numeric_constant
bool Parser::ParseAttribute(DeclAttributes &Attributes) {
if (Tok.is(tok::identifier) && Tok.getText() == "infix") {
if (Attributes.InfixPrecedence != -1)
Error(Tok.getLoc(), "infix precedence repeatedly specified");
ConsumeToken(tok::identifier);
// The default infix precedence is 100.
Attributes.InfixPrecedence = 100;
if (ConsumeIf(tok::equal)) {
SMLoc PrecLoc = Tok.getLoc();
llvm::StringRef Text = Tok.getText();
if (!ParseToken(tok::numeric_constant,
"expected precedence number in 'infix' attribute")) {
long long Value;
if (Text.getAsInteger(10, Value) || Value > 255 || Value < 0)
Error(PrecLoc, "invalid precedence: value must be between 0 and 255");
else
Attributes.InfixPrecedence = Value;
}
}
return false;
}
Error(Tok.getLoc(), "unknown declaration attribute");
SkipUntil(tok::r_square);
return true;
}
/// ParseAttributeList
/// attribute-list:
/// '[' ']'
/// '[' attribute (',' attribute)* ']'
void Parser::ParseAttributeList(DeclAttributes &Attributes) {
Attributes.LSquareLoc = Tok.getLoc();
ConsumeToken(tok::l_square);
// If this is an empty attribute list, consume it and return.
if (Tok.is(tok::r_square)) {
Attributes.RSquareLoc = Tok.getLoc();
ConsumeToken(tok::r_square);
return;
}
bool HadError = ParseAttribute(Attributes);
while (Tok.is(tok::comma)) {
ConsumeToken(tok::comma);
HadError |= ParseAttribute(Attributes);
}
Attributes.RSquareLoc = Tok.getLoc();
if (ConsumeIf(tok::r_square))
return;
// Otherwise, there was an error parsing the attribute list. If we already
// reported an error, skip to a ], otherwise report the error.
if (!HadError)
ParseToken(tok::r_square, "expected ']' or ',' in attribute list",
tok::r_square);
else {
SkipUntil(tok::r_square);
ConsumeIf(tok::r_square);
}
}
/// NameRecord - This represents either a single identifier or a tree with
/// children.
namespace swift {
class NameRecord {
public:
Identifier Name; // In the identifier case, this is the identifier.
llvm::SMLoc Loc; // This is the first character of this name record.
unsigned NumChildren;
NameRecord *Children;
NameRecord() : NumChildren(0), Children(0) {}
};
}
/// ParseVarName
/// var-name:
/// identifier
/// '(' ')'
/// '(' name (',' name)* ')'
bool Parser::ParseVarName(NameRecord &Record) {
Record.Loc = Tok.getLoc();
// Single name case.
if (Tok.is(tok::identifier)) {
Record.Name = S.Context.getIdentifier(Tok.getText());
ConsumeToken(tok::identifier);
return false;
}
if (ParseToken(tok::l_paren, "expected identifier or '(' in var name"))
return true;
llvm::SmallVector<NameRecord, 8> ChildNames;
if (Tok.isNot(tok::r_paren)) {
do {
ChildNames.push_back(NameRecord());
if (ParseVarName(ChildNames.back())) return true;
} while (ConsumeIf(tok::comma));
}
Record.Children =
(NameRecord *)S.Context.Allocate(sizeof(NameRecord)*ChildNames.size(), 8);
memcpy(Record.Children, ChildNames.data(),
sizeof(NameRecord)*ChildNames.size());
Record.NumChildren = ChildNames.size();
if (ParseToken(tok::r_paren, "expected ')' at end of var name"))
Note(Record.Loc, "to match this '('");
return false;
}
/// ParseDeclTypeAlias
/// decl-typealias:
/// 'typealias' identifier ':' type
bool Parser::ParseDeclTypeAlias() {
SMLoc TypeAliasLoc = Tok.getLoc();
ConsumeToken(tok::kw_typealias);
llvm::StringRef Identifier;
Type *Ty = 0;
if (ParseIdentifier(Identifier, "expected identifier in var declaration") ||
ParseToken(tok::colon, "expected ':' in typealias declaration") ||
ParseType(Ty, "expected type in var declaration"))
return true;
S.decl.ActOnTypeAlias(TypeAliasLoc, Identifier, Ty);
return false;
}
/// AddElementNamesForVarDecl - This recursive function walks a name specifier
/// adding ElementRefDecls for the named subcomponents and checking that types
/// match up correctly.
static void AddElementNamesForVarDecl(const NameRecord &Name,
llvm::SmallVectorImpl<unsigned> &AccessPath,
VarDecl *VD, SemaDecl &SD) {
// If this is a leaf name, ask sema to create a ElementRefDecl for us with the
// specified access path.
if (Name.Name.get()) {
ValueDecl *END =
SD.ActOnElementName(Name.Name, Name.Loc, VD,
AccessPath.data(), AccessPath.size());
SD.AddToScope(END);
return;
}
// Otherwise, we have the paren case. Verify that the currently named type
// has the right number of elements. If so, we recursively process each.
if (SD.CheckAccessPathArity(Name.NumChildren, Name.Loc, VD,
AccessPath.data(), AccessPath.size()))
return;
AccessPath.push_back(0);
for (unsigned i = 0, e = Name.NumChildren; i != e; ++i) {
AccessPath.back() = i;
AddElementNamesForVarDecl(Name.Children[i], AccessPath, VD, SD);
}
AccessPath.pop_back();
}
/// ParseDeclVar - Parse a 'var' declaration, returning null (and doing no
/// token skipping) on error.
///
/// decl-var:
/// 'var' attribute-list? var-name ':' type
/// 'var' attribute-list? var-name ':' type '=' expr
/// 'var' attribute-list? var-name '=' expr
VarDecl *Parser::ParseDeclVar() {
SMLoc VarLoc = Tok.getLoc();
ConsumeToken(tok::kw_var);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
ParseAttributeList(Attributes);
// FIXME: Use ParseTypeTupleElement to parse this once tuple elements are
// allowed to have initializers!
NameRecord Name;
if (ParseVarName(Name)) return 0;
Type *Ty = 0;
if (ConsumeIf(tok::colon) &&
ParseType(Ty, "expected type in var declaration"))
return 0;
NullablePtr<Expr> Init;
if (ConsumeIf(tok::equal)) {
if (ParseExpr(Init, "expected expression in var declaration"))
return 0;
// If there was an expression, but it had a parse error, give the var decl
// an artificial int type to avoid chained errors.
// FIXME: We really need to distinguish erroneous expr from missing expr in
// ActOnVarDecl.
if (Init.isNull() && Ty == 0)
Ty = S.Context.TheInt32Type;
}
VarDecl *VD = S.decl.ActOnVarDecl(VarLoc, Name.Name, Ty, Init.getPtrOrNull(),
Attributes);
if (VD == 0) return 0;
// Enter the declaration into the current scope. Since var's are not allowed
// to be recursive, so they are entered after its initializer is parsed. This
// does mean that stuff like this is different than C:
// var x = 1; { var x = x+1; assert(x == 2); }
if (Name.Name.get())
S.decl.AddToScope(VD);
else {
// If there is a more interesting name presented here, then we need to walk
// through it and synthesize the decls that reference the var elements as
// appropriate.
llvm::SmallVector<unsigned, 8> AccessPath;
AddElementNamesForVarDecl(Name, AccessPath, VD, S.decl);
}
return VD;
}
/// ParseDeclFunc - Parse a 'func' declaration, returning null on error. The
/// caller handles this case and does recovery as appropriate.
///
/// decl-func:
/// 'func' attribute-list? identifier arg-list-type '=' expr
/// 'func' attribute-list? identifier arg-list-type expr-brace
/// 'func' attribute-list? identifier arg-list-type
FuncDecl *Parser::ParseDeclFunc() {
SMLoc FuncLoc = Tok.getLoc();
ConsumeToken(tok::kw_func);
DeclAttributes Attributes;
// FIXME: Implicitly add immutable attribute.
if (Tok.is(tok::l_square))
ParseAttributeList(Attributes);
llvm::StringRef Identifier;
if (ParseIdentifier(Identifier, "expected identifier in func declaration"))
return 0;
// We force first type of a func declaration to be a tuple for consistency.
if (Tok.isNot(tok::l_paren)) {
Error(Tok.getLoc(), "expected '(' in argument list of func declaration");
return 0;
}
Type *FuncTy = 0;
if (ParseType(FuncTy))
return 0;
// If the parsed function type is not a function, then it is implicitly a
// function that returns void.
if (!llvm::isa<FunctionType>(FuncTy))
FuncTy = S.type.ActOnFunctionType(FuncTy, SMLoc(),
S.Context.TheEmptyTupleType);
// Build the decl for the function.
FuncDecl *FD = S.decl.ActOnFuncDecl(FuncLoc, Identifier, FuncTy, Attributes);
// Enter the func into the current scope, which allows it to be visible and
// used within its body.
if (FD)
S.decl.AddToScope(FD);
// Enter the arguments for the function into a new function-body scope. We
// need this even if there is no function body to detect argument name
// duplication.
Scope FnBodyScope(S.decl);
if (FD)
S.decl.CreateArgumentDeclsForFunc(FD);
// Then parse the expression.
llvm::NullablePtr<Expr> Body;
// Check to see if we have a "= expr" or "{" which is a brace expr.
if (ConsumeIf(tok::equal)) {
if (ParseExpr(Body, "expected expression parsing func body") ||
Body.isNull())
return 0; // FIXME: Need to call a new ActOnFuncBodyError?
} else if (Tok.is(tok::l_brace)) {
if (ParseExprBrace(Body) || Body.isNull())
return 0; // FIXME: Need to call a new ActOnFuncBodyError?
}
// If this is a declaration, we're done.
if (Body.isNull())
return FD;
return S.decl.ActOnFuncBody(FD, Body.get());
}
/// ParseDeclOneOf - Parse a 'oneof' declaration, returning null (and doing no
/// token skipping) on error.
///
/// decl-oneof:
/// 'oneof' attribute-list? identifier '{' oneof-element-list '}'
/// oneof-element-list:
/// oneof-element ','?
/// oneof-element ',' oneof-element-list
/// oneof-element:
/// identifier
/// identifier type
///
OneOfDecl *Parser::ParseDeclOneOf() {
SMLoc OneOfLoc = Tok.getLoc();
ConsumeToken(tok::kw_oneof);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
ParseAttributeList(Attributes);
llvm::StringRef OneOfName;
if (ParseIdentifier(OneOfName, "expected identifier in oneof declaration") ||
ParseToken(tok::l_brace, "expected '{' in oneof declaration"))
return 0;
Identifier OneOfIdentifier = S.Context.getIdentifier(OneOfName);
// Give the information about the decl to Sema. This registers the oneof for
// name lookup allowing recursive oneof's.
OneOfDecl *TheOneOfDecl = S.decl.ActOnOneOfDecl(OneOfLoc, OneOfIdentifier,
Attributes);
llvm::SmallVector<SemaDecl::OneOfElementInfo, 8> ElementInfos;
// Parse the comma separated list of oneof elements.
while (Tok.is(tok::identifier)) {
SemaDecl::OneOfElementInfo ElementInfo;
ElementInfo.Name = Tok.getText();
ElementInfo.NameLoc = Tok.getLoc();
ElementInfo.EltType = 0;
ConsumeToken(tok::identifier);
// See if we have a type specifier for this oneof element. If so, parse it.
if (Tok.isNot(tok::comma) && Tok.isNot(tok::r_brace))
if (ParseType(ElementInfo.EltType,
"expected type while parsing oneof element '" +
OneOfName + "'")) {
SkipUntil(tok::r_brace);
return 0;
}
ElementInfos.push_back(ElementInfo);
// Require comma separation.
if (!ConsumeIf(tok::comma))
break;
}
ParseToken(tok::r_brace, "expected '}' at end of oneof declaration");
S.decl.ActOnCompleteOneOfDecl(TheOneOfDecl, ElementInfos.data(),
ElementInfos.size());
return TheOneOfDecl;
}
/// ParseDeclStruct - Parse a 'struct' declaration, returning null (and doing no
/// token skipping) on error. A 'struct' is just syntactic sugar for a oneof
/// with a single element.
///
/// decl-struct:
/// 'struct' attribute-list? identifier type
///
OneOfDecl *Parser::ParseDeclStruct() {
SMLoc StructLoc = Tok.getLoc();
ConsumeToken(tok::kw_struct);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
ParseAttributeList(Attributes);
llvm::StringRef StructName;
if (ParseIdentifier(StructName, "expected identifier in struct declaration"))
return 0;
Identifier StructIdentifier = S.Context.getIdentifier(StructName);
if (Tok.isNot(tok::l_paren)) {
Error(Tok.getLoc(), "expected '(' in struct declaration");
return 0;
}
Type *Ty = 0;
if (ParseType(Ty)) return 0;
// If we got here, then the 'struct' is syntactically fine, invoke the
// semantic actions for the syntactically expanded oneof declaration.
OneOfDecl *TheOneOfDecl = S.decl.ActOnOneOfDecl(StructLoc, StructIdentifier,
Attributes);
SemaDecl::OneOfElementInfo ElementInfo;
ElementInfo.Name = StructName;
ElementInfo.NameLoc = StructLoc;
ElementInfo.EltType = Ty;
S.decl.ActOnCompleteOneOfDecl(TheOneOfDecl, &ElementInfo, 1);
// In addition to defining the oneof declaration, structs also inject their
// constructor into the global scope.
assert(TheOneOfDecl->NumElements == 1 && "Struct has exactly one element");
S.decl.AddToScope(TheOneOfDecl->Elements[0]);
return TheOneOfDecl;
}
//===----------------------------------------------------------------------===//
// Type Parsing
//===----------------------------------------------------------------------===//
/// ParseType
/// type:
/// type-simple
/// type-function
/// type-array
///
/// type-function:
/// type-simple '->' type
///
/// type-array:
/// type '[' ']'
/// type '[' expr ']'
///
/// type-simple:
/// '__builtin_int32_type'
/// identifier
/// type-tuple
///
bool Parser::ParseType(Type *&Result, const llvm::Twine &Message) {
// Parse type-simple first.
switch (Tok.getKind()) {
case tok::identifier:
Result = S.type.ActOnTypeName(Tok.getLoc(), Tok.getText());
if (Result == 0) {
Error(Tok.getLoc(), Message);
return true;
}
ConsumeToken(tok::identifier);
break;
case tok::kw___builtin_int32_type:
Result = S.type.ActOnInt32Type(Tok.getLoc());
ConsumeToken(tok::kw___builtin_int32_type);
break;
case tok::l_paren:
if (ParseTypeTuple(Result))
return true;
break;
default:
Error(Tok.getLoc(), Message);
return true;
}
while (1) {
// If there is an arrow, parse the rest of the type.
SMLoc TokLoc = Tok.getLoc();
if (ConsumeIf(tok::arrow)) {
Type *SecondHalf = 0;
if (ParseType(SecondHalf, "expected type in result of function type"))
return true;
Result = S.type.ActOnFunctionType(Result, TokLoc, SecondHalf);
continue;
}
// If there is a square bracket, we have an array.
if (ConsumeIf(tok::l_square)) {
llvm::NullablePtr<Expr> Size;
if (!Tok.is(tok::r_square) &&
ParseExpr(Size, "expected expression for array type size"))
return true;
SMLoc RArrayTok = Tok.getLoc();
if (ParseToken(tok::r_square, "expected ']' in array type")) {
Note(TokLoc, "to match this '['");
return true;
}
Result = S.type.ActOnArrayType(Result, TokLoc, Size.getPtrOrNull(),
RArrayTok);
continue;
}
break;
}
return false;
}
bool Parser::ParseType(Type *&Result) {
return ParseType(Result, "expected type");
}
/// ParseTypeTupleElement
/// type-tuple-element:
/// identifier? ':' type
bool Parser::ParseTypeTupleElement(TupleTypeElt &Result) {
llvm::StringRef Name;
if ((Tok.is(tok::identifier) &&
ParseIdentifier(Name, "expected identifier in tuple element")) ||
ParseToken(tok::colon, "expected ':' after tuple element name") ||
ParseType(Result.Ty, "expected type in tuple element"))
return true;
Result.Name = S.Context.getIdentifier(Name);
return false;
}
/// ParseTypeTuple
/// type-tuple:
/// '(' ')'
/// '(' type-tuple-element (',' type-tuple-element)* ')'
///
bool Parser::ParseTypeTuple(Type *&Result) {
assert(Tok.is(tok::l_paren) && "Not start of type tuple");
SMLoc LPLoc = Tok.getLoc();
ConsumeToken(tok::l_paren);
llvm::SmallVector<TupleTypeElt, 8> Elements;
if (Tok.isNot(tok::r_paren)) {
bool HadError = false;
do {
Elements.push_back(TupleTypeElt());
if ((HadError = ParseTypeTupleElement(Elements.back())))
break;
} while (ConsumeIf(tok::comma));
if (HadError) {
SkipUntil(tok::r_paren);
if (Tok.is(tok::r_paren))
ConsumeToken(tok::r_paren);
return true;
}
}
SMLoc RPLoc = Tok.getLoc();
if (ParseToken(tok::r_paren, "expected ')' at end of tuple list",
tok::r_paren)) {
Note(LPLoc, "to match this opening '('");
return true;
}
Result = S.type.ActOnTupleType(LPLoc, Elements.data(), Elements.size(),RPLoc);
return false;
}
//===----------------------------------------------------------------------===//
// Expression Parsing
//===----------------------------------------------------------------------===//
bool Parser::isStartOfExpr(Token &Tok) const {
if (Tok.is(tok::identifier)) {
// If this is a binary operator, then it isn't the start of an expr.
ValueDecl *VD =
S.decl.LookupValueName(S.Context.getIdentifier(Tok.getText()));
// Use of undeclared identifier.
if (VD == 0) return true;
return VD->Attrs.InfixPrecedence == -1;
}
return Tok.is(tok::numeric_constant) || Tok.is(tok::colon) ||
Tok.is(tok::l_paren) || Tok.is(tok::l_brace);
}
/// ParseExpr
/// expr:
/// expr-single+
bool Parser::ParseExpr(NullablePtr<Expr> &Result, const char *Message) {
llvm::SmallVector<Expr*, 8> SequencedExprs;
Expr *LastExpr = 0;
do {
// Parse the expr-single.
Result = 0;
if (ParseExprSingle(Result) || Result.isNull()) return true;
// Check to see if this juxtaposition is application of a function with its
// arguments. If so, bind the function application, otherwise, we have a
// sequence.
if (LastExpr == 0)
LastExpr = Result.get();
else {
llvm::PointerIntPair<Expr*, 1, bool>
ApplyRes = S.expr.ActOnJuxtaposition(LastExpr, Result.get());
if (!ApplyRes.getInt()) {
// Function application.
LastExpr = ApplyRes.getPointer();
if (LastExpr == 0) return true;
} else {
// Sequencing.
assert(ApplyRes.getPointer() == 0 && "Sequencing with a result?");
SequencedExprs.push_back(LastExpr);
LastExpr = Result.get();
}
}
} while (isStartOfExpr(Tok));
assert(LastExpr && "Should have parsed at least one valid expression");
// If there is exactly one element in the sequence, it is a degenerate
// sequence that just returns the last value anyway, shortcut ActOnSequence.
if (SequencedExprs.empty()) {
Result = LastExpr;
return false;
}
SequencedExprs.push_back(LastExpr);
Result = S.expr.ActOnSequence(SequencedExprs.data(), SequencedExprs.size());
return false;
}
/// ParseExprSingle
/// expr-single:
/// expr-primary (binary-operator expr-primary)*
bool Parser::ParseExprSingle(llvm::NullablePtr<Expr> &Result,
const char *Message) {
return ParseExprPrimary(Result, Message) || ParseExprBinaryRHS(Result);
}
/// ParseExprPrimary
/// expr-primary:
/// expr-literal
/// expr-identifier
/// ':' identifier
/// expr-paren
/// expr-brace
/// expr-field
/// expr-subscript
/// expr-primary-fn expr-primary
///
/// expr-primary-fn:
/// expr-primary Type sensitive: iff expr has fn type
///
/// expr-literal:
/// numeric_constant
///
/// expr-field:
/// expr-primary '.' identifier
///
/// expr-subscript:
/// expr-primary '[' expr-single ']'
bool Parser::ParseExprPrimary(NullablePtr<Expr> &Result, const char *Message) {
switch (Tok.getKind()) {
case tok::numeric_constant:
Result = S.expr.ActOnNumericConstant(Tok.getText(), Tok.getLoc());
ConsumeToken(tok::numeric_constant);
break;
case tok::identifier: // foo and foo::bar
if (ParseExprIdentifier(Result)) return true;
break;
case tok::colon: { // :foo
SMLoc ColonLoc = Tok.getLoc();
ConsumeToken(tok::colon);
llvm::StringRef Name;
SMLoc NameLoc = Tok.getLoc();
if (ParseIdentifier(Name, "expected identifier after ':' expression"))
return true;
Result = S.expr.ActOnUnresolvedMemberExpr(ColonLoc, NameLoc, Name);
break;
}
case tok::l_paren:
if (ParseExprParen(Result)) return true;
break;
case tok::l_brace:
if (ParseExprBrace(Result)) return true;
break;
default:
Error(Tok.getLoc(), Message ? Message : "expected expression");
return true;
}
// Handle suffix expressions.
while (1) {
// Check for a .foo suffix.
SMLoc TokLoc = Tok.getLoc();
if (ConsumeIf(tok::period)) {
if (Tok.isNot(tok::identifier)) {
Error(Tok.getLoc(), "expected field name");
return true;
}
if (!Result.isNull())
Result = S.expr.ActOnDotIdentifier(Result.get(), TokLoc, Tok.getText(),
Tok.getLoc());
ConsumeToken(tok::identifier);
continue;
}
// Check for a [expr] suffix.
if (ConsumeIf(tok::l_square)) {
NullablePtr<Expr> Idx;
if (ParseExprSingle(Idx, "expected expression parsing array index"))
return true;
SMLoc RLoc = Tok.getLoc();
if (ParseToken(tok::r_square, "expected ']'")) {
Note(TokLoc, "to match this '['");
return true;
}
if (!Result.isNull() && !Idx.isNull())
Result = S.expr.ActOnArraySubscript(Result.get(), TokLoc, Idx.get(),
RLoc);
}
break;
}
// Okay, we parsed the expression primary and any suffix expressions. If the
// result has function type and if this is followed by another expression,
// then we have a juxtaposition case which is parsed. Note that this
// production is ambiguous with the higher level "expr: expr-single+"
// production, as witnessed by examples like:
// A + B C * D
// Which can be parsed either as:
// A + (B C) * D <-- Juxtaposition here
// (A + B) (C * D) <-- Juxtaposition in the expr production
// This is disambiguated based on whether B has function type or not.
while (!Result.isNull() && isStartOfExpr(Tok)) {
NullablePtr<Expr> RHS;
switch (S.expr.getJuxtapositionGreediness(Result.get())) {
default: assert(0 && "Unknown juxtaposition greediness");
case SemaExpr::JG_NonGreedy: return false;
case SemaExpr::JG_LocallyGreedy:
if (ParseExprPrimary(RHS,
"expected expression after juxtaposed operator") ||
RHS.isNull())
return true;
break;
case SemaExpr::JG_Greedy:
if (ParseExprSingle(RHS,
"expected expression after juxtaposed operator") ||
RHS.isNull())
return true;
break;
}
llvm::PointerIntPair<Expr*, 1, bool>
Op = S.expr.ActOnJuxtaposition(Result.get(), RHS.get());
assert(!Op.getInt() && "ShouldGreedilyJuxtapose guaranteed an apply");
Result = Op.getPointer();
}
return false;
}
/// ParseExprIdentifier - Parse an identifier expression:
///
/// expr-identifier:
/// identifier
/// identifier '::' identifier
bool Parser::ParseExprIdentifier(llvm::NullablePtr<Expr> &Result) {
llvm::StringRef Name = Tok.getText();
SMLoc Loc = Tok.getLoc();
ConsumeToken(tok::identifier);
if (Tok.isNot(tok::coloncolon)) {
Result = S.expr.ActOnIdentifierExpr(Name, Loc);
return false;
}
SMLoc ColonColonLoc = Tok.getLoc();
ConsumeToken(tok::coloncolon);
SMLoc Loc2 = Tok.getLoc();
llvm::StringRef Name2;
if (ParseIdentifier(Name2, "expected identifier after '" + Name +
"::' expression"))
return true;
Result = S.expr.ActOnScopedIdentifierExpr(Name, Loc, ColonColonLoc,
Name2, Loc2);
return false;
}
/// ParseExprParen - Parse a tuple expression.
///
/// expr-paren:
/// '(' ')'
/// '(' expr-paren-element (',' expr-paren-element)* ')'
///
/// expr-paren-element:
/// ('.' identifier '=')? expr
///
bool Parser::ParseExprParen(llvm::NullablePtr<Expr> &Result) {
SMLoc LPLoc = Tok.getLoc();
ConsumeToken(tok::l_paren);
llvm::SmallVector<Expr*, 8> SubExprs;
llvm::SmallVector<Identifier, 8> SubExprNames;
bool AnyErroneousSubExprs = false;
if (Tok.isNot(tok::r_paren)) {
do {
Identifier FieldName;
// Check to see if there is a field specifier.
if (ConsumeIf(tok::period)) {
llvm::StringRef FieldNameStr;
if (ParseIdentifier(FieldNameStr,
"expected field specifier name in tuple expression")||
ParseToken(tok::equal, "expected '=' in tuple expression"))
return true;
FieldName = S.Context.getIdentifier(FieldNameStr);
}
if (!SubExprNames.empty())
SubExprNames.push_back(FieldName);
else if (FieldName.get()) {
SubExprNames.resize(SubExprs.size());
SubExprNames.push_back(FieldName);
}
NullablePtr<Expr> SubExpr;
if (ParseExpr(SubExpr, "expected expression in parentheses")) return true;
if (SubExpr.isNull())
AnyErroneousSubExprs = true;
else
SubExprs.push_back(SubExpr.get());
} while (ConsumeIf(tok::comma));
}
SMLoc RPLoc = Tok.getLoc();
if (ParseToken(tok::r_paren, "expected ')' in parenthesis expression")) {
Note(LPLoc, "to match this opening '('");
return true;
}
if (!AnyErroneousSubExprs)
Result = S.expr.ActOnTupleExpr(LPLoc, SubExprs.data(),
SubExprNames.empty()?0 : SubExprNames.data(),
SubExprs.size(), RPLoc);
return false;
}
/// ParseExprBrace - A brace enclosed expression list which may optionally end
/// with a ; inside of it. For example { 1; 4+5; } or { 1; 2 }.
///
/// expr-brace:
/// '{' expr-brace-item* '}'
/// expr-brace-item:
/// expr
/// decl-var
/// ';'
bool Parser::ParseExprBrace(NullablePtr<Expr> &Result) {
SMLoc LBLoc = Tok.getLoc();
ConsumeToken(tok::l_brace);
// This brace expression forms a lexical scope.
Scope BraceScope(S.decl);
llvm::SmallVector<llvm::PointerUnion<Expr*, ValueDecl*>, 16> Entries;
// MissingSemiAtEnd - Keep track of whether the last expression in the block
// had no semicolon.
bool MissingSemiAtEnd = false;
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
MissingSemiAtEnd = false;
// If this is a semi, eat it and ignore it.
if (ConsumeIf(tok::semi))
continue;
// Otherwise, we must have a var decl or expression. Parse it up
Entries.push_back(llvm::PointerUnion<Expr*, ValueDecl*>());
// Parse the var or expression. If we have an error, try to do nice
// recovery.
bool HadError = false;
if (Tok.is(tok::kw_var)) {
Entries.back() = ParseDeclVar();
if (Entries.back().isNull())
HadError = true;
} else {
NullablePtr<Expr> ResultExpr;
if (ParseExpr(ResultExpr) || ResultExpr.isNull())
HadError = true;
else {
Entries.back() = ResultExpr.get();
MissingSemiAtEnd = true;
}
}
if (HadError) {
if (Tok.is(tok::semi)) {
Entries.pop_back();
continue; // Consume the ';' and keep going.
}
// FIXME: QOI: Improve error recovery.
if (Tok.is(tok::semi) && Tok.isNot(tok::r_brace))
SkipUntil(tok::r_brace);
ConsumeIf(tok::r_brace);
return true;
}
}
SMLoc RBLoc = Tok.getLoc();
if (ParseToken(tok::r_brace, "expected '}' at end of brace expression",
tok::r_brace)) {
Note(LBLoc, "to match this opening '{'");
return true;
}
Result = S.expr.ActOnBraceExpr(LBLoc, Entries.data(), Entries.size(),
MissingSemiAtEnd, RBLoc);
return false;
}
/// getBinOp - Return the ValueDecl for the token if it is an infix binary
/// operator, otherwise return null.
static ValueDecl *getBinOp(const Token &Tok, Sema &S) {
if (Tok.isNot(tok::identifier))
return 0;
ValueDecl *VD =S.decl.LookupValueName(S.Context.getIdentifier(Tok.getText()));
if (VD == 0 || VD->Attrs.InfixPrecedence == -1)
return 0;
return VD;
}
/// ParseExprBinaryRHS - Parse the right hand side of a binary expression and
/// assemble it according to precedence rules.
///
/// expr-binary-rhs:
/// (binary-operator expr-primary)*
bool Parser::ParseExprBinaryRHS(NullablePtr<Expr> &Result, unsigned MinPrec) {
ValueDecl *NextTokOp = getBinOp(Tok, S);
int NextTokPrec = NextTokOp ? NextTokOp->Attrs.InfixPrecedence : -1;
// Assignment is a hack until we get generics. Assignment gets the lowest
// precedence since it "returns void".
if (Tok.is(tok::equal)) NextTokPrec = 1;
while (1) {
// If this token has a lower precedence than we are allowed to parse (e.g.
// because we are called recursively, or because the token is not a binop),
// then we are done!
if (NextTokPrec < (int)MinPrec)
return false;
// Consume the operator, saving the operator location.
SMLoc OpLoc = Tok.getLoc();
ConsumeToken();
// TODO: Support ternary operators some day.
// Parse another leaf here for the RHS of the operator.
NullablePtr<Expr> Leaf;
if (ParseExprPrimary(Leaf, "expected expression after binary operator"))
return true;
// Remember the precedence of this operator and get the precedence of the
// operator immediately to the right of the RHS.
int ThisPrec = NextTokPrec;
ValueDecl *ThisTokOp = NextTokOp;
NextTokOp = getBinOp(Tok, S);
NextTokPrec = NextTokOp ? NextTokOp->Attrs.InfixPrecedence : -1;
if (Tok.is(tok::equal)) NextTokPrec = 1;
// TODO: All operators are left associative at the moment.
// If the next operator binds more tightly with RHS than we do, evaluate the
// RHS as a complete subexpression first
if (ThisPrec < NextTokPrec) {
// Only parse things on the RHS that bind more tightly than the current
// operator.
if (ParseExprBinaryRHS(Leaf, ThisPrec + 1))
return true;
NextTokOp = getBinOp(Tok, S);
NextTokPrec = NextTokOp ? NextTokOp->Attrs.InfixPrecedence : -1;
}
assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
// Okay, we've finished the parse, form the AST node for the binop now.
if (Result.isNonNull() && Leaf.isNonNull())
Result = S.expr.ActOnBinaryExpr(Result.get(), ThisTokOp, OpLoc,
Leaf.get());
}
return false;
}