Files
swift-mirror/lib/Serialization/Serialization.cpp
Alexis Laferrière 937e6c5241 Merge pull request #85446 from xymus/serial-xref-check
Serialization: Error on leaked cross-references to `@_implementationOnly` dependencies
2025-11-12 10:42:58 -08:00

7397 lines
281 KiB
C++

//===--- Serialization.cpp - Read and write Swift modules -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2025 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Serialization.h"
#include "ModuleFormat.h"
#include "SILFormat.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/AutoDiff.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Expr.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/ForeignAsyncConvention.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/IndexSubset.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/MacroDefinition.h"
#include "swift/AST/Module.h"
#include "swift/AST/PackConformance.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SILLayout.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/SynthesizedFileUnit.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeVisitor.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/FileSystem.h"
#include "swift/Basic/LLVMExtras.h"
#include "swift/Basic/PathRemapper.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/ClangImporter/SwiftAbstractBasicWriter.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/Serialization/Serialization.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Strings.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Serialization/ASTReader.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitcodeConvenience.h"
#include "llvm/Bitstream/BitstreamWriter.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Chrono.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#define DEBUG_TYPE "Serialization"
using namespace swift;
using namespace swift::serialization;
using namespace llvm::support;
using swift::version::Version;
using llvm::BCBlockRAII;
ASTContext &SerializerBase::getASTContext() const { return M->getASTContext(); }
/// Used for static_assert.
static constexpr bool declIDFitsIn32Bits() {
using Int32Info = std::numeric_limits<uint32_t>;
using PtrIntInfo = std::numeric_limits<uintptr_t>;
using DeclIDTraits = llvm::PointerLikeTypeTraits<DeclID>;
return PtrIntInfo::digits - DeclIDTraits::NumLowBitsAvailable <= Int32Info::digits;
}
/// Used for static_assert.
static constexpr bool bitOffsetFitsIn32Bits() {
// FIXME: Considering BitOffset is a _bit_ offset, and we're storing it in 31
// bits of a PointerEmbeddedInt, the maximum offset inside a modulefile we can
// handle happens at 2**28 _bytes_, which is only 268MB. Considering
// Swift.swiftmodule is itself 25MB, it seems entirely possible users will
// exceed this limit.
using Int32Info = std::numeric_limits<uint32_t>;
using PtrIntInfo = std::numeric_limits<uintptr_t>;
using BitOffsetTraits = llvm::PointerLikeTypeTraits<BitOffset>;
return PtrIntInfo::digits - BitOffsetTraits::NumLowBitsAvailable <= Int32Info::digits;
}
namespace {
/// Used to serialize the on-disk decl hash table.
class DeclTableInfo {
public:
using key_type = DeclBaseName;
using key_type_ref = key_type;
using data_type = Serializer::DeclTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
assert(!key.empty());
return llvm::djbHash(key.getIdentifier().str(),
SWIFTMODULE_HASH_SEED);
case DeclBaseName::Kind::Subscript:
return static_cast<uint8_t>(DeclNameKind::Subscript);
case DeclBaseName::Kind::Constructor:
return static_cast<uint8_t>(DeclNameKind::Constructor);
case DeclBaseName::Kind::Destructor:
return static_cast<uint8_t>(DeclNameKind::Destructor);
}
llvm_unreachable("unhandled kind");
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = sizeof(uint8_t); // For the flag of the name's kind
if (key.getKind() == DeclBaseName::Kind::Normal) {
keyLength += key.getIdentifier().str().size(); // The name's length
}
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = (sizeof(uint32_t) + 1) * data.size();
assert(dataLength == static_cast<uint16_t>(dataLength));
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
endian::Writer writer(out, llvm::endianness::little);
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Normal));
writer.OS << key.getIdentifier().str();
break;
case DeclBaseName::Kind::Subscript:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Subscript));
break;
case DeclBaseName::Kind::Constructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Constructor));
break;
case DeclBaseName::Kind::Destructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Destructor));
break;
}
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, llvm::endianness::little);
for (auto entry : data) {
writer.write<uint8_t>(entry.first);
writer.write<uint32_t>(entry.second);
}
}
};
class ExtensionTableInfo {
serialization::Serializer &Serializer;
llvm::SmallDenseMap<const NominalTypeDecl *,std::string,4> MangledNameCache;
public:
explicit ExtensionTableInfo(serialization::Serializer &serializer)
: Serializer(serializer) {}
using key_type = Identifier;
using key_type_ref = key_type;
using data_type = Serializer::ExtensionTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key.str(), SWIFTMODULE_HASH_SEED);
}
int32_t getNameDataForBase(const NominalTypeDecl *nominal,
StringRef *dataToWrite = nullptr) {
if (nominal->getDeclContext()->isModuleScopeContext())
return -Serializer.addContainingModuleRef(nominal->getDeclContext(),
/*ignoreExport=*/false);
auto &mangledName = MangledNameCache[nominal];
if (mangledName.empty())
mangledName = Mangle::ASTMangler(nominal->getASTContext()).mangleNominalType(nominal);
assert(llvm::isUInt<31>(mangledName.size()));
if (dataToWrite)
*dataToWrite = mangledName;
return mangledName.size();
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = (sizeof(uint32_t) * 2) * data.size();
for (auto dataPair : data) {
int32_t nameData = getNameDataForBase(dataPair.first);
if (nameData > 0)
dataLength += nameData;
}
assert(dataLength == static_cast<uint16_t>(dataLength));
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, llvm::endianness::little);
for (auto entry : data) {
StringRef dataToWrite;
writer.write<uint32_t>(entry.second);
writer.write<int32_t>(getNameDataForBase(entry.first, &dataToWrite));
out << dataToWrite;
}
}
};
class LocalDeclTableInfo {
public:
using key_type = std::string;
using key_type_ref = StringRef;
using data_type = DeclID;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key, SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.size();
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = sizeof(uint32_t);
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
// No need to write the data length; it's constant.
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint32_t>(data);
}
};
using LocalTypeHashTableGenerator =
llvm::OnDiskChainedHashTableGenerator<LocalDeclTableInfo>;
class NestedTypeDeclsTableInfo {
public:
using key_type = Identifier;
using key_type_ref = const key_type &;
using data_type = Serializer::NestedTypeDeclsData; // (parent, child) pairs
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key.str(), SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = (sizeof(uint32_t) * 2) * data.size();
assert(dataLength == static_cast<uint16_t>(dataLength));
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
// FIXME: Avoid writing string data for identifiers here.
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, llvm::endianness::little);
for (auto entry : data) {
writer.write<uint32_t>(entry.first);
writer.write<uint32_t>(entry.second);
}
}
};
class DeclMemberNamesTableInfo {
public:
using key_type = DeclBaseName;
using key_type_ref = const key_type &;
using data_type = BitOffset; // Offsets to sub-tables
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
assert(!key.empty());
return llvm::djbHash(key.getIdentifier().str(), SWIFTMODULE_HASH_SEED);
case DeclBaseName::Kind::Subscript:
return static_cast<uint8_t>(DeclNameKind::Subscript);
case DeclBaseName::Kind::Constructor:
return static_cast<uint8_t>(DeclNameKind::Constructor);
case DeclBaseName::Kind::Destructor:
return static_cast<uint8_t>(DeclNameKind::Destructor);
}
llvm_unreachable("unhandled kind");
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = sizeof(uint8_t); // For the flag of the name's kind
if (key.getKind() == DeclBaseName::Kind::Normal) {
keyLength += key.getIdentifier().str().size(); // The name's length
}
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = sizeof(uint32_t);
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
// No need to write dataLength, it's constant.
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
endian::Writer writer(out, llvm::endianness::little);
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Normal));
writer.OS << key.getIdentifier().str();
break;
case DeclBaseName::Kind::Subscript:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Subscript));
break;
case DeclBaseName::Kind::Constructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Constructor));
break;
case DeclBaseName::Kind::Destructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Destructor));
break;
}
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(bitOffsetFitsIn32Bits(), "BitOffset too large");
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint32_t>(static_cast<uint32_t>(data));
}
};
class DeclMembersTableInfo {
public:
using key_type = DeclID;
using key_type_ref = const key_type &;
using data_type = Serializer::DeclMembersData; // Vector of DeclIDs
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
return key;
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
// This will trap if a single ValueDecl has more than 16383 members
// with the same DeclBaseName. Seems highly unlikely.
assert((data.size() < (1 << 14)) && "Too many members");
uint32_t dataLength = sizeof(uint32_t) * data.size(); // value DeclIDs
endian::Writer writer(out, llvm::endianness::little);
// No need to write the key length; it's constant.
writer.write<uint16_t>(dataLength);
return { sizeof(uint32_t), dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
assert(len == sizeof(uint32_t));
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint32_t>(key);
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, llvm::endianness::little);
for (auto entry : data) {
writer.write<uint32_t>(entry);
}
}
};
// Side table information for serializing the table keyed under
// \c DeclFingerprintsLayout.
class DeclFingerprintsTableInfo {
public:
using key_type = DeclID;
using key_type_ref = const key_type &;
using data_type = Fingerprint;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
return key;
}
std::pair<unsigned, unsigned>
EmitKeyDataLength(raw_ostream &out, key_type_ref key, data_type_ref data) {
endian::Writer writer(out, llvm::endianness::little);
// No need to write the key or value length; they're both constant.
const unsigned valueLen = Fingerprint::DIGEST_LENGTH;
return {sizeof(uint32_t), valueLen};
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
assert(len == sizeof(uint32_t));
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint32_t>(key);
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
assert(len == Fingerprint::DIGEST_LENGTH);
endian::Writer writer(out, llvm::endianness::little);
out << data;
}
};
} // end anonymous namespace
static ModuleDecl *getModule(ModuleOrSourceFile DC) {
if (auto M = DC.dyn_cast<ModuleDecl *>())
return M;
return cast<SourceFile *>(DC)->getParentModule();
}
static bool shouldSerializeAsLocalContext(const DeclContext *DC) {
return DC->isLocalContext() && !isa<AbstractFunctionDecl>(DC) &&
!isa<SubscriptDecl>(DC) && !isa<EnumElementDecl>(DC) &&
!isa<MacroDecl>(DC);
}
namespace {
struct Accessors {
uint8_t OpaqueReadOwnership;
uint8_t ReadImpl, WriteImpl, ReadWriteImpl;
SmallVector<AccessorDecl *, 8> Decls;
};
} // end anonymous namespace
static uint8_t getRawOpaqueReadOwnership(swift::OpaqueReadOwnership ownership) {
switch (ownership) {
#define CASE(KIND) \
case swift::OpaqueReadOwnership::KIND: \
return uint8_t(serialization::OpaqueReadOwnership::KIND);
CASE(Owned)
CASE(Borrowed)
CASE(OwnedOrBorrowed)
#undef CASE
}
llvm_unreachable("bad kind");
}
static uint8_t getRawReadImplKind(swift::ReadImplKind kind) {
switch (kind) {
#define CASE(KIND) \
case swift::ReadImplKind::KIND: \
return uint8_t(serialization::ReadImplKind::KIND);
CASE(Stored)
CASE(Get)
CASE(Inherited)
CASE(Address)
CASE(Read)
CASE(Read2)
CASE(Borrow)
#undef CASE
}
llvm_unreachable("bad kind");
}
static unsigned getRawWriteImplKind(swift::WriteImplKind kind) {
switch (kind) {
#define CASE(KIND) \
case swift::WriteImplKind::KIND: \
return uint8_t(serialization::WriteImplKind::KIND);
CASE(Immutable)
CASE(Stored)
CASE(Set)
CASE(StoredWithObservers)
CASE(InheritedWithObservers)
CASE(MutableAddress)
CASE(Modify)
CASE(Modify2)
CASE(Mutate)
#undef CASE
}
llvm_unreachable("bad kind");
}
static unsigned getRawReadWriteImplKind(swift::ReadWriteImplKind kind) {
switch (kind) {
#define CASE(KIND) \
case swift::ReadWriteImplKind::KIND: \
return uint8_t(serialization::ReadWriteImplKind::KIND);
CASE(Immutable)
CASE(Stored)
CASE(MutableAddress)
CASE(MaterializeToTemporary)
CASE(Modify)
CASE(Modify2)
CASE(StoredWithDidSet)
CASE(InheritedWithDidSet)
CASE(Mutate)
#undef CASE
}
llvm_unreachable("bad kind");
}
static Accessors getAccessors(const AbstractStorageDecl *storage) {
Accessors accessors;
accessors.OpaqueReadOwnership =
getRawOpaqueReadOwnership(storage->getOpaqueReadOwnership());
auto impl = storage->getImplInfo();
accessors.ReadImpl = getRawReadImplKind(impl.getReadImpl());
accessors.WriteImpl = getRawWriteImplKind(impl.getWriteImpl());
accessors.ReadWriteImpl = getRawReadWriteImplKind(impl.getReadWriteImpl());
auto decls = storage->getAllAccessors();
accessors.Decls.append(decls.begin(), decls.end());
return accessors;
}
LocalDeclContextID Serializer::addLocalDeclContextRef(const DeclContext *DC) {
assert(DC->isLocalContext() && "Expected a local DeclContext");
return LocalDeclContextsToSerialize.addRef(DC);
}
GenericSignatureID
Serializer::addGenericSignatureRef(GenericSignature sig) {
if (!sig)
return 0;
return GenericSignaturesToSerialize.addRef(sig);
}
GenericEnvironmentID
Serializer::addGenericEnvironmentRef(GenericEnvironment *env) {
if (!env)
return 0;
return GenericEnvironmentsToSerialize.addRef(env);
}
SubstitutionMapID
Serializer::addSubstitutionMapRef(SubstitutionMap substitutions) {
return SubstitutionMapsToSerialize.addRef(substitutions);
}
DeclContextID Serializer::addDeclContextRef(const DeclContext *DC) {
assert(DC && "cannot reference a null DeclContext");
switch (DC->getContextKind()) {
case DeclContextKind::Package:
case DeclContextKind::Module:
case DeclContextKind::FileUnit: // Skip up to the module
return DeclContextID();
default:
break;
}
// If this decl context is a plain old serializable decl, queue it up for
// normal serialization.
if (shouldSerializeAsLocalContext(DC))
return DeclContextID::forLocalDeclContext(addLocalDeclContextRef(DC));
return DeclContextID::forDecl(addDeclRef(DC->getAsDecl()));
}
DeclID Serializer::addDeclRef(const Decl *D, bool allowTypeAliasXRef) {
assert((!D || !isDeclXRef(D) || isa<ValueDecl>(D) || isa<OperatorDecl>(D) ||
isa<PrecedenceGroupDecl>(D)) &&
"cannot cross-reference this decl");
assert((!D || allowTypeAliasXRef || !isa<TypeAliasDecl>(D) ||
D->getModuleContext() == M) &&
"cannot cross-reference typealiases directly (use the TypeAliasType)");
return DeclsToSerialize.addRef(D);
}
serialization::TypeID Serializer::addTypeRef(Type ty) {
Type typeToSerialize = ty;
if (ty) {
if (auto nominalDecl = ty->getAnyNominal()) {
if (auto structDecl = dyn_cast<StructDecl>(nominalDecl)) {
if (auto templateInstantiationType =
structDecl->getTemplateInstantiationType()) {
typeToSerialize = templateInstantiationType;
}
}
}
}
#ifndef NDEBUG
PrettyStackTraceType trace(M->getASTContext(), "serializing", typeToSerialize);
assert((allowCompilerErrors() || !typeToSerialize ||
!typeToSerialize->hasError()) &&
"serializing type with an error");
#endif
return TypesToSerialize.addRef(typeToSerialize);
}
serialization::ClangTypeID Serializer::addClangTypeRef(const clang::Type *ty) {
if (!ty) return 0;
// Try to serialize the non-canonical type, but fall back to the
// canonical type if necessary.
auto loader = getASTContext().getClangModuleLoader();
bool isSerializable;
if (loader->isSerializable(ty, false)) {
isSerializable = true;
} else if (!ty->isCanonicalUnqualified()) {
ty = ty->getCanonicalTypeInternal().getTypePtr();
isSerializable = loader->isSerializable(ty, false);
} else {
isSerializable = false;
}
if (!isSerializable) {
PrettyStackTraceClangType trace(loader->getClangASTContext(),
"staging a serialized reference to", ty);
llvm::report_fatal_error("Clang function type is not serializable");
}
return ClangTypesToSerialize.addRef(ty);
}
IdentifierID Serializer::addDeclBaseNameRef(DeclBaseName ident) {
switch (ident.getKind()) {
case DeclBaseName::Kind::Normal: {
if (ident.empty())
return 0;
IdentifierID &id = IdentifierIDs[ident.getIdentifier()];
if (id != 0)
return id;
id = ++LastUniquedStringID;
StringsToWrite.push_back(ident.getIdentifier().str());
return id;
}
case DeclBaseName::Kind::Subscript:
return SUBSCRIPT_ID;
case DeclBaseName::Kind::Constructor:
return CONSTRUCTOR_ID;
case DeclBaseName::Kind::Destructor:
return DESTRUCTOR_ID;
}
llvm_unreachable("unhandled kind");
}
std::pair<StringRef, IdentifierID> Serializer::addUniquedString(StringRef str) {
if (str.empty())
return {str, 0};
decltype(UniquedStringIDs)::iterator iter;
bool isNew;
std::tie(iter, isNew) =
UniquedStringIDs.insert({str, LastUniquedStringID + 1});
if (!isNew)
return {iter->getKey(), iter->getValue()};
++LastUniquedStringID;
// Note that we use the string data stored in the StringMap.
StringsToWrite.push_back(iter->getKey());
return {iter->getKey(), LastUniquedStringID};
}
IdentifierID Serializer::addFilename(StringRef filename) {
assert(!filename.empty() && "Attempting to add an empty filename");
return addUniquedString(filename).second;
}
IdentifierID Serializer::addContainingModuleRef(const DeclContext *DC,
bool ignoreExport) {
assert(!isa<ModuleDecl>(DC) &&
"References should be to things within modules");
const FileUnit *file = cast<FileUnit>(DC->getModuleScopeContext());
const ModuleDecl *M = file->getParentModule();
if (M == this->M)
return CURRENT_MODULE_ID;
if (M == this->M->getASTContext().TheBuiltinModule)
return BUILTIN_MODULE_ID;
if (M->isClangHeaderImportModule())
return OBJC_HEADER_MODULE_ID;
// Reject references to hidden dependencies.
if (getASTContext().LangOpts.hasFeature(
Feature::CheckImplementationOnlyStrict) &&
!allowCompilerErrors() &&
this->M->isImportedImplementationOnly(M, /*assumeImported=*/false)) {
getASTContext().Diags.diagnose(SourceLoc(),
diag::serialization_xref_to_hidden_dependency,
M, crossReferencedDecl);
}
auto exportedModuleName = file->getExportedModuleName();
assert(!exportedModuleName.empty());
auto moduleID = M->getASTContext().getIdentifier(exportedModuleName);
if (ignoreExport) {
auto realModuleName = M->getRealName().str();
assert(!realModuleName.empty());
if (realModuleName != exportedModuleName) {
// Still register the exported name as it can be referenced
// from the lookup tables.
addDeclBaseNameRef(moduleID);
moduleID = M->getASTContext().getIdentifier(realModuleName);
}
}
return addDeclBaseNameRef(moduleID);
}
IdentifierID Serializer::addModuleRef(const ModuleDecl *module) {
if (module == this->M)
return CURRENT_MODULE_ID;
if (module == this->M->getASTContext().TheBuiltinModule)
return BUILTIN_MODULE_ID;
// Use module 'real name', which can be different from 'name'
// in case module aliasing was used (-module-alias flag)
auto moduleName =
module->getASTContext().getIdentifier(module->getRealName().str());
return addDeclBaseNameRef(moduleName);
}
SILLayoutID Serializer::addSILLayoutRef(const SILLayout *layout) {
return SILLayoutsToSerialize.addRef(layout);
}
/// Record the name of a block.
void SerializerBase::emitBlockID(unsigned ID, StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer) {
SmallVector<unsigned, 1> idBuffer;
idBuffer.push_back(ID);
Out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, idBuffer);
// Emit the block name if present.
if (name.empty())
return;
nameBuffer.resize(name.size());
memcpy(nameBuffer.data(), name.data(), name.size());
Out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, nameBuffer);
}
void SerializerBase::emitRecordID(unsigned ID, StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer,
SmallVectorImpl<unsigned> *wideNameBuffer) {
// Use the byte-based buffer if the ID is in range.
if (ID < 256) {
nameBuffer.resize(name.size()+1);
nameBuffer[0] = ID;
memcpy(nameBuffer.data()+1, name.data(), name.size());
Out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, nameBuffer);
// Otherwise, we have to use the wide name buffer.
} else {
assert(wideNameBuffer && "too many IDs to use narrow name buffer");
auto &buffer = *wideNameBuffer;
buffer.resize(name.size()+1);
buffer[0] = ID;
for (unsigned i = 0, e = name.size(); i != e; ++i)
buffer[i+1] = name[i];
Out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, buffer);
}
}
void Serializer::writeBlockInfoBlock() {
BCBlockRAII restoreBlock(Out, llvm::bitc::BLOCKINFO_BLOCK_ID, 2);
SmallVector<unsigned char, 64> nameBuffer;
SmallVector<unsigned, 32> wideNameBuffer;
#define BLOCK(X) emitBlockID(X ## _ID, #X, nameBuffer)
#define BLOCK_RECORD(K, X) emitRecordID(K::X, #X, nameBuffer, &wideNameBuffer)
BLOCK(MODULE_BLOCK);
BLOCK(CONTROL_BLOCK);
BLOCK_RECORD(control_block, METADATA);
BLOCK_RECORD(control_block, MODULE_NAME);
BLOCK_RECORD(control_block, TARGET);
BLOCK_RECORD(control_block, SDK_NAME);
BLOCK_RECORD(control_block, REVISION);
BLOCK_RECORD(control_block, ALLOWABLE_CLIENT_NAME);
BLOCK_RECORD(control_block, CHANNEL);
BLOCK_RECORD(control_block, SDK_VERSION);
BLOCK(OPTIONS_BLOCK);
BLOCK_RECORD(options_block, SDK_PATH);
BLOCK_RECORD(options_block, XCC);
BLOCK_RECORD(options_block, IS_SIB);
BLOCK_RECORD(options_block, IS_STATIC_LIBRARY);
BLOCK_RECORD(options_block, HAS_HERMETIC_SEAL_AT_LINK);
BLOCK_RECORD(options_block, IS_EMBEDDED_SWIFT_MODULE);
BLOCK_RECORD(options_block, IS_TESTABLE);
BLOCK_RECORD(options_block, RESILIENCE_STRATEGY);
BLOCK_RECORD(options_block, ARE_PRIVATE_IMPORTS_ENABLED);
BLOCK_RECORD(options_block, IS_IMPLICIT_DYNAMIC_ENABLED);
BLOCK_RECORD(options_block, IS_BUILT_FROM_INTERFACE);
BLOCK_RECORD(options_block, IS_ALLOW_MODULE_WITH_COMPILER_ERRORS_ENABLED);
BLOCK_RECORD(options_block, MODULE_ABI_NAME);
BLOCK_RECORD(options_block, IS_CONCURRENCY_CHECKED);
BLOCK_RECORD(options_block, MODULE_PACKAGE_NAME);
BLOCK_RECORD(options_block, MODULE_EXPORT_AS_NAME);
BLOCK_RECORD(options_block, PLUGIN_SEARCH_OPTION);
BLOCK_RECORD(options_block, HAS_CXX_INTEROPERABILITY_ENABLED);
BLOCK_RECORD(options_block, ALLOW_NON_RESILIENT_ACCESS);
BLOCK_RECORD(options_block, SERIALIZE_PACKAGE_ENABLED);
BLOCK_RECORD(options_block, STRICT_MEMORY_SAFETY);
BLOCK_RECORD(options_block, DEFERRED_CODE_GEN);
BLOCK_RECORD(options_block, CXX_STDLIB_KIND);
BLOCK_RECORD(options_block, PUBLIC_MODULE_NAME);
BLOCK_RECORD(options_block, SWIFT_INTERFACE_COMPILER_VERSION);
BLOCK(INPUT_BLOCK);
BLOCK_RECORD(input_block, IMPORTED_MODULE);
BLOCK_RECORD(input_block, LINK_LIBRARY);
BLOCK_RECORD(input_block, IMPORTED_HEADER);
BLOCK_RECORD(input_block, IMPORTED_HEADER_CONTENTS);
BLOCK_RECORD(input_block, MODULE_FLAGS);
BLOCK_RECORD(input_block, SEARCH_PATH);
BLOCK_RECORD(input_block, FILE_DEPENDENCY);
BLOCK_RECORD(input_block, DEPENDENCY_DIRECTORY);
BLOCK_RECORD(input_block, MODULE_INTERFACE_PATH);
BLOCK_RECORD(input_block, IMPORTED_MODULE_SPIS);
BLOCK_RECORD(input_block, IMPORTED_MODULE_PATH);
BLOCK_RECORD(input_block, EXTERNAL_MACRO);
BLOCK(DECLS_AND_TYPES_BLOCK);
#define RECORD(X) BLOCK_RECORD(decls_block, X);
#include "DeclTypeRecordNodes.def"
BLOCK(IDENTIFIER_DATA_BLOCK);
BLOCK_RECORD(identifier_block, IDENTIFIER_DATA);
BLOCK(INDEX_BLOCK);
BLOCK_RECORD(index_block, TYPE_OFFSETS);
BLOCK_RECORD(index_block, DECL_OFFSETS);
BLOCK_RECORD(index_block, IDENTIFIER_OFFSETS);
BLOCK_RECORD(index_block, TOP_LEVEL_DECLS);
BLOCK_RECORD(index_block, OPERATORS);
BLOCK_RECORD(index_block, EXTENSIONS);
BLOCK_RECORD(index_block, CLASS_MEMBERS_FOR_DYNAMIC_LOOKUP);
BLOCK_RECORD(index_block, OPERATOR_METHODS);
BLOCK_RECORD(index_block, OBJC_METHODS);
BLOCK_RECORD(index_block, DERIVATIVE_FUNCTION_CONFIGURATIONS);
BLOCK_RECORD(index_block, ENTRY_POINT);
BLOCK_RECORD(index_block, LOCAL_DECL_CONTEXT_OFFSETS);
BLOCK_RECORD(index_block, GENERIC_SIGNATURE_OFFSETS);
BLOCK_RECORD(index_block, GENERIC_ENVIRONMENT_OFFSETS);
BLOCK_RECORD(index_block, SUBSTITUTION_MAP_OFFSETS);
BLOCK_RECORD(index_block, CLANG_TYPE_OFFSETS);
BLOCK_RECORD(index_block, LOCAL_TYPE_DECLS);
BLOCK_RECORD(index_block, OPAQUE_RETURN_TYPE_DECLS);
BLOCK_RECORD(index_block, ABSTRACT_CONFORMANCE_OFFSETS);
BLOCK_RECORD(index_block, PROTOCOL_CONFORMANCE_OFFSETS);
BLOCK_RECORD(index_block, PACK_CONFORMANCE_OFFSETS);
BLOCK_RECORD(index_block, SIL_LAYOUT_OFFSETS);
BLOCK_RECORD(index_block, PRECEDENCE_GROUPS);
BLOCK_RECORD(index_block, NESTED_TYPE_DECLS);
BLOCK_RECORD(index_block, DECL_MEMBER_NAMES);
BLOCK_RECORD(index_block, DECL_FINGERPRINTS);
BLOCK_RECORD(index_block, ORDERED_TOP_LEVEL_DECLS);
BLOCK_RECORD(index_block, EXPORTED_PRESPECIALIZATION_DECLS);
BLOCK(DECL_MEMBER_TABLES_BLOCK);
BLOCK_RECORD(decl_member_tables_block, DECL_MEMBERS);
BLOCK(SIL_BLOCK);
BLOCK_RECORD(sil_block, SIL_FUNCTION);
BLOCK_RECORD(sil_block, SIL_BASIC_BLOCK);
BLOCK_RECORD(sil_block, SIL_ONE_VALUE_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE);
BLOCK_RECORD(sil_block, SIL_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_VALUES);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_OWNERSHIP_VALUES);
BLOCK_RECORD(sil_block, SIL_TWO_OPERANDS);
BLOCK_RECORD(sil_block, SIL_TAIL_ADDR);
BLOCK_RECORD(sil_block, SIL_INST_APPLY);
BLOCK_RECORD(sil_block, SIL_INST_NO_OPERAND);
BLOCK_RECORD(sil_block, SIL_VTABLE);
BLOCK_RECORD(sil_block, SIL_VTABLE_ENTRY);
BLOCK_RECORD(sil_block, SIL_GLOBALVAR);
BLOCK_RECORD(sil_block, SIL_INIT_EXISTENTIAL);
BLOCK_RECORD(sil_block, SIL_WITNESS_TABLE);
BLOCK_RECORD(sil_block, SIL_WITNESS_METHOD_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_BASE_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_ASSOC_PROTOCOL);
BLOCK_RECORD(sil_block, SIL_WITNESS_ASSOC_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_CONDITIONAL_CONFORMANCE);
BLOCK_RECORD(sil_block, SIL_DEFAULT_WITNESS_TABLE);
BLOCK_RECORD(sil_block, SIL_DEFAULT_WITNESS_TABLE_NO_ENTRY);
BLOCK_RECORD(sil_block, SIL_DEFAULT_OVERRIDE_TABLE);
BLOCK_RECORD(sil_block, SIL_INST_WITNESS_METHOD);
BLOCK_RECORD(sil_block, SIL_SPECIALIZE_ATTR);
BLOCK_RECORD(sil_block, SIL_ARG_EFFECTS_ATTR);
BLOCK_RECORD(sil_block, SIL_ONE_OPERAND_EXTRA_ATTR);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_ONE_OPERAND_EXTRA_ATTR);
BLOCK_RECORD(sil_block, SIL_TWO_OPERANDS_EXTRA_ATTR);
BLOCK_RECORD(sil_block, SIL_INST_DIFFERENTIABLE_FUNCTION);
BLOCK_RECORD(sil_block, SIL_INST_LINEAR_FUNCTION);
BLOCK_RECORD(sil_block, SIL_INST_DIFFERENTIABLE_FUNCTION_EXTRACT);
BLOCK_RECORD(sil_block, SIL_INST_LINEAR_FUNCTION_EXTRACT);
BLOCK_RECORD(sil_block, SIL_INST_INCREMENT_PROFILER_COUNTER);
BLOCK_RECORD(sil_block, SIL_MOVEONLY_DEINIT);
BLOCK_RECORD(sil_block, SIL_INST_HAS_SYMBOL);
BLOCK_RECORD(sil_block, SIL_OPEN_PACK_ELEMENT);
BLOCK_RECORD(sil_block, SIL_PACK_ELEMENT_GET);
BLOCK_RECORD(sil_block, SIL_PACK_ELEMENT_SET);
BLOCK_RECORD(sil_block, SIL_TYPE_VALUE);
BLOCK_RECORD(sil_block, SIL_DEBUG_SCOPE);
BLOCK_RECORD(sil_block, SIL_DEBUG_SCOPE_REF);
BLOCK_RECORD(sil_block, SIL_SOURCE_LOC);
BLOCK_RECORD(sil_block, SIL_SOURCE_LOC_REF);
BLOCK_RECORD(sil_block, SIL_DEBUG_VALUE);
BLOCK_RECORD(sil_block, SIL_DEBUG_VALUE_DELIMITER);
BLOCK_RECORD(sil_block, SIL_EXTRA_STRING);
BLOCK(SIL_INDEX_BLOCK);
BLOCK_RECORD(sil_index_block, SIL_FUNC_NAMES);
BLOCK_RECORD(sil_index_block, SIL_FUNC_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_VTABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_VTABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_MOVEONLYDEINIT_NAMES);
BLOCK_RECORD(sil_index_block, SIL_MOVEONLYDEINIT_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_GLOBALVAR_NAMES);
BLOCK_RECORD(sil_index_block, SIL_GLOBALVAR_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_WITNESS_TABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_WITNESS_TABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_WITNESS_TABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_WITNESS_TABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_PROPERTY_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_DIFFERENTIABILITY_WITNESS_NAMES);
BLOCK_RECORD(sil_index_block, SIL_DIFFERENTIABILITY_WITNESS_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_OVERRIDE_TABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_OVERRIDE_TABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_ASM_NAMES);
BLOCK(INCREMENTAL_INFORMATION_BLOCK);
BLOCK_RECORD(fine_grained_dependencies::record_block, METADATA);
BLOCK_RECORD(fine_grained_dependencies::record_block, SOURCE_FILE_DEP_GRAPH_NODE);
BLOCK_RECORD(fine_grained_dependencies::record_block, FINGERPRINT_NODE);
BLOCK_RECORD(fine_grained_dependencies::record_block, DEPENDS_ON_DEFINITION_NODE);
BLOCK_RECORD(fine_grained_dependencies::record_block, IDENTIFIER_NODE);
#undef BLOCK
#undef BLOCK_RECORD
}
void Serializer::writeHeader() {
{
BCBlockRAII restoreBlock(Out, CONTROL_BLOCK_ID, 4);
control_block::ModuleNameLayout ModuleName(Out);
control_block::MetadataLayout Metadata(Out);
control_block::TargetLayout Target(Out);
control_block::SDKNameLayout SDKName(Out);
control_block::SDKVersionLayout SDKVersion(Out);
control_block::RevisionLayout Revision(Out);
control_block::ChannelLayout Channel(Out);
control_block::AllowableClientLayout Allowable(Out);
// Write module 'real name', which can be different from 'name'
// in case module aliasing is used (-module-alias flag)
ModuleName.emit(ScratchRecord, M->getRealName().str());
SmallString<32> versionStringBuf;
llvm::raw_svector_ostream versionString(versionStringBuf);
versionString << Version::getCurrentLanguageVersion();
size_t shortVersionStringLength = versionString.tell();
versionString << '('
<< M->getASTContext().LangOpts.EffectiveLanguageVersion;
size_t compatibilityVersionStringLength =
versionString.tell() - shortVersionStringLength - 1;
versionString << ")/" << version::getSwiftFullVersion();
auto userModuleMajor = Options.UserModuleVersion.getMajor();
auto userModuleMinor = 0;
if (auto minor = Options.UserModuleVersion.getMinor()) {
userModuleMinor = *minor;
}
auto userModuleSubminor = 0;
if (auto subMinor = Options.UserModuleVersion.getSubminor()) {
userModuleSubminor = *subMinor;
}
auto userModuleBuild = 0;
if (auto build = Options.UserModuleVersion.getBuild()) {
userModuleBuild = *build;
}
Metadata.emit(ScratchRecord,
SWIFTMODULE_VERSION_MAJOR, SWIFTMODULE_VERSION_MINOR,
shortVersionStringLength,
compatibilityVersionStringLength,
userModuleMajor, userModuleMinor,
userModuleSubminor, userModuleBuild,
versionString.str());
if (!Options.SDKName.empty())
SDKName.emit(ScratchRecord, Options.SDKName);
if (!Options.SDKVersion.empty())
SDKVersion.emit(ScratchRecord, Options.SDKVersion);
for (auto &name : Options.AllowableClients) {
Allowable.emit(ScratchRecord, name);
}
Target.emit(ScratchRecord, M->getASTContext().LangOpts.Target.str());
// Write the producer's Swift revision.
static const char* forcedDebugRevision =
::getenv("SWIFT_DEBUG_FORCE_SWIFTMODULE_REVISION");
auto revision = forcedDebugRevision ?
forcedDebugRevision : version::getCurrentCompilerSerializationTag();
Revision.emit(ScratchRecord, revision);
Channel.emit(ScratchRecord, version::getCurrentCompilerChannel());
{
llvm::BCBlockRAII restoreBlock(Out, OPTIONS_BLOCK_ID, 4);
options_block::IsSIBLayout IsSIB(Out);
IsSIB.emit(ScratchRecord, Options.IsSIB);
if (Options.StaticLibrary) {
options_block::IsStaticLibraryLayout IsStaticLibrary(Out);
IsStaticLibrary.emit(ScratchRecord);
}
if (Options.HermeticSealAtLink) {
options_block::HasHermeticSealAtLinkLayout HasHermeticSealAtLink(Out);
HasHermeticSealAtLink.emit(ScratchRecord);
}
if (Options.EmbeddedSwiftModule) {
options_block::IsEmbeddedSwiftModuleLayout IsEmbeddedSwiftModule(Out);
IsEmbeddedSwiftModule.emit(ScratchRecord);
}
if (M->isTestingEnabled()) {
options_block::IsTestableLayout IsTestable(Out);
IsTestable.emit(ScratchRecord);
}
if (M->arePrivateImportsEnabled()) {
options_block::ArePrivateImportsEnabledLayout PrivateImports(Out);
PrivateImports.emit(ScratchRecord);
}
if (M->isImplicitDynamicEnabled()) {
options_block::IsImplicitDynamicEnabledLayout ImplicitDynamic(Out);
ImplicitDynamic.emit(ScratchRecord);
}
if (M->getResilienceStrategy() != ResilienceStrategy::Default) {
options_block::ResilienceStrategyLayout Strategy(Out);
Strategy.emit(ScratchRecord, unsigned(M->getResilienceStrategy()));
}
if (M->isBuiltFromInterface()) {
options_block::IsBuiltFromInterfaceLayout BuiltFromInterface(Out);
BuiltFromInterface.emit(ScratchRecord);
}
if (M->allowNonResilientAccess()) {
options_block::AllowNonResilientAccess AllowNonResAcess(Out);
AllowNonResAcess.emit(ScratchRecord);
}
if (M->serializePackageEnabled()) {
options_block::SerializePackageEnabled SerializePkgEnabled(Out);
SerializePkgEnabled.emit(ScratchRecord);
}
if (allowCompilerErrors()) {
options_block::IsAllowModuleWithCompilerErrorsEnabledLayout
AllowErrors(Out);
AllowErrors.emit(ScratchRecord);
}
if (M->getABIName() != M->getName()) {
options_block::ModuleABINameLayout ABIName(Out);
ABIName.emit(ScratchRecord, M->getABIName().str());
}
if (!M->getPackageName().empty()) {
options_block::ModulePackageNameLayout PackageName(Out);
PackageName.emit(ScratchRecord, M->getPackageName().str());
}
if (!M->getExportAsName().empty()) {
options_block::ModuleExportAsNameLayout ExportAs(Out);
ExportAs.emit(ScratchRecord, M->getExportAsName().str());
}
Identifier publicModuleName =
M->getPublicModuleName(/*onlyIfImported=*/false);
if (publicModuleName != M->getName()) {
options_block::PublicModuleNameLayout PublicModuleName(Out);
PublicModuleName.emit(ScratchRecord, publicModuleName.str());
}
version::Version compilerVersion = M->getSwiftInterfaceCompilerVersion();
if (!compilerVersion.empty()) {
options_block::SwiftInterfaceCompilerVersionLayout Version(Out);
SmallString<32> versionBuf;
llvm::raw_svector_ostream OS(versionBuf);
OS << compilerVersion;
Version.emit(ScratchRecord, OS.str());
}
if (M->isConcurrencyChecked()) {
options_block::IsConcurrencyCheckedLayout IsConcurrencyChecked(Out);
IsConcurrencyChecked.emit(ScratchRecord);
}
if (M->strictMemorySafety()) {
options_block::StrictMemorySafetyLayout StrictMemorySafety(Out);
StrictMemorySafety.emit(ScratchRecord);
}
if (M->deferredCodeGen()) {
options_block::DeferredCodeGenLayout DeferredCodeGen(Out);
DeferredCodeGen.emit(ScratchRecord);
}
if (M->hasCxxInteroperability()) {
options_block::HasCxxInteroperabilityEnabledLayout
CxxInteroperabilityEnabled(Out);
CxxInteroperabilityEnabled.emit(ScratchRecord);
options_block::CXXStdlibKindLayout CXXStdlibKind(Out);
CXXStdlibKind.emit(ScratchRecord,
static_cast<uint8_t>(M->getCXXStdlibKind()));
}
if (Options.SerializeOptionsForDebugging) {
options_block::SDKPathLayout SDKPath(Out);
options_block::XCCLayout XCC(Out);
const auto &PathRemapper = Options.DebuggingOptionsPrefixMap;
const auto &PathObfuscator = Options.PathObfuscator;
auto remapPath = [&PathRemapper, &PathObfuscator](StringRef Path) {
return PathObfuscator.obfuscate(PathRemapper.remapPath(Path));
};
auto sdkPath = M->getASTContext().SearchPathOpts.getSDKPath();
SDKPath.emit(ScratchRecord, remapPath(sdkPath));
auto &Opts = Options.ExtraClangOptions;
for (auto Arg = Opts.begin(), E = Opts.end(); Arg != E; ++Arg) {
StringRef arg(*Arg);
if (!Options.ExplicitModuleBuild && arg.starts_with("-ivfsoverlay")) {
// FIXME: This is a hack and calls for a better design.
//
// Filter out any -ivfsoverlay options that include an
// unextended-module-overlay.yaml overlay. By convention the Xcode
// buildsystem uses these while *building* mixed Objective-C and
// Swift frameworks; but they should never be used to *import* the
// module defined in the framework.
//
// This is not done for explicit modules builds. In an explicit
// build LLDB needs to be able import the unmodified .pcms, so
// having the exact same flags matters there, and there is no risk
// of a recompilation failure, because nothing is recompiled.
auto Next = std::next(Arg);
if (Next != E &&
StringRef(*Next).ends_with("unextended-module-overlay.yaml")) {
++Arg;
continue;
}
} else if (arg.starts_with("-fdebug-prefix-map=") ||
arg.starts_with("-ffile-prefix-map=") ||
arg.starts_with("-fcoverage-prefix-map=") ||
arg.starts_with("-fmacro-prefix-map=")) {
// We don't serialize any of the prefix map flags as these flags
// contain absolute paths that are not usable on different
// machines. These flags are not necessary to compile the
// clang modules again so are safe to remove.
continue;
}
XCC.emit(ScratchRecord, arg);
}
// Macro plugins
options_block::PluginSearchOptionLayout PluginSearchOpt(Out);
for (auto &elem : Options.PluginSearchOptions) {
switch (elem.getKind()) {
case PluginSearchOption::Kind::PluginPath: {
auto &opt = elem.get<PluginSearchOption::PluginPath>();
PluginSearchOpt.emit(ScratchRecord,
uint8_t(PluginSearchOptionKind::PluginPath),
remapPath(opt.SearchPath));
continue;
}
case PluginSearchOption::Kind::ExternalPluginPath: {
auto &opt = elem.get<PluginSearchOption::ExternalPluginPath>();
PluginSearchOpt.emit(
ScratchRecord,
uint8_t(PluginSearchOptionKind::ExternalPluginPath),
remapPath(opt.SearchPath) + "#" + remapPath(opt.ServerPath));
continue;
}
case PluginSearchOption::Kind::LoadPluginLibrary: {
auto &opt = elem.get<PluginSearchOption::LoadPluginLibrary>();
PluginSearchOpt.emit(
ScratchRecord,
uint8_t(PluginSearchOptionKind::LoadPluginLibrary),
remapPath(opt.LibraryPath));
continue;
}
case PluginSearchOption::Kind::LoadPluginExecutable: {
auto &opt = elem.get<PluginSearchOption::LoadPluginExecutable>();
std::string optStr = remapPath(opt.ExecutablePath) + "#";
llvm::interleave(
opt.ModuleNames, [&](auto &name) { optStr += name; },
[&]() { optStr += ","; });
PluginSearchOpt.emit(
ScratchRecord,
uint8_t(PluginSearchOptionKind::LoadPluginExecutable), optStr);
continue;
}
case PluginSearchOption::Kind::ResolvedPluginConfig: {
auto &opt = elem.get<PluginSearchOption::ResolvedPluginConfig>();
std::string optStr = remapPath(opt.LibraryPath) + "#" +
remapPath(opt.ExecutablePath) + "#";
llvm::interleave(
opt.ModuleNames, [&](auto &name) { optStr += name; },
[&]() { optStr += ","; });
PluginSearchOpt.emit(
ScratchRecord,
uint8_t(PluginSearchOptionKind::ResolvedPluginConfig), optStr);
continue;
}
}
}
}
}
}
}
static void flattenImportPath(const ImportedModule &import,
SmallVectorImpl<char> &out) {
llvm::raw_svector_ostream outStream(out);
// This will write the module 'real name', which can be different
// from the 'name' in case module aliasing was used (see `-module-alias`)
import.importedModule->getReverseFullModuleName().printForward(
outStream, StringRef("\0", 1));
if (import.accessPath.empty())
return;
outStream << '\0';
assert(import.accessPath.size() == 1 &&
"can only handle top-level decl imports");
auto accessPathElem = import.accessPath.front();
outStream << accessPathElem.Item.str();
}
uint64_t getRawModTimeOrHash(const SerializationOptions::FileDependency &dep) {
if (dep.isHashBased()) return dep.getContentHash();
return dep.getModificationTime();
}
using ImportSet = llvm::SmallSet<ImportedModule, 8, ImportedModule::Order>;
static ImportSet getImportsAsSet(const ModuleDecl *M,
ModuleDecl::ImportFilter filter) {
SmallVector<ImportedModule, 8> imports;
M->getImportedModules(imports, filter);
ImportSet importSet;
importSet.insert(imports.begin(), imports.end());
return importSet;
}
void Serializer::writeInputBlock() {
BCBlockRAII restoreBlock(Out, INPUT_BLOCK_ID, 4);
input_block::ImportedModuleLayout importedModule(Out);
input_block::ImportedModuleSPILayout ImportedModuleSPI(Out);
input_block::ImportedModulePathLayout ImportedModulePath(Out);
input_block::LinkLibraryLayout LinkLibrary(Out);
input_block::ImportedHeaderLayout ImportedHeader(Out);
input_block::ImportedHeaderContentsLayout ImportedHeaderContents(Out);
input_block::SearchPathLayout SearchPath(Out);
input_block::FileDependencyLayout FileDependency(Out);
input_block::DependencyDirectoryLayout DependencyDirectory(Out);
input_block::ModuleInterfaceLayout ModuleInterface(Out);
input_block::ExternalMacroLayout ExternMacro(Out);
if (Options.SerializeOptionsForDebugging) {
const auto &PathObfuscator = Options.PathObfuscator;
const auto &PathMapper = Options.DebuggingOptionsPrefixMap;
const SearchPathOptions &searchPathOpts = M->getASTContext().SearchPathOpts;
// Put the framework search paths first so that they'll be preferred upon
// deserialization.
for (const auto &framepath : searchPathOpts.getFrameworkSearchPaths())
SearchPath.emit(ScratchRecord, /*framework=*/true, framepath.IsSystem,
PathObfuscator.obfuscate(PathMapper.remapPath(framepath.Path)));
for (const auto &path : searchPathOpts.getImportSearchPaths())
SearchPath.emit(ScratchRecord, /*framework=*/false, path.IsSystem,
PathObfuscator.obfuscate(PathMapper.remapPath(path.Path)));
}
// Note: We're not using StringMap here because we don't need to own the
// strings.
llvm::DenseMap<StringRef, unsigned> dependencyDirectories;
for (auto const &dep : Options.Dependencies) {
StringRef directoryName = llvm::sys::path::parent_path(dep.getPath());
unsigned &dependencyDirectoryIndex = dependencyDirectories[directoryName];
if (!dependencyDirectoryIndex) {
// This name must be newly-added. Give it a new ID (and skip 0).
dependencyDirectoryIndex = dependencyDirectories.size();
DependencyDirectory.emit(ScratchRecord, directoryName);
}
FileDependency.emit(ScratchRecord,
dep.getSize(),
getRawModTimeOrHash(dep),
dep.isHashBased(),
dep.isSDKRelative(),
dependencyDirectoryIndex,
llvm::sys::path::filename(dep.getPath()));
}
if (!Options.ModuleInterface.empty())
ModuleInterface.emit(ScratchRecord, Options.IsInterfaceSDKRelative,
Options.ModuleInterface);
SmallVector<ExternalMacroPlugin> macros;
M->getExternalMacros(macros);
// Unique the macro modules discovered and pick the most public access.
std::map<std::string, ExternalMacroPlugin::Access> uniqueMacros;
for (auto &plugin : macros) {
// Ignore internal macros when serializing since they are not visibile for
// clients.
if (plugin.MacroAccess <= ExternalMacroPlugin::Access::Internal)
continue;
auto entry =
uniqueMacros.try_emplace(plugin.ModuleName, plugin.MacroAccess);
if (entry.second)
continue;
if (plugin.MacroAccess > entry.first->second)
entry.first->second = plugin.MacroAccess;
}
for (auto &plugin : uniqueMacros) {
// Use the AccessLevel enums to encode the macro access but only some
// values are used for macro access.
serialization::AccessLevel stableAccessControl;
if (plugin.second == ExternalMacroPlugin::Access::Public)
stableAccessControl = serialization::AccessLevel::Public;
else if (plugin.second == ExternalMacroPlugin::Access::Package)
stableAccessControl = serialization::AccessLevel::Package;
else if (plugin.second == ExternalMacroPlugin::Access::Internal)
stableAccessControl = serialization::AccessLevel::Internal;
else
llvm_unreachable("unknown enum value");
ExternMacro.emit(ScratchRecord, static_cast<uint8_t>(stableAccessControl),
plugin.first);
}
SmallVector<ImportedModule, 8> allLocalImports;
M->getImportedModules(allLocalImports, ModuleDecl::getImportFilterLocal());
ImportedModule::removeDuplicates(allLocalImports);
// Collect the public and private imports as a subset so that we can
// distinguish them.
ImportSet publicImportSet =
getImportsAsSet(M, ModuleDecl::ImportFilterKind::Exported);
ImportSet defaultImportSet =
getImportsAsSet(M, {ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::SPIOnly});
ImportSet packageOnlyImportSet =
getImportsAsSet(M, ModuleDecl::ImportFilterKind::PackageOnly);
ImportSet internalOrBelowImportSet =
getImportsAsSet(M, ModuleDecl::ImportFilterKind::InternalOrBelow);
auto clangImporter =
static_cast<ClangImporter *>(M->getASTContext().getClangModuleLoader());
ModuleDecl *bridgingHeaderModule = clangImporter->getImportedHeaderModule();
ImportedModule bridgingHeaderImport{ImportPath::Access(),
bridgingHeaderModule};
// Make sure the bridging header module is always at the top of the import
// list, mimicking how it is processed before any module imports when
// compiling source files.
if (llvm::is_contained(allLocalImports, bridgingHeaderImport) &&
Options.SerializeBridgingHeader) {
off_t importedHeaderSize = 0;
time_t importedHeaderModTime = 0;
std::string contents;
std::string importedHeaderPath;
if (!Options.SerializeEmptyBridgingHeader) {
importedHeaderPath = Options.ImportedHeader;
std::string pchIncludeTree;
// We do not want to serialize the explicitly-specified .pch path if one
// was provided. Instead we write out the path to the original header
// source so that clients can consume it.
if (!Options.ImportedPCHPath.empty()) {
auto *pch = clangImporter->getClangInstance()
.getASTReader()
->getModuleManager()
.lookupByFileName(Options.ImportedPCHPath);
if (importedHeaderPath.empty())
importedHeaderPath = pch->OriginalSourceFileName;
pchIncludeTree = pch->IncludeTreeID;
}
if (!importedHeaderPath.empty()) {
contents = clangImporter->getBridgingHeaderContents(
importedHeaderPath, importedHeaderSize, importedHeaderModTime,
pchIncludeTree);
}
}
assert(publicImportSet.count(bridgingHeaderImport));
ImportedHeader.emit(ScratchRecord,
publicImportSet.count(bridgingHeaderImport),
importedHeaderSize, importedHeaderModTime,
importedHeaderPath);
if (!contents.empty()) {
contents.push_back('\0');
ImportedHeaderContents.emit(ScratchRecord, contents);
}
}
ModuleDecl *theBuiltinModule = M->getASTContext().TheBuiltinModule;
for (auto import : allLocalImports) {
if (import.importedModule == theBuiltinModule ||
import.importedModule == bridgingHeaderModule) {
continue;
}
SmallString<64> importPath;
flattenImportPath(import, importPath);
serialization::ImportControl stableImportControl;
// The order of checks here is important, since a module can be imported
// differently in different files, and we need to record the "most visible"
// form here.
if (publicImportSet.count(import))
stableImportControl = ImportControl::Exported;
else if (defaultImportSet.count(import))
stableImportControl = ImportControl::Normal;
else if (packageOnlyImportSet.count(import))
stableImportControl = ImportControl::PackageOnly;
else if (internalOrBelowImportSet.count(import))
stableImportControl = ImportControl::InternalOrBelow;
else
stableImportControl = ImportControl::ImplementationOnly;
llvm::SmallSetVector<Identifier, 4> spis;
M->lookupImportedSPIGroups(import.importedModule, spis);
StringRef path;
if (Options.ExplicitModuleBuild && import.importedModule &&
!import.importedModule->isNonSwiftModule()) {
path = import.importedModule->getCacheKey();
if (path.empty())
path = import.importedModule->getModuleLoadedFilename();
}
importedModule.emit(
ScratchRecord, static_cast<uint8_t>(stableImportControl),
!import.accessPath.empty(), !spis.empty(), !path.empty(), importPath);
if (!spis.empty()) {
SmallString<64> out;
llvm::raw_svector_ostream outStream(out);
llvm::interleave(
spis, [&outStream](Identifier next) { outStream << next.str(); },
[&outStream] { outStream << StringRef("\0", 1); });
ImportedModuleSPI.emit(ScratchRecord, out);
}
if (!path.empty())
ImportedModulePath.emit(ScratchRecord, path);
}
if (!Options.ModuleLinkName.empty())
LinkLibrary.emit(ScratchRecord, serialization::LibraryKind::Library,
Options.StaticLibrary, Options.AutolinkForceLoad,
Options.ModuleLinkName);
for (auto dependency : Options.PublicDependentLibraries)
LinkLibrary.emit(ScratchRecord, serialization::LibraryKind::Library,
std::get<1>(dependency), Options.AutolinkForceLoad,
std::get<0>(dependency));
}
/// Translate AST default argument kind to the Serialization enum values, which
/// are guaranteed to be stable.
static uint8_t getRawStableDefaultArgumentKind(swift::DefaultArgumentKind kind) {
switch (kind) {
#define CASE(X) \
case swift::DefaultArgumentKind::X: \
return static_cast<uint8_t>(serialization::DefaultArgumentKind::X);
CASE(None)
CASE(Normal)
CASE(Inherited)
CASE(Column)
CASE(FileID)
CASE(FilePath)
CASE(FileIDSpelledAsFile)
CASE(FilePathSpelledAsFile)
CASE(Line)
CASE(Function)
CASE(DSOHandle)
CASE(NilLiteral)
CASE(EmptyArray)
CASE(EmptyDictionary)
CASE(StoredProperty)
CASE(ExpressionMacro)
#undef CASE
}
llvm_unreachable("Unhandled DefaultArgumentKind in switch.");
}
static uint8_t
getRawStableActorIsolationKind(swift::ActorIsolation::Kind kind) {
switch (kind) {
#define CASE(X) \
case swift::ActorIsolation::X: \
return static_cast<uint8_t>(serialization::ActorIsolation::X);
CASE(Unspecified)
CASE(ActorInstance)
CASE(Nonisolated)
CASE(CallerIsolationInheriting)
CASE(NonisolatedUnsafe)
CASE(GlobalActor)
CASE(Erased)
#undef CASE
}
llvm_unreachable("bad actor isolation");
}
static uint8_t
getRawStableMetatypeRepresentation(const AnyMetatypeType *metatype) {
if (!metatype->hasRepresentation()) {
return serialization::MetatypeRepresentation::MR_None;
}
switch (metatype->getRepresentation()) {
case swift::MetatypeRepresentation::Thin:
return serialization::MetatypeRepresentation::MR_Thin;
case swift::MetatypeRepresentation::Thick:
return serialization::MetatypeRepresentation::MR_Thick;
case swift::MetatypeRepresentation::ObjC:
return serialization::MetatypeRepresentation::MR_ObjC;
}
llvm_unreachable("bad representation");
}
/// Translate from the requirement kind to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableRequirementKind(RequirementKind kind) {
#define CASE(KIND) \
case RequirementKind::KIND: \
return serialization::GenericRequirementKind::KIND;
switch (kind) {
CASE(SameShape)
CASE(Conformance)
CASE(Superclass)
CASE(SameType)
CASE(Layout)
}
#undef CASE
llvm_unreachable("Unhandled RequirementKind in switch.");
}
static uint8_t getRawStableGenericParamKind(GenericTypeParamKind kind) {
#define CASE(KIND) \
case GenericTypeParamKind::KIND: \
return (uint8_t)serialization::GenericParamKind::KIND;
switch (kind) {
CASE(Type)
CASE(Pack)
CASE(Value)
}
#undef CASE
llvm_unreachable("Unhandled RequirementKind in switch.");
}
void Serializer::serializeGenericRequirements(
ArrayRef<Requirement> requirements,
SmallVectorImpl<uint64_t> &scratch) {
using namespace decls_block;
scratch.push_back(requirements.size());
for (const auto &req : requirements) {
scratch.push_back(getRawStableRequirementKind(req.getKind()));
if (req.getKind() != RequirementKind::Layout) {
scratch.push_back(addTypeRef(req.getFirstType()));
scratch.push_back(addTypeRef(req.getSecondType()));
} else {
// Write layout requirement.
auto layout = req.getLayoutConstraint();
unsigned size = 0;
unsigned alignment = 0;
if (layout->isKnownSizeTrivial()) {
size = layout->getTrivialSizeInBits();
alignment = layout->getAlignmentInBits();
} else if (layout->isTrivialStride()) {
size = layout->getTrivialStrideInBits();
}
LayoutRequirementKind rawKind = LayoutRequirementKind::UnknownLayout;
switch (layout->getKind()) {
case LayoutConstraintKind::NativeRefCountedObject:
rawKind = LayoutRequirementKind::NativeRefCountedObject;
break;
case LayoutConstraintKind::RefCountedObject:
rawKind = LayoutRequirementKind::RefCountedObject;
break;
case LayoutConstraintKind::Trivial:
rawKind = LayoutRequirementKind::Trivial;
break;
case LayoutConstraintKind::TrivialOfExactSize:
rawKind = LayoutRequirementKind::TrivialOfExactSize;
break;
case LayoutConstraintKind::TrivialOfAtMostSize:
rawKind = LayoutRequirementKind::TrivialOfAtMostSize;
break;
case LayoutConstraintKind::Class:
rawKind = LayoutRequirementKind::Class;
break;
case LayoutConstraintKind::NativeClass:
rawKind = LayoutRequirementKind::NativeClass;
break;
case LayoutConstraintKind::UnknownLayout:
rawKind = LayoutRequirementKind::UnknownLayout;
break;
case LayoutConstraintKind::BridgeObject:
rawKind = LayoutRequirementKind::BridgeObject;
break;
case LayoutConstraintKind::TrivialStride:
rawKind = LayoutRequirementKind::TrivialStride;
break;
}
scratch.push_back(rawKind);
scratch.push_back(addTypeRef(req.getFirstType()));
scratch.push_back(size);
scratch.push_back(alignment);
}
}
}
void Serializer::writeAssociatedTypes(
ArrayRef<AssociatedTypeDecl *> assocTypes) {
using namespace decls_block;
auto assocTypeAbbrCode = DeclTypeAbbrCodes[AssociatedTypeLayout::Code];
for (auto *assocType : assocTypes) {
AssociatedTypeLayout::emitRecord(
Out, ScratchRecord, assocTypeAbbrCode,
addDeclRef(assocType));
}
}
void Serializer::writePrimaryAssociatedTypes(
ArrayRef<AssociatedTypeDecl *> assocTypes) {
using namespace decls_block;
auto assocTypeAbbrCode = DeclTypeAbbrCodes[PrimaryAssociatedTypeLayout::Code];
for (auto *assocType : assocTypes) {
PrimaryAssociatedTypeLayout::emitRecord(
Out, ScratchRecord, assocTypeAbbrCode,
addDeclRef(assocType));
}
}
void Serializer::writeRequirementSignature(
const RequirementSignature &requirementSig) {
using namespace decls_block;
SmallVector<uint64_t, 16> rawData;
serializeGenericRequirements(requirementSig.getRequirements(), rawData);
for (const auto &typeAlias : requirementSig.getTypeAliases()) {
rawData.push_back(addDeclBaseNameRef(typeAlias.getName()));
auto underlyingType = typeAlias.getUnderlyingType();
ASSERT(!underlyingType->findUnresolvedDependentMemberType());
rawData.push_back(addTypeRef(underlyingType));
}
RequirementSignatureLayout::emitRecord(
Out, ScratchRecord,
DeclTypeAbbrCodes[RequirementSignatureLayout::Code],
rawData);
}
void Serializer::writeASTBlockEntity(GenericSignature sig) {
using namespace decls_block;
assert(sig);
assert(GenericSignaturesToSerialize.hasRef(sig));
// Determine whether we can just write the param types as is, or whether we
// have to encode them manually because one of them has a declaration with
// module context (which can happen in SIL).
bool mustEncodeParamsManually =
llvm::any_of(sig.getGenericParams(),
[](const GenericTypeParamType *paramTy) {
auto *decl = paramTy->getDecl();
return decl && decl->getDeclContext()->isModuleScopeContext();
});
SmallVector<uint64_t, 4> rawParamIDs;
serializeGenericRequirements(sig.getRequirements(), rawParamIDs);
if (!mustEncodeParamsManually) {
// Record the generic parameters.
for (auto *paramTy : sig.getGenericParams()) {
rawParamIDs.push_back(addTypeRef(paramTy));
}
auto abbrCode = DeclTypeAbbrCodes[GenericSignatureLayout::Code];
GenericSignatureLayout::emitRecord(Out, ScratchRecord, abbrCode,
rawParamIDs);
} else {
// Record the generic parameters.
for (auto *paramTy : sig.getGenericParams()) {
// For a full environment, add the name and canonicalize the param type.
Identifier paramName = paramTy->isCanonical() ? Identifier() : paramTy->getName();
rawParamIDs.push_back(addDeclBaseNameRef(paramName));
paramTy = paramTy->getCanonicalType()->castTo<GenericTypeParamType>();
rawParamIDs.push_back(addTypeRef(paramTy));
}
auto envAbbrCode = DeclTypeAbbrCodes[SILGenericSignatureLayout::Code];
SILGenericSignatureLayout::emitRecord(Out, ScratchRecord, envAbbrCode,
rawParamIDs);
}
}
void Serializer::writeASTBlockEntity(const GenericEnvironment *genericEnv) {
using namespace decls_block;
assert(GenericEnvironmentsToSerialize.hasRef(genericEnv));
switch (genericEnv->getKind()) {
case GenericEnvironment::Kind::Existential: {
auto kind = GenericEnvironmentKind::OpenedExistential;
auto existentialTypeID = addTypeRef(genericEnv->getOpenedExistentialType());
auto parentSigID = addGenericSignatureRef(genericEnv->getGenericSignature());
auto contextSubs = genericEnv->getOuterSubstitutions();
auto subsID = addSubstitutionMapRef(contextSubs);
auto genericEnvAbbrCode = DeclTypeAbbrCodes[GenericEnvironmentLayout::Code];
GenericEnvironmentLayout::emitRecord(Out, ScratchRecord, genericEnvAbbrCode,
unsigned(kind), existentialTypeID,
parentSigID, subsID);
return;
}
case GenericEnvironment::Kind::Element: {
auto kind = GenericEnvironmentKind::OpenedElement;
auto shapeClassID = addTypeRef(genericEnv->getOpenedElementShapeClass());
auto parentSigID = addGenericSignatureRef(genericEnv->getGenericSignature());
auto contextSubs = genericEnv->getOuterSubstitutions();
auto subsID = addSubstitutionMapRef(contextSubs);
auto genericEnvAbbrCode = DeclTypeAbbrCodes[GenericEnvironmentLayout::Code];
GenericEnvironmentLayout::emitRecord(Out, ScratchRecord, genericEnvAbbrCode,
unsigned(kind), shapeClassID,
parentSigID, subsID);
return;
}
case GenericEnvironment::Kind::Primary:
case GenericEnvironment::Kind::Opaque:
break;
}
llvm_unreachable("Bad generic environment kind");
}
void Serializer::writeASTBlockEntity(const SubstitutionMap substitutions) {
using namespace decls_block;
assert(substitutions);
assert(SubstitutionMapsToSerialize.hasRef(substitutions));
// Collect the replacement types.
SmallVector<uint64_t, 4> rawValues;
for (auto type : substitutions.getReplacementTypes())
rawValues.push_back(addTypeRef(type));
unsigned numReplacementTypes = rawValues.size();
for (auto conformance : substitutions.getConformances())
rawValues.push_back(addConformanceRef(conformance));
auto substitutionsAbbrCode = DeclTypeAbbrCodes[SubstitutionMapLayout::Code];
SubstitutionMapLayout::emitRecord(Out, ScratchRecord, substitutionsAbbrCode,
addGenericSignatureRef(
substitutions.getGenericSignature()),
numReplacementTypes,
rawValues);
}
void Serializer::writeASTBlockEntity(const SILLayout *layout) {
using namespace decls_block;
assert(SILLayoutsToSerialize.hasRef(layout));
SmallVector<unsigned, 16> data;
// Save field types.
for (auto &field : layout->getFields()) {
unsigned typeRef = addTypeRef(field.getLoweredType());
// Set the high bit if mutable.
if (field.isMutable())
typeRef |= 0x80000000U;
data.push_back(typeRef);
}
unsigned abbrCode
= DeclTypeAbbrCodes[SILLayoutLayout::Code];
SILLayoutLayout::emitRecord(
Out, ScratchRecord, abbrCode,
addGenericSignatureRef(layout->getGenericSignature()),
layout->capturesGenericEnvironment(),
layout->getFields().size(),
data);
}
// TODO: DON'T serialize the special conformance for DA-as_A
void Serializer::writeLocalNormalProtocolConformance(
NormalProtocolConformance *conformance) {
using namespace decls_block;
PrettyStackTraceConformance trace("serializing", conformance);
assert(ConformancesToSerialize.hasRef(conformance));
auto protocol = conformance->getProtocol();
SmallVector<DeclID, 32> data;
unsigned numValueWitnesses = 0;
unsigned numTypeWitnesses = 0;
unsigned numSignatureConformances = 0;
conformance->forEachAssociatedConformance(
[&](Type t, ProtocolDecl *proto, unsigned index) {
auto assocConf = conformance->getAssociatedConformance(t, proto);
data.push_back(addConformanceRef(assocConf));
++numSignatureConformances;
return false;
});
conformance->forEachTypeWitness([&](AssociatedTypeDecl *assocType,
Type type, TypeDecl *typeDecl) {
data.push_back(addDeclRef(assocType));
data.push_back(addTypeRef(type));
data.push_back(addDeclRef(typeDecl, /*allowTypeAliasXRef*/true));
++numTypeWitnesses;
return false;
}, /*useResolver=*/true);
conformance->forEachValueWitness([&](ValueDecl *req, Witness witness) {
PrettyStackTraceDecl traceValueWitness(
"serializing value witness for requirement", req);
++numValueWitnesses;
data.push_back(addDeclRef(req));
data.push_back(addDeclRef(witness.getDecl()));
// If there is no witness, we're done.
if (!witness.getDecl()) return;
auto subs = witness.getSubstitutions();
// Canonicalize away typealiases, since these substitutions aren't used
// for diagnostics and we reference fewer declarations that way.
subs = subs.getCanonical();
// Map archetypes to type parameters, since we always substitute them
// away. Note that in a merge-modules pass, we're serializing conformances
// that we deserialized, so they will already have their replacement types
// in terms of interface types; hence the hasPrimaryArchetype() check is
// necessary for correctness, not just as a fast path.
if (subs.getRecursiveProperties().hasPrimaryArchetype())
subs = subs.mapReplacementTypesOutOfContext();
data.push_back(addSubstitutionMapRef(subs));
data.push_back(witness.getEnterIsolation().has_value() ? 1 : 0);
}, /*useResolver=*/true);
// Figure out the isolation of the conformance.
Type globalActorType;
switch (auto isolation = conformance->getIsolation()) {
case swift::ActorIsolation::Unspecified:
case swift::ActorIsolation::Nonisolated:
break;
case swift::ActorIsolation::GlobalActor:
globalActorType = isolation.getGlobalActor();
break;
case swift::ActorIsolation::ActorInstance:
case swift::ActorIsolation::NonisolatedUnsafe:
case swift::ActorIsolation::Erased:
case swift::ActorIsolation::CallerIsolationInheriting:
llvm_unreachable("Conformances cannot have this kind of isolation");
}
unsigned abbrCode
= DeclTypeAbbrCodes[NormalProtocolConformanceLayout::Code];
auto ownerID = addDeclContextRef(conformance->getDeclContext());
NormalProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(protocol),
ownerID.getOpaqueValue(),
numTypeWitnesses,
numValueWitnesses,
numSignatureConformances,
conformance->getOptions().toRaw(),
addTypeRef(globalActorType),
data);
}
serialization::ProtocolConformanceID
Serializer::addConformanceRef(ProtocolConformance *conformance) {
return addConformanceRef(ProtocolConformanceRef(conformance));
}
serialization::ProtocolConformanceID
Serializer::addConformanceRef(PackConformance *conformance) {
return addConformanceRef(ProtocolConformanceRef(conformance));
}
serialization::ProtocolConformanceID
Serializer::addConformanceRef(ProtocolConformanceRef ref) {
if (ref.isInvalid()) {
return 0;
}
if (ref.isAbstract()) {
auto rawID = AbstractConformancesToSerialize.addRef(ref.getAbstract());
return ((rawID << SerializedProtocolConformanceKind::Shift) |
SerializedProtocolConformanceKind::Abstract);
}
if (ref.isConcrete()) {
auto conformance = ref.getConcrete();
auto rawID = ConformancesToSerialize.addRef(conformance);
return ((rawID << SerializedProtocolConformanceKind::Shift) |
SerializedProtocolConformanceKind::Concrete);
}
if (ref.isPack()) {
auto rawID = PackConformancesToSerialize.addRef(ref.getPack());
return ((rawID << SerializedProtocolConformanceKind::Shift) |
SerializedProtocolConformanceKind::Pack);
}
llvm_unreachable("Unknown conformance kind");
}
void
Serializer::writeASTBlockEntity(ProtocolConformance *conformance) {
using namespace decls_block;
switch (conformance->getKind()) {
case ProtocolConformanceKind::Normal: {
auto normal = cast<NormalProtocolConformance>(conformance);
if (!isDeclXRef(normal->getDeclContext()->getAsDecl())
&& !isa<ClangModuleUnit>(normal->getDeclContext()
->getModuleScopeContext())) {
writeLocalNormalProtocolConformance(normal);
} else {
// A conformance in a different module file.
unsigned abbrCode = DeclTypeAbbrCodes[ProtocolConformanceXrefLayout::Code];
ProtocolConformanceXrefLayout::emitRecord(
Out, ScratchRecord,
abbrCode,
addDeclRef(normal->getProtocol()),
addDeclRef(normal->getDeclContext()->getSelfNominalTypeDecl()),
addContainingModuleRef(normal->getDeclContext(),
/*ignoreExport=*/true));
}
break;
}
case ProtocolConformanceKind::Self: {
auto self = cast<SelfProtocolConformance>(conformance);
unsigned abbrCode = DeclTypeAbbrCodes[SelfProtocolConformanceLayout::Code];
auto protocolID = addDeclRef(self->getProtocol());
SelfProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode,
protocolID);
break;
}
case ProtocolConformanceKind::Specialized: {
auto conf = cast<SpecializedProtocolConformance>(conformance);
unsigned abbrCode = DeclTypeAbbrCodes[SpecializedProtocolConformanceLayout::Code];
auto type = conf->getType();
auto genericConformanceID =
addConformanceRef(conf->getGenericConformance());
SpecializedProtocolConformanceLayout::emitRecord(
Out, ScratchRecord,
abbrCode,
genericConformanceID,
addTypeRef(type),
addSubstitutionMapRef(conf->getSubstitutionMap()));
break;
}
case ProtocolConformanceKind::Inherited: {
auto conf = cast<InheritedProtocolConformance>(conformance);
unsigned abbrCode
= DeclTypeAbbrCodes[InheritedProtocolConformanceLayout::Code];
auto inheritedConformanceID =
addConformanceRef(conf->getInheritedConformance());
auto type = conf->getType();
auto typeID = addTypeRef(type);
InheritedProtocolConformanceLayout::emitRecord(
Out, ScratchRecord, abbrCode, inheritedConformanceID, typeID);
break;
}
case ProtocolConformanceKind::Builtin:
auto builtin = cast<BuiltinProtocolConformance>(conformance);
unsigned abbrCode =
DeclTypeAbbrCodes[BuiltinProtocolConformanceLayout::Code];
auto typeID = addTypeRef(builtin->getType());
auto protocolID = addDeclRef(builtin->getProtocol());
BuiltinProtocolConformanceLayout::emitRecord(
Out, ScratchRecord, abbrCode, typeID, protocolID,
static_cast<unsigned>(builtin->getBuiltinConformanceKind()));
break;
}
}
void
Serializer::writeASTBlockEntity(AbstractConformance *conformance) {
using namespace decls_block;
unsigned abbrCode = DeclTypeAbbrCodes[AbstractConformanceLayout::Code];
auto conformanceRef = ProtocolConformanceRef(conformance);
AbstractConformanceLayout::emitRecord(
Out, ScratchRecord,
abbrCode,
addTypeRef(conformanceRef.getType()),
addDeclRef(conformanceRef.getProtocol()));
}
void
Serializer::writeASTBlockEntity(PackConformance *conformance) {
using namespace decls_block;
unsigned abbrCode = DeclTypeAbbrCodes[PackConformanceLayout::Code];
SmallVector<ProtocolConformanceID, 4> patternConformances;
for (auto patternConf : conformance->getPatternConformances()) {
patternConformances.push_back(addConformanceRef(patternConf));
}
PackConformanceLayout::emitRecord(
Out, ScratchRecord,
abbrCode,
addTypeRef(conformance->getType()),
addDeclRef(conformance->getProtocol()),
patternConformances);
}
SmallVector<ProtocolConformanceID, 4>
Serializer::addConformanceRefs(ArrayRef<ProtocolConformanceRef> conformances) {
using namespace decls_block;
SmallVector<ProtocolConformanceID, 4> results;
for (auto conformance : conformances) {
auto id = addConformanceRef(conformance);
results.push_back(id);
}
return results;
}
SmallVector<ProtocolConformanceID, 4>
Serializer::addConformanceRefs(ArrayRef<ProtocolConformance*> conformances) {
using namespace decls_block;
SmallVector<ProtocolConformanceID, 4> results;
for (auto conformance : conformances) {
results.push_back(addConformanceRef(conformance));
}
return results;
}
static bool shouldSerializeMember(Decl *D) {
switch (D->getKind()) {
case DeclKind::Import:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::TopLevelCode:
case DeclKind::Extension:
case DeclKind::Module:
case DeclKind::PrecedenceGroup:
case DeclKind::Using:
if (D->getASTContext().LangOpts.AllowModuleWithCompilerErrors)
return false;
llvm_unreachable("decl should never be a member");
case DeclKind::Missing:
llvm_unreachable("attempting to serialize a missing decl");
case DeclKind::MissingMember:
if (D->getASTContext().LangOpts.AllowModuleWithCompilerErrors)
return false;
llvm_unreachable("should never need to reserialize a member placeholder");
case DeclKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleDecl should not show up here");
case DeclKind::EnumCase:
case DeclKind::Macro:
case DeclKind::MacroExpansion:
return false;
case DeclKind::OpaqueType:
return true;
case DeclKind::EnumElement:
case DeclKind::Protocol:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::PatternBinding:
case DeclKind::Subscript:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Enum:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::Var:
case DeclKind::Param:
case DeclKind::Func:
case DeclKind::Accessor:
return true;
}
llvm_unreachable("Unhandled DeclKind in switch.");
}
static serialization::AccessorKind getStableAccessorKind(swift::AccessorKind K){
switch (K) {
#define ACCESSOR(ID, KEYWORD) \
case swift::AccessorKind::ID: \
return serialization::ID;
#include "swift/AST/AccessorKinds.def"
}
llvm_unreachable("Unhandled AccessorKind in switch.");
}
static serialization::CtorInitializerKind
getStableCtorInitializerKind(swift::CtorInitializerKind K){
switch (K) {
#define CASE(NAME) \
case swift::CtorInitializerKind::NAME: return serialization::NAME;
CASE(Designated)
CASE(Convenience)
CASE(Factory)
CASE(ConvenienceFactory)
#undef CASE
}
llvm_unreachable("Unhandled CtorInitializerKind in switch.");
}
static serialization::ClangDeclPathComponentKind
getStableClangDeclPathComponentKind(
StableSerializationPath::ExternalPath::ComponentKind kind) {
switch (kind) {
#define CASE(ID) \
case StableSerializationPath::ExternalPath::ID: \
return serialization::ClangDeclPathComponentKind::ID;
CASE(Record)
CASE(Enum)
CASE(Namespace)
CASE(Typedef)
CASE(TypedefAnonDecl)
CASE(ObjCInterface)
CASE(ObjCProtocol)
#undef CASE
}
llvm_unreachable("bad kind");
}
static Identifier getClangTemplateSpecializationXRefDiscriminator(
ASTContext &ctx, Identifier &name,
const clang::ClassTemplateSpecializationDecl *ctsd) {
auto it = name.str().find("<");
if (it == StringRef::npos)
return Identifier();
// Serialize a C++ class template specialization name as original
// class template name, and use its USR as the discriminator, that
// will let Swift find the correct specialization when this cross
// reference is deserialized.
name = ctx.getIdentifier(name.str().substr(0, it));
llvm::SmallString<128> buffer;
clang::index::generateUSRForDecl(ctsd, buffer);
return ctx.getIdentifier(buffer.str());
}
void Serializer::writeCrossReference(const DeclContext *DC, uint32_t pathLen) {
using namespace decls_block;
unsigned abbrCode;
switch (DC->getContextKind()) {
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedAbstractClosure:
case DeclContextKind::SerializedTopLevelCodeDecl:
case DeclContextKind::EnumElementDecl:
case DeclContextKind::MacroDecl:
llvm_unreachable("cannot cross-reference this context");
case DeclContextKind::Package:
llvm_unreachable("should only cross-reference something within a module");
case DeclContextKind::Module:
llvm_unreachable("should only cross-reference something within a file");
case DeclContextKind::FileUnit:
abbrCode = DeclTypeAbbrCodes[XRefLayout::Code];
XRefLayout::emitRecord(Out, ScratchRecord, abbrCode,
addContainingModuleRef(DC, /*ignoreExport=*/true),
pathLen);
break;
case DeclContextKind::GenericTypeDecl: {
auto generic = cast<GenericTypeDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1);
// Opaque return types are unnamed and need a special xref.
if (auto opaque = dyn_cast<OpaqueTypeDecl>(generic)) {
if (!opaque->hasName()) {
abbrCode = DeclTypeAbbrCodes[XRefOpaqueReturnTypePathPieceLayout::Code];
XRefOpaqueReturnTypePathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode,
addDeclBaseNameRef(opaque->getOpaqueReturnTypeIdentifier()));
break;
}
}
assert(generic->hasName());
abbrCode = DeclTypeAbbrCodes[XRefTypePathPieceLayout::Code];
Identifier discriminator;
if (generic->isOutermostPrivateOrFilePrivateScope()) {
auto *containingFile = cast<FileUnit>(generic->getModuleScopeContext());
discriminator = containingFile->getDiscriminatorForPrivateDecl(generic);
}
bool isProtocolExt = DC->getParent()->getExtendedProtocolDecl();
Identifier name = generic->getName();
if (generic->hasClangNode()) {
if (auto *ctsd = dyn_cast_or_null<clang::ClassTemplateSpecializationDecl>(
generic->getClangDecl())) {
assert(discriminator.empty());
discriminator = getClangTemplateSpecializationXRefDiscriminator(
getASTContext(), name, ctsd);
}
}
XRefTypePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(name),
addDeclBaseNameRef(discriminator),
isProtocolExt, generic->hasClangNode());
break;
}
case DeclContextKind::ExtensionDecl: {
auto ext = cast<ExtensionDecl>(DC);
auto nominal = ext->getExtendedNominal();
assert(nominal);
writeCrossReference(nominal, pathLen + 1);
abbrCode = DeclTypeAbbrCodes[XRefExtensionPathPieceLayout::Code];
CanGenericSignature genericSig(nullptr);
if (ext->isConstrainedExtension()) {
genericSig = ext->getGenericSignature().getCanonicalSignature();
}
XRefExtensionPathPieceLayout::emitRecord(
Out, ScratchRecord, abbrCode,
addContainingModuleRef(DC, /*ignoreExport=*/true),
addGenericSignatureRef(genericSig));
break;
}
case DeclContextKind::SubscriptDecl: {
auto SD = cast<SubscriptDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1);
Type ty = SD->getInterfaceType()->getCanonicalType();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
bool isProtocolExt = SD->getDeclContext()->getExtendedProtocolDecl();
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), SUBSCRIPT_ID,
isProtocolExt, SD->hasClangNode(),
SD->isStatic());
break;
}
case DeclContextKind::AbstractFunctionDecl: {
if (auto fn = dyn_cast<AccessorDecl>(DC)) {
auto storage = fn->getStorage();
writeCrossReference(storage->getDeclContext(), pathLen + 2);
Type ty = storage->getInterfaceType()->getCanonicalType();
IdentifierID nameID = addDeclBaseNameRef(storage->getBaseName());
bool isProtocolExt = fn->getDeclContext()->getExtendedProtocolDecl();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), nameID,
isProtocolExt,
storage->hasClangNode(),
storage->isStatic());
abbrCode =
DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto emptyID = addDeclBaseNameRef(Identifier());
auto accessorKind = getStableAccessorKind(fn->getAccessorKind());
assert(!fn->isObservingAccessor() &&
"cannot form cross-reference to observing accessors");
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, emptyID,
accessorKind);
break;
}
auto fn = cast<AbstractFunctionDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1 + fn->isOperator());
Type ty = fn->getInterfaceType()->getCanonicalType();
if (auto ctor = dyn_cast<ConstructorDecl>(DC)) {
abbrCode = DeclTypeAbbrCodes[XRefInitializerPathPieceLayout::Code];
XRefInitializerPathPieceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addTypeRef(ty),
(bool)ctor->getDeclContext()->getExtendedProtocolDecl(),
ctor->hasClangNode(),
getStableCtorInitializerKind(ctor->getInitKind()));
break;
}
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
bool isProtocolExt = fn->getDeclContext()->getExtendedProtocolDecl();
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty),
addDeclBaseNameRef(fn->getBaseName()),
isProtocolExt, fn->hasClangNode(),
fn->isStatic());
if (fn->isOperator()) {
// Encode the fixity as a filter on the func decls, to distinguish prefix
// and postfix operators.
auto op = cast<FuncDecl>(fn)->getOperatorDecl();
assert(op);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto emptyID = addDeclBaseNameRef(Identifier());
auto fixity = getStableFixity(op->getFixity());
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, emptyID,
fixity);
}
break;
}
}
}
void Serializer::writeCrossReference(const Decl *D) {
using namespace decls_block;
unsigned abbrCode;
llvm::SaveAndRestore<const Decl *> SaveDecl(crossReferencedDecl, D);
if (auto op = dyn_cast<OperatorDecl>(D)) {
writeCrossReference(op->getDeclContext(), 1);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto nameID = addDeclBaseNameRef(op->getName());
auto fixity = getStableFixity(op->getFixity());
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, nameID,
fixity);
return;
}
if (auto prec = dyn_cast<PrecedenceGroupDecl>(D)) {
writeCrossReference(prec->getDeclContext(), 1);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto nameID = addDeclBaseNameRef(prec->getName());
uint8_t fixity = OperatorKind::PrecedenceGroup;
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, nameID,
fixity);
return;
}
if (auto fn = dyn_cast<AbstractFunctionDecl>(D)) {
// Functions are special because they might be operators.
writeCrossReference(fn, 0);
return;
}
writeCrossReference(D->getDeclContext());
if (auto opaque = dyn_cast<OpaqueTypeDecl>(D)) {
abbrCode = DeclTypeAbbrCodes[XRefOpaqueReturnTypePathPieceLayout::Code];
XRefOpaqueReturnTypePathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode,
addDeclBaseNameRef(opaque->getOpaqueReturnTypeIdentifier()));
return;
}
if (auto genericParam = dyn_cast<GenericTypeParamDecl>(D)) {
assert(!D->getDeclContext()->isModuleScopeContext() &&
"Cannot cross reference a generic type decl at module scope.");
abbrCode = DeclTypeAbbrCodes[XRefGenericParamPathPieceLayout::Code];
XRefGenericParamPathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
genericParam->getDepth(),
genericParam->getIndex());
return;
}
bool isProtocolExt = D->getDeclContext()->getExtendedProtocolDecl();
if (auto type = dyn_cast<TypeDecl>(D)) {
abbrCode = DeclTypeAbbrCodes[XRefTypePathPieceLayout::Code];
Identifier discriminator;
if (type->isOutermostPrivateOrFilePrivateScope()) {
auto *containingFile =
cast<FileUnit>(type->getDeclContext()->getModuleScopeContext());
discriminator = containingFile->getDiscriminatorForPrivateDecl(type);
}
Identifier name = type->getName();
if (type->hasClangNode()) {
if (auto *ctsd = dyn_cast_or_null<clang::ClassTemplateSpecializationDecl>(
type->getClangDecl())) {
assert(discriminator.empty());
discriminator = getClangTemplateSpecializationXRefDiscriminator(
getASTContext(), name, ctsd);
}
}
XRefTypePathPieceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addDeclBaseNameRef(name),
addDeclBaseNameRef(discriminator), isProtocolExt, D->hasClangNode());
return;
}
auto val = cast<ValueDecl>(D);
auto ty = val->getInterfaceType()->getCanonicalType();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
IdentifierID iid = addDeclBaseNameRef(val->getBaseName());
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), iid, isProtocolExt,
D->hasClangNode(), val->isStatic());
}
/// Translate from the AST associativity enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableAssociativity(swift::Associativity assoc) {
switch (assoc) {
case swift::Associativity::Left:
return serialization::Associativity::LeftAssociative;
case swift::Associativity::Right:
return serialization::Associativity::RightAssociative;
case swift::Associativity::None:
return serialization::Associativity::NonAssociative;
}
llvm_unreachable("Unhandled Associativity in switch.");
}
static serialization::StaticSpellingKind
getStableStaticSpelling(swift::StaticSpellingKind SS) {
switch (SS) {
case swift::StaticSpellingKind::None:
return serialization::StaticSpellingKind::None;
case swift::StaticSpellingKind::KeywordStatic:
return serialization::StaticSpellingKind::KeywordStatic;
case swift::StaticSpellingKind::KeywordClass:
return serialization::StaticSpellingKind::KeywordClass;
}
llvm_unreachable("Unhandled StaticSpellingKind in switch.");
}
static uint8_t getRawStableAccessLevel(swift::AccessLevel access) {
switch (access) {
#define CASE(NAME) \
case swift::AccessLevel::NAME: \
return static_cast<uint8_t>(serialization::AccessLevel::NAME);
CASE(Private)
CASE(FilePrivate)
CASE(Internal)
CASE(Package)
CASE(Public)
CASE(Open)
#undef CASE
}
llvm_unreachable("Unhandled AccessLevel in switch.");
}
static serialization::SelfAccessKind
getStableSelfAccessKind(swift::SelfAccessKind MM) {
switch (MM) {
case swift::SelfAccessKind::NonMutating:
return serialization::SelfAccessKind::NonMutating;
case swift::SelfAccessKind::Mutating:
return serialization::SelfAccessKind::Mutating;
case swift::SelfAccessKind::LegacyConsuming:
return serialization::SelfAccessKind::LegacyConsuming;
case swift::SelfAccessKind::Consuming:
return serialization::SelfAccessKind::Consuming;
case swift::SelfAccessKind::Borrowing:
return serialization::SelfAccessKind::Borrowing;
}
llvm_unreachable("Unhandled StaticSpellingKind in switch.");
}
static uint8_t getRawStableMacroRole(swift::MacroRole context) {
switch (context) {
#define MACRO_ROLE(Name, Description) \
case swift::MacroRole::Name: \
return static_cast<uint8_t>(serialization::MacroRole::Name);
#include "swift/Basic/MacroRoles.def"
}
llvm_unreachable("bad result declaration macro kind");
}
static uint8_t getRawStableMacroIntroducedDeclNameKind(
swift::MacroIntroducedDeclNameKind kind) {
switch (kind) {
#define CASE(NAME) \
case swift::MacroIntroducedDeclNameKind::NAME: \
return static_cast<uint8_t>(serialization::MacroIntroducedDeclNameKind::NAME);
CASE(Named)
CASE(Overloaded)
CASE(Prefixed)
CASE(Suffixed)
CASE(Arbitrary)
}
#undef CASE
llvm_unreachable("bad result macro-introduced decl name kind");
}
#ifndef NDEBUG
// This is done with a macro so that we get a slightly more useful assertion.
# define DECL(KIND, PARENT)\
LLVM_ATTRIBUTE_UNUSED \
static void verifyAttrSerializable(const KIND ## Decl *D) {\
if (D->Decl::getASTContext().LangOpts.AllowModuleWithCompilerErrors)\
return;\
for (auto Attr : D->getAttrs()) {\
assert(Attr->canAppearOnDecl(D) && "attribute cannot appear on a " #KIND);\
}\
}
# include "swift/AST/DeclNodes.def"
#else
static void verifyAttrSerializable(const Decl *D) {}
#endif
bool Serializer::isDeclXRef(const Decl *D) const {
const DeclContext *topLevel = D->getDeclContext()->getModuleScopeContext();
if (topLevel->getParentModule() != M)
return true;
if (!SF || topLevel == SF || topLevel == SF->getSynthesizedFile())
return false;
// Special-case for SIL generic parameter decls, which don't have a real
// DeclContext.
if (!isa<FileUnit>(topLevel)) {
assert(isa<GenericTypeParamDecl>(D) && "unexpected decl kind");
return false;
}
return true;
}
void Serializer::writePatternBindingInitializer(PatternBindingDecl *binding,
unsigned bindingIndex) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[PatternBindingInitializerLayout::Code];
StringRef initStr;
SmallString<128> scratch;
auto varDecl = binding->getAnchoringVarDecl(bindingIndex);
assert((varDecl || allowCompilerErrors()) &&
"Serializing PDB without anchoring VarDecl");
if (binding->hasInitStringRepresentation(bindingIndex) &&
varDecl && varDecl->isInitExposedToClients()) {
initStr = binding->getInitStringRepresentation(bindingIndex, scratch);
}
PatternBindingInitializerLayout::emitRecord(Out, ScratchRecord,
abbrCode, addDeclRef(binding),
bindingIndex, initStr);
}
void
Serializer::writeDefaultArgumentInitializer(const DeclContext *parentContext,
unsigned index) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[DefaultArgumentInitializerLayout::Code];
auto parentID = addDeclContextRef(parentContext);
DefaultArgumentInitializerLayout::emitRecord(Out, ScratchRecord, abbrCode,
parentID.getOpaqueValue(),
index);
}
void Serializer::writeAbstractClosureExpr(const DeclContext *parentContext,
Type Ty, bool isImplicit,
unsigned discriminator) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[AbstractClosureExprLayout::Code];
auto parentID = addDeclContextRef(parentContext);
AbstractClosureExprLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(Ty), isImplicit,
discriminator,
parentID.getOpaqueValue());
}
void Serializer::writeASTBlockEntity(const DeclContext *DC) {
using namespace decls_block;
assert(shouldSerializeAsLocalContext(DC) &&
"should be serialized as a Decl instead");
assert(LocalDeclContextsToSerialize.hasRef(DC));
switch (DC->getContextKind()) {
case DeclContextKind::AbstractClosureExpr: {
auto ACE = cast<AbstractClosureExpr>(DC);
writeAbstractClosureExpr(ACE->getParent(), ACE->getType(),
ACE->isImplicit(), ACE->getDiscriminator());
break;
}
case DeclContextKind::SerializedAbstractClosure: {
// We're merging an already serialized module, handle the same as a
// regular AbstractClosureExpr.
auto *SACE = cast<SerializedAbstractClosureExpr>(DC);
writeAbstractClosureExpr(SACE->getParent(), SACE->getType(),
SACE->isImplicit(), SACE->getDiscriminator());
return;
}
case DeclContextKind::Initializer: {
if (auto PBI = dyn_cast<PatternBindingInitializer>(DC)) {
writePatternBindingInitializer(PBI->getBinding(), PBI->getBindingIndex());
} else if (auto DAI = dyn_cast<DefaultArgumentInitializer>(DC)) {
writeDefaultArgumentInitializer(DAI->getParent(), DAI->getIndex());
}
break;
}
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedTopLevelCodeDecl: {
auto abbrCode = DeclTypeAbbrCodes[TopLevelCodeDeclContextLayout::Code];
TopLevelCodeDeclContextLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclContextRef(DC->getParent()).getOpaqueValue());
break;
}
default:
llvm_unreachable("Trying to write a DeclContext that isn't local");
}
}
void Serializer::writeLifetimeDependencies(
ArrayRef<LifetimeDependenceInfo> lifetimeDependencies) {
using namespace decls_block;
SmallVector<bool> paramIndices;
for (auto info : lifetimeDependencies) {
info.getConcatenatedData(paramIndices);
auto abbrCode = DeclTypeAbbrCodes[LifetimeDependenceLayout::Code];
LifetimeDependenceLayout::emitRecord(
Out, ScratchRecord, abbrCode, info.getTargetIndex(),
info.getParamIndicesLength(), info.isImmortal(),
info.hasInheritLifetimeParamIndices(),
info.hasScopeLifetimeParamIndices(), info.hasAddressableParamIndices(),
paramIndices);
paramIndices.clear();
}
}
#define SIMPLE_CASE(TYPENAME, VALUE) \
case swift::TYPENAME::VALUE: return uint8_t(serialization::TYPENAME::VALUE);
static ForeignErrorConventionKind getRawStableForeignErrorConventionKind(
ForeignErrorConvention::Kind kind) {
switch (kind) {
case ForeignErrorConvention::ZeroResult:
return ForeignErrorConventionKind::ZeroResult;
case ForeignErrorConvention::NonZeroResult:
return ForeignErrorConventionKind::NonZeroResult;
case ForeignErrorConvention::ZeroPreservedResult:
return ForeignErrorConventionKind::ZeroPreservedResult;
case ForeignErrorConvention::NilResult:
return ForeignErrorConventionKind::NilResult;
case ForeignErrorConvention::NonNilError:
return ForeignErrorConventionKind::NonNilError;
}
llvm_unreachable("Unhandled ForeignErrorConvention in switch.");
}
/// Translate from the AST VarDeclSpecifier enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableParamDeclSpecifier(swift::ParamDecl::Specifier sf) {
switch (sf) {
case swift::ParamDecl::Specifier::Default:
return uint8_t(serialization::ParamDeclSpecifier::Default);
case swift::ParamDecl::Specifier::InOut:
return uint8_t(serialization::ParamDeclSpecifier::InOut);
case swift::ParamDecl::Specifier::Borrowing:
return uint8_t(serialization::ParamDeclSpecifier::Borrowing);
case swift::ParamDecl::Specifier::Consuming:
return uint8_t(serialization::ParamDeclSpecifier::Consuming);
case swift::ParamDecl::Specifier::LegacyShared:
return uint8_t(serialization::ParamDeclSpecifier::LegacyShared);
case swift::ParamDecl::Specifier::LegacyOwned:
return uint8_t(serialization::ParamDeclSpecifier::LegacyOwned);
case swift::ParamDecl::Specifier::ImplicitlyCopyableConsuming:
return uint8_t(
serialization::ParamDeclSpecifier::ImplicitlyCopyableConsuming);
}
llvm_unreachable("bad param decl specifier kind");
}
static uint8_t getRawStableVarDeclIntroducer(swift::VarDecl::Introducer intr) {
switch (intr) {
case swift::VarDecl::Introducer::Let:
return uint8_t(serialization::VarDeclIntroducer::Let);
case swift::VarDecl::Introducer::Var:
return uint8_t(serialization::VarDeclIntroducer::Var);
case swift::VarDecl::Introducer::InOut:
return uint8_t(serialization::VarDeclIntroducer::InOut);
case swift::VarDecl::Introducer::Borrowing:
return uint8_t(serialization::VarDeclIntroducer::Borrowing);
}
llvm_unreachable("bad variable decl introducer kind");
}
/// Translate from the AST derivative function kind enum to the Serialization
/// enum values, which are guaranteed to be stable.
static uint8_t getRawStableAutoDiffDerivativeFunctionKind(
swift::AutoDiffDerivativeFunctionKind kind) {
switch (kind) {
SIMPLE_CASE(AutoDiffDerivativeFunctionKind, JVP)
SIMPLE_CASE(AutoDiffDerivativeFunctionKind, VJP)
}
llvm_unreachable("bad derivative function kind");
}
/// Translate from the AST differentiability kind enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableDifferentiabilityKind(
swift::DifferentiabilityKind diffKind) {
switch (diffKind) {
SIMPLE_CASE(DifferentiabilityKind, NonDifferentiable)
SIMPLE_CASE(DifferentiabilityKind, Forward)
SIMPLE_CASE(DifferentiabilityKind, Reverse)
SIMPLE_CASE(DifferentiabilityKind, Normal)
SIMPLE_CASE(DifferentiabilityKind, Linear)
}
llvm_unreachable("bad differentiability kind");
}
#undef SIMPLE_CASE
/// Returns true if the declaration of \p decl depends on \p problemContext
/// based on lexical nesting.
///
/// - \p decl is \p problemContext
/// - \p decl is declared within \p problemContext
/// - \p decl is declared in an extension of a type that depends on
/// \p problemContext
static bool contextDependsOn(const NominalTypeDecl *decl,
const DeclContext *problemContext) {
SmallPtrSet<const ExtensionDecl *, 8> seenExtensionDCs;
const DeclContext *dc = decl;
do {
if (dc == problemContext)
return true;
if (auto *extension = dyn_cast<ExtensionDecl>(dc)) {
if (extension->isChildContextOf(problemContext))
return true;
// Avoid cycles when Left.Nested depends on Right.Nested somehow.
bool isNewlySeen = seenExtensionDCs.insert(extension).second;
if (!isNewlySeen)
break;
dc = extension->getSelfNominalTypeDecl();
} else {
dc = dc->getParent();
}
} while (dc);
return false;
}
static void collectDependenciesFromType(swift::SmallSetVector<Type, 4> &seen,
Type ty,
const DeclContext *excluding) {
if (!ty)
return;
ty.visit([&](Type next) {
auto *nominal = next->getAnyNominal();
if (!nominal)
return;
if (contextDependsOn(nominal, excluding))
return;
seen.insert(nominal->getDeclaredInterfaceType());
});
}
static void
collectDependenciesFromRequirement(swift::SmallSetVector<Type, 4> &seen,
const Requirement &req,
const DeclContext *excluding) {
collectDependenciesFromType(seen, req.getFirstType(), excluding);
if (req.getKind() != RequirementKind::Layout)
collectDependenciesFromType(seen, req.getSecondType(), excluding);
}
static SmallVector<Type, 4> collectDependenciesFromType(Type ty) {
swift::SmallSetVector<Type, 4> result;
collectDependenciesFromType(result, ty, /*excluding*/nullptr);
return result.takeVector();
}
class Serializer::DeclSerializer : public DeclVisitor<DeclSerializer> {
Serializer &S;
DeclID id;
SmallVectorImpl<DeclID> &exportedPrespecializationDecls;
bool didVerifyAttrs = false;
template <typename DeclKind>
void verifyAttrSerializable(const DeclKind *D) {
::verifyAttrSerializable(D);
didVerifyAttrs = true;
}
void writeDeclAttribute(const Decl *D, const DeclAttribute *DA) {
using namespace decls_block;
// Completely ignore attributes that aren't serialized.
if (DA->isNotSerialized())
return;
// Ignore attributes that have been marked invalid. (This usually means
// type-checking removed them, but only provided a warning rather than an
// error.)
if (DA->isInvalid())
return;
switch (DA->getKind()) {
case DeclAttrKind::RawDocComment:
case DeclAttrKind::ReferenceOwnership: // Serialized as part of the type.
case DeclAttrKind::AccessControl:
case DeclAttrKind::SetterAccess:
case DeclAttrKind::ObjCBridged:
case DeclAttrKind::SynthesizedProtocol:
case DeclAttrKind::ObjCRuntimeName:
case DeclAttrKind::RestatedObjCConformance:
case DeclAttrKind::ClangImporterSynthesizedType:
case DeclAttrKind::PrivateImport:
case DeclAttrKind::AllowFeatureSuppression:
llvm_unreachable("cannot serialize attribute");
#define SIMPLE_DECL_ATTR(_, CLASS, ...) \
case DeclAttrKind::CLASS: { \
auto abbrCode = S.DeclTypeAbbrCodes[CLASS##DeclAttrLayout::Code]; \
CLASS##DeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, \
DA->isImplicit()); \
return; \
}
#include "swift/AST/DeclAttr.def"
case DeclAttrKind::ABI: {
auto *theAttr = cast<ABIAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[ABIDeclAttrLayout::Code];
auto abiDeclID = S.addDeclRef(theAttr->abiDecl);
ABIDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(), abiDeclID);
return;
}
case DeclAttrKind::SILGenName: {
auto *theAttr = cast<SILGenNameAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[SILGenNameDeclAttrLayout::Code];
SILGenNameDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Name);
return;
}
case DeclAttrKind::Implements: {
auto *theAttr = cast<ImplementsAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[ImplementsDeclAttrLayout::Code];
DeclName memberName = theAttr->getMemberName();
SmallVector<IdentifierID, 4> nameComponents;
nameComponents.push_back(
S.addDeclBaseNameRef(memberName.getBaseName()));
for (auto argName : memberName.getArgumentNames())
nameComponents.push_back(S.addDeclBaseNameRef(argName));
auto dc = D->getDeclContext();
ImplementsDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
S.addDeclContextRef(dc).getOpaqueValue(),
S.addDeclRef(theAttr->getProtocol(dc)),
memberName.getArgumentNames().size() +
memberName.isCompoundName(),
nameComponents);
return;
}
case DeclAttrKind::CDecl: {
auto *theAttr = cast<CDeclAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[CDeclDeclAttrLayout::Code];
CDeclDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Underscored,
theAttr->Name);
return;
}
case DeclAttrKind::SPIAccessControl: {
auto theAttr = cast<SPIAccessControlAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[SPIAccessControlDeclAttrLayout::Code];
SmallVector<IdentifierID, 4> spis;
for (auto spi : theAttr->getSPIGroups()) {
// SPI group name in source code can be '_', a specifier that allows
// implicit import of the SPI. It gets converted to to an empty identifier
// during parsing to match the existing AST node representation. An empty
// identifier is printed as '_' at serialization.
spis.push_back(S.addDeclBaseNameRef(spi));
}
SPIAccessControlDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord,
abbrCode, spis);
return;
}
case DeclAttrKind::Alignment: {
auto *theAlignment = cast<AlignmentAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[AlignmentDeclAttrLayout::Code];
AlignmentDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAlignment->isImplicit(),
theAlignment->getValue());
return;
}
case DeclAttrKind::SwiftNativeObjCRuntimeBase: {
auto *theBase = cast<SwiftNativeObjCRuntimeBaseAttr>(DA);
auto abbrCode
= S.DeclTypeAbbrCodes[SwiftNativeObjCRuntimeBaseDeclAttrLayout::Code];
auto nameID = S.addDeclBaseNameRef(theBase->BaseClassName);
SwiftNativeObjCRuntimeBaseDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
theBase->isImplicit(), nameID);
return;
}
case DeclAttrKind::Semantics: {
auto *theAttr = cast<SemanticsAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[SemanticsDeclAttrLayout::Code];
SemanticsDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Value);
return;
}
case DeclAttrKind::Inline: {
auto *theAttr = cast<InlineAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[InlineDeclAttrLayout::Code];
InlineDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getKind());
return;
}
case DeclAttrKind::Export: {
auto *theAttr = cast<ExportAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[ExportDeclAttrLayout::Code];
ExportDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->exportKind);
return;
}
case DeclAttrKind::NonSendable: {
auto *theAttr = cast<NonSendableAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[NonSendableDeclAttrLayout::Code];
NonSendableDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->Specificity);
return;
}
case DeclAttrKind::Optimize: {
auto *theAttr = cast<OptimizeAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[OptimizeDeclAttrLayout::Code];
OptimizeDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getMode());
return;
}
case DeclAttrKind::Exclusivity: {
auto *theAttr = cast<ExclusivityAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[ExclusivityDeclAttrLayout::Code];
ExclusivityDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getMode());
return;
}
case DeclAttrKind::Effects: {
auto *theAttr = cast<EffectsAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[EffectsDeclAttrLayout::Code];
IdentifierID customStringID = 0;
if (theAttr->getKind() == EffectsKind::Custom) {
customStringID = S.addUniquedStringRef(theAttr->getCustomString());
}
EffectsDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getKind(),
customStringID);
return;
}
case DeclAttrKind::OriginallyDefinedIn: {
auto *theAttr = cast<OriginallyDefinedInAttr>(DA);
ENCODE_VER_TUPLE(Moved, std::optional<llvm::VersionTuple>(
theAttr->getParsedMovedVersion()));
auto abbrCode = S.DeclTypeAbbrCodes[OriginallyDefinedInDeclAttrLayout::Code];
llvm::SmallString<32> blob;
blob.append(theAttr->getManglingModuleName().str());
blob.push_back('\0');
blob.append(theAttr->getLinkerModuleName().str());
blob.push_back('\0');
OriginallyDefinedInDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
LIST_VER_TUPLE_PIECES(Moved),
static_cast<unsigned>(theAttr->getPlatform()),
blob);
return;
}
case DeclAttrKind::Available: {
auto theAttr = D->getSemanticAvailableAttr(cast<AvailableAttr>(DA));
// In lazy typechecking mode, it's possible that we just discovered that
// the attribute is invalid.
if (!theAttr)
return;
ENCODE_VER_TUPLE(Introduced, theAttr->getIntroduced())
ENCODE_VER_TUPLE(Deprecated, theAttr->getDeprecated())
ENCODE_VER_TUPLE(Obsoleted, theAttr->getObsoleted())
assert(theAttr->getRename().empty() ||
!theAttr->getParsedAttr()->hasCachedRenamedDecl());
auto domain = theAttr->getDomain();
auto getDomainKind = [](AvailabilityDomain domain) -> AvailabilityDomainKind {
switch (domain.getKind()) {
case AvailabilityDomain::Kind::Universal:
return AvailabilityDomainKind::Universal;
case AvailabilityDomain::Kind::SwiftLanguageMode:
return AvailabilityDomainKind::SwiftLanguageMode;
case AvailabilityDomain::Kind::StandaloneSwiftRuntime:
return AvailabilityDomainKind::StandaloneSwiftRuntime;
case AvailabilityDomain::Kind::PackageDescription:
return AvailabilityDomainKind::PackageDescription;
case AvailabilityDomain::Kind::Embedded:
return AvailabilityDomainKind::Embedded;
case AvailabilityDomain::Kind::Platform:
return AvailabilityDomainKind::Platform;
case AvailabilityDomain::Kind::Custom:
return AvailabilityDomainKind::Custom;
}
};
auto domainKind = getDomainKind(domain);
const Decl *domainDecl = domain.getDecl();
llvm::SmallString<32> blob;
blob.append(theAttr->getMessage());
blob.append(theAttr->getRename());
auto abbrCode = S.DeclTypeAbbrCodes[AvailableDeclAttrLayout::Code];
AvailableDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
theAttr->getParsedAttr()->isImplicit(),
theAttr->isUnconditionallyUnavailable(),
theAttr->isUnconditionallyDeprecated(),
theAttr->isNoAsync(),
theAttr->isSPI(),
static_cast<uint8_t>(domainKind),
static_cast<unsigned>(domain.getPlatformKind()),
S.addDeclRef(domainDecl),
LIST_VER_TUPLE_PIECES(Introduced),
LIST_VER_TUPLE_PIECES(Deprecated),
LIST_VER_TUPLE_PIECES(Obsoleted),
theAttr->getMessage().size(),
theAttr->getRename().size(),
blob);
return;
}
case DeclAttrKind::BackDeployed: {
auto *theAttr = cast<BackDeployedAttr>(DA);
ENCODE_VER_TUPLE(
Version, std::optional<llvm::VersionTuple>(theAttr->getVersion()));
auto abbrCode = S.DeclTypeAbbrCodes[BackDeployedDeclAttrLayout::Code];
BackDeployedDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
LIST_VER_TUPLE_PIECES(Version),
static_cast<unsigned>(theAttr->getPlatform()));
return;
}
case DeclAttrKind::ObjC: {
auto *theAttr = cast<ObjCAttr>(DA);
SmallVector<IdentifierID, 4> pieces;
unsigned numArgs = 0;
if (auto name = theAttr->getName()) {
numArgs = name->getNumArgs() + 1;
for (auto piece : name->getSelectorPieces()) {
pieces.push_back(S.addDeclBaseNameRef(piece));
}
}
auto abbrCode = S.DeclTypeAbbrCodes[ObjCDeclAttrLayout::Code];
ObjCDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
theAttr->isNameImplicit(), numArgs, pieces);
return;
}
case DeclAttrKind::ObjCImplementation: {
auto *theAttr = cast<ObjCImplementationAttr>(DA);
auto categoryNameID = S.addDeclBaseNameRef(theAttr->CategoryName);
auto abbrCode =
S.DeclTypeAbbrCodes[ObjCImplementationDeclAttrLayout::Code];
ObjCImplementationDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord,
abbrCode, theAttr->isImplicit(), theAttr->isCategoryNameInvalid(),
theAttr->isEarlyAdopter(), categoryNameID);
return;
}
case DeclAttrKind::Specialized:
case DeclAttrKind::Specialize: {
auto abbrCode = S.DeclTypeAbbrCodes[SpecializeDeclAttrLayout::Code];
auto attr = cast<AbstractSpecializeAttr>(DA);
auto *afd = cast<AbstractFunctionDecl>(D);
auto *targetFunDecl = attr->getTargetFunctionDecl(afd);
SmallVector<IdentifierID, 4> pieces;
// SPI groups
auto numSPIGroups = attr->getSPIGroups().size();
for (auto spi : attr->getSPIGroups()) {
assert(!spi.empty() && "Empty SPI name");
pieces.push_back(S.addDeclBaseNameRef(spi));
}
// Type-erased params
for (auto ty : attr->getTypeErasedParams()) {
pieces.push_back(S.addTypeRef(ty));
}
auto numAvailabilityAttrs = attr->getAvailableAttrs().size();
SpecializeDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, (unsigned)attr->isPublic(),
(unsigned)attr->isExported(),
(unsigned)attr->getSpecializationKind(),
S.addGenericSignatureRef(attr->getSpecializedSignature(afd)),
S.addDeclRef(targetFunDecl), numSPIGroups, numAvailabilityAttrs,
pieces);
for (auto availAttr : attr->getAvailableAttrs()) {
writeDeclAttribute(D, availAttr);
}
writeDeclNameRefIfNeeded(attr->getTargetFunctionName());
return;
}
case DeclAttrKind::StorageRestrictions: {
auto abbrCode = S.DeclTypeAbbrCodes[StorageRestrictionsDeclAttrLayout::Code];
auto attr = cast<StorageRestrictionsAttr>(DA);
SmallVector<IdentifierID, 4> properties;
llvm::transform(attr->getInitializesNames(),
std::back_inserter(properties),
[&](Identifier propertyName) {
return S.addDeclBaseNameRef(propertyName);
});
llvm::transform(attr->getAccessesNames(),
std::back_inserter(properties),
[&](Identifier propertyName) {
return S.addDeclBaseNameRef(propertyName);
});
StorageRestrictionsDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, attr->getNumInitializesProperties(),
properties);
return;
}
case DeclAttrKind::DynamicReplacement: {
auto abbrCode =
S.DeclTypeAbbrCodes[DynamicReplacementDeclAttrLayout::Code];
auto theAttr = cast<DynamicReplacementAttr>(DA);
auto *afd = cast<ValueDecl>(D)->getDynamicallyReplacedDecl();
assert(afd && "Missing replaced decl!");
DynamicReplacementDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, false, /*implicit flag*/
S.addDeclRef(afd));
writeDeclNameRefIfNeeded(theAttr->getReplacedFunctionName());
return;
}
case DeclAttrKind::TypeEraser: {
auto abbrCode = S.DeclTypeAbbrCodes[TypeEraserDeclAttrLayout::Code];
auto attr = cast<TypeEraserAttr>(DA);
auto typeEraser = attr->getResolvedType(cast<ProtocolDecl>(D));
assert(typeEraser && "Failed to resolve erasure type!");
TypeEraserDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
attr->isImplicit(),
S.addTypeRef(typeEraser));
return;
}
case DeclAttrKind::Custom: {
auto abbrCode = S.DeclTypeAbbrCodes[CustomDeclAttrLayout::Code];
auto theAttr = cast<CustomAttr>(DA);
// Macro attributes are not serialized.
if (theAttr->getResolvedMacro())
return;
auto attrType =
D->getResolvedCustomAttrType(const_cast<CustomAttr *>(theAttr));
if (S.skipTypeIfInvalid(attrType, theAttr->getTypeRepr()))
return;
auto typeID = S.addTypeRef(attrType);
CustomDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
typeID, theAttr->isArgUnsafe());
return;
}
case DeclAttrKind::ProjectedValueProperty: {
auto abbrCode =
S.DeclTypeAbbrCodes[ProjectedValuePropertyDeclAttrLayout::Code];
auto theAttr = cast<ProjectedValuePropertyAttr>(DA);
ProjectedValuePropertyDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
S.addDeclBaseNameRef(theAttr->ProjectionPropertyName));
break;
}
case DeclAttrKind::Differentiable: {
auto abbrCode = S.DeclTypeAbbrCodes[DifferentiableDeclAttrLayout::Code];
auto *attr = cast<DifferentiableAttr>(DA);
assert(attr->getOriginalDeclaration() &&
"`@differentiable` attribute should have original declaration set "
"during construction or parsing");
auto *paramIndices = attr->getParameterIndices();
assert(paramIndices && "Parameter indices must be resolved");
SmallVector<bool, 4> paramIndicesVector;
for (unsigned i : range(paramIndices->getCapacity()))
paramIndicesVector.push_back(paramIndices->contains(i));
DifferentiableDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, attr->isImplicit(),
getRawStableDifferentiabilityKind(attr->getDifferentiabilityKind()),
S.addGenericSignatureRef(attr->getDerivativeGenericSignature()),
paramIndicesVector);
return;
}
case DeclAttrKind::Derivative: {
auto abbrCode = S.DeclTypeAbbrCodes[DerivativeDeclAttrLayout::Code];
auto *attr = cast<DerivativeAttr>(DA);
auto &ctx = S.getASTContext();
assert(attr->getOriginalFunction(ctx) && attr->getOriginalDeclaration() &&
"`@derivative` attribute should have original declaration set "
"during construction or parsing");
auto origDeclNameRef = attr->getOriginalFunctionName();
DeclID origDeclID = S.addDeclRef(attr->getOriginalFunction(ctx));
auto derivativeKind =
getRawStableAutoDiffDerivativeFunctionKind(attr->getDerivativeKind());
uint8_t rawAccessorKind = 0;
auto origAccessorKind = origDeclNameRef.AccessorKind;
if (origAccessorKind)
rawAccessorKind = uint8_t(getStableAccessorKind(*origAccessorKind));
auto *parameterIndices = attr->getParameterIndices();
assert(parameterIndices && "Parameter indices must be resolved");
SmallVector<bool, 4> paramIndicesVector;
for (unsigned i : range(parameterIndices->getCapacity()))
paramIndicesVector.push_back(parameterIndices->contains(i));
DerivativeDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, attr->isImplicit(),
origAccessorKind.has_value(), rawAccessorKind, origDeclID,
derivativeKind, paramIndicesVector);
writeDeclNameRefIfNeeded(origDeclNameRef.Name);
return;
}
case DeclAttrKind::Transpose: {
auto abbrCode = S.DeclTypeAbbrCodes[TransposeDeclAttrLayout::Code];
auto *attr = cast<TransposeAttr>(DA);
assert(attr->getOriginalFunction() &&
"`@transpose` attribute should have original declaration set "
"during construction or parsing");
DeclID origDeclID = S.addDeclRef(attr->getOriginalFunction());
auto *parameterIndices = attr->getParameterIndices();
assert(parameterIndices && "Parameter indices must be resolved");
SmallVector<bool, 4> paramIndicesVector;
for (unsigned i : range(parameterIndices->getCapacity()))
paramIndicesVector.push_back(parameterIndices->contains(i));
TransposeDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, attr->isImplicit(), origDeclID,
paramIndicesVector);
writeDeclNameRefIfNeeded(attr->getOriginalFunctionName().Name);
return;
}
case DeclAttrKind::UnavailableFromAsync: {
auto abbrCode =
S.DeclTypeAbbrCodes[UnavailableFromAsyncDeclAttrLayout::Code];
auto *theAttr = cast<UnavailableFromAsyncAttr>(DA);
UnavailableFromAsyncDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
theAttr->Message);
return;
}
case DeclAttrKind::Expose: {
auto *theAttr = cast<ExposeAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[ExposeDeclAttrLayout::Code];
ExposeDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getExposureKind(), theAttr->isImplicit(), theAttr->Name);
return;
}
case DeclAttrKind::Extern: {
auto *theAttr = cast<ExternAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[ExternDeclAttrLayout::Code];
llvm::SmallString<32> blob;
auto moduleName = theAttr->ModuleName.value_or(StringRef());
auto name = theAttr->Name.value_or(StringRef());
blob.append(moduleName);
blob.append(name);
ExternDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
(unsigned)theAttr->getExternKind(),
moduleName.size(), name.size(), blob);
return;
}
case DeclAttrKind::Section: {
auto *theAttr = cast<SectionAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[SectionDeclAttrLayout::Code];
SectionDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Name);
return;
}
case DeclAttrKind::Documentation: {
auto *theAttr = cast<DocumentationAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[DocumentationDeclAttrLayout::Code];
auto metadataIDPair = S.addUniquedString(theAttr->Metadata);
bool hasVisibility = false;
uint8_t visibility = static_cast<uint8_t>(AccessLevel::Private);
if (theAttr->Visibility) {
hasVisibility = true;
visibility = getRawStableAccessLevel(*theAttr->Visibility);
}
DocumentationDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
metadataIDPair.second, hasVisibility, visibility);
return;
}
case DeclAttrKind::Nonisolated: {
auto *theAttr = cast<NonisolatedAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[NonisolatedDeclAttrLayout::Code];
NonisolatedDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
static_cast<uint8_t>(theAttr->getModifier()), theAttr->isImplicit());
return;
}
case DeclAttrKind::InheritActorContext: {
auto *theAttr = cast<InheritActorContextAttr>(DA);
auto abbrCode =
S.DeclTypeAbbrCodes[InheritActorContextDeclAttrLayout::Code];
InheritActorContextDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
static_cast<uint8_t>(theAttr->getModifier()), theAttr->isImplicit());
return;
}
case DeclAttrKind::MacroRole: {
auto *theAttr = cast<MacroRoleAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[MacroRoleDeclAttrLayout::Code];
auto rawMacroRole =
getRawStableMacroRole(theAttr->getMacroRole());
SmallVector<IdentifierID, 4> introducedDeclNames;
for (auto introducedName : theAttr->getNames()) {
introducedDeclNames.push_back(IdentifierID(
getRawStableMacroIntroducedDeclNameKind(introducedName.getKind())));
auto name = introducedName.getName();
introducedDeclNames.push_back(S.addDeclBaseNameRef(name.getBaseName()));
if (name.isSimpleName()) {
introducedDeclNames.push_back(0);
continue;
}
auto argumentLabels = name.getArgumentNames();
introducedDeclNames.push_back(argumentLabels.size() + 1);
for (auto label : argumentLabels)
introducedDeclNames.push_back(S.addDeclBaseNameRef(label));
}
unsigned numNames = introducedDeclNames.size();
auto conformances =
evaluateOrDefault(S.getASTContext().evaluator,
ResolveMacroConformances{theAttr, D}, {});
unsigned numConformances = 0;
for (auto conformance : conformances) {
introducedDeclNames.push_back(S.addTypeRef(conformance));
++numConformances;
}
MacroRoleDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
static_cast<uint8_t>(theAttr->getMacroSyntax()),
rawMacroRole, numNames, numConformances,
introducedDeclNames);
return;
}
case DeclAttrKind::RawLayout: {
auto *attr = cast<RawLayoutAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[RawLayoutDeclAttrLayout::Code];
uint32_t rawSize;
uint8_t rawAlign;
TypeID typeID;
TypeID countID;
auto SD = const_cast<StructDecl*>(cast<StructDecl>(D));
if (auto sizeAndAlign = attr->getSizeAndAlignment()) {
typeID = 0;
countID = 0;
rawSize = sizeAndAlign->first;
rawAlign = sizeAndAlign->second;
} else if (auto likeType
= attr->getResolvedScalarLikeType(SD)) {
typeID = S.addTypeRef(*likeType);
countID = 0;
rawSize = 0;
rawAlign = 0;
} else if (auto likeArrayTypeAndCount
= attr->getResolvedArrayLikeTypeAndCount(SD)) {
typeID = S.addTypeRef(likeArrayTypeAndCount->first);
countID = S.addTypeRef(likeArrayTypeAndCount->second);
rawSize = 0;
rawAlign = 0;
} else {
llvm_unreachable("unhandled raw layout attribute, or trying to serialize unresolved attr!");
}
RawLayoutDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, attr->isImplicit(),
typeID, countID, rawSize, rawAlign, attr->shouldMoveAsLikeType());
return;
}
case DeclAttrKind::Lifetime: {
return;
}
case DeclAttrKind::Nonexhaustive: {
auto *theAttr = cast<NonexhaustiveAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[NonexhaustiveDeclAttrLayout::Code];
NonexhaustiveDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getMode());
return;
}
}
}
void writeDiscriminatorsIfNeeded(const ValueDecl *value) {
using namespace decls_block;
auto *storage = dyn_cast<AbstractStorageDecl>(value);
auto access = value->getFormalAccess();
// Emit the private discriminator for private decls.
// FIXME: We shouldn't need to encode this for /all/ private decls.
// In theory we can follow the same rules as mangling and only include
// the outermost private context.
bool shouldEmitPrivateDiscriminator =
access <= swift::AccessLevel::FilePrivate &&
!value->getDeclContext()->isLocalContext();
// Emit the filename for private mapping for private decls and
// decls with private accessors if compiled with -enable-private-imports.
bool shouldEmitFilenameForPrivate =
S.M->arePrivateImportsEnabled() &&
!value->getDeclContext()->isLocalContext() &&
(access <= swift::AccessLevel::FilePrivate ||
(storage &&
storage->getFormalAccess() >= swift::AccessLevel::Internal &&
storage->hasPrivateAccessor()));
if (shouldEmitFilenameForPrivate || shouldEmitPrivateDiscriminator) {
auto topLevelSubcontext = value->getDeclContext()->getModuleScopeContext();
if (auto *enclosingFile = dyn_cast<FileUnit>(topLevelSubcontext)) {
if (shouldEmitPrivateDiscriminator) {
Identifier discriminator =
enclosingFile->getDiscriminatorForPrivateDecl(value);
unsigned abbrCode =
S.DeclTypeAbbrCodes[PrivateDiscriminatorLayout::Code];
PrivateDiscriminatorLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(discriminator));
}
auto getFilename = [](FileUnit *enclosingFile,
const ValueDecl *decl) -> StringRef {
if (auto *SF = dyn_cast<SourceFile>(enclosingFile)) {
return llvm::sys::path::filename(SF->getFilename());
} else if (auto *LF = dyn_cast<LoadedFile>(enclosingFile)) {
return LF->getFilenameForPrivateDecl(decl);
}
return StringRef();
};
if (shouldEmitFilenameForPrivate) {
auto filename = getFilename(enclosingFile, value);
if (!filename.empty()) {
auto filenameID = S.addFilename(filename);
FilenameForPrivateLayout::emitRecord(
S.Out, S.ScratchRecord,
S.DeclTypeAbbrCodes[FilenameForPrivateLayout::Code],
filenameID);
}
}
}
}
if (value->hasLocalDiscriminator()) {
auto discriminator = value->getLocalDiscriminator();
assert(discriminator != ValueDecl::InvalidDiscriminator);
auto abbrCode = S.DeclTypeAbbrCodes[LocalDiscriminatorLayout::Code];
LocalDiscriminatorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
discriminator);
}
}
void writeDeclNameRefIfNeeded(DeclNameRef name) {
using namespace decls_block;
// DeclNameRefs are always optional and write nothing when absent.
if (!name)
return;
bool isCompoundName = name.isCompoundName();
bool hasModuleSelector = name.hasModuleSelector();
SmallVector<IdentifierID, 8> rawPieceIDs;
if (hasModuleSelector)
rawPieceIDs.push_back(S.addDeclBaseNameRef(name.getModuleSelector()));
rawPieceIDs.push_back(S.addDeclBaseNameRef(name.getBaseName()));
if (isCompoundName)
for (auto argName : name.getArgumentNames())
rawPieceIDs.push_back(S.addDeclBaseNameRef(argName));
auto abbrCode = S.DeclTypeAbbrCodes[DeclNameRefLayout::Code];
DeclNameRefLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
isCompoundName, hasModuleSelector,
rawPieceIDs);
}
size_t addConformances(const IterableDeclContext *declContext,
ConformanceLookupKind lookupKind,
SmallVectorImpl<uint64_t> &data) {
size_t count = 0;
for (auto conformance : declContext->getLocalConformances(lookupKind)) {
if (S.shouldSkipDecl(conformance->getProtocol()))
continue;
data.push_back(S.addConformanceRef(conformance));
count++;
}
return count;
}
public:
/// Determine if \p decl is safe to deserialize when it's public
/// or otherwise needed by the client in normal builds, this should usually
/// correspond to logic in type-checking ensuring these safe decls don't
/// refer to implementation details. We have to be careful not to mark
/// anything needed by a client as unsafe as the client will reject reading
/// it, but at the same time keep the safety checks precise to avoid
/// XRef errors and such.
static bool isDeserializationSafe(const Decl *decl) {
return decl->isExposedToClients();
}
private:
/// Write a \c DeserializationSafetyLayout record only when \p decl is unsafe
/// to deserialize.
///
/// \sa isDeserializationSafe
void writeDeserializationSafety(const Decl *decl) {
using namespace decls_block;
auto DC = decl->getDeclContext();
if (!DC->getParentModule()->isResilient())
return;
// Everything should be safe in a swiftinterface. So, don't emit any safety
// record when building a swiftinterface in release builds. Debug builds
// instead print inconsistencies.
bool fromModuleInterface = DC->isInSwiftinterface();
#if NDEBUG
if (fromModuleInterface)
return;
#endif
// Private imports allow safe access to everything.
if (DC->getParentModule()->arePrivateImportsEnabled() ||
DC->getParentModule()->isTestingEnabled())
return;
// Ignore things with no access level.
// Note: There's likely room to report some of these as unsafe to prevent
// failures.
if (isa<GenericTypeParamDecl>(decl) ||
isa<ParamDecl>(decl) ||
isa<EnumCaseDecl>(decl) ||
isa<EnumElementDecl>(decl))
return;
if (!isa<ValueDecl>(decl) && !isa<ExtensionDecl>(decl))
return;
// Don't look at decls inside functions and
// check the ValueDecls themselves.
auto declIsSafe = DC->isLocalContext() ||
isDeserializationSafe(decl);
#ifdef NDEBUG
// In release builds, bail right away if the decl is safe.
// In debug builds, wait to bail after the debug prints and asserts.
if (declIsSafe)
return;
#endif
// Write a human readable name to an identifier.
SmallString<64> out;
llvm::raw_svector_ostream outStream(out);
if (auto opaque = dyn_cast<OpaqueTypeDecl>(decl)) {
outStream << "opaque ";
outStream << opaque->getOpaqueReturnTypeIdentifier();
} else if (auto val = dyn_cast<ValueDecl>(decl)) {
outStream << val->getName();
} else if (auto ext = dyn_cast<ExtensionDecl>(decl)) {
outStream << "extension ";
if (auto nominalType = ext->getExtendedNominal())
outStream << nominalType->getName();
}
auto name = S.getASTContext().getIdentifier(out);
LLVM_DEBUG(
llvm::dbgs() << "Serialization safety, "
<< (declIsSafe? "safe" : "unsafe")
<< ": '" << name << "'\n";
assert((declIsSafe || !fromModuleInterface) &&
"All swiftinterface decls should be deserialization safe");
);
#ifndef NDEBUG
// Bail out here in debug builds, release builds would bailed out earlier.
if (declIsSafe)
return;
#endif
auto abbrCode = S.DeclTypeAbbrCodes[DeserializationSafetyLayout::Code];
DeserializationSafetyLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(name));
}
void writeForeignErrorConvention(const ForeignErrorConvention &fec) {
using namespace decls_block;
auto kind = getRawStableForeignErrorConventionKind(fec.getKind());
uint8_t isOwned = fec.isErrorOwned() == ForeignErrorConvention::IsOwned;
uint8_t isReplaced = bool(fec.isErrorParameterReplacedWithVoid());
TypeID errorParameterTypeID = S.addTypeRef(fec.getErrorParameterType());
TypeID resultTypeID;
switch (fec.getKind()) {
case ForeignErrorConvention::ZeroResult:
case ForeignErrorConvention::NonZeroResult:
resultTypeID = S.addTypeRef(fec.getResultType());
break;
case ForeignErrorConvention::ZeroPreservedResult:
case ForeignErrorConvention::NilResult:
case ForeignErrorConvention::NonNilError:
resultTypeID = 0;
break;
}
auto abbrCode = S.DeclTypeAbbrCodes[ForeignErrorConventionLayout::Code];
ForeignErrorConventionLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
static_cast<uint8_t>(kind),
isOwned,
isReplaced,
fec.getErrorParameterIndex(),
errorParameterTypeID,
resultTypeID);
}
void writeForeignAsyncConvention(const ForeignAsyncConvention &fac) {
using namespace decls_block;
TypeID completionHandlerTypeID = S.addTypeRef(fac.completionHandlerType());
unsigned rawErrorParameterIndex =
swift::transform(fac.completionHandlerErrorParamIndex(),
[](unsigned index) { return index + 1; })
.value_or(0);
unsigned rawErrorFlagParameterIndex =
swift::transform(fac.completionHandlerFlagParamIndex(),
[](unsigned index) { return index + 1; })
.value_or(0);
auto abbrCode = S.DeclTypeAbbrCodes[ForeignAsyncConventionLayout::Code];
ForeignAsyncConventionLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
completionHandlerTypeID,
fac.completionHandlerParamIndex(),
rawErrorParameterIndex,
rawErrorFlagParameterIndex,
fac.completionHandlerFlagIsErrorOnZero());
}
void writeGenericParams(const GenericParamList *genericParams) {
using namespace decls_block;
// Don't write anything if there are no generic params.
if (!genericParams)
return;
SmallVector<DeclID, 4> paramIDs;
for (auto next : genericParams->getParams())
paramIDs.push_back(S.addDeclRef(next));
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericParamListLayout::Code];
GenericParamListLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
paramIDs);
}
void writeParameterList(const ParameterList *PL) {
using namespace decls_block;
SmallVector<DeclID, 8> paramIDs;
for (const ParamDecl *param : *PL)
paramIDs.push_back(S.addDeclRef(param));
unsigned abbrCode = S.DeclTypeAbbrCodes[ParameterListLayout::Code];
ParameterListLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, paramIDs);
}
/// Writes an array of members for a decl context.
///
/// \param parentID The DeclID of the context.
/// \param members The decls within the context.
/// \param isClass True if the context could be a class context (class,
/// class extension, or protocol).
void writeMembers(DeclID parentID, ArrayRef<Decl *> members, bool isClass) {
using namespace decls_block;
SmallVector<DeclID, 16> memberIDs;
for (auto member : members) {
if (S.shouldSkipDecl(member))
continue;
if (!shouldSerializeMember(member))
continue;
DeclID memberID = S.addDeclRef(member);
memberIDs.push_back(memberID);
if (auto VD = dyn_cast<ValueDecl>(member)) {
// Record parent->members in subtable of DeclMemberNames
if (VD->hasName() &&
!VD->getBaseName().empty()) {
std::unique_ptr<DeclMembersTable> &memberTable =
S.DeclMemberNames[VD->getBaseName()].second;
if (!memberTable) {
memberTable = std::make_unique<DeclMembersTable>();
}
(*memberTable)[parentID].push_back(memberID);
}
// Same as above, but for @_implements attributes
if (auto A = VD->getAttrs().getAttribute<ImplementsAttr>()) {
std::unique_ptr<DeclMembersTable> &memberTable =
S.DeclMemberNames[A->getMemberName().getBaseName()].second;
if (!memberTable) {
memberTable = std::make_unique<DeclMembersTable>();
}
(*memberTable)[parentID].push_back(memberID);
}
// Possibly add a record to ClassMembersForDynamicLookup too.
if (isClass) {
if (VD->canBeAccessedByDynamicLookup()) {
auto &list = S.ClassMembersForDynamicLookup[VD->getBaseName()];
list.push_back({getKindForTable(VD), memberID});
}
}
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[MembersLayout::Code];
MembersLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, memberIDs);
}
/// Writes the given pattern, recursively.
void writePattern(const Pattern *pattern) {
using namespace decls_block;
// Retrieve the type of the pattern.
auto getPatternType = [&] {
if (!pattern->hasType()) {
if (S.allowCompilerErrors())
return ErrorType::get(S.getASTContext());
llvm_unreachable("all nodes should have types");
}
Type type = pattern->getType();
// If we have a contextual type, map out to an interface type.
if (type->hasArchetype())
type = type->mapTypeOutOfContext();
return type;
};
assert(pattern && "null pattern");
switch (pattern->getKind()) {
case PatternKind::Paren: {
unsigned abbrCode = S.DeclTypeAbbrCodes[ParenPatternLayout::Code];
ParenPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode);
writePattern(cast<ParenPattern>(pattern)->getSubPattern());
break;
}
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(pattern);
unsigned abbrCode = S.DeclTypeAbbrCodes[TuplePatternLayout::Code];
TuplePatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(getPatternType()),
tuple->getNumElements());
abbrCode = S.DeclTypeAbbrCodes[TuplePatternEltLayout::Code];
for (auto &elt : tuple->getElements()) {
// FIXME: Default argument expressions?
TuplePatternEltLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(elt.getLabel()));
writePattern(elt.getPattern());
}
break;
}
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
auto ty = getPatternType();
if (S.skipTypeIfInvalid(ty, named->getLoc()))
break;
unsigned abbrCode = S.DeclTypeAbbrCodes[NamedPatternLayout::Code];
NamedPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(named->getDecl()),
S.addTypeRef(ty));
break;
}
case PatternKind::Any: {
auto ty = getPatternType();
if (S.skipTypeIfInvalid(ty, pattern->getLoc()))
break;
unsigned abbrCode = S.DeclTypeAbbrCodes[AnyPatternLayout::Code];
auto anyPattern = cast<AnyPattern>(pattern);
AnyPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(ty),
anyPattern->isAsyncLet());
break;
}
case PatternKind::Typed: {
auto typed = cast<TypedPattern>(pattern);
auto ty = getPatternType();
if (S.skipTypeIfInvalid(ty, typed->getTypeRepr()))
break;
unsigned abbrCode = S.DeclTypeAbbrCodes[TypedPatternLayout::Code];
TypedPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(ty));
writePattern(typed->getSubPattern());
break;
}
case PatternKind::Is:
case PatternKind::EnumElement:
case PatternKind::OptionalSome:
case PatternKind::Bool:
case PatternKind::Expr:
llvm_unreachable("Refutable patterns cannot be serialized");
case PatternKind::Binding: {
auto var = cast<BindingPattern>(pattern);
unsigned abbrCode = S.DeclTypeAbbrCodes[BindingPatternLayout::Code];
BindingPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
getRawStableVarDeclIntroducer(var->getIntroducer()));
writePattern(var->getSubPattern());
break;
}
}
}
void writeInheritedProtocols(ArrayRef<ProtocolDecl *> inherited) {
using namespace decls_block;
SmallVector<DeclID, 4> inheritedIDs;
llvm::transform(inherited, std::back_inserter(inheritedIDs),
[&](const ProtocolDecl *P) { return S.addDeclRef(P); });
unsigned abbrCode = S.DeclTypeAbbrCodes[InheritedProtocolsLayout::Code];
InheritedProtocolsLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
inheritedIDs);
}
void writeDefaultWitnessTable(const ProtocolDecl *proto) {
using namespace decls_block;
SmallVector<DeclID, 16> witnessIDs;
for (auto member : proto->getAllMembers()) {
if (auto *value = dyn_cast<ValueDecl>(member)) {
auto witness = proto->getDefaultWitness(value);
if (!witness)
continue;
DeclID requirementID = S.addDeclRef(value);
DeclID witnessID = S.addDeclRef(witness.getDecl());
witnessIDs.push_back(requirementID);
witnessIDs.push_back(witnessID);
// FIXME: Substitutions
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[DefaultWitnessTableLayout::Code];
DefaultWitnessTableLayout::emitRecord(S.Out, S.ScratchRecord,
abbrCode, witnessIDs);
}
/// Writes the body text of the provided function, if the function is
/// inlinable and has body text.
void writeInlinableBodyTextIfNeeded(const AbstractFunctionDecl *AFD) {
using namespace decls_block;
// Only serialize the text for an inlinable function body if we're emitting
// a partial module. It's not needed in the final module file, but it's
// needed in partial modules so you can emit a module interface after
// merging them.
if (!S.SF) return;
if (AFD->getResilienceExpansion() != swift::ResilienceExpansion::Minimal)
return;
if (!AFD->hasInlinableBodyText()) return;
SmallString<128> scratch;
auto body = AFD->getInlinableBodyText(scratch);
unsigned abbrCode = S.DeclTypeAbbrCodes[InlinableBodyTextLayout::Code];
InlinableBodyTextLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, body);
}
static bool getNeedsNewTableEntry(const AbstractFunctionDecl *func) {
if (isa_and_nonnull<ProtocolDecl>(func->getDeclContext()))
return func->requiresNewWitnessTableEntry();
return func->needsNewVTableEntry();
}
unsigned getNumberOfRequiredTableEntries(
const AbstractStorageDecl *storage) const {
unsigned count = 0;
for (auto *accessor : storage->getAllAccessors()) {
if (getNeedsNewTableEntry(accessor))
count++;
}
return count;
}
/// Returns true if a client can still use decls that override \p overridden
/// even if \p overridden itself isn't available (isn't found, can't be
/// imported, can't be deserialized, whatever).
///
/// This should be kept conservative. Compiler crashes are still better than
/// miscompiles.
static bool overriddenDeclAffectsABI(const ValueDecl *override,
const ValueDecl *overridden) {
if (!overridden)
return false;
// There's a few cases where we know a declaration doesn't affect the ABI of
// its overrides after they've been compiled: if the declaration is '@objc'
// and 'dynamic'. In that case, all accesses to the method or property will
// go through the Objective-C method tables anyway.
if (!isa<ConstructorDecl>(override) &&
(overridden->hasClangNode() || overridden->shouldUseObjCDispatch()))
return false;
// In a public-override-internal case, the override doesn't have ABI
// implications. This corresponds to hiding the override keyword from the
// module interface.
auto isPublic = [](const ValueDecl *VD) {
return VD->getFormalAccessScope(VD->getDeclContext(),
/*treatUsableFromInlineAsPublic*/true)
.isPublic();
};
if (override->getDeclContext()->getParentModule()->isResilient() &&
isPublic(override) && !isPublic(overridden))
return false;
return true;
}
public:
DeclSerializer(Serializer &S, DeclID id,
SmallVectorImpl<DeclID> &exportedPrespecializationDecls)
: S(S), id(id),
exportedPrespecializationDecls(exportedPrespecializationDecls) {}
~DeclSerializer() {
assert(didVerifyAttrs);
}
void visit(const Decl *D) {
if (D->isInvalid())
writeDeclErrorFlag();
writeDeserializationSafety(D);
auto abiRole = ABIRoleInfo(D);
if (!abiRole.providesAPI())
writeABIOnlyCounterpart(abiRole.getCounterpartUnchecked());
// Emit attributes (if any).
for (auto Attr : D->getAttrs())
writeDeclAttribute(D, Attr);
if (auto *value = dyn_cast<ValueDecl>(D))
writeDiscriminatorsIfNeeded(value);
if (auto *afd = dyn_cast<AbstractFunctionDecl>(D)) {
noteUseOfExportedPrespecialization(afd);
}
DeclVisitor<DeclSerializer>::visit(const_cast<Decl *>(D));
}
void writeDeclErrorFlag() {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[ErrorFlagLayout::Code];
ErrorFlagLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode);
}
void writeABIOnlyCounterpart(const Decl *counterpart) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[ABIOnlyCounterpartLayout::Code];
ABIOnlyCounterpartLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(counterpart));
}
void noteUseOfExportedPrespecialization(const AbstractFunctionDecl *afd) {
bool hasNoted = false;
for (auto *A : afd->getAttrs().getAttributes<AbstractSpecializeAttr>()) {
auto *SA = cast<AbstractSpecializeAttr>(A);
if (!SA->isExported())
continue;
if (SA->getTargetFunctionDecl(afd)) {
if (!hasNoted)
exportedPrespecializationDecls.push_back(S.addDeclRef(afd));
hasNoted = true;
}
}
}
/// If this gets referenced, we forgot to handle a decl.
void visitDecl(const Decl *) = delete;
/// Add all of the inherited entries to the result vector.
///
/// \returns the number of entries added.
size_t addInherited(InheritedTypes inheritedEntries,
SmallVectorImpl<uint64_t> &result) {
for (size_t i : inheritedEntries.getIndices()) {
// Ensure that we run the `InheritedTypeRequest` before getting the
// inherited type. We serialize the inherited type from `getEntry` rather
// than `getResolvedType` since the former represents a suppressed
// conformance as a separate bit distinct from the type, which is how we
// want to serialize it. We thus need to get the type to serialize using a
// subsequent call to `getEntry(i).getType()` (see
// `InheritedTypeRequest::cacheResult`).
(void)inheritedEntries.getResolvedType(i);
const InheritedEntry &inherited = inheritedEntries.getEntry(i);
assert(!inherited.getType() || !inherited.getType()->hasArchetype());
uint64_t typeRef = S.addTypeRef(inherited.getType());
uint64_t originalTypeRef = typeRef;
// Encode options in the low bits.
// Note that we drop the global actor isolation bit, because we don't
// serialize this information. This information is available in the
// conformance itself.
auto inheritedOptions =
inherited.getOptions() - ProtocolConformanceFlags::GlobalActorIsolated;
typeRef = (typeRef << NumProtocolConformanceOptions) |
inheritedOptions.toRaw();
// Encode "suppressed" in the next bit.
typeRef = (typeRef << 1) | (inherited.isSuppressed() ? 0x01 : 0x00);
assert(typeRef >> (NumProtocolConformanceOptions+1) == originalTypeRef);
(void)originalTypeRef;
result.push_back(typeRef);
}
return inheritedEntries.size();
}
void visitExtensionDecl(const ExtensionDecl *extension) {
using namespace decls_block;
verifyAttrSerializable(extension);
auto contextID = S.addDeclContextRef(extension->getDeclContext());
Type extendedType = extension->getExtendedType();
assert(!extendedType->hasArchetype());
// FIXME: Use the canonical type here in order to minimize circularity
// issues at deserialization time. A known problematic case here is
// "extension of typealias Foo"; "typealias Foo = SomeKit.Bar"; and then
// trying to import Bar accidentally asking for all of its extensions
// (perhaps because we're searching for a conformance).
//
// We could limit this to only the problematic cases, but it seems like a
// simpler user model to just always desugar extension types.
extendedType = extendedType->getCanonicalType();
SmallVector<uint64_t, 8> data;
size_t numConformances =
addConformances(extension, ConformanceLookupKind::All, data);
size_t numInherited = addInherited(
extension->getInherited(), data);
swift::SmallSetVector<Type, 4> dependencies;
collectDependenciesFromType(
dependencies, extendedType, /*excluding*/nullptr);
for (Requirement req : extension->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencies, req,
/*excluding*/nullptr);
}
for (auto dependencyTy : dependencies)
data.push_back(S.addTypeRef(dependencyTy));
unsigned abbrCode = S.DeclTypeAbbrCodes[ExtensionLayout::Code];
auto extendedNominal = extension->getExtendedNominal();
ExtensionLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(extendedType),
S.addDeclRef(extendedNominal),
contextID.getOpaqueValue(),
extension->isImplicit(),
S.addGenericSignatureRef(
extension->getGenericSignature()),
numConformances,
numInherited,
data);
bool isClassExtension = false;
if (extendedNominal) {
isClassExtension = isa<ClassDecl>(extendedNominal) ||
isa<ProtocolDecl>(extendedNominal);
}
// Extensions of nested generic types have multiple generic parameter
// lists. Collect them all, from the innermost to outermost.
SmallVector<GenericParamList *, 2> allGenericParams;
for (auto *genericParams = extension->getGenericParams();
genericParams != nullptr;
genericParams = genericParams->getOuterParameters()) {
allGenericParams.push_back(genericParams);
}
// Reverse the list, and write the parameter lists, from outermost
// to innermost.
for (auto *genericParams : llvm::reverse(allGenericParams))
writeGenericParams(genericParams);
writeMembers(id, extension->getAllMembers(), isClassExtension);
}
void visitPatternBindingDecl(const PatternBindingDecl *binding) {
using namespace decls_block;
verifyAttrSerializable(binding);
auto contextID = S.addDeclContextRef(binding->getDeclContext());
SmallVector<uint64_t, 2> initContextIDs;
for (unsigned i : range(binding->getNumPatternEntries())) {
auto initContextID =
S.addDeclContextRef(binding->getInitContext(i));
if (!initContextIDs.empty()) {
initContextIDs.push_back(initContextID.getOpaqueValue());
} else if (initContextID) {
initContextIDs.append(i, 0);
initContextIDs.push_back(initContextID.getOpaqueValue());
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[PatternBindingLayout::Code];
PatternBindingLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, contextID.getOpaqueValue(),
binding->isImplicit(), binding->isStatic(),
uint8_t(getStableStaticSpelling(binding->getStaticSpelling())),
binding->getNumPatternEntries(),
initContextIDs);
for (auto entryIdx : range(binding->getNumPatternEntries())) {
auto pattern = binding->getPattern(entryIdx);
// Force the entry to be typechecked before attempting to serialize.
if (!pattern->hasType())
(void)binding->getCheckedPatternBindingEntry(entryIdx);
writePattern(pattern);
// Ignore initializer; external clients don't need to know about it.
}
}
void visitPrecedenceGroupDecl(const PrecedenceGroupDecl *group) {
using namespace decls_block;
verifyAttrSerializable(group);
auto contextID = S.addDeclContextRef(group->getDeclContext());
auto nameID = S.addDeclBaseNameRef(group->getName());
auto associativity = getRawStableAssociativity(group->getAssociativity());
SmallVector<DeclID, 8> relations;
for (auto &rel : group->getHigherThan()) {
if (rel.Group) {
relations.push_back(S.addDeclRef(rel.Group));
} else if (!S.allowCompilerErrors()) {
assert(rel.Group && "Undiagnosed invalid precedence group!");
}
}
size_t numHigher = relations.size();
for (auto &rel : group->getLowerThan()) {
if (rel.Group) {
relations.push_back(S.addDeclRef(rel.Group));
} else if (!S.allowCompilerErrors()) {
assert(rel.Group && "Undiagnosed invalid precedence group!");
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[PrecedenceGroupLayout::Code];
PrecedenceGroupLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
nameID, contextID.getOpaqueValue(),
associativity, group->isAssignment(),
numHigher, relations);
}
void visitInfixOperatorDecl(const InfixOperatorDecl *op) {
using namespace decls_block;
verifyAttrSerializable(op);
auto contextID = S.addDeclContextRef(op->getDeclContext());
auto nameID = S.addDeclBaseNameRef(op->getName());
auto groupID = S.addDeclRef(op->getPrecedenceGroup());
unsigned abbrCode = S.DeclTypeAbbrCodes[InfixOperatorLayout::Code];
InfixOperatorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, nameID,
contextID.getOpaqueValue(), groupID);
}
template <typename Layout>
void visitUnaryOperatorDecl(const OperatorDecl *op) {
auto contextID = S.addDeclContextRef(op->getDeclContext());
unsigned abbrCode = S.DeclTypeAbbrCodes[Layout::Code];
Layout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(op->getName()),
contextID.getOpaqueValue());
}
void visitPrefixOperatorDecl(const PrefixOperatorDecl *op) {
using namespace decls_block;
verifyAttrSerializable(op);
visitUnaryOperatorDecl<PrefixOperatorLayout>(op);
}
void visitPostfixOperatorDecl(const PostfixOperatorDecl *op) {
using namespace decls_block;
verifyAttrSerializable(op);
visitUnaryOperatorDecl<PostfixOperatorLayout>(op);
}
void visitTypeAliasDecl(const TypeAliasDecl *typeAlias) {
using namespace decls_block;
assert(!typeAlias->isObjC() && "ObjC typealias is not meaningful");
verifyAttrSerializable(typeAlias);
auto contextID = S.addDeclContextRef(typeAlias->getDeclContext());
auto underlying = typeAlias->getUnderlyingType();
swift::SmallSetVector<Type, 4> dependencies;
collectDependenciesFromType(dependencies, underlying->getCanonicalType(),
/*excluding*/nullptr);
for (Requirement req : typeAlias->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencies, req,
/*excluding*/nullptr);
}
SmallVector<TypeID, 4> dependencyIDs;
for (Type dep : dependencies)
dependencyIDs.push_back(S.addTypeRef(dep));
uint8_t rawAccessLevel =
getRawStableAccessLevel(typeAlias->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[TypeAliasLayout::Code];
TypeAliasLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(typeAlias->getName()),
contextID.getOpaqueValue(),
S.addTypeRef(underlying),
/*no longer used*/TypeID(),
typeAlias->isImplicit(),
S.addGenericSignatureRef(
typeAlias->getGenericSignature()),
rawAccessLevel,
dependencyIDs);
writeGenericParams(typeAlias->getGenericParams());
}
void visitGenericTypeParamDecl(const GenericTypeParamDecl *genericParam) {
using namespace decls_block;
verifyAttrSerializable(genericParam);
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericTypeParamDeclLayout::Code];
GenericTypeParamDeclLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(genericParam->getName()),
genericParam->isImplicit(),
genericParam->isOpaqueType(),
S.addTypeRef(genericParam->getDeclaredInterfaceType()->getCanonicalType()));
}
void visitAssociatedTypeDecl(const AssociatedTypeDecl *assocType) {
using namespace decls_block;
verifyAttrSerializable(assocType);
auto contextID = S.addDeclContextRef(assocType->getDeclContext());
SmallVector<DeclID, 4> overriddenAssocTypeIDs;
for (auto overridden : assocType->getOverriddenDecls()) {
overriddenAssocTypeIDs.push_back(S.addDeclRef(overridden));
}
unsigned abbrCode = S.DeclTypeAbbrCodes[AssociatedTypeDeclLayout::Code];
AssociatedTypeDeclLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(assocType->getName()),
contextID.getOpaqueValue(),
S.addTypeRef(assocType->getDefaultDefinitionType()),
assocType->isImplicit(),
overriddenAssocTypeIDs);
}
void visitStructDecl(const StructDecl *theStruct) {
using namespace decls_block;
verifyAttrSerializable(theStruct);
auto contextID = S.addDeclContextRef(theStruct->getDeclContext());
SmallVector<uint64_t, 4> data;
size_t numConformances =
addConformances(theStruct, ConformanceLookupKind::All, data);
size_t numInherited = addInherited(theStruct->getInherited(), data);
swift::SmallSetVector<Type, 4> dependencyTypes;
for (Requirement req : theStruct->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/nullptr);
}
for (Type ty : dependencyTypes)
data.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theStruct->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[StructLayout::Code];
StructLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(theStruct->getName()),
contextID.getOpaqueValue(),
theStruct->isImplicit(),
theStruct->isObjC(),
S.addGenericSignatureRef(
theStruct->getGenericSignature()),
rawAccessLevel,
numConformances,
numInherited,
data);
writeGenericParams(theStruct->getGenericParams());
writeMembers(id, theStruct->getAllMembers(), false);
}
void visitEnumDecl(const EnumDecl *theEnum) {
using namespace decls_block;
verifyAttrSerializable(theEnum);
auto contextID = S.addDeclContextRef(theEnum->getDeclContext());
SmallVector<uint64_t, 4> data;
size_t numConformances =
addConformances(theEnum, ConformanceLookupKind::All, data);
size_t numInherited = addInherited(theEnum->getInherited(), data);
swift::SmallSetVector<Type, 4> dependencyTypes;
for (const EnumElementDecl *nextElt : theEnum->getAllElements()) {
if (!nextElt->hasAssociatedValues())
continue;
// FIXME: Types in the same module are still important for enums. It's
// possible an enum element has a payload that references a type
// declaration from the same module that can't be imported (for whatever
// reason). However, we need a more robust handling of deserialization
// dependencies that can handle circularities. rdar://problem/32359173
collectDependenciesFromType(dependencyTypes,
nextElt->getPayloadInterfaceType(),
/*excluding*/theEnum->getParentModule());
}
for (Requirement req : theEnum->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/nullptr);
}
for (Type ty : dependencyTypes)
data.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theEnum->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[EnumLayout::Code];
EnumLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(theEnum->getName()),
contextID.getOpaqueValue(),
theEnum->isImplicit(),
theEnum->isObjC(),
S.addGenericSignatureRef(
theEnum->getGenericSignature()),
S.addTypeRef(theEnum->getRawType()),
rawAccessLevel,
numConformances,
numInherited,
data);
writeGenericParams(theEnum->getGenericParams());
writeMembers(id, theEnum->getAllMembers(), false);
}
void visitClassDecl(const ClassDecl *theClass) {
using namespace decls_block;
verifyAttrSerializable(theClass);
assert(!theClass->isForeign());
auto contextID = S.addDeclContextRef(theClass->getDeclContext());
SmallVector<uint64_t, 4> data;
size_t numConformances =
addConformances(theClass, ConformanceLookupKind::NonInherited, data);
size_t numInherited = addInherited(theClass->getInherited(), data);
swift::SmallSetVector<Type, 4> dependencyTypes;
if (theClass->hasSuperclass()) {
// FIXME: Nested types can still be a problem here: it's possible that (for
// whatever reason) they won't be able to be deserialized, in which case
// we'll be in trouble forming the actual superclass type. However, we
// need a more robust handling of deserialization dependencies that can
// handle circularities. rdar://problem/50835214
collectDependenciesFromType(dependencyTypes, theClass->getSuperclass(),
/*excluding*/theClass);
}
for (Requirement req : theClass->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/nullptr);
}
for (Type ty : dependencyTypes)
data.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theClass->getFormalAccess());
auto mutableClass = const_cast<ClassDecl *>(theClass);
unsigned abbrCode = S.DeclTypeAbbrCodes[ClassLayout::Code];
ClassLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(theClass->getName()),
contextID.getOpaqueValue(),
theClass->isImplicit(),
theClass->isObjC(),
theClass->isExplicitActor(),
mutableClass->inheritsSuperclassInitializers(),
mutableClass->hasMissingDesignatedInitializers(),
S.addGenericSignatureRef(
theClass->getGenericSignature()),
S.addTypeRef(theClass->getSuperclass()),
rawAccessLevel,
numConformances,
numInherited,
data);
writeGenericParams(theClass->getGenericParams());
writeMembers(id, theClass->getAllMembers(), true);
}
void visitProtocolDecl(const ProtocolDecl *proto) {
using namespace decls_block;
verifyAttrSerializable(proto);
auto contextID = S.addDeclContextRef(proto->getDeclContext());
swift::SmallSetVector<Type, 4> dependencyTypes;
// Separately collect inherited protocol types as dependencies.
for (auto element : proto->getInherited().getEntries()) {
auto elementType = element.getType();
assert(!elementType || !elementType->hasArchetype());
if (elementType &&
(elementType->is<ProtocolType>() ||
elementType->is<ProtocolCompositionType>()))
dependencyTypes.insert(elementType);
}
auto requirementSig = proto->getRequirementSignature();
for (Requirement req : requirementSig.getRequirements()) {
// Requirements can be cyclic, so for now filter out any requirements
// from elsewhere in the module. This isn't perfect---something else in
// the module could very well fail to compile for its own reasons---but
// it's better than nothing.
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/S.M);
}
for (ProtocolTypeAlias typeAlias : requirementSig.getTypeAliases()) {
collectDependenciesFromType(dependencyTypes,
typeAlias.getUnderlyingType(),
/*excluding*/S.M);
}
SmallVector<TypeID, 4> dependencyTypeIDs;
for (Type ty : dependencyTypes)
dependencyTypeIDs.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel = getRawStableAccessLevel(proto->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[ProtocolLayout::Code];
ProtocolLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(proto->getName()),
contextID.getOpaqueValue(),
proto->isImplicit(),
const_cast<ProtocolDecl *>(proto)
->requiresClass(),
proto->isObjC(),
proto->hasSelfOrAssociatedTypeRequirements(),
S.addDeclRef(proto->getSuperclassDecl()),
rawAccessLevel,
dependencyTypeIDs);
writeInheritedProtocols(proto->getInheritedProtocols());
writeGenericParams(proto->getGenericParams());
S.writeRequirementSignature(proto->getRequirementSignature());
S.writeAssociatedTypes(proto->getAssociatedTypeMembers());
S.writePrimaryAssociatedTypes(proto->getPrimaryAssociatedTypes());
writeMembers(id, proto->getAllMembers(), true);
writeDefaultWitnessTable(proto);
}
void visitVarDecl(const VarDecl *var) {
using namespace decls_block;
verifyAttrSerializable(var);
auto contextID = S.addDeclContextRef(var->getDeclContext());
Accessors accessors = getAccessors(var);
uint8_t rawAccessLevel = getRawStableAccessLevel(var->getFormalAccess());
uint8_t rawSetterAccessLevel = rawAccessLevel;
if (var->isSettable(nullptr))
rawSetterAccessLevel =
getRawStableAccessLevel(var->getSetterFormalAccess());
unsigned numBackingProperties = 0;
Type ty = var->getInterfaceType();
SmallVector<TypeID, 2> arrayFields;
for (auto accessor : accessors.Decls)
arrayFields.push_back(S.addDeclRef(accessor));
if (auto backingInfo = var->getPropertyWrapperAuxiliaryVariables()) {
if (backingInfo.backingVar) {
++numBackingProperties;
arrayFields.push_back(S.addDeclRef(backingInfo.backingVar));
}
if (backingInfo.projectionVar) {
++numBackingProperties;
arrayFields.push_back(S.addDeclRef(backingInfo.projectionVar));
}
}
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
arrayFields.push_back(S.addTypeRef(dependency));
VarDecl *lazyStorage = nullptr;
if (var->getAttrs().hasAttribute<LazyAttr>())
lazyStorage = var->getLazyStorageProperty();
auto rawIntroducer = getRawStableVarDeclIntroducer(var->getIntroducer());
unsigned numTableEntries = getNumberOfRequiredTableEntries(var);
unsigned abbrCode = S.DeclTypeAbbrCodes[VarLayout::Code];
VarLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(var->getName()),
contextID.getOpaqueValue(),
var->isImplicit(),
var->isObjC(),
var->isStatic(),
rawIntroducer,
var->isGetterMutating(),
var->isSetterMutating(),
var->isLazyStorageProperty(),
var->isTopLevelGlobal(),
S.addDeclRef(lazyStorage),
accessors.OpaqueReadOwnership,
accessors.ReadImpl,
accessors.WriteImpl,
accessors.ReadWriteImpl,
accessors.Decls.size(),
S.addTypeRef(ty),
var->isImplicitlyUnwrappedOptional(),
S.addDeclRef(var->getOverriddenDecl()),
rawAccessLevel, rawSetterAccessLevel,
S.addDeclRef(var->getOpaqueResultTypeDecl()),
numBackingProperties,
numTableEntries,
arrayFields);
}
void visitParamDecl(const ParamDecl *param) {
using namespace decls_block;
verifyAttrSerializable(param);
auto contextID = S.addDeclContextRef(param->getDeclContext());
Type interfaceType = param->getInterfaceType();
// Only save the text for normal and stored property default arguments, not
// any of the special ones.
StringRef defaultArgumentText;
SmallString<128> scratch;
// Type of the default expression.
Type defaultExprType;
swift::DefaultArgumentKind argKind = param->getDefaultArgumentKind();
if (argKind == swift::DefaultArgumentKind::Normal ||
argKind == swift::DefaultArgumentKind::StoredProperty ||
argKind == swift::DefaultArgumentKind::ExpressionMacro) {
defaultArgumentText =
param->getDefaultValueStringRepresentation(scratch);
// Serialize the type of the default expression (if any).
if (!param->hasCallerSideDefaultExpr())
defaultExprType = param->getTypeOfDefaultExpr();
}
auto isolation = param->getInitializerIsolation();
Type globalActorType;
if (isolation.isGlobalActor())
globalActorType = isolation.getGlobalActor();
unsigned abbrCode = S.DeclTypeAbbrCodes[ParamLayout::Code];
ParamLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(param->getArgumentName()),
S.addDeclBaseNameRef(param->getName()),
contextID.getOpaqueValue(),
getRawStableParamDeclSpecifier(param->getSpecifier()),
S.addTypeRef(interfaceType),
param->isImplicitlyUnwrappedOptional(),
param->isVariadic(),
param->isAutoClosure(),
param->isIsolated(),
param->isCompileTimeLiteral(),
param->isConstVal(),
param->isSending(),
param->isAddressable(),
getRawStableDefaultArgumentKind(argKind),
S.addTypeRef(defaultExprType),
getRawStableActorIsolationKind(isolation.getKind()),
S.addTypeRef(globalActorType),
defaultArgumentText);
if (interfaceType->hasError() && !S.allowCompilerErrors()) {
param->getDeclContext()->printContext(llvm::errs());
interfaceType->dump(llvm::errs());
llvm_unreachable("error in interface type of parameter");
}
}
void visitFuncDecl(const FuncDecl *fn) {
using namespace decls_block;
verifyAttrSerializable(fn);
auto contextID = S.addDeclContextRef(fn->getDeclContext());
unsigned abbrCode = S.DeclTypeAbbrCodes[FuncLayout::Code];
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
nameComponentsAndDependencies.push_back(
S.addDeclBaseNameRef(fn->getBaseName()));
for (auto argName : fn->getName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
uint8_t rawAccessLevel = getRawStableAccessLevel(fn->getFormalAccess());
Type ty = fn->getInterfaceType();
for (auto dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
FuncLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
fn->isImplicit(),
fn->isStatic(),
uint8_t(
getStableStaticSpelling(fn->getStaticSpelling())),
fn->isObjC(),
uint8_t(
getStableSelfAccessKind(fn->getSelfAccessKind())),
fn->hasForcedStaticDispatch(),
fn->hasAsync(),
fn->hasThrows(),
S.addTypeRef(fn->getThrownInterfaceType()),
S.addGenericSignatureRef(
fn->getGenericSignature()),
S.addTypeRef(fn->getResultInterfaceType()),
fn->isImplicitlyUnwrappedOptional(),
S.addDeclRef(fn->getOperatorDecl()),
S.addDeclRef(fn->getOverriddenDecl()),
overriddenDeclAffectsABI(fn, fn->getOverriddenDecl()),
fn->getName().getArgumentNames().size() +
fn->getName().isCompoundName(),
rawAccessLevel,
getNeedsNewTableEntry(fn),
S.addDeclRef(fn->getOpaqueResultTypeDecl()),
fn->isUserAccessible(),
fn->isDistributedThunk(),
fn->hasSendingResult(),
nameComponentsAndDependencies);
writeGenericParams(fn->getGenericParams());
// Write the body parameters.
writeParameterList(fn->getParameters());
auto fnType = ty->getAs<AnyFunctionType>();
if (fnType) {
auto lifetimeDependencies = fnType->getLifetimeDependencies();
if (!lifetimeDependencies.empty()) {
S.writeLifetimeDependencies(lifetimeDependencies);
}
}
if (auto errorConvention = fn->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
if (auto asyncConvention = fn->getForeignAsyncConvention())
writeForeignAsyncConvention(*asyncConvention);
writeInlinableBodyTextIfNeeded(fn);
}
void visitOpaqueTypeDecl(const OpaqueTypeDecl *opaqueDecl) {
using namespace decls_block;
verifyAttrSerializable(opaqueDecl);
auto namingDeclID = S.addDeclRef(opaqueDecl->getNamingDecl());
auto contextID = S.addDeclContextRef(opaqueDecl->getDeclContext());
auto interfaceSigID = S.addGenericSignatureRef(
opaqueDecl->getOpaqueInterfaceGenericSignature());
auto interfaceTypeID = S.addTypeRef(opaqueDecl->getDeclaredInterfaceType());
auto genericSigID = S.addGenericSignatureRef(opaqueDecl->getGenericSignature());
SubstitutionMapID underlyingSubsID = 0;
if (auto underlying = opaqueDecl->getUniqueUnderlyingTypeSubstitutions()) {
underlyingSubsID = S.addSubstitutionMapRef(*underlying);
} else if (opaqueDecl->hasConditionallyAvailableSubstitutions()) {
// Universally available type doesn't have any availability conditions
// so it could be serialized into "unique" slot to safe space.
auto universal =
opaqueDecl->getConditionallyAvailableSubstitutions().back();
underlyingSubsID = S.addSubstitutionMapRef(universal->getSubstitutions());
}
uint8_t rawAccessLevel =
getRawStableAccessLevel(opaqueDecl->getFormalAccess());
bool exportDetails = opaqueDecl->exportUnderlyingType();
unsigned abbrCode = S.DeclTypeAbbrCodes[OpaqueTypeLayout::Code];
OpaqueTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(), namingDeclID,
interfaceSigID, interfaceTypeID, genericSigID,
underlyingSubsID, rawAccessLevel,
exportDetails);
writeGenericParams(opaqueDecl->getGenericParams());
// Serialize all of the conditionally available substitutions expect the
// last one - universal, it's serialized into "unique" slot.
if (opaqueDecl->hasConditionallyAvailableSubstitutions()) {
unsigned abbrCode =
S.DeclTypeAbbrCodes[ConditionalSubstitutionLayout::Code];
for (const auto *subs :
opaqueDecl->getConditionallyAvailableSubstitutions().drop_back()) {
ConditionalSubstitutionLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addSubstitutionMapRef(subs->getSubstitutions()));
unsigned condAbbrCode =
S.DeclTypeAbbrCodes[ConditionalSubstitutionConditionLayout::Code];
for (const auto &query : subs->getAvailabilityQueries()) {
// FIXME: [availability] Support arbitrary domains (rdar://156513787).
DEBUG_ASSERT(query.getDomain().isPlatform());
auto availableRange = query.getPrimaryRange().value_or(
AvailabilityRange::alwaysAvailable());
ENCODE_VER_TUPLE(osVersion,
std::optional<llvm::VersionTuple>(
availableRange.getRawMinimumVersion()));
ConditionalSubstitutionConditionLayout::emitRecord(
S.Out, S.ScratchRecord, condAbbrCode, query.isUnavailability(),
LIST_VER_TUPLE_PIECES(osVersion));
}
}
}
}
void visitAccessorDecl(const AccessorDecl *fn) {
using namespace decls_block;
verifyAttrSerializable(fn);
auto contextID = S.addDeclContextRef(fn->getDeclContext());
unsigned abbrCode = S.DeclTypeAbbrCodes[AccessorLayout::Code];
uint8_t rawAccessLevel = getRawStableAccessLevel(fn->getFormalAccess());
uint8_t rawAccessorKind =
uint8_t(getStableAccessorKind(fn->getAccessorKind()));
bool overriddenAffectsABI =
overriddenDeclAffectsABI(fn, fn->getOverriddenDecl());
Type ty = fn->getInterfaceType();
SmallVector<IdentifierID, 4> dependencies;
for (auto dependency : collectDependenciesFromType(ty->getCanonicalType()))
dependencies.push_back(S.addTypeRef(dependency));
AccessorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
fn->isImplicit(),
fn->isStatic(),
uint8_t(getStableStaticSpelling(
fn->getStaticSpelling())),
fn->isObjC(),
uint8_t(getStableSelfAccessKind(
fn->getSelfAccessKind())),
fn->hasForcedStaticDispatch(),
fn->hasAsync(),
fn->hasThrows(),
S.addTypeRef(fn->getThrownInterfaceType()),
S.addGenericSignatureRef(
fn->getGenericSignature()),
S.addTypeRef(fn->getResultInterfaceType()),
fn->isImplicitlyUnwrappedOptional(),
S.addDeclRef(fn->getOverriddenDecl()),
overriddenAffectsABI,
S.addDeclRef(fn->getStorage()),
rawAccessorKind,
rawAccessLevel,
getNeedsNewTableEntry(fn),
fn->isTransparent(),
fn->isDistributedThunk(),
dependencies);
writeGenericParams(fn->getGenericParams());
// Write the body parameters.
writeParameterList(fn->getParameters());
auto fnType = ty->getAs<AnyFunctionType>();
if (fnType) {
auto lifetimeDependencies = fnType->getLifetimeDependencies();
if (!lifetimeDependencies.empty()) {
S.writeLifetimeDependencies(lifetimeDependencies);
}
}
if (auto errorConvention = fn->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
if (auto asyncConvention = fn->getForeignAsyncConvention())
writeForeignAsyncConvention(*asyncConvention);
writeInlinableBodyTextIfNeeded(fn);
}
void visitEnumElementDecl(const EnumElementDecl *elem) {
using namespace decls_block;
verifyAttrSerializable(elem);
auto contextID = S.addDeclContextRef(elem->getDeclContext());
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
auto baseName = S.addDeclBaseNameRef(elem->getBaseName());
nameComponentsAndDependencies.push_back(baseName);
for (auto argName : elem->getName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
Type ty = elem->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
// We only serialize the raw values of @objc enums, because they're part
// of the ABI. That isn't the case for Swift enums.
auto rawValueKind = EnumElementRawValueKind::None;
bool isNegative = false, isRawValueImplicit = false;
StringRef RawValueText;
if (elem->getParentEnum()->isObjC()) {
// Currently ObjC enums always have integer raw values.
rawValueKind = EnumElementRawValueKind::IntegerLiteral;
auto ILE = cast<IntegerLiteralExpr>(elem->getStructuralRawValueExpr());
RawValueText = ILE->getDigitsText();
isNegative = ILE->isNegative();
isRawValueImplicit = ILE->isImplicit();
}
unsigned abbrCode = S.DeclTypeAbbrCodes[EnumElementLayout::Code];
EnumElementLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
elem->isImplicit(),
elem->hasAssociatedValues(),
(unsigned)rawValueKind,
isRawValueImplicit,
isNegative,
S.addUniquedStringRef(RawValueText),
elem->getName().getArgumentNames().size()+1,
nameComponentsAndDependencies);
if (auto *PL = elem->getParameterList())
writeParameterList(PL);
auto fnType = ty->getAs<AnyFunctionType>();
if (fnType) {
auto lifetimeDependencies = fnType->getLifetimeDependencies();
if (!lifetimeDependencies.empty()) {
S.writeLifetimeDependencies(lifetimeDependencies);
}
}
}
void visitSubscriptDecl(const SubscriptDecl *subscript) {
using namespace decls_block;
verifyAttrSerializable(subscript);
auto contextID = S.addDeclContextRef(subscript->getDeclContext());
Accessors accessors = getAccessors(subscript);
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
for (auto argName : subscript->getName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
for (auto accessor : accessors.Decls)
nameComponentsAndDependencies.push_back(S.addDeclRef(accessor));
Type ty = subscript->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
uint8_t rawAccessLevel =
getRawStableAccessLevel(subscript->getFormalAccess());
uint8_t rawSetterAccessLevel = rawAccessLevel;
if (subscript->supportsMutation())
rawSetterAccessLevel =
getRawStableAccessLevel(subscript->getSetterFormalAccess());
uint8_t rawStaticSpelling =
uint8_t(getStableStaticSpelling(subscript->getStaticSpelling()));
unsigned numTableEntries = getNumberOfRequiredTableEntries(subscript);
unsigned abbrCode = S.DeclTypeAbbrCodes[SubscriptLayout::Code];
SubscriptLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
subscript->isImplicit(),
subscript->isObjC(),
subscript->isGetterMutating(),
subscript->isSetterMutating(),
accessors.OpaqueReadOwnership,
accessors.ReadImpl,
accessors.WriteImpl,
accessors.ReadWriteImpl,
accessors.Decls.size(),
S.addGenericSignatureRef(
subscript->getGenericSignature()),
S.addTypeRef(subscript->getElementInterfaceType()),
subscript->isImplicitlyUnwrappedOptional(),
S.addDeclRef(subscript->getOverriddenDecl()),
rawAccessLevel,
rawSetterAccessLevel,
rawStaticSpelling,
subscript->getName().getArgumentNames().size(),
S.addDeclRef(subscript->getOpaqueResultTypeDecl()),
numTableEntries,
nameComponentsAndDependencies);
writeGenericParams(subscript->getGenericParams());
writeParameterList(subscript->getIndices());
}
void visitConstructorDecl(const ConstructorDecl *ctor) {
using namespace decls_block;
verifyAttrSerializable(ctor);
auto contextID = S.addDeclContextRef(ctor->getDeclContext());
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
for (auto argName : ctor->getName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
Type ty = ctor->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
uint8_t rawAccessLevel = getRawStableAccessLevel(ctor->getFormalAccess());
bool firstTimeRequired = ctor->isRequired();
auto *overridden = ctor->getOverriddenDecl();
if (overridden) {
if (firstTimeRequired && overridden->isRequired())
firstTimeRequired = false;
}
bool overriddenAffectsABI = overriddenDeclAffectsABI(ctor, overridden);
unsigned abbrCode = S.DeclTypeAbbrCodes[ConstructorLayout::Code];
ConstructorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
ctor->isFailable(),
ctor->isImplicitlyUnwrappedOptional(),
ctor->isImplicit(),
ctor->isObjC(),
ctor->hasStubImplementation(),
ctor->hasAsync(),
ctor->hasThrows(),
S.addTypeRef(ctor->getThrownInterfaceType()),
getStableCtorInitializerKind(
ctor->getInitKind()),
S.addGenericSignatureRef(
ctor->getGenericSignature()),
S.addDeclRef(overridden),
overriddenAffectsABI,
rawAccessLevel,
getNeedsNewTableEntry(ctor),
firstTimeRequired,
ctor->getName().getArgumentNames().size(),
nameComponentsAndDependencies);
writeGenericParams(ctor->getGenericParams());
writeParameterList(ctor->getParameters());
auto fnType = ty->getAs<AnyFunctionType>();
if (fnType) {
auto lifetimeDependencies = fnType->getLifetimeDependencies();
if (!lifetimeDependencies.empty()) {
S.writeLifetimeDependencies(lifetimeDependencies);
}
}
if (auto errorConvention = ctor->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
if (auto asyncConvention = ctor->getForeignAsyncConvention())
writeForeignAsyncConvention(*asyncConvention);
writeInlinableBodyTextIfNeeded(ctor);
}
void visitDestructorDecl(const DestructorDecl *dtor) {
using namespace decls_block;
verifyAttrSerializable(dtor);
auto contextID = S.addDeclContextRef(dtor->getDeclContext());
unsigned abbrCode = S.DeclTypeAbbrCodes[DestructorLayout::Code];
DestructorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
dtor->isImplicit(),
dtor->isObjC(),
S.addGenericSignatureRef(
dtor->getGenericSignature()));
writeInlinableBodyTextIfNeeded(dtor);
}
void visitMacroDecl(const MacroDecl *macro) {
using namespace decls_block;
verifyAttrSerializable(macro);
auto contextID = S.addDeclContextRef(macro->getDeclContext());
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
nameComponentsAndDependencies.push_back(
S.addDeclBaseNameRef(macro->getName().getBaseName()));
for (auto argName : macro->getName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
Type ty = macro->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
uint8_t rawAccessLevel =
getRawStableAccessLevel(macro->getFormalAccess());
Type resultType = macro->getResultInterfaceType();
uint8_t builtinID = 0;
uint8_t hasExpandedDefinition = 0;
IdentifierID externalModuleNameID = 0;
IdentifierID externalMacroTypeNameID = 0;
std::optional<ExpandedMacroDefinition> expandedDef;
auto def = macro->getDefinition();
switch (def.kind) {
case MacroDefinition::Kind::Invalid:
case MacroDefinition::Kind::Undefined:
break;
case MacroDefinition::Kind::External: {
auto external = def.getExternalMacro();
externalModuleNameID = S.addDeclBaseNameRef(external.moduleName);
externalMacroTypeNameID = S.addDeclBaseNameRef(external.macroTypeName);
break;
}
case MacroDefinition::Kind::Builtin: {
switch (def.getBuiltinKind()) {
case BuiltinMacroKind::ExternalMacro:
builtinID = 1;
break;
case BuiltinMacroKind::IsolationMacro:
builtinID = 2;
break;
}
break;
}
case MacroDefinition::Kind::Expanded: {
expandedDef = def.getExpanded();
hasExpandedDefinition = 1;
break;
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[MacroLayout::Code];
MacroLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
macro->isImplicit(),
S.addGenericSignatureRef(
macro->getGenericSignature()),
macro->parameterList != nullptr,
S.addTypeRef(resultType),
rawAccessLevel,
macro->getName().getArgumentNames().size(),
builtinID,
hasExpandedDefinition,
externalModuleNameID,
externalMacroTypeNameID,
nameComponentsAndDependencies);
writeGenericParams(macro->getGenericParams());
if (macro->parameterList)
writeParameterList(macro->parameterList);
if (expandedDef) {
// Source text for the expanded macro definition layout.
uint8_t hasReplacements = !expandedDef->getReplacements().empty();
unsigned abbrCode =
S.DeclTypeAbbrCodes[ExpandedMacroDefinitionLayout::Code];
ExpandedMacroDefinitionLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
hasReplacements,
expandedDef->getExpansionText());
// If there are any replacements, emit a replacements record.
if (!hasReplacements) {
SmallVector<uint64_t, 3> replacements;
for (const auto &replacement : expandedDef->getReplacements()) {
replacements.push_back(replacement.startOffset);
replacements.push_back(replacement.endOffset);
replacements.push_back(replacement.parameterIndex);
}
unsigned abbrCode =
S.DeclTypeAbbrCodes[ExpandedMacroReplacementsLayout::Code];
ExpandedMacroReplacementsLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, replacements);
}
}
}
void visitTopLevelCodeDecl(const TopLevelCodeDecl *) {
// Top-level code is ignored; external clients don't need to know about it.
}
void visitImportDecl(const ImportDecl *) {
llvm_unreachable("import decls should not be serialized");
}
void visitUsingDecl(const UsingDecl *) {
llvm_unreachable("using decls should not be serialized");
}
void visitEnumCaseDecl(const EnumCaseDecl *) {
llvm_unreachable("enum case decls should not be serialized");
}
void visitModuleDecl(const ModuleDecl *) {
llvm_unreachable("module decls are not serialized");
}
void visitMissingDecl(const MissingDecl *) {
llvm_unreachable("missing decls are not serialized");
}
void visitMissingMemberDecl(const MissingMemberDecl *) {
llvm_unreachable("member placeholders shouldn't be serialized");
}
void visitMacroExpansionDecl(const MacroExpansionDecl *) {
llvm_unreachable("macro expansion decls shouldn't be serialized");
}
void visitBuiltinTupleDecl(const BuiltinTupleDecl *) {
llvm_unreachable("BuiltinTupleDecl are not serialized");
}
};
/// When allowing modules with errors there may be cases where there's little
/// point in serializing a declaration and doing so would create a maintenance
/// burden on the deserialization side. Returns \c true if the given declaration
/// should be skipped and \c false otherwise.
static bool canSkipWhenInvalid(const Decl *D) {
// There's no point writing out the deinit when its context is not a class
// as nothing would be able to reference it
if (isa<DestructorDecl>(D)) {
if (!isa<ClassDecl>(D->getDeclContext()))
return true;
}
return false;
}
bool Serializer::shouldSkipDecl(const Decl *D) const {
// The presence of -experimental-skip-non-exportable-decls is the only
// reason to omit decls during serialization.
if (!Options.SkipNonExportableDecls)
return false;
if (DeclSerializer::isDeserializationSafe(D))
return false;
return true;
}
void Serializer::writeASTBlockEntity(const Decl *D) {
using namespace decls_block;
if (Options.SkipImplementationOnlyDecls) {
// Skip @_implementationOnly types.
if (D->getAttrs().hasAttribute<ImplementationOnlyAttr>())
return;
// Skip non-public @export(interface) functions.
auto FD = dyn_cast<AbstractFunctionDecl>(D);
if (FD && FD->isNeverEmittedIntoClient() &&
!FD->getFormalAccessScope(/*useDC*/nullptr,
/*treatUsableFromInlineAsPublic*/true).isPublicOrPackage())
return;
}
PrettyStackTraceDecl trace("serializing", D);
assert(DeclsToSerialize.hasRef(D));
if (skipDeclIfInvalid(D))
return;
BitOffset initialOffset = Out.GetCurrentBitNo();
SWIFT_DEFER {
// This is important enough to leave on in Release builds.
if (initialOffset == Out.GetCurrentBitNo()) {
ABORT("failed to serialize anything");
}
};
if (isDeclXRef(D)) {
writeCrossReference(D);
return;
}
assert(!D->hasClangNode() && "imported decls should use cross-references");
DeclSerializer(*this, DeclsToSerialize.addRef(D),
exportedPrespecializationDecls)
.visit(D);
}
#define SIMPLE_CASE(TYPENAME, VALUE) \
case swift::TYPENAME::VALUE: return uint8_t(serialization::TYPENAME::VALUE);
/// Translate from the AST function representation enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableFunctionTypeRepresentation(
swift::FunctionType::Representation cc) {
switch (cc) {
SIMPLE_CASE(FunctionTypeRepresentation, Swift)
SIMPLE_CASE(FunctionTypeRepresentation, Block)
SIMPLE_CASE(FunctionTypeRepresentation, Thin)
SIMPLE_CASE(FunctionTypeRepresentation, CFunctionPointer)
}
llvm_unreachable("bad calling convention");
}
/// Translate from the AST function representation enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableSILFunctionTypeRepresentation(
swift::SILFunctionType::Representation cc) {
switch (cc) {
SIMPLE_CASE(SILFunctionTypeRepresentation, Thick)
SIMPLE_CASE(SILFunctionTypeRepresentation, Block)
SIMPLE_CASE(SILFunctionTypeRepresentation, Thin)
SIMPLE_CASE(SILFunctionTypeRepresentation, CFunctionPointer)
SIMPLE_CASE(SILFunctionTypeRepresentation, Method)
SIMPLE_CASE(SILFunctionTypeRepresentation, ObjCMethod)
SIMPLE_CASE(SILFunctionTypeRepresentation, WitnessMethod)
SIMPLE_CASE(SILFunctionTypeRepresentation, Closure)
SIMPLE_CASE(SILFunctionTypeRepresentation, CXXMethod)
SIMPLE_CASE(SILFunctionTypeRepresentation, KeyPathAccessorGetter)
SIMPLE_CASE(SILFunctionTypeRepresentation, KeyPathAccessorSetter)
SIMPLE_CASE(SILFunctionTypeRepresentation, KeyPathAccessorEquals)
SIMPLE_CASE(SILFunctionTypeRepresentation, KeyPathAccessorHash)
}
llvm_unreachable("bad calling convention");
}
/// Translate from the AST coroutine-kind enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableSILCoroutineKind(
swift::SILCoroutineKind kind) {
switch (kind) {
SIMPLE_CASE(SILCoroutineKind, None)
SIMPLE_CASE(SILCoroutineKind, YieldOnce)
SIMPLE_CASE(SILCoroutineKind, YieldOnce2)
SIMPLE_CASE(SILCoroutineKind, YieldMany)
}
llvm_unreachable("bad kind");
}
/// Translate from the AST ownership enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t
getRawStableReferenceOwnership(swift::ReferenceOwnership ownership) {
switch (ownership) {
SIMPLE_CASE(ReferenceOwnership, Strong)
#define REF_STORAGE(Name, ...) \
SIMPLE_CASE(ReferenceOwnership, Name)
#include "swift/AST/ReferenceStorage.def"
}
llvm_unreachable("bad ownership kind");
}
/// Translate from the AST ParameterConvention enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableParameterConvention(swift::ParameterConvention pc) {
switch (pc) {
SIMPLE_CASE(ParameterConvention, Indirect_In)
SIMPLE_CASE(ParameterConvention, Indirect_In_Guaranteed)
SIMPLE_CASE(ParameterConvention, Indirect_Inout)
SIMPLE_CASE(ParameterConvention, Indirect_InoutAliasable)
SIMPLE_CASE(ParameterConvention, Indirect_In_CXX)
SIMPLE_CASE(ParameterConvention, Direct_Owned)
SIMPLE_CASE(ParameterConvention, Direct_Unowned)
SIMPLE_CASE(ParameterConvention, Direct_Guaranteed)
SIMPLE_CASE(ParameterConvention, Pack_Owned)
SIMPLE_CASE(ParameterConvention, Pack_Inout)
SIMPLE_CASE(ParameterConvention, Pack_Guaranteed)
}
llvm_unreachable("bad parameter convention kind");
}
/// Translate from AST SILParameterInfo::Options enum to the Serialization
/// enum values, which are guaranteed to be stable.
static std::optional<serialization::SILParameterInfoOptions>
getRawSILParameterInfoOptions(swift::SILParameterInfo::Options options) {
serialization::SILParameterInfoOptions result;
if (options.contains(SILParameterInfo::NotDifferentiable)) {
options -= SILParameterInfo::NotDifferentiable;
result |= SILParameterInfoFlags::NotDifferentiable;
}
if (options.contains(SILParameterInfo::Isolated)) {
options -= SILParameterInfo::Isolated;
result |= SILParameterInfoFlags::Isolated;
}
if (options.contains(SILParameterInfo::Sending)) {
options -= SILParameterInfo::Sending;
result |= SILParameterInfoFlags::Sending;
}
if (options.contains(SILParameterInfo::ImplicitLeading)) {
options -= SILParameterInfo::ImplicitLeading;
result |= SILParameterInfoFlags::ImplicitLeading;
}
if (options.contains(SILParameterInfo::Const)) {
options -= SILParameterInfo::Const;
result |= SILParameterInfoFlags::Const;
}
// If we still have options left, this code is out of sync... return none.
if (bool(options))
return {};
return result;
}
/// Translate from the AST ResultConvention enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableResultConvention(swift::ResultConvention rc) {
switch (rc) {
SIMPLE_CASE(ResultConvention, Indirect)
SIMPLE_CASE(ResultConvention, Owned)
SIMPLE_CASE(ResultConvention, Unowned)
SIMPLE_CASE(ResultConvention, UnownedInnerPointer)
SIMPLE_CASE(ResultConvention, Autoreleased)
SIMPLE_CASE(ResultConvention, Pack)
SIMPLE_CASE(ResultConvention, GuaranteedAddress)
SIMPLE_CASE(ResultConvention, Guaranteed)
SIMPLE_CASE(ResultConvention, Inout)
}
llvm_unreachable("bad result convention kind");
}
/// Translate from AST SILResultDifferentiability enum to the Serialization enum
/// values, which are guaranteed to be stable.
static std::optional<serialization::SILResultInfoOptions>
getRawSILResultInfoOptions(swift::SILResultInfo::Options options) {
serialization::SILResultInfoOptions result;
if (options.contains(SILResultInfo::NotDifferentiable)) {
options -= SILResultInfo::NotDifferentiable;
result |= SILResultInfoFlags::NotDifferentiable;
}
if (options.contains(SILResultInfo::IsSending)) {
options -= SILResultInfo::IsSending;
result |= SILResultInfoFlags::IsSending;
}
// If we still have any options set, then this code is out of sync. Signal an
// error by returning none!
if (bool(options))
return {};
return result;
}
#undef SIMPLE_CASE
/// Find the typealias given a builtin type.
static TypeAliasDecl *findTypeAliasForBuiltin(ASTContext &Ctx, Type T) {
/// Get the type name by chopping off "Builtin.".
llvm::SmallString<32> FullName;
llvm::raw_svector_ostream OS(FullName);
T->print(OS);
assert(FullName.str().starts_with(BUILTIN_TYPE_NAME_PREFIX));
StringRef TypeName = FullName.substr(8);
SmallVector<ValueDecl*, 4> CurModuleResults;
Ctx.TheBuiltinModule->lookupValue(Ctx.getIdentifier(TypeName),
NLKind::QualifiedLookup,
CurModuleResults);
assert(CurModuleResults.size() == 1);
return cast<TypeAliasDecl>(CurModuleResults[0]);
}
namespace {
struct ImplementationOnlyWalker : TypeWalker {
bool hadImplementationOnlyDecl = false;
const ModuleDecl *currentModule;
ImplementationOnlyWalker(const ModuleDecl *M) : currentModule(M) {}
Action walkToTypePre(Type ty) override {
if (auto *typeAlias = dyn_cast<TypeAliasType>(ty)) {
if (importedImplementationOnly(typeAlias->getDecl()))
return Action::Stop;
} else if (auto *nominal = ty->getAs<NominalType>()) {
if (importedImplementationOnly(nominal->getDecl()))
return Action::Stop;
}
return Action::Continue;
}
bool importedImplementationOnly(const Decl *D) {
if (currentModule->isImportedImplementationOnly(D->getModuleContext())) {
hadImplementationOnlyDecl = true;
return true;
}
return false;
}
};
} // namespace
class Serializer::TypeSerializer : public TypeVisitor<TypeSerializer> {
Serializer &S;
public:
explicit TypeSerializer(Serializer &S) : S(S) {}
/// If this gets referenced, we forgot to handle a type.
void visitType(const TypeBase *) = delete;
void visitErrorType(const ErrorType *ty) {
if (S.allowCompilerErrors()) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[ErrorTypeLayout::Code];
ErrorTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(ty->getOriginalType()));
return;
}
llvm_unreachable("should not serialize an ErrorType");
}
void visitPlaceholderType(const PlaceholderType *) {
// If for some reason we have a placeholder type while compiling with
// errors, just serialize an ErrorType and continue.
if (S.getASTContext().LangOpts.AllowModuleWithCompilerErrors) {
visitErrorType(
cast<ErrorType>(ErrorType::get(S.getASTContext()).getPointer()));
return;
}
llvm_unreachable("should not serialize a PlaceholderType");
}
void visitModuleType(const ModuleType *) {
llvm_unreachable("modules are currently not first-class values");
}
void visitInOutType(const InOutType *) {
llvm_unreachable("inout types are only used in function type parameters");
}
void visitLValueType(const LValueType *) {
llvm_unreachable("lvalue types are only used in function bodies");
}
void visitTypeVariableType(const TypeVariableType *) {
llvm_unreachable("type variables should not escape the type checker");
}
void visitErrorUnionType(const ErrorUnionType *) {
llvm_unreachable("error union types do not persist in the AST");
}
void visitLocatableType(const LocatableType *LT) {
visit(LT->getSinglyDesugaredType());
}
void visitBuiltinTypeImpl(Type ty) {
using namespace decls_block;
TypeAliasDecl *typeAlias =
findTypeAliasForBuiltin(S.M->getASTContext(), ty);
unsigned abbrCode = S.DeclTypeAbbrCodes[BuiltinAliasTypeLayout::Code];
BuiltinAliasTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(typeAlias,
/*allowTypeAliasXRef*/true),
TypeID());
}
void visitBuiltinType(BuiltinType *ty) {
visitBuiltinTypeImpl(ty);
}
void visitBuiltinFixedArrayType(BuiltinFixedArrayType *ty) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[BuiltinFixedArrayTypeLayout::Code];
BuiltinFixedArrayTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(ty->getSize()),
S.addTypeRef(ty->getElementType()));
}
void visitSILTokenType(SILTokenType *ty) {
// This is serialized like a BuiltinType, even though it isn't one.
visitBuiltinTypeImpl(ty);
}
void visitTypeAliasType(const TypeAliasType *alias) {
using namespace decls_block;
const TypeAliasDecl *typeAlias = alias->getDecl();
SmallVector<TypeID, 8> genericArgIDs;
for (auto next : alias->getDirectGenericArgs())
genericArgIDs.push_back(S.addTypeRef(next));
unsigned abbrCode = S.DeclTypeAbbrCodes[TypeAliasTypeLayout::Code];
TypeAliasTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(typeAlias, /*allowTypeAliasXRef*/true),
S.addTypeRef(typeAlias->getUnderlyingType()),
S.addTypeRef(alias->getSinglyDesugaredType()),
S.addTypeRef(alias->getParent()),
genericArgIDs);
}
template <typename Layout>
void serializeSimpleWrapper(Type wrappedTy) {
unsigned abbrCode = S.DeclTypeAbbrCodes[Layout::Code];
Layout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(wrappedTy));
}
void visitPackExpansionType(const PackExpansionType *expansionTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[PackExpansionTypeLayout::Code];
PackExpansionTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(expansionTy->getPatternType()),
S.addTypeRef(expansionTy->getCountType()));
}
void visitPackElementType(const PackElementType *elementType) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[PackElementTypeLayout::Code];
PackElementTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(elementType->getPackType()),
elementType->getLevel());
}
void visitPackType(const PackType *packTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[PackTypeLayout::Code];
SmallVector<TypeID, 8> variableData;
for (auto elementType : packTy->getElementTypes()) {
variableData.push_back(S.addTypeRef(elementType));
}
PackTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
variableData);
}
void visitSILPackType(const SILPackType *packTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[SILPackTypeLayout::Code];
SmallVector<TypeID, 8> variableData;
for (auto elementType : packTy->getElementTypes()) {
variableData.push_back(S.addTypeRef(elementType));
}
SILPackTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
packTy->isElementAddress(),
variableData);
}
void visitTupleType(const TupleType *tupleTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[TupleTypeLayout::Code];
TupleTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode);
abbrCode = S.DeclTypeAbbrCodes[TupleTypeEltLayout::Code];
for (auto &elt : tupleTy->getElements()) {
TupleTypeEltLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(elt.getName()),
S.addTypeRef(elt.getType()));
}
}
void visitNominalType(const NominalType *nominalTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[NominalTypeLayout::Code];
NominalTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(nominalTy->getDecl()),
S.addTypeRef(nominalTy->getParent()));
}
template <typename Layout>
void visitMetatypeImpl(const AnyMetatypeType *metatypeTy) {
unsigned abbrCode = S.DeclTypeAbbrCodes[Layout::Code];
// Map the metatype representation.
auto repr = getRawStableMetatypeRepresentation(metatypeTy);
Layout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(metatypeTy->getInstanceType()),
static_cast<uint8_t>(repr));
}
void visitExistentialMetatypeType(const ExistentialMetatypeType *metatypeTy) {
using namespace decls_block;
visitMetatypeImpl<ExistentialMetatypeTypeLayout>(metatypeTy);
}
void visitMetatypeType(const MetatypeType *metatypeTy) {
using namespace decls_block;
visitMetatypeImpl<MetatypeTypeLayout>(metatypeTy);
}
void visitDynamicSelfType(const DynamicSelfType *dynamicSelfTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[DynamicSelfTypeLayout::Code];
DynamicSelfTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(dynamicSelfTy->getSelfType()));
}
void visitPrimaryArchetypeType(const PrimaryArchetypeType *archetypeTy) {
using namespace decls_block;
auto sig = archetypeTy->getGenericEnvironment()->getGenericSignature();
GenericSignatureID sigID = S.addGenericSignatureRef(sig);
TypeID interfaceTypeID = S.addTypeRef(archetypeTy->getInterfaceType());
unsigned abbrCode = S.DeclTypeAbbrCodes[PrimaryArchetypeTypeLayout::Code];
PrimaryArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
sigID, interfaceTypeID);
}
void visitExistentialArchetypeType(const ExistentialArchetypeType *archetypeTy) {
using namespace decls_block;
auto interfaceTypeID = S.addTypeRef(archetypeTy->getInterfaceType());
auto genericEnvID = S.addGenericEnvironmentRef(
archetypeTy->getGenericEnvironment());
unsigned abbrCode = S.DeclTypeAbbrCodes[ExistentialArchetypeTypeLayout::Code];
ExistentialArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
interfaceTypeID, genericEnvID);
}
void
visitOpaqueTypeArchetypeType(const OpaqueTypeArchetypeType *archetypeTy) {
using namespace decls_block;
auto declID = S.addDeclRef(archetypeTy->getDecl());
auto interfaceTypeID = S.addTypeRef(archetypeTy->getInterfaceType());
auto substMapID = S.addSubstitutionMapRef(archetypeTy->getSubstitutions());
unsigned abbrCode = S.DeclTypeAbbrCodes[OpaqueArchetypeTypeLayout::Code];
OpaqueArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
declID, interfaceTypeID, substMapID);
}
void visitPackArchetypeType(const PackArchetypeType *archetypeTy) {
using namespace decls_block;
auto sig = archetypeTy->getGenericEnvironment()->getGenericSignature();
GenericSignatureID sigID = S.addGenericSignatureRef(sig);
TypeID interfaceTypeID = S.addTypeRef(archetypeTy->getInterfaceType());
unsigned abbrCode = S.DeclTypeAbbrCodes[PackArchetypeTypeLayout::Code];
PackArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
sigID, interfaceTypeID);
}
void visitElementArchetypeType(const ElementArchetypeType *archetypeTy) {
using namespace decls_block;
auto interfaceTypeID = S.addTypeRef(archetypeTy->getInterfaceType());
auto genericEnvID = S.addGenericEnvironmentRef(
archetypeTy->getGenericEnvironment());
unsigned abbrCode = S.DeclTypeAbbrCodes[ElementArchetypeTypeLayout::Code];
ElementArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
interfaceTypeID, genericEnvID);
}
void visitGenericTypeParamType(const GenericTypeParamType *genericParam) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericTypeParamTypeLayout::Code];
DeclID declOrIdentifier = 0;
bool hasDecl = false;
uint8_t paramKind = getRawStableGenericParamKind(genericParam->getParamKind());
TypeID valueTypeID = 0;
if (genericParam->getDecl() &&
!(genericParam->getDecl()->getDeclContext()->isModuleScopeContext() &&
S.isDeclXRef(genericParam->getDecl()))) {
declOrIdentifier = S.addDeclRef(genericParam->getDecl());
hasDecl = true;
} else if (!genericParam->isCanonical()) {
declOrIdentifier = S.addDeclBaseNameRef(genericParam->getName());
}
if (auto valueType = genericParam->getValueType()) {
valueTypeID = S.addTypeRef(valueType);
}
GenericTypeParamTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
paramKind,
hasDecl,
genericParam->getDepth(),
genericParam->getWeight(),
genericParam->getIndex(),
declOrIdentifier,
valueTypeID);
}
void visitDependentMemberType(const DependentMemberType *dependent) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[DependentMemberTypeLayout::Code];
assert(dependent->getAssocType() && "Unchecked dependent member type");
DependentMemberTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(dependent->getBase()),
S.addDeclRef(dependent->getAssocType()));
}
void serializeFunctionTypeParams(const AnyFunctionType *fnTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[FunctionParamLayout::Code];
for (auto &param : fnTy->getParams()) {
auto paramFlags = param.getParameterFlags();
auto rawOwnership =
getRawStableParamDeclSpecifier(paramFlags.getOwnershipSpecifier());
FunctionParamLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(param.getLabel()),
S.addDeclBaseNameRef(param.getInternalLabel()),
S.addTypeRef(param.getPlainType()), paramFlags.isVariadic(),
paramFlags.isAutoClosure(), paramFlags.isNonEphemeral(), rawOwnership,
paramFlags.isIsolated(), paramFlags.isNoDerivative(),
paramFlags.isCompileTimeLiteral(), paramFlags.isConstValue(),
paramFlags.isSending(), paramFlags.isAddressable());
}
}
TypeID encodeIsolation(swift::FunctionTypeIsolation isolation) {
switch (isolation.getKind()) {
case swift::FunctionTypeIsolation::Kind::NonIsolated:
return unsigned(FunctionTypeIsolation::NonIsolated);
case swift::FunctionTypeIsolation::Kind::NonIsolatedNonsending:
return unsigned(FunctionTypeIsolation::NonIsolatedNonsending);
case swift::FunctionTypeIsolation::Kind::Parameter:
return unsigned(FunctionTypeIsolation::Parameter);
case swift::FunctionTypeIsolation::Kind::Erased:
return unsigned(FunctionTypeIsolation::Erased);
case swift::FunctionTypeIsolation::Kind::GlobalActor:
return unsigned(FunctionTypeIsolation::GlobalActorOffset)
+ S.addTypeRef(isolation.getGlobalActorType());
}
llvm_unreachable("bad kind");
}
void visitFunctionType(const FunctionType *fnTy) {
using namespace decls_block;
auto resultType = S.addTypeRef(fnTy->getResult());
bool shouldSerializeClangType = true;
if (S.hadImplementationOnlyImport && S.M &&
S.M->getResilienceStrategy() != ResilienceStrategy::Resilient) {
// Deserializing clang types from implementation only modules could crash
// as the transitive clang module might not be available to retrieve the
// declarations from. In an optimal world we would make the deseriaization
// more resilient to these problems but the failure is in Clang's
// deserialization code path that is not architected with potentially
// missing declarations in mind.
ImplementationOnlyWalker walker{S.M};
Type(const_cast<FunctionType *>(fnTy)).walk(walker);
if (walker.hadImplementationOnlyDecl)
shouldSerializeClangType = false;
}
auto clangType = shouldSerializeClangType
? S.addClangTypeRef(fnTy->getClangTypeInfo().getType())
: ClangTypeID(0);
auto isolation = encodeIsolation(fnTy->getIsolation());
unsigned abbrCode = S.DeclTypeAbbrCodes[FunctionTypeLayout::Code];
FunctionTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
resultType,
getRawStableFunctionTypeRepresentation(fnTy->getRepresentation()),
clangType,
fnTy->isNoEscape(),
fnTy->isSendable(),
fnTy->isAsync(),
fnTy->isThrowing(),
S.addTypeRef(fnTy->getThrownError()),
getRawStableDifferentiabilityKind(fnTy->getDifferentiabilityKind()),
isolation,
fnTy->hasSendingResult());
serializeFunctionTypeParams(fnTy);
auto lifetimeDependencies = fnTy->getLifetimeDependencies();
if (!lifetimeDependencies.empty()) {
S.writeLifetimeDependencies(lifetimeDependencies);
}
}
void visitGenericFunctionType(const GenericFunctionType *fnTy) {
using namespace decls_block;
assert(!fnTy->isNoEscape());
auto genericSig = fnTy->getGenericSignature();
auto isolation = encodeIsolation(fnTy->getIsolation());
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericFunctionTypeLayout::Code];
GenericFunctionTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(fnTy->getResult()),
getRawStableFunctionTypeRepresentation(fnTy->getRepresentation()),
fnTy->isSendable(), fnTy->isAsync(), fnTy->isThrowing(),
S.addTypeRef(fnTy->getThrownError()),
getRawStableDifferentiabilityKind(fnTy->getDifferentiabilityKind()),
isolation, fnTy->hasSendingResult(),
S.addGenericSignatureRef(genericSig));
serializeFunctionTypeParams(fnTy);
auto lifetimeDependencies = fnTy->getLifetimeDependencies();
if (!lifetimeDependencies.empty()) {
S.writeLifetimeDependencies(lifetimeDependencies);
}
}
void visitSILBlockStorageType(const SILBlockStorageType *storageTy) {
using namespace decls_block;
serializeSimpleWrapper<SILBlockStorageTypeLayout>(
storageTy->getCaptureType());
}
void visitSILMoveOnlyWrappedType(const SILMoveOnlyWrappedType *moveOnlyTy) {
using namespace decls_block;
serializeSimpleWrapper<SILMoveOnlyWrappedTypeLayout>(
moveOnlyTy->getInnerType());
}
void visitSILBoxType(const SILBoxType *boxTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[SILBoxTypeLayout::Code];
SILLayoutID layoutRef = S.addSILLayoutRef(boxTy->getLayout());
SILBoxTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, layoutRef,
S.addSubstitutionMapRef(boxTy->getSubstitutions()));
}
void visitSILFunctionType(const SILFunctionType *fnTy) {
using namespace decls_block;
auto representation = fnTy->getRepresentation();
auto stableRepresentation =
getRawStableSILFunctionTypeRepresentation(representation);
SmallVector<TypeID, 8> variableData;
for (auto param : fnTy->getParameters()) {
variableData.push_back(S.addTypeRef(param.getInterfaceType()));
unsigned conv = getRawStableParameterConvention(param.getConvention());
variableData.push_back(TypeID(conv));
auto options = *getRawSILParameterInfoOptions(param.getOptions());
variableData.push_back(TypeID(options.toRaw()));
}
for (auto yield : fnTy->getYields()) {
variableData.push_back(S.addTypeRef(yield.getInterfaceType()));
unsigned conv = getRawStableParameterConvention(yield.getConvention());
variableData.push_back(TypeID(conv));
}
for (auto result : fnTy->getResults()) {
variableData.push_back(S.addTypeRef(result.getInterfaceType()));
unsigned conv = getRawStableResultConvention(result.getConvention());
variableData.push_back(TypeID(conv));
auto options = *getRawSILResultInfoOptions(result.getOptions());
variableData.push_back(TypeID(options.toRaw()));
}
if (fnTy->hasErrorResult()) {
auto abResult = fnTy->getErrorResult();
variableData.push_back(S.addTypeRef(abResult.getInterfaceType()));
unsigned conv = getRawStableResultConvention(abResult.getConvention());
variableData.push_back(TypeID(conv));
}
if (auto conformance = fnTy->getWitnessMethodConformanceOrInvalid())
variableData.push_back(S.addConformanceRef(conformance));
auto invocationSigID =
S.addGenericSignatureRef(fnTy->getInvocationGenericSignature());
auto invocationSubstMapID =
S.addSubstitutionMapRef(fnTy->getInvocationSubstitutions());
auto patternSubstMapID =
S.addSubstitutionMapRef(fnTy->getPatternSubstitutions());
auto clangTypeID = S.addClangTypeRef(fnTy->getClangTypeInfo().getType());
auto stableCoroutineKind =
getRawStableSILCoroutineKind(fnTy->getCoroutineKind());
auto stableCalleeConvention =
getRawStableParameterConvention(fnTy->getCalleeConvention());
auto stableDiffKind =
getRawStableDifferentiabilityKind(fnTy->getDifferentiabilityKind());
unsigned abbrCode = S.DeclTypeAbbrCodes[SILFunctionTypeLayout::Code];
SILFunctionTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, fnTy->isSendable(),
fnTy->isAsync(), stableCoroutineKind, stableCalleeConvention,
stableRepresentation, fnTy->isPseudogeneric(), fnTy->isNoEscape(),
fnTy->isUnimplementable(), fnTy->hasErasedIsolation(),
stableDiffKind, fnTy->hasErrorResult(),
fnTy->getParameters().size(),
fnTy->getNumYields(), fnTy->getNumResults(),
invocationSigID, invocationSubstMapID, patternSubstMapID,
clangTypeID, variableData);
auto lifetimeDependencies = fnTy->getLifetimeDependencies();
if (!lifetimeDependencies.empty()) {
S.writeLifetimeDependencies(lifetimeDependencies);
}
}
void visitArraySliceType(const ArraySliceType *sliceTy) {
using namespace decls_block;
serializeSimpleWrapper<ArraySliceTypeLayout>(sliceTy->getBaseType());
}
void visitInlineArrayType(const InlineArrayType *T) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[InlineArrayTypeLayout::Code];
InlineArrayTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(T->getCountType()),
S.addTypeRef(T->getElementType()));
}
void visitDictionaryType(const DictionaryType *dictTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[DictionaryTypeLayout::Code];
DictionaryTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(dictTy->getKeyType()),
S.addTypeRef(dictTy->getValueType()));
}
void visitVariadicSequenceType(const VariadicSequenceType *seqTy) {
using namespace decls_block;
serializeSimpleWrapper<VariadicSequenceTypeLayout>(seqTy->getBaseType());
}
void visitOptionalType(const OptionalType *optionalTy) {
using namespace decls_block;
serializeSimpleWrapper<OptionalTypeLayout>(optionalTy->getBaseType());
}
void
visitProtocolCompositionType(const ProtocolCompositionType *composition) {
using namespace decls_block;
SmallVector<TypeID, 4> protocols;
for (auto proto : composition->getMembers())
protocols.push_back(S.addTypeRef(proto));
bool inverseCopyable = false, inverseEscapable = false;
for (auto ip : composition->getInverses()) {
switch (ip) {
case InvertibleProtocolKind::Copyable:
inverseCopyable = true;
break;
case InvertibleProtocolKind::Escapable:
inverseEscapable = true;
break;
};
}
unsigned abbrCode =
S.DeclTypeAbbrCodes[ProtocolCompositionTypeLayout::Code];
ProtocolCompositionTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
composition->hasExplicitAnyObject(),
inverseCopyable,
inverseEscapable,
protocols);
}
void
visitParameterizedProtocolType(const ParameterizedProtocolType *type) {
using namespace decls_block;
SmallVector<TypeID, 4> args;
for (auto arg : type->getArgs())
args.push_back(S.addTypeRef(arg));
unsigned abbrCode =
S.DeclTypeAbbrCodes[ParameterizedProtocolTypeLayout::Code];
ParameterizedProtocolTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(type->getBaseType()),
args);
}
void
visitExistentialType(const ExistentialType *existential) {
using namespace decls_block;
serializeSimpleWrapper<ExistentialTypeLayout>(existential->getConstraintType());
}
void visitReferenceStorageType(const ReferenceStorageType *refTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[ReferenceStorageTypeLayout::Code];
auto stableOwnership =
getRawStableReferenceOwnership(refTy->getOwnership());
ReferenceStorageTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
stableOwnership,
S.addTypeRef(refTy->getReferentType()));
}
void visitUnboundGenericType(const UnboundGenericType *generic) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[UnboundGenericTypeLayout::Code];
UnboundGenericTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(generic->getDecl(), /*allowTypeAliasXRef*/true),
S.addTypeRef(generic->getParent()));
}
void visitBoundGenericType(const BoundGenericType *generic) {
using namespace decls_block;
SmallVector<TypeID, 8> genericArgIDs;
for (auto next : generic->getGenericArgs())
genericArgIDs.push_back(S.addTypeRef(next));
unsigned abbrCode = S.DeclTypeAbbrCodes[BoundGenericTypeLayout::Code];
BoundGenericTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(generic->getDecl()),
S.addTypeRef(generic->getParent()),
genericArgIDs);
}
void visitIntegerType(const IntegerType *integer) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[IntegerTypeLayout::Code];
IntegerTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
integer->isNegative(),
integer->getDigitsText());
}
};
void Serializer::writeASTBlockEntity(Type ty) {
using namespace decls_block;
PrettyStackTraceType traceRAII(ty->getASTContext(), "serializing", ty);
assert(TypesToSerialize.hasRef(ty));
BitOffset initialOffset = Out.GetCurrentBitNo();
SWIFT_DEFER {
// This is important enough to leave on in Release builds.
if (initialOffset == Out.GetCurrentBitNo()) {
ABORT("failed to serialize anything");
}
};
TypeSerializer(*this).visit(ty);
}
namespace {
class ClangToSwiftBasicWriter :
public swift::DataStreamBasicWriter<ClangToSwiftBasicWriter> {
Serializer &S;
SmallVectorImpl<uint64_t> &Record;
using TypeWriter =
clang::serialization::AbstractTypeWriter<ClangToSwiftBasicWriter>;
TypeWriter Types;
ClangModuleLoader *getClangLoader() {
return S.getASTContext().getClangModuleLoader();
}
public:
ClangToSwiftBasicWriter(Serializer &S, SmallVectorImpl<uint64_t> &record)
: swift::DataStreamBasicWriter<ClangToSwiftBasicWriter>(
S.getASTContext().getClangModuleLoader()->getClangASTContext()),
S(S), Record(record), Types(*this) {}
void writeUInt64(uint64_t value) {
Record.push_back(value);
}
void writeIdentifier(const clang::IdentifierInfo *value) {
IdentifierID id = 0;
if (value) {
id = S.addDeclBaseNameRef(
S.getASTContext().getIdentifier(value->getName()));
}
Record.push_back(id);
}
void writeStmtRef(const clang::Stmt *stmt) {
// The deserializer should always read null, and isSerializable
// should be checking that we don't see a non-null statement here.
if (stmt) {
llvm::report_fatal_error("serializing a non-null Clang statement or"
" expression reference");
}
}
void writeDeclRef(const clang::Decl *decl) {
if (!decl) {
Record.push_back(/*no declaration*/ 0);
return;
}
auto path = getClangLoader()->findStableSerializationPath(decl);
if (!path) {
decl->dump(llvm::errs());
llvm::report_fatal_error("failed to find a stable Swift serialization"
" path for the above Clang declaration");
}
if (path.isSwiftDecl()) {
Record.push_back(/*swift declaration*/ 1);
Record.push_back(S.addDeclRef(path.getSwiftDecl()));
return;
}
assert(path.isExternalPath());
auto &ext = path.getExternalPath();
Record.push_back(/*external path*/ 2);
Record.push_back(ext.Path.size());
for (auto &elt : ext.Path) {
auto kind = elt.first;
auto stableKind = unsigned(getStableClangDeclPathComponentKind(kind));
Record.push_back(stableKind);
if (ext.requiresIdentifier(kind))
Record.push_back(S.addDeclBaseNameRef(elt.second));
}
}
void writeAttr(const clang::Attr *attr) {
auto *swiftAttr = dyn_cast_or_null<clang::SwiftAttrAttr>(attr);
if (!swiftAttr) {
writeUInt32(/*no attribute*/0);
return;
}
writeEnum(swiftAttr->getKind() + 1);
writeIdentifier(swiftAttr->getAttrName());
writeIdentifier(swiftAttr->getScopeName());
writeSourceLocation(swiftAttr->getRange().getBegin());
writeSourceLocation(swiftAttr->getRange().getEnd());
writeSourceLocation(swiftAttr->getScopeLoc());
writeEnum(swiftAttr->getParsedKind());
writeEnum(swiftAttr->getSyntax());
writeUInt64(swiftAttr->getAttributeSpellingListIndex());
writeBool(swiftAttr->isRegularKeywordAttribute());
writeBool(swiftAttr->isInherited());
writeBool(swiftAttr->isImplicit());
writeBool(swiftAttr->isPackExpansion());
writeUInt64(S.addUniquedStringRef(swiftAttr->getAttribute()));
}
// CountAttributedType is a clang type representing a pointer with
// a "counted_by" type attribute and DynamicRangePointerType is
// representing a "__ended_by" type attribute.
// TypeCoupledDeclRefInfo is used to hold information of a declaration
// referenced from an expression argument of "__counted_by(expr)" or
// "__ended_by(expr)".
// Nothing to be done for now as we currently don't import
// these types into Swift.
void writeTypeCoupledDeclRefInfo(clang::TypeCoupledDeclRefInfo info) {
llvm_unreachable("TypeCoupledDeclRefInfo shouldn't be reached from swift");
}
void writeHLSLSpirvOperand(clang::SpirvOperand) {
llvm_unreachable("SpirvOperand shouldn't be reached from swift");
}
};
}
void Serializer::writeASTBlockEntity(const clang::Type *ty) {
using namespace decls_block;
auto &ctx = getASTContext().getClangModuleLoader()->getClangASTContext();
PrettyStackTraceClangType traceRAII(ctx, "serializing clang type", ty);
assert(ClangTypesToSerialize.hasRef(ty));
// Serialize the type as an opaque sequence of data.
SmallVector<uint64_t, 16> typeData;
ClangToSwiftBasicWriter(*this, typeData).writeTypeRef(ty);
// Write that in an opaque record.
unsigned abbrCode = DeclTypeAbbrCodes[ClangTypeLayout::Code];
ClangTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
typeData);
}
template <typename SpecificASTBlockRecordKeeper>
bool Serializer::writeASTBlockEntitiesIfNeeded(
SpecificASTBlockRecordKeeper &entities) {
if (!entities.hasMoreToSerialize())
return false;
while (auto next = entities.popNext(Out.GetCurrentBitNo()))
writeASTBlockEntity(next.value());
return true;
}
void Serializer::writeAllDeclsAndTypes() {
BCBlockRAII restoreBlock(Out, DECLS_AND_TYPES_BLOCK_ID, 9);
using namespace decls_block;
registerDeclTypeAbbr<BuiltinAliasTypeLayout>();
registerDeclTypeAbbr<BuiltinFixedArrayTypeLayout>();
registerDeclTypeAbbr<TypeAliasTypeLayout>();
registerDeclTypeAbbr<GenericTypeParamDeclLayout>();
registerDeclTypeAbbr<AssociatedTypeDeclLayout>();
registerDeclTypeAbbr<NominalTypeLayout>();
registerDeclTypeAbbr<TupleTypeLayout>();
registerDeclTypeAbbr<TupleTypeEltLayout>();
registerDeclTypeAbbr<FunctionTypeLayout>();
registerDeclTypeAbbr<FunctionParamLayout>();
registerDeclTypeAbbr<MetatypeTypeLayout>();
registerDeclTypeAbbr<ExistentialMetatypeTypeLayout>();
registerDeclTypeAbbr<PrimaryArchetypeTypeLayout>();
registerDeclTypeAbbr<ExistentialArchetypeTypeLayout>();
registerDeclTypeAbbr<ElementArchetypeTypeLayout>();
registerDeclTypeAbbr<OpaqueArchetypeTypeLayout>();
registerDeclTypeAbbr<PackArchetypeTypeLayout>();
registerDeclTypeAbbr<ProtocolCompositionTypeLayout>();
registerDeclTypeAbbr<ParameterizedProtocolTypeLayout>();
registerDeclTypeAbbr<ExistentialTypeLayout>();
registerDeclTypeAbbr<BoundGenericTypeLayout>();
registerDeclTypeAbbr<GenericFunctionTypeLayout>();
registerDeclTypeAbbr<SILBlockStorageTypeLayout>();
registerDeclTypeAbbr<SILMoveOnlyWrappedTypeLayout>();
registerDeclTypeAbbr<SILBoxTypeLayout>();
registerDeclTypeAbbr<SILFunctionTypeLayout>();
registerDeclTypeAbbr<ArraySliceTypeLayout>();
registerDeclTypeAbbr<DictionaryTypeLayout>();
registerDeclTypeAbbr<VariadicSequenceTypeLayout>();
registerDeclTypeAbbr<ReferenceStorageTypeLayout>();
registerDeclTypeAbbr<UnboundGenericTypeLayout>();
registerDeclTypeAbbr<OptionalTypeLayout>();
registerDeclTypeAbbr<DynamicSelfTypeLayout>();
registerDeclTypeAbbr<PackExpansionTypeLayout>();
registerDeclTypeAbbr<PackElementTypeLayout>();
registerDeclTypeAbbr<PackTypeLayout>();
registerDeclTypeAbbr<SILPackTypeLayout>();
registerDeclTypeAbbr<IntegerTypeLayout>();
registerDeclTypeAbbr<InlineArrayTypeLayout>();
registerDeclTypeAbbr<ErrorFlagLayout>();
registerDeclTypeAbbr<ErrorTypeLayout>();
registerDeclTypeAbbr<ABIOnlyCounterpartLayout>();
registerDeclTypeAbbr<DeclNameRefLayout>();
registerDeclTypeAbbr<ClangTypeLayout>();
registerDeclTypeAbbr<TypeAliasLayout>();
registerDeclTypeAbbr<GenericTypeParamTypeLayout>();
registerDeclTypeAbbr<DependentMemberTypeLayout>();
registerDeclTypeAbbr<StructLayout>();
registerDeclTypeAbbr<ConstructorLayout>();
registerDeclTypeAbbr<VarLayout>();
registerDeclTypeAbbr<ParamLayout>();
registerDeclTypeAbbr<FuncLayout>();
registerDeclTypeAbbr<AccessorLayout>();
registerDeclTypeAbbr<OpaqueTypeLayout>();
registerDeclTypeAbbr<PatternBindingLayout>();
registerDeclTypeAbbr<ProtocolLayout>();
registerDeclTypeAbbr<AssociatedTypeLayout>();
registerDeclTypeAbbr<PrimaryAssociatedTypeLayout>();
registerDeclTypeAbbr<DefaultWitnessTableLayout>();
registerDeclTypeAbbr<PrefixOperatorLayout>();
registerDeclTypeAbbr<PostfixOperatorLayout>();
registerDeclTypeAbbr<InfixOperatorLayout>();
registerDeclTypeAbbr<PrecedenceGroupLayout>();
registerDeclTypeAbbr<ClassLayout>();
registerDeclTypeAbbr<EnumLayout>();
registerDeclTypeAbbr<EnumElementLayout>();
registerDeclTypeAbbr<SubscriptLayout>();
registerDeclTypeAbbr<ExtensionLayout>();
registerDeclTypeAbbr<DestructorLayout>();
registerDeclTypeAbbr<MacroLayout>();
registerDeclTypeAbbr<ParameterListLayout>();
registerDeclTypeAbbr<ParenPatternLayout>();
registerDeclTypeAbbr<TuplePatternLayout>();
registerDeclTypeAbbr<TuplePatternEltLayout>();
registerDeclTypeAbbr<NamedPatternLayout>();
registerDeclTypeAbbr<BindingPatternLayout>();
registerDeclTypeAbbr<AnyPatternLayout>();
registerDeclTypeAbbr<TypedPatternLayout>();
registerDeclTypeAbbr<InlinableBodyTextLayout>();
registerDeclTypeAbbr<GenericParamListLayout>();
registerDeclTypeAbbr<GenericSignatureLayout>();
registerDeclTypeAbbr<GenericEnvironmentLayout>();
registerDeclTypeAbbr<RequirementSignatureLayout>();
registerDeclTypeAbbr<SILGenericSignatureLayout>();
registerDeclTypeAbbr<SubstitutionMapLayout>();
registerDeclTypeAbbr<ForeignErrorConventionLayout>();
registerDeclTypeAbbr<ForeignAsyncConventionLayout>();
registerDeclTypeAbbr<LifetimeDependenceLayout>();
registerDeclTypeAbbr<AbstractClosureExprLayout>();
registerDeclTypeAbbr<PatternBindingInitializerLayout>();
registerDeclTypeAbbr<DefaultArgumentInitializerLayout>();
registerDeclTypeAbbr<TopLevelCodeDeclContextLayout>();
registerDeclTypeAbbr<XRefTypePathPieceLayout>();
registerDeclTypeAbbr<XRefOpaqueReturnTypePathPieceLayout>();
registerDeclTypeAbbr<XRefValuePathPieceLayout>();
registerDeclTypeAbbr<XRefExtensionPathPieceLayout>();
registerDeclTypeAbbr<XRefOperatorOrAccessorPathPieceLayout>();
registerDeclTypeAbbr<XRefGenericParamPathPieceLayout>();
registerDeclTypeAbbr<XRefInitializerPathPieceLayout>();
registerDeclTypeAbbr<NormalProtocolConformanceLayout>();
registerDeclTypeAbbr<SelfProtocolConformanceLayout>();
registerDeclTypeAbbr<SpecializedProtocolConformanceLayout>();
registerDeclTypeAbbr<InheritedProtocolConformanceLayout>();
registerDeclTypeAbbr<BuiltinProtocolConformanceLayout>();
registerDeclTypeAbbr<AbstractConformanceLayout>();
registerDeclTypeAbbr<PackConformanceLayout>();
registerDeclTypeAbbr<ProtocolConformanceXrefLayout>();
registerDeclTypeAbbr<SILLayoutLayout>();
registerDeclTypeAbbr<LocalDiscriminatorLayout>();
registerDeclTypeAbbr<PrivateDiscriminatorLayout>();
registerDeclTypeAbbr<FilenameForPrivateLayout>();
registerDeclTypeAbbr<DeserializationSafetyLayout>();
registerDeclTypeAbbr<ExpandedMacroDefinitionLayout>();
registerDeclTypeAbbr<ExpandedMacroReplacementsLayout>();
registerDeclTypeAbbr<MembersLayout>();
registerDeclTypeAbbr<XRefLayout>();
registerDeclTypeAbbr<ConditionalSubstitutionLayout>();
registerDeclTypeAbbr<ConditionalSubstitutionConditionLayout>();
registerDeclTypeAbbr<InheritedProtocolsLayout>();
#define DECL_ATTR(X, NAME, ...) \
registerDeclTypeAbbr<NAME##DeclAttrLayout>();
#include "swift/AST/DeclAttr.def"
bool wroteSomething;
do {
// Each of these loops can trigger the others to execute again, so repeat
// until /all/ of the pending lists are empty.
wroteSomething = false;
wroteSomething |= writeASTBlockEntitiesIfNeeded(DeclsToSerialize);
wroteSomething |= writeASTBlockEntitiesIfNeeded(TypesToSerialize);
wroteSomething |= writeASTBlockEntitiesIfNeeded(ClangTypesToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(LocalDeclContextsToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(GenericSignaturesToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(GenericEnvironmentsToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(SubstitutionMapsToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(ConformancesToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(AbstractConformancesToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(PackConformancesToSerialize);
wroteSomething |= writeASTBlockEntitiesIfNeeded(SILLayoutsToSerialize);
} while (wroteSomething);
}
std::vector<CharOffset> Serializer::writeAllIdentifiers() {
assert(!DeclsToSerialize.hasMoreToSerialize() &&
"did not call Serializer::writeAllDeclsAndTypes?");
BCBlockRAII restoreBlock(Out, IDENTIFIER_DATA_BLOCK_ID, 3);
identifier_block::IdentifierDataLayout IdentifierData(Out);
llvm::SmallString<4096> stringData;
// Make sure no identifier has an offset of 0.
stringData.push_back('\0');
std::vector<CharOffset> identifierOffsets;
for (StringRef str : StringsToWrite) {
identifierOffsets.push_back(stringData.size());
stringData.append(str);
stringData.push_back('\0');
}
IdentifierData.emit(ScratchRecord, stringData.str());
return identifierOffsets;
}
template <typename SpecificASTBlockRecordKeeper>
void Serializer::writeOffsets(const index_block::OffsetsLayout &Offsets,
const SpecificASTBlockRecordKeeper &entities) {
Offsets.emit(ScratchRecord, SpecificASTBlockRecordKeeper::RecordCode,
entities.getOffsets());
}
/// Writes an in-memory decl table to an on-disk representation, using the
/// given layout.
static void writeDeclTable(const index_block::DeclListLayout &DeclList,
index_block::RecordKind kind,
const Serializer::DeclTable &table) {
if (table.empty())
return;
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
DeclList.emit(scratch, kind, tableOffset, hashTableBlob);
}
static void
writeExtensionTable(const index_block::ExtensionTableLayout &ExtensionTable,
const Serializer::ExtensionTable &table,
Serializer &serializer) {
if (table.empty())
return;
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<ExtensionTableInfo> generator;
ExtensionTableInfo info{serializer};
for (auto &entry : table) {
generator.insert(entry.first, entry.second, info);
}
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream, info);
}
ExtensionTable.emit(scratch, tableOffset, hashTableBlob);
}
static void writeLocalDeclTable(const index_block::DeclListLayout &DeclList,
index_block::RecordKind kind,
LocalTypeHashTableGenerator &generator) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
DeclList.emit(scratch, kind, tableOffset, hashTableBlob);
}
static void
writeNestedTypeDeclsTable(const index_block::NestedTypeDeclsLayout &declList,
const Serializer::NestedTypeDeclsTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<NestedTypeDeclsTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
declList.emit(scratch, tableOffset, hashTableBlob);
}
static void
writeDeclMemberNamesTable(const index_block::DeclMemberNamesLayout &declNames,
const Serializer::DeclMemberNamesTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclMemberNamesTableInfo> generator;
// Emit the offsets of the sub-tables; the tables themselves have been
// separately emitted into DECL_MEMBER_TABLES_BLOCK by now.
for (auto &entry : table) {
// Or they _should_ have been; check for nonzero offsets.
assert(static_cast<unsigned>(entry.second.first) != 0);
generator.insert(entry.first, entry.second.first);
}
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
declNames.emit(scratch, tableOffset, hashTableBlob);
}
static void
writeDeclMembersTable(const decl_member_tables_block::DeclMembersLayout &mems,
const Serializer::DeclMembersTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclMembersTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
mems.emit(scratch, tableOffset, hashTableBlob);
}
static void
writeDeclFingerprintsTable(const index_block::DeclFingerprintsLayout &fpl,
const Serializer::DeclFingerprintsTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclFingerprintsTableInfo> generator;
for (auto &entry : table) {
generator.insert(entry.first, entry.second);
}
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
fpl.emit(scratch, tableOffset, hashTableBlob);
}
namespace {
/// Used to serialize the on-disk Objective-C method hash table.
class ObjCMethodTableInfo {
public:
using key_type = ObjCSelector;
using key_type_ref = key_type;
using data_type = Serializer::ObjCMethodTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
llvm::SmallString<32> scratch;
return llvm::djbHash(key.getString(scratch), SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
llvm::SmallString<32> scratch;
auto keyLength = key.getString(scratch).size();
assert(keyLength <= std::numeric_limits<uint16_t>::max() &&
"selector too long");
uint32_t dataLength = 0;
for (const auto &entry : data) {
dataLength += sizeof(uint32_t) + 1 + sizeof(uint32_t);
dataLength += std::get<0>(entry).size();
}
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
writer.write<uint32_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
#ifndef NDEBUG
uint64_t start = out.tell();
#endif
out << key;
assert((out.tell() - start == len) && "measured key length incorrectly");
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, llvm::endianness::little);
for (const auto &entry : data) {
writer.write<uint32_t>(std::get<0>(entry).size());
writer.write<uint8_t>(std::get<1>(entry));
writer.write<uint32_t>(std::get<2>(entry));
out.write(std::get<0>(entry).c_str(), std::get<0>(entry).size());
}
}
};
} // end anonymous namespace
static void writeObjCMethodTable(const index_block::ObjCMethodTableLayout &out,
Serializer::ObjCMethodTable &objcMethods) {
// Collect all of the Objective-C selectors in the method table.
std::vector<ObjCSelector> selectors;
for (const auto &entry : objcMethods) {
selectors.push_back(entry.first);
}
// Sort the Objective-C selectors so we emit them in a stable order.
llvm::array_pod_sort(selectors.begin(), selectors.end());
// Create the on-disk hash table.
llvm::OnDiskChainedHashTableGenerator<ObjCMethodTableInfo> generator;
llvm::SmallString<32> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
for (auto selector : selectors) {
generator.insert(selector, objcMethods[selector]);
}
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
SmallVector<uint64_t, 8> scratch;
out.emit(scratch, tableOffset, hashTableBlob);
}
namespace {
/// Used to serialize derivative function configurations.
class DerivativeFunctionConfigTableInfo {
public:
using key_type = std::string;
using key_type_ref = StringRef;
using data_type = Serializer::DerivativeFunctionConfigTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key, SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = (sizeof(uint32_t) * 2) * data.size();
for (auto entry : data)
dataLength += entry.first.size();
assert(dataLength == static_cast<uint16_t>(dataLength));
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, llvm::endianness::little);
for (auto &entry : data) {
// Write `GenericSignatureID`.
writer.write<uint32_t>(entry.second);
// Write parameter indices string size, followed by data.
writer.write<int32_t>(entry.first.size());
out << entry.first;
}
}
};
} // end anonymous namespace
static void writeDerivativeFunctionConfigs(
Serializer &S, const index_block::DerivativeFunctionConfigTableLayout &out,
Serializer::DerivativeFunctionConfigTable &derivativeConfigs) {
// Create the on-disk hash table.
llvm::OnDiskChainedHashTableGenerator<DerivativeFunctionConfigTableInfo>
generator;
llvm::SmallString<32> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
for (auto &entry : derivativeConfigs)
generator.insert(entry.first.get(), entry.second);
// Make sure that no bucket is at offset 0.
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream);
}
SmallVector<uint64_t, 8> scratch;
out.emit(scratch, tableOffset, hashTableBlob);
}
// Records derivative function configurations for the given AbstractFunctionDecl
// by visiting `@differentiable` and `@derivative` attributes.
static void recordDerivativeFunctionConfig(
Serializer &S, const AbstractFunctionDecl *AFD,
Serializer::UniquedDerivativeFunctionConfigTable &derivativeConfigs) {
auto &ctx = AFD->getASTContext();
Mangle::ASTMangler Mangler(AFD->getASTContext());
for (auto *attr : AFD->getAttrs().getAttributes<DifferentiableAttr>()) {
auto mangledName = ctx.getIdentifier(Mangler.mangleDeclWithPrefix(AFD, ""));
derivativeConfigs[mangledName].insert(
{ctx.getIdentifier(attr->getParameterIndices()->getString()),
attr->getDerivativeGenericSignature()});
}
for (auto *attr : AFD->getAttrs().getAttributes<DerivativeAttr>()) {
auto *origAFD = attr->getOriginalFunction(ctx);
auto mangledName =
ctx.getIdentifier(Mangler.mangleDeclWithPrefix(origAFD, ""));
derivativeConfigs[mangledName].insert(
{ctx.getIdentifier(attr->getParameterIndices()->getString()),
AFD->getGenericSignature()});
}
}
/// Recursively walks the members and derived global decls of any nominal types
/// to build up global tables.
template<typename Range>
static void collectInterestingNestedDeclarations(
Serializer &S,
Range members,
Serializer::DeclTable &operatorMethodDecls,
Serializer::ObjCMethodTable &objcMethods,
Serializer::NestedTypeDeclsTable &nestedTypeDecls,
Serializer::UniquedDerivativeFunctionConfigTable &derivativeConfigs,
Serializer::DeclFingerprintsTable &declFingerprints,
bool isLocal = false) {
const NominalTypeDecl *nominalParent = nullptr;
for (const Decl *member : members) {
// If there is a corresponding Objective-C method, record it.
auto recordObjCMethod = [&](const AbstractFunctionDecl *func) {
if (isLocal)
return;
if (auto owningType = func->getDeclContext()->getSelfNominalTypeDecl()) {
if (func->isObjC()) {
Mangle::ASTMangler mangler(func->getASTContext());
std::string ownerName = mangler.mangleNominalType(owningType);
assert(!ownerName.empty() && "Mangled type came back empty!");
objcMethods[func->getObjCSelector()].push_back(
std::make_tuple(ownerName,
func->isObjCInstanceMethod(),
S.addDeclRef(func)));
}
}
};
if (auto memberValue = dyn_cast<ValueDecl>(member)) {
if (memberValue->hasName() &&
memberValue->isOperator()) {
// Add operator methods.
// Note that we don't have to add operators that are already in the
// top-level list.
operatorMethodDecls[memberValue->getBaseName()].push_back({
/*ignored*/0,
S.addDeclRef(memberValue)
});
}
}
// Record Objective-C methods and derivative function configurations.
if (auto *func = dyn_cast<AbstractFunctionDecl>(member)) {
recordObjCMethod(func);
recordDerivativeFunctionConfig(S, func, derivativeConfigs);
}
// Handle accessors.
if (auto storage = dyn_cast<AbstractStorageDecl>(member)) {
for (auto *accessor : storage->getAllAccessors()) {
recordObjCMethod(accessor);
recordDerivativeFunctionConfig(S, accessor, derivativeConfigs);
}
}
if (auto nestedType = dyn_cast<TypeDecl>(member)) {
if (nestedType->getEffectiveAccess() > swift::AccessLevel::FilePrivate) {
if (!nominalParent) {
const DeclContext *DC = member->getDeclContext();
nominalParent = DC->getSelfNominalTypeDecl();
assert((nominalParent || S.allowCompilerErrors()) &&
"parent context is not a type or extension");
}
nestedTypeDecls[nestedType->getName()].push_back({
S.addDeclRef(nominalParent),
S.addDeclRef(nestedType)
});
}
}
// Recurse into nested declarations.
if (auto iterable = dyn_cast<IterableDeclContext>(member)) {
if (auto bodyFP = iterable->getBodyFingerprint()) {
declFingerprints.insert({S.addDeclRef(member), *bodyFP});
}
collectInterestingNestedDeclarations(S, iterable->getAllMembers(),
operatorMethodDecls,
objcMethods, nestedTypeDecls,
derivativeConfigs,
declFingerprints,
isLocal);
}
}
}
void Serializer::writeAST(ModuleOrSourceFile DC) {
DeclTable topLevelDecls, operatorDecls, operatorMethodDecls;
DeclTable precedenceGroupDecls;
ObjCMethodTable objcMethods;
NestedTypeDeclsTable nestedTypeDecls;
LocalTypeHashTableGenerator localTypeGenerator, opaqueReturnTypeGenerator;
ExtensionTable extensionDecls;
UniquedDerivativeFunctionConfigTable uniquedDerivativeConfigs;
DeclFingerprintsTable declFingerprints;
bool hasLocalTypes = false;
bool hasOpaqueReturnTypes = false;
std::optional<DeclID> entryPointClassID;
SmallVector<DeclID, 16> orderedTopLevelDecls;
ArrayRef<const FileUnit *> files;
SmallVector<const FileUnit *, 1> Scratch;
if (SF) {
Scratch.push_back(SF);
if (auto *synthesizedFile = SF->getSynthesizedFile())
Scratch.push_back(synthesizedFile);
files = llvm::ArrayRef(Scratch);
} else {
for (auto file : M->getFiles()) {
Scratch.push_back(file);
if (auto *synthesizedFile = file->getSynthesizedFile())
Scratch.push_back(synthesizedFile);
}
files = llvm::ArrayRef(Scratch);
}
for (auto nextFile : files) {
if (nextFile->hasEntryPoint())
entryPointClassID = addDeclRef(nextFile->getMainDecl());
// FIXME: Switch to a visitor interface?
SmallVector<Decl *, 32> fileDecls;
nextFile->getTopLevelDeclsWithAuxiliaryDecls(fileDecls);
for (auto D : fileDecls) {
if (const auto *ID = dyn_cast<ImportDecl>(D)) {
if (ID->getAttrs().hasAttribute<ImplementationOnlyAttr>())
hadImplementationOnlyImport = true;
continue;
}
if (isa<MacroExpansionDecl>(D) || isa<TopLevelCodeDecl>(D) ||
isa<UsingDecl>(D)) {
continue;
}
if (shouldSkipDecl(D))
continue;
if (auto VD = dyn_cast<ValueDecl>(D)) {
if (!VD->hasName())
continue;
topLevelDecls[VD->getBaseName()]
.push_back({ getKindForTable(D), addDeclRef(D) });
} else if (auto ED = dyn_cast<ExtensionDecl>(D)) {
const NominalTypeDecl *extendedNominal = ED->getExtendedNominal();
if (extendedNominal) {
extensionDecls[extendedNominal->getName()]
.push_back({ extendedNominal, addDeclRef(D) });
}
} else if (auto OD = dyn_cast<OperatorDecl>(D)) {
operatorDecls[OD->getName()]
.push_back({ getStableFixity(OD->getFixity()), addDeclRef(D) });
} else if (auto PGD = dyn_cast<PrecedenceGroupDecl>(D)) {
precedenceGroupDecls[PGD->getName()]
.push_back({ decls_block::PRECEDENCE_GROUP_DECL, addDeclRef(D) });
} else if (isa<PatternBindingDecl>(D)) {
// No special handling needed.
} else {
llvm_unreachable("all top-level declaration kinds accounted for");
}
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(D))
recordDerivativeFunctionConfig(*this, AFD, uniquedDerivativeConfigs);
orderedTopLevelDecls.push_back(addDeclRef(D));
// If this nominal type has associated top-level decls for a
// derived conformance (for example, ==), force them to be
// serialized.
if (auto IDC = dyn_cast<IterableDeclContext>(D)) {
if (auto bodyFP = IDC->getBodyFingerprint()) {
declFingerprints.insert({addDeclRef(D), *bodyFP});
}
collectInterestingNestedDeclarations(*this, IDC->getAllMembers(),
operatorMethodDecls, objcMethods,
nestedTypeDecls,
uniquedDerivativeConfigs,
declFingerprints);
}
}
SmallVector<TypeDecl *, 16> localTypeDecls;
nextFile->getLocalTypeDecls(localTypeDecls);
SmallVector<OpaqueTypeDecl *, 16> opaqueReturnTypeDecls;
nextFile->getOpaqueReturnTypeDecls(opaqueReturnTypeDecls);
for (auto TD : localTypeDecls) {
if (shouldSkipDecl(TD))
continue;
// FIXME: We should delay parsing function bodies so these type decls
// don't even get added to the file.
if (TD->getDeclContext()->getInnermostSkippedFunctionContext())
continue;
hasLocalTypes = true;
std::string MangledName =
evaluateOrDefault(M->getASTContext().evaluator,
MangleLocalTypeDeclRequest { TD },
std::string());
assert(!MangledName.empty() && "Mangled type came back empty!");
localTypeGenerator.insert(MangledName, addDeclRef(TD));
if (auto IDC = dyn_cast<IterableDeclContext>(TD)) {
if (auto bodyFP = IDC->getBodyFingerprint()) {
declFingerprints.insert({addDeclRef(TD), *bodyFP});
}
collectInterestingNestedDeclarations(*this, IDC->getAllMembers(),
operatorMethodDecls, objcMethods,
nestedTypeDecls,
uniquedDerivativeConfigs,
declFingerprints,
/*isLocal=*/true);
}
}
for (auto OTD : opaqueReturnTypeDecls) {
if (shouldSkipDecl(OTD))
continue;
// FIXME: We should delay parsing function bodies so these type decls
// don't even get added to the file.
if (OTD->getDeclContext()->getInnermostSkippedFunctionContext())
continue;
hasOpaqueReturnTypes = true;
Mangle::ASTMangler Mangler(OTD->getASTContext());
auto MangledName = Mangler.mangleOpaqueTypeDecl(OTD);
opaqueReturnTypeGenerator.insert(MangledName, addDeclRef(OTD));
}
}
writeAllDeclsAndTypes();
std::vector<CharOffset> identifierOffsets = writeAllIdentifiers();
{
BCBlockRAII restoreBlock(Out, INDEX_BLOCK_ID, 4);
index_block::OffsetsLayout Offsets(Out);
writeOffsets(Offsets, DeclsToSerialize);
writeOffsets(Offsets, TypesToSerialize);
writeOffsets(Offsets, ClangTypesToSerialize);
writeOffsets(Offsets, LocalDeclContextsToSerialize);
writeOffsets(Offsets, GenericSignaturesToSerialize);
writeOffsets(Offsets, GenericEnvironmentsToSerialize);
writeOffsets(Offsets, SubstitutionMapsToSerialize);
writeOffsets(Offsets, ConformancesToSerialize);
writeOffsets(Offsets, AbstractConformancesToSerialize);
writeOffsets(Offsets, PackConformancesToSerialize);
writeOffsets(Offsets, SILLayoutsToSerialize);
Offsets.emit(ScratchRecord, index_block::IDENTIFIER_OFFSETS,
identifierOffsets);
index_block::DeclListLayout DeclList(Out);
writeDeclTable(DeclList, index_block::TOP_LEVEL_DECLS, topLevelDecls);
writeDeclTable(DeclList, index_block::OPERATORS, operatorDecls);
writeDeclTable(DeclList, index_block::PRECEDENCE_GROUPS, precedenceGroupDecls);
writeDeclTable(DeclList, index_block::CLASS_MEMBERS_FOR_DYNAMIC_LOOKUP,
ClassMembersForDynamicLookup);
writeDeclTable(DeclList, index_block::OPERATOR_METHODS, operatorMethodDecls);
if (hasLocalTypes)
writeLocalDeclTable(DeclList, index_block::LOCAL_TYPE_DECLS,
localTypeGenerator);
if (hasOpaqueReturnTypes)
writeLocalDeclTable(DeclList, index_block::OPAQUE_RETURN_TYPE_DECLS,
opaqueReturnTypeGenerator);
if (!extensionDecls.empty()) {
index_block::ExtensionTableLayout ExtensionTable(Out);
writeExtensionTable(ExtensionTable, extensionDecls, *this);
}
index_block::OrderedDeclsLayout OrderedDecls(Out);
OrderedDecls.emit(ScratchRecord, index_block::ORDERED_TOP_LEVEL_DECLS,
orderedTopLevelDecls);
index_block::OrderedDeclsLayout ExportedPrespecializationDecls(Out);
ExportedPrespecializationDecls.emit(
ScratchRecord, index_block::EXPORTED_PRESPECIALIZATION_DECLS,
exportedPrespecializationDecls);
index_block::ObjCMethodTableLayout ObjCMethodTable(Out);
writeObjCMethodTable(ObjCMethodTable, objcMethods);
if (!nestedTypeDecls.empty()) {
index_block::NestedTypeDeclsLayout NestedTypeDeclsTable(Out);
writeNestedTypeDeclsTable(NestedTypeDeclsTable, nestedTypeDecls);
}
if (!declFingerprints.empty()) {
index_block::DeclFingerprintsLayout DeclsFingerprints(Out);
writeDeclFingerprintsTable(DeclsFingerprints, declFingerprints);
}
// Convert uniqued derivative function config table to serialization-
// ready format: turn `GenericSignature` to `GenericSignatureID`.
DerivativeFunctionConfigTable derivativeConfigs;
for (auto entry : uniquedDerivativeConfigs) {
for (auto config : entry.second) {
std::string paramIndices = config.first.str().str();
auto genSigID = addGenericSignatureRef(config.second);
derivativeConfigs[entry.first].push_back(
{std::string(paramIndices), genSigID});
}
}
index_block::DerivativeFunctionConfigTableLayout DerivativeConfigTable(Out);
writeDerivativeFunctionConfigs(*this, DerivativeConfigTable,
derivativeConfigs);
if (entryPointClassID.has_value()) {
index_block::EntryPointLayout EntryPoint(Out);
EntryPoint.emit(ScratchRecord, entryPointClassID.value());
}
{
// Write sub-tables to a skippable sub-block.
BCBlockRAII restoreBlock(Out, DECL_MEMBER_TABLES_BLOCK_ID, 4);
decl_member_tables_block::DeclMembersLayout DeclMembersTable(Out);
for (auto &entry : DeclMemberNames) {
// Save BitOffset we're writing sub-table to.
static_assert(bitOffsetFitsIn32Bits(), "BitOffset too large");
assert(Out.GetCurrentBitNo() < (1ull << 32));
entry.second.first = Out.GetCurrentBitNo();
// Write sub-table.
writeDeclMembersTable(DeclMembersTable, *entry.second.second);
}
}
// Write top-level table mapping names to sub-tables.
index_block::DeclMemberNamesLayout DeclMemberNamesTable(Out);
writeDeclMemberNamesTable(DeclMemberNamesTable, DeclMemberNames);
}
}
void SerializerBase::writeToStream(raw_ostream &os) {
os.write(Buffer.data(), Buffer.size());
os.flush();
}
SerializerBase::SerializerBase(ArrayRef<unsigned char> signature,
ModuleOrSourceFile DC) {
for (unsigned char byte : signature)
Out.Emit(byte, 8);
this->M = getModule(DC);
this->SF = DC.dyn_cast<SourceFile *>();
}
void Serializer::writeToStream(
raw_ostream &os, ModuleOrSourceFile DC,
const SILModule *SILMod,
const SerializationOptions &options,
const fine_grained_dependencies::SourceFileDepGraph *DepGraph) {
Serializer S{SWIFTMODULE_SIGNATURE, DC, options};
// FIXME: This is only really needed for debugging. We don't actually use it.
S.writeBlockInfoBlock();
{
BCBlockRAII moduleBlock(S.Out, MODULE_BLOCK_ID, 2);
S.writeHeader();
S.writeInputBlock();
S.writeSIL(SILMod);
S.writeAST(DC);
if (S.hadError)
S.getASTContext().Diags.diagnose(SourceLoc(), diag::serialization_failed,
S.M);
if (!options.DisableCrossModuleIncrementalInfo && DepGraph) {
fine_grained_dependencies::writeFineGrainedDependencyGraph(
S.Out, *DepGraph, fine_grained_dependencies::Purpose::ForSwiftModule);
}
}
S.writeToStream(os);
}
bool Serializer::allowCompilerErrors() const {
return getASTContext().LangOpts.AllowModuleWithCompilerErrors;
}
bool Serializer::skipDeclIfInvalid(const Decl *decl) {
if (!decl->isInvalid())
return false;
if (allowCompilerErrors())
return canSkipWhenInvalid(decl);
if (Options.EnableSerializationRemarks) {
getASTContext().Diags.diagnose(
decl->getLoc(), diag::serialization_skipped_invalid_decl, decl);
}
hadError = true;
return true;
}
bool Serializer::skipTypeIfInvalid(Type ty, TypeRepr *tyRepr) {
if ((ty && !ty->hasError()) || allowCompilerErrors())
return false;
if (Options.EnableSerializationRemarks) {
getASTContext().Diags.diagnose(
tyRepr->getLoc(), diag::serialization_skipped_invalid_type, tyRepr);
}
hadError = true;
return true;
}
bool Serializer::skipTypeIfInvalid(Type ty, SourceLoc loc) {
if ((ty && !ty->hasError()) || allowCompilerErrors())
return false;
if (Options.EnableSerializationRemarks) {
getASTContext().Diags.diagnose(
loc, diag::serialization_skipped_invalid_type_unknown_name);
}
hadError = true;
return true;
}
void serialization::writeToStream(
raw_ostream &os, ModuleOrSourceFile DC, const SILModule *M,
const SerializationOptions &options,
const fine_grained_dependencies::SourceFileDepGraph *DepGraph) {
Serializer::writeToStream(os, DC, M, options, DepGraph);
}