Files
swift-mirror/lib/Serialization/SerializeSIL.cpp
2025-11-11 13:03:16 -08:00

3959 lines
160 KiB
C++

//===--- SerializeSIL.cpp - Read and write SIL ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-serialize"
#include "SILFormat.h"
#include "Serialization.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TerminatorUtils.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/Strings.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/OnDiskHashTable.h"
#include <type_traits>
using namespace swift;
using namespace swift::serialization;
using namespace swift::serialization::sil_block;
using namespace llvm::support;
using llvm::BCBlockRAII;
static unsigned toStableStringEncoding(StringLiteralInst::Encoding encoding) {
switch (encoding) {
case StringLiteralInst::Encoding::Bytes: return SIL_BYTES;
case StringLiteralInst::Encoding::UTF8: return SIL_UTF8;
case StringLiteralInst::Encoding::ObjCSelector: return SIL_OBJC_SELECTOR;
case StringLiteralInst::Encoding::UTF8_OSLOG: return SIL_UTF8_OSLOG;
}
llvm_unreachable("bad string encoding");
}
static unsigned toStableSILLinkage(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public: return SIL_LINKAGE_PUBLIC;
case SILLinkage::PublicNonABI: return SIL_LINKAGE_PUBLIC_NON_ABI;
case SILLinkage::Package: return SIL_LINKAGE_PACKAGE;
case SILLinkage::PackageNonABI: return SIL_LINKAGE_PACKAGE_NON_ABI;
case SILLinkage::Hidden: return SIL_LINKAGE_HIDDEN;
case SILLinkage::Shared: return SIL_LINKAGE_SHARED;
case SILLinkage::Private: return SIL_LINKAGE_PRIVATE;
case SILLinkage::PublicExternal: return SIL_LINKAGE_PUBLIC_EXTERNAL;
case SILLinkage::PackageExternal: return SIL_LINKAGE_PACKAGE_EXTERNAL;
case SILLinkage::HiddenExternal: return SIL_LINKAGE_HIDDEN_EXTERNAL;
}
llvm_unreachable("bad linkage");
}
static unsigned toStableVTableEntryKind(SILVTable::Entry::Kind kind) {
switch (kind) {
case SILVTable::Entry::Kind::Normal: return SIL_VTABLE_ENTRY_NORMAL;
case SILVTable::Entry::Kind::Inherited: return SIL_VTABLE_ENTRY_INHERITED;
case SILVTable::Entry::Kind::Override: return SIL_VTABLE_ENTRY_OVERRIDE;
}
llvm_unreachable("bad vtable entry kind");
}
static unsigned toStableCastConsumptionKind(CastConsumptionKind kind) {
switch (kind) {
case CastConsumptionKind::TakeAlways:
return SIL_CAST_CONSUMPTION_TAKE_ALWAYS;
case CastConsumptionKind::TakeOnSuccess:
return SIL_CAST_CONSUMPTION_TAKE_ON_SUCCESS;
case CastConsumptionKind::CopyOnSuccess:
return SIL_CAST_CONSUMPTION_COPY_ON_SUCCESS;
case CastConsumptionKind::BorrowAlways:
return SIL_CAST_CONSUMPTION_BORROW_ALWAYS;
}
llvm_unreachable("bad cast consumption kind");
}
static unsigned
toStableDifferentiabilityKind(swift::DifferentiabilityKind kind) {
switch (kind) {
case swift::DifferentiabilityKind::NonDifferentiable:
return (unsigned)serialization::DifferentiabilityKind::NonDifferentiable;
case swift::DifferentiabilityKind::Forward:
return (unsigned)serialization::DifferentiabilityKind::Forward;
case swift::DifferentiabilityKind::Reverse:
return (unsigned)serialization::DifferentiabilityKind::Reverse;
case swift::DifferentiabilityKind::Normal:
return (unsigned)serialization::DifferentiabilityKind::Normal;
case swift::DifferentiabilityKind::Linear:
return (unsigned)serialization::DifferentiabilityKind::Linear;
}
llvm_unreachable("covered switch");
}
static unsigned encodeValueOwnership(ValueOwnershipKind ownership) {
assert(ownership.value > 0 && "invalid value ownership");
return ownership.value - 1;
}
namespace {
/// Used to serialize the on-disk func hash table.
class FuncTableInfo {
Serializer &S;
public:
using key_type = StringRef;
using key_type_ref = key_type;
using data_type = DeclID;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
explicit FuncTableInfo(Serializer &S) : S(S) {}
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key, SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
return { sizeof(uint32_t), sizeof(uint32_t) };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
uint32_t keyID = S.addUniquedStringRef(key);
endian::write<uint32_t>(out, keyID, llvm::endianness::little);
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
endian::write<uint32_t>(out, data, llvm::endianness::little);
}
};
class StringTableInfo {
public:
using key_type = StringRef;
using key_type_ref = key_type;
using data_type = StringRef;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = uint32_t;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key, SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
offset_type keyLength = static_cast<offset_type>(key.size());
llvm::support::endian::write<offset_type>(out, keyLength,
llvm::endianness::little);
offset_type dataLength = static_cast<offset_type>(data.size());
llvm::support::endian::write<offset_type>(out, dataLength,
llvm::endianness::little);
return {keyLength, dataLength};
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
out << data;
}
};
class SILSerializer {
using TypeID = serialization::TypeID;
using DebugScopeID = DeclID;
using DebugScopeIDField = DeclIDField;
using LocationID = DeclID;
using LocationIDField = DeclIDField;
Serializer &S;
llvm::BitstreamWriter &Out;
/// A reusable buffer for emitting records.
SmallVector<uint64_t, 64> ScratchRecord;
/// In case we want to encode the relative of InstID vs ValueID.
uint32_t /*ValueID*/ InstID = 0;
llvm::DenseMap<const ValueBase*, ValueID> ValueIDs;
ValueID addValueRef(const ValueBase *Val);
public:
using TableData = FuncTableInfo::data_type;
using Table = llvm::MapVector<FuncTableInfo::key_type, TableData>;
using StringMapTable = llvm::MapVector<StringRef, std::string>;
private:
/// FuncTable maps function name to an ID.
Table FuncTable;
std::vector<BitOffset> Funcs;
/// The current function ID.
uint32_t /*DeclID*/ NextFuncID = 1;
/// Maps class name to a VTable ID.
Table VTableList;
/// Holds the list of VTables.
std::vector<BitOffset> VTableOffset;
uint32_t /*DeclID*/ NextVTableID = 1;
/// Maps nominal type name to a MoveOnlyDeinit ID.
Table MoveOnlyDeinitList;
/// Holds the list of MoveOnlyDeinits.
std::vector<BitOffset> MoveOnlyDeinitOffset;
uint32_t /*DeclID*/ NextMoveOnlyDeinitOffsetID = 1;
/// Maps global variable name to an ID.
Table GlobalVarList;
/// Holds the list of SIL global variables.
std::vector<BitOffset> GlobalVarOffset;
uint32_t /*DeclID*/ NextGlobalVarID = 1;
/// Maps witness table identifier to an ID.
Table WitnessTableList;
/// Holds the list of WitnessTables.
std::vector<BitOffset> WitnessTableOffset;
uint32_t /*DeclID*/ NextWitnessTableID = 1;
/// Maps default witness table identifier to an ID.
Table DefaultWitnessTableList;
/// Holds the list of DefaultWitnessTables.
std::vector<BitOffset> DefaultWitnessTableOffset;
uint32_t /*DeclID*/ NextDefaultWitnessTableID = 1;
/// Maps default witness table identifier to an ID.
Table DefaultOverrideTableList;
/// Holds the list of DefaultOverrideTables.
std::vector<BitOffset> DefaultOverrideTableOffset;
uint32_t /*DeclID*/ NextDefaultOverrideTableID = 1;
/// Holds the list of Properties.
std::vector<BitOffset> PropertyOffset;
/// Maps differentiability witness identifier to an ID.
Table DifferentiabilityWitnessList;
/// Holds the list of SIL differentiability witnesses.
std::vector<BitOffset> DifferentiabilityWitnessOffset;
uint32_t /*DeclID*/ NextDifferentiabilityWitnessID = 1;
/// Maps asmname of SIL functions and global variables to their SIL names,
/// which will generally be mangled names.
StringMapTable AsmNameTable;
llvm::DenseMap<PointerUnion<const SILDebugScope *, SILFunction *>, DeclID>
DebugScopeMap;
llvm::DenseMap<const void *, unsigned> SourceLocMap;
/// Give each SILBasicBlock a unique ID.
llvm::DenseMap<const SILBasicBlock *, unsigned> BasicBlockMap;
/// Functions that we've emitted a reference to. If the key maps
/// to true, we want to emit a declaration only.
llvm::DenseMap<const SILFunction *, bool> FuncsToEmit;
bool OnlyReferencedByDebugInfo = false;
llvm::DenseSet<const SILFunction *> FuncsToEmitDebug;
/// Global variables that we've emitted a reference to.
llvm::DenseSet<const SILGlobalVariable *> GlobalsToEmit;
/// Referenced differentiability witnesses that need to be emitted.
llvm::DenseSet<const SILDifferentiabilityWitness *>
DifferentiabilityWitnessesToEmit;
/// Additional functions we might need to serialize.
llvm::SmallVector<const SILFunction *, 16> functionWorklist;
llvm::SmallVector<const SILGlobalVariable *, 16> globalWorklist;
/// String storage for temporarily created strings which are referenced from
/// the tables.
llvm::BumpPtrAllocator StringTable;
std::array<unsigned, 256> SILAbbrCodes;
template <typename Layout>
void registerSILAbbr() {
using AbbrArrayTy = decltype(SILAbbrCodes);
static_assert(Layout::Code <= std::tuple_size<AbbrArrayTy>::value,
"layout has invalid record code");
SILAbbrCodes[Layout::Code] = Layout::emitAbbrev(Out);
LLVM_DEBUG(llvm::dbgs() << "SIL abbre code " << SILAbbrCodes[Layout::Code]
<< " for layout " << Layout::Code << "\n");
}
const SerializationOptions &Options;
void addMandatorySILFunction(const SILFunction *F,
bool emitDeclarationsForOnoneSupport);
void addReferencedSILFunction(const SILFunction *F,
bool DeclOnly = false);
void addReferencedGlobalVariable(const SILGlobalVariable *gl);
void processWorklists();
/// Helper function to update ListOfValues for MethodInst. Format:
/// Attr, SILDeclRef (DeclID, Kind, uncurryLevel), and an operand.
void handleMethodInst(const MethodInst *MI, SILValue operand,
SmallVectorImpl<uint64_t> &ListOfValues);
void writeSILFunction(const SILFunction &F, bool DeclOnly = false);
void writeSILBasicBlock(const SILBasicBlock &BB);
void writeSILInstruction(const SILInstruction &SI);
void writeSILVTable(const SILVTable &vt);
void writeSILMoveOnlyDeinit(const SILMoveOnlyDeinit &deinit);
void writeSILGlobalVar(const SILGlobalVariable &g);
void writeSILWitnessTable(const SILWitnessTable &wt);
void writeSILWitnessTableEntry(const SILWitnessTable::Entry &entry,
SerializedKind_t serializedKind);
void writeSILDefaultWitnessTable(const SILDefaultWitnessTable &wt);
void writeSILDefaultOverrideTableEntry(
const SILDefaultOverrideTable::Entry &entry,
SerializedKind_t serializedKind);
void writeSILDefaultOverrideTable(const SILDefaultOverrideTable &ot);
void
writeSILDifferentiabilityWitness(const SILDifferentiabilityWitness &dw);
void writeSILProperty(const SILProperty &prop);
void writeSILBlock(const SILModule *SILMod);
void writeIndexTables();
/// Write an extra-string record if the string itself is non-empty.
void writeExtraStringIfNonEmpty(ExtraStringFlavor flavor, StringRef string);
/// Serialize and write SILDebugScope graph in post order.
void writeDebugScopes(const SILDebugScope *Scope, const SourceManager &SM);
void writeSourceLoc(SILLocation SLoc, const SourceManager &SM);
void writeNoOperandLayout(const SILInstruction *I) {
unsigned abbrCode = SILAbbrCodes[SILInstNoOperandLayout::Code];
SILInstNoOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)I->getKind());
}
void writeConversionLikeInstruction(const SingleValueInstruction *I,
unsigned attrs);
void writeOneTypeLayout(SILInstructionKind valueKind,
unsigned attrs, SILType type);
void writeOneTypeLayout(SILInstructionKind valueKind,
unsigned attrs, CanType type);
void writeOneTypeOneOperandLayout(SILInstructionKind valueKind,
unsigned attrs,
SILType type,
SILValue operand);
void writeOneTypeOneOperandLayout(SILInstructionKind valueKind,
unsigned attrs,
CanType type,
SILValue operand);
void writeOneTypeOneOperandExtraAttributeLayout(
SILInstructionKind valueKind, unsigned attrs,
SILType type, SILValue operand);
void writeOneOperandLayout(SILInstructionKind valueKind,
unsigned attrs,
SILValue operand);
void writeOneOperandExtraAttributeLayout(SILInstructionKind valueKind,
unsigned attrs, SILValue operand);
void writeKeyPathPatternComponent(
const KeyPathPatternComponent &component,
SmallVectorImpl<uint64_t> &ListOfValues);
/// Helper function to determine if given the current state of the
/// deserialization if the function body for F should be deserialized.
bool shouldEmitFunctionBody(const SILFunction *F, bool isReference = true);
IdentifierID addSILFunctionRef(SILFunction *F);
public:
SILSerializer(Serializer &S, llvm::BitstreamWriter &Out,
const SerializationOptions &options)
: S(S), Out(Out), Options(options) {}
void writeSILModule(const SILModule *SILMod);
};
} // end anonymous namespace
void SILSerializer::addMandatorySILFunction(const SILFunction *F,
bool emitDeclarationsForOnoneSupport) {
// If this function is not fragile, don't do anything.
if (!emitDeclarationsForOnoneSupport &&
!shouldEmitFunctionBody(F, /* isReference */ false))
return;
auto iter = FuncsToEmit.find(F);
if (iter != FuncsToEmit.end()) {
// We've already visited this function. Make sure that we decided
// to emit its body the first time around.
assert(iter->second == emitDeclarationsForOnoneSupport
&& "Already emitting declaration");
return;
}
// We haven't seen this function before. Record that we want to
// emit its body, and add it to the worklist.
FuncsToEmit[F] = emitDeclarationsForOnoneSupport;
// Function body should be serialized unless it is a KeepAsPublic function
// (which is typically a pre-specialization).
if (!emitDeclarationsForOnoneSupport)
functionWorklist.push_back(F);
}
void SILSerializer::addReferencedSILFunction(const SILFunction *F,
bool DeclOnly) {
assert(F != nullptr);
if (FuncsToEmit.count(F) > 0)
return;
// We haven't seen this function before. Let's see if we should
// serialize the body or just the declaration.
if (shouldEmitFunctionBody(F)) {
FuncsToEmit[F] = false;
functionWorklist.push_back(F);
return;
}
if (F->getLinkage() == SILLinkage::Shared) {
assert(F->isAnySerialized() || F->hasForeignBody());
FuncsToEmit[F] = false;
functionWorklist.push_back(F);
return;
}
// Ok, we just need to emit a declaration.
FuncsToEmit[F] = true;
}
void SILSerializer::addReferencedGlobalVariable(const SILGlobalVariable *gl) {
if (GlobalsToEmit.insert(gl).second)
globalWorklist.push_back(gl);
}
void SILSerializer::processWorklists() {
do {
while (!functionWorklist.empty()) {
const SILFunction *F = functionWorklist.pop_back_val();
assert(F != nullptr);
assert(FuncsToEmit.count(F) > 0);
writeSILFunction(*F, FuncsToEmit[F]);
}
while (!globalWorklist.empty()) {
const SILGlobalVariable *gl = globalWorklist.pop_back_val();
assert(GlobalsToEmit.count(gl) > 0);
writeSILGlobalVar(*gl);
}
} while (!functionWorklist.empty());
}
/// We enumerate all values in a SILFunction beforehand to correctly
/// handle forward references of values.
ValueID SILSerializer::addValueRef(const ValueBase *Val) {
if (!Val)
return 0;
if (auto *Undef = dyn_cast<SILUndef>(Val)) {
// The first two IDs are reserved for SILUndef.
if (Undef->getOwnershipKind() == OwnershipKind::None)
return 0;
assert(Undef->getOwnershipKind() == OwnershipKind::Owned);
return 1;
}
ValueID id = ValueIDs[Val];
assert(id != 0 && "We should have assigned a value ID to each value.");
return id;
}
void SILSerializer::writeSILFunction(const SILFunction &F, bool DeclOnly) {
PrettyStackTraceSILFunction stackTrace("Serializing", &F);
ValueIDs.clear();
InstID = 0;
FuncTable[F.getName()] = NextFuncID++;
Funcs.push_back(Out.GetCurrentBitNo());
unsigned abbrCode = SILAbbrCodes[SILFunctionLayout::Code];
TypeID FnID = S.addTypeRef(F.getLoweredType().getRawASTType());
LLVM_DEBUG(llvm::dbgs() << "SILFunction " << F.getName() << " @ BitNo "
<< Out.GetCurrentBitNo() << " abbrCode " << abbrCode
<< " FnID " << FnID << "\n");
LLVM_DEBUG(llvm::dbgs() << "Serialized SIL:\n"; F.dump());
SmallVector<IdentifierID, 1> SemanticsIDs;
for (auto SemanticAttr : F.getSemanticsAttrs()) {
SemanticsIDs.push_back(S.addUniquedStringRef(SemanticAttr));
}
SILLinkage Linkage = F.getLinkage();
// Check if we need to emit a body for this function.
bool NoBody = DeclOnly || isAvailableExternally(Linkage) ||
F.isExternalDeclaration();
// If we don't emit a function body then make sure to mark the declaration
// as available externally.
if (NoBody) {
Linkage = addExternalToLinkage(Linkage);
}
assert(F.getCapturedEnvironments().empty() &&
"Captured local environments should not survive past SILGen");
// If we have a body, we might have a generic environment.
GenericSignatureID genericSigID = 0;
// Generic environment information is needed while serializing debug scopes.
// Otherwise, the generic specializer fails to remap references to functions
// in debug scopes to their specialized versions which breaks IRGen.
// TODO: add an assertion in IRGen when the specializer fails to remap.
if (!NoBody || Options.SerializeDebugInfoSIL)
if (auto *genericEnv = F.getGenericEnvironment())
genericSigID = S.addGenericSignatureRef(genericEnv->getGenericSignature());
DeclID clangNodeOwnerID;
if (F.hasClangNode())
clangNodeOwnerID = S.addDeclRef(F.getClangNodeOwner());
ModuleID parentModuleID;
if (auto *parentModule = F.getParentModule())
parentModuleID = S.addModuleRef(parentModule);
IdentifierID replacedFunctionID = 0;
if (auto *fun = F.getDynamicallyReplacedFunction()) {
addReferencedSILFunction(fun, true);
replacedFunctionID = S.addUniquedStringRef(fun->getName());
} else if (F.hasObjCReplacement()) {
replacedFunctionID =
S.addUniquedStringRef(F.getObjCReplacement().str());
}
IdentifierID usedAdHocWitnessFunctionID = 0;
if (auto *fun = F.getReferencedAdHocRequirementWitnessFunction()) {
addReferencedSILFunction(fun, true);
usedAdHocWitnessFunctionID = S.addUniquedStringRef(fun->getName());
}
unsigned numTrailingRecords = NoBody ? 0 : F.getSpecializeAttrs().size();
auto resilience = F.getModule().getSwiftModule()->getResilienceStrategy();
bool serializeDerivedEffects =
// We must not serialize computed effects if library evolution is turned on,
// because the copy of the function, which is emitted into the current module,
// might have different effects in different versions of the library.
(resilience != ResilienceStrategy::Resilient ||
// But we can serialize computed effects for @alwaysEmitIntoClient functions,
// even when library evolution is enabled, because no copy of the function is
// emitted in the original module.
F.getLinkage() == SILLinkage::PublicNonABI) &&
!F.hasSemanticsAttr("optimize.no.crossmodule");
F.visitArgEffects(
[&](int effectIdx, int argumentIndex, bool isDerived) {
if (isDerived && !serializeDerivedEffects)
return;
numTrailingRecords++;
});
std::optional<llvm::VersionTuple> available;
auto availability = F.getAvailabilityForLinkage();
if (!availability.isAlwaysAvailable()) {
available = availability.getRawMinimumVersion();
}
ENCODE_VER_TUPLE(available, available)
// Each extra string emitted below needs to update the trailing record
// count here.
if (!F.asmName().empty()) {
++numTrailingRecords;
// Record asmname mapping.
if (F.asmName() != F.getName()) {
AsmNameTable[F.asmName()] = F.getName();
}
}
if (!F.section().empty())
++numTrailingRecords;
SILFunctionLayout::emitRecord(
Out, ScratchRecord, abbrCode, toStableSILLinkage(Linkage),
(unsigned)F.isTransparent(), (unsigned)F.getSerializedKind(),
(unsigned)F.isThunk(), (unsigned)F.isWithoutActuallyEscapingThunk(),
(unsigned)F.getSpecialPurpose(), (unsigned)F.getInlineStrategy(),
(unsigned)F.getOptimizationMode(), (unsigned)F.getPerfConstraints(),
(unsigned)F.getClassSubclassScope(), (unsigned)F.hasCReferences(),
(unsigned)F.markedAsUsed(), (unsigned)F.getEffectsKind(),
(unsigned)numTrailingRecords, (unsigned)F.hasOwnership(), F.isAlwaysWeakImported(),
LIST_VER_TUPLE_PIECES(available), (unsigned)F.isDynamicallyReplaceable(),
(unsigned)F.isExactSelfClass(), (unsigned)F.isDistributed(),
(unsigned)F.isRuntimeAccessible(),
(unsigned)F.forceEnableLexicalLifetimes(), OnlyReferencedByDebugInfo,
FnID, replacedFunctionID, usedAdHocWitnessFunctionID, genericSigID,
clangNodeOwnerID, parentModuleID, SemanticsIDs);
F.visitArgEffects(
[&](int effectIdx, int argumentIndex, bool isDerived) {
if (isDerived && !serializeDerivedEffects)
return;
llvm::SmallString<64> buffer;
llvm::raw_svector_ostream OS(buffer);
F.writeEffect(OS, effectIdx);
IdentifierID effectsStrID = S.addUniquedStringRef(OS.str());
unsigned abbrCode = SILAbbrCodes[SILArgEffectsAttrLayout::Code];
bool isGlobalSideEffects = (argumentIndex < 0);
unsigned argIdx = (isGlobalSideEffects ? 0 : (unsigned)argumentIndex);
SILArgEffectsAttrLayout::emitRecord(
Out, ScratchRecord, abbrCode, effectsStrID,
argIdx, (unsigned)isGlobalSideEffects, (unsigned)isDerived);
});
// Each extra string emitted here needs to be reflected in the trailing
// record count above.
writeExtraStringIfNonEmpty(ExtraStringFlavor::AsmName, F.asmName());
writeExtraStringIfNonEmpty(ExtraStringFlavor::Section, F.section());
if (NoBody)
return;
for (auto *SA : F.getSpecializeAttrs()) {
unsigned specAttrAbbrCode = SILAbbrCodes[SILSpecializeAttrLayout::Code];
IdentifierID targetFunctionNameID = 0;
if (auto *target = SA->getTargetFunction()) {
addReferencedSILFunction(target, true);
targetFunctionNameID = S.addUniquedStringRef(target->getName());
}
IdentifierID spiGroupID = 0;
IdentifierID spiModuleDeclID = 0;
auto ident = SA->getSPIGroup();
if (!ident.empty()) {
spiGroupID = S.addUniquedStringRef(ident.str());
spiModuleDeclID = S.addModuleRef(SA->getSPIModule());
}
auto availability = SA->getAvailability();
if (!availability.isAlwaysAvailable()) {
available = availability.getRawMinimumVersion();
}
ENCODE_VER_TUPLE(available, available)
llvm::SmallVector<IdentifierID, 4> typeErasedParamsIDs;
for (auto ty : SA->getTypeErasedParams()) {
typeErasedParamsIDs.push_back(S.addTypeRef(ty));
}
SILSpecializeAttrLayout::emitRecord(
Out, ScratchRecord, specAttrAbbrCode, (unsigned)SA->isExported(),
(unsigned)SA->getSpecializationKind(),
S.addGenericSignatureRef(SA->getSpecializedSignature()),
targetFunctionNameID, spiGroupID, spiModuleDeclID,
LIST_VER_TUPLE_PIECES(available), typeErasedParamsIDs
);
}
DebugScopeMap.clear();
SourceLocMap.clear();
if (Options.SerializeDebugInfoSIL)
writeDebugScopes(F.getDebugScope(), F.getModule().getSourceManager());
// Assign a unique ID to each basic block of the SILFunction.
unsigned BasicID = 0;
BasicBlockMap.clear();
// Assign a value ID to each SILInstruction that has value and to each basic
// block argument.
//
// FIXME: Add reverse iteration to SILSuccessor and convert this to a "stable"
// RPO order. Currently, the serializer inverts the order of successors each
// time they are processed.
//
// The first valid value ID is 2. 0 and 1 are reserved for SILUndef.
unsigned ValueID = 2;
llvm::ReversePostOrderTraversal<SILFunction *> RPOT(
const_cast<SILFunction *>(&F));
for (auto Iter = RPOT.begin(), E = RPOT.end(); Iter != E; ++Iter) {
auto &BB = **Iter;
BasicBlockMap.insert(std::make_pair(&BB, BasicID++));
for (auto I = BB.args_begin(), E = BB.args_end(); I != E; ++I)
ValueIDs[static_cast<const ValueBase*>(*I)] = ValueID++;
for (const SILInstruction &SI : BB)
for (auto result : SI.getResults())
ValueIDs[result] = ValueID++;
}
// Write SIL basic blocks in the RPOT order
// to make sure that instructions defining open archetypes
// are serialized before instructions using those opened
// archetypes.
unsigned SerializedBBNum = 0;
for (auto Iter = RPOT.begin(), E = RPOT.end(); Iter != E; ++Iter) {
auto *BB = *Iter;
writeSILBasicBlock(*BB);
SerializedBBNum++;
}
assert(BasicID == SerializedBBNum && "Wrong number of BBs was serialized");
}
void SILSerializer::writeSILBasicBlock(const SILBasicBlock &BB) {
SmallVector<DeclID, 4> Args;
for (auto I = BB.args_begin(), E = BB.args_end(); I != E; ++I) {
SILArgument *SA = *I;
DeclID tId = S.addTypeRef(SA->getType().getRawASTType());
DeclID vId = addValueRef(static_cast<const ValueBase*>(SA));
Args.push_back(tId);
// We put these static asserts here to formalize our assumption that both
// SILValueCategory and ValueOwnershipKind have uint8_t as their underlying
// pointer values.
static_assert(
std::is_same<
std::underlying_type<decltype(SA->getType().getCategory())>::type,
uint8_t>::value,
"Expected an underlying uint8_t type");
// We put these static asserts here to formalize our assumption that both
// SILValueCategory and ValueOwnershipKind have uint8_t as their underlying
// pointer values.
static_assert(std::is_same<std::underlying_type<decltype(
SA->getOwnershipKind())::innerty>::type,
uint8_t>::value,
"Expected an underlying uint8_t type");
// This is 31 bits in size.
unsigned packedMetadata = 0;
packedMetadata |= unsigned(SA->getType().getCategory()); // 8 bits
packedMetadata |= unsigned(SA->getOwnershipKind()) << 8; // 3 bits
packedMetadata |= unsigned(SA->isReborrow()) << 11; // 1 bit
packedMetadata |= unsigned(SA->hasPointerEscape()) << 12; // 1 bit
if (auto *SFA = dyn_cast<SILFunctionArgument>(SA)) {
packedMetadata |= unsigned(SFA->isNoImplicitCopy()) << 13; // 1 bit
packedMetadata |= unsigned(SFA->getLifetimeAnnotation()) << 14; // 2 bits
packedMetadata |= unsigned(SFA->isClosureCapture()) << 16; // 1 bit
packedMetadata |= unsigned(SFA->isFormalParameterPack()) << 17; // 1 bit
}
// Used: 17 bits. Free: 15.
//
// TODO: We should be able to shrink the packed metadata of the first two.
Args.push_back(packedMetadata);
Args.push_back(vId);
}
unsigned abbrCode = SILAbbrCodes[SILBasicBlockLayout::Code];
SILBasicBlockLayout::emitRecord(Out, ScratchRecord, abbrCode, Args);
const SILDebugScope *Prev = nullptr;
auto &SM = BB.getParent()->getModule().getSourceManager();
for (const SILInstruction &SI : BB) {
if (Options.SerializeDebugInfoSIL) {
if (SI.getDebugScope() != Prev) {
Prev = SI.getDebugScope();
writeDebugScopes(Prev, SM);
}
}
if (Options.SerializeDebugInfoSIL) {
writeSourceLoc(SI.getLoc(), SM);
}
writeSILInstruction(SI);
}
}
/// Add SILDeclRef to ListOfValues, so we can reconstruct it at
/// deserialization.
static void handleSILDeclRef(Serializer &S, const SILDeclRef &Ref,
SmallVectorImpl<uint64_t> &ListOfValues) {
ListOfValues.push_back(S.addDeclRef(Ref.getDecl()));
ListOfValues.push_back((unsigned)Ref.kind);
ListOfValues.push_back(Ref.isForeign);
}
/// Get an identifier ref for a SILFunction and add it to the list of referenced
/// functions.
IdentifierID SILSerializer::addSILFunctionRef(SILFunction *F) {
addReferencedSILFunction(F);
return S.addUniquedStringRef(F->getName());
}
/// Helper function to update ListOfValues for MethodInst. Format:
/// Attr, SILDeclRef (DeclID, Kind, uncurryLevel), and an operand.
void SILSerializer::handleMethodInst(const MethodInst *MI,
SILValue operand,
SmallVectorImpl<uint64_t> &ListOfValues) {
handleSILDeclRef(S, MI->getMember(), ListOfValues);
ListOfValues.push_back(
S.addTypeRef(operand->getType().getRawASTType()));
ListOfValues.push_back((unsigned)operand->getType().getCategory());
ListOfValues.push_back(addValueRef(operand));
}
void SILSerializer::writeOneTypeLayout(SILInstructionKind valueKind,
unsigned attrs, SILType type) {
unsigned abbrCode = SILAbbrCodes[SILOneTypeLayout::Code];
SILOneTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned) valueKind, attrs,
S.addTypeRef(type.getRawASTType()),
(unsigned)type.getCategory());
}
void SILSerializer::writeOneTypeLayout(SILInstructionKind valueKind,
unsigned attrs, CanType type) {
unsigned abbrCode = SILAbbrCodes[SILOneTypeLayout::Code];
SILOneTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned) valueKind, attrs,
S.addTypeRef(type), 0);
}
void SILSerializer::writeOneOperandLayout(SILInstructionKind valueKind,
unsigned attrs,
SILValue operand) {
auto operandType = operand->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto operandRef = addValueRef(operand);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
unsigned(valueKind), attrs,
operandTypeRef, unsigned(operandType.getCategory()),
operandRef);
}
void SILSerializer::
writeOneOperandExtraAttributeLayout(SILInstructionKind valueKind,
unsigned attrs,
SILValue operand) {
auto operandType = operand->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto operandRef = addValueRef(operand);
SILOneOperandExtraAttributeLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneOperandExtraAttributeLayout::Code],
unsigned(valueKind), attrs, operandTypeRef,
unsigned(operandType.getCategory()), operandRef);
}
void SILSerializer::writeOneTypeOneOperandLayout(SILInstructionKind valueKind,
unsigned attrs,
SILType type,
SILValue operand) {
auto typeRef = S.addTypeRef(type.getRawASTType());
auto operandType = operand->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto operandRef = addValueRef(operand);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
unsigned(valueKind), attrs,
typeRef, unsigned(type.getCategory()),
operandTypeRef, unsigned(operandType.getCategory()),
operandRef);
}
void SILSerializer::writeOneTypeOneOperandLayout(SILInstructionKind valueKind,
unsigned attrs,
CanType type,
SILValue operand) {
auto typeRef = S.addTypeRef(type);
auto operandType = operand->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto operandRef = addValueRef(operand);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
unsigned(valueKind), attrs,
typeRef, 0,
operandTypeRef, unsigned(operandType.getCategory()),
operandRef);
}
void SILSerializer::
writeOneTypeOneOperandExtraAttributeLayout(SILInstructionKind valueKind,
unsigned attrs,
SILType type,
SILValue operand) {
auto typeRef = S.addTypeRef(type.getRawASTType());
auto operandType = operand->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto operandRef = addValueRef(operand);
SILOneTypeOneOperandExtraAttributeLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandExtraAttributeLayout::Code],
unsigned(valueKind), attrs,
typeRef, unsigned(type.getCategory()),
operandTypeRef, unsigned(operandType.getCategory()),
operandRef);
}
/// Write an instruction that looks exactly like a conversion: all
/// important information is encoded in the operand and the result type.
void SILSerializer::writeConversionLikeInstruction(
const SingleValueInstruction *I, unsigned attrs) {
assert(I->getNumOperands() - I->getTypeDependentOperands().size() == 1);
writeOneTypeOneOperandLayout(I->getKind(), attrs, I->getType(),
I->getOperand(0));
}
void
SILSerializer::writeKeyPathPatternComponent(
const KeyPathPatternComponent &component,
SmallVectorImpl<uint64_t> &ListOfValues) {
auto handleComponentCommon = [&](KeyPathComponentKindEncoding kind) {
ListOfValues.push_back((unsigned)kind);
ListOfValues.push_back(S.addTypeRef(component.getComponentType()));
};
auto handleComputedId = [&](KeyPathPatternComponent::ComputedPropertyId id) {
switch (id.getKind()) {
case KeyPathPatternComponent::ComputedPropertyId::Property:
ListOfValues.push_back(
(unsigned)KeyPathComputedComponentIdKindEncoding::Property);
ListOfValues.push_back(S.addDeclRef(id.getProperty()));
break;
case KeyPathPatternComponent::ComputedPropertyId::Function:
ListOfValues.push_back(
(unsigned)KeyPathComputedComponentIdKindEncoding::Function);
ListOfValues.push_back(addSILFunctionRef(id.getFunction()));
break;
case KeyPathPatternComponent::ComputedPropertyId::DeclRef:
ListOfValues.push_back(
(unsigned)KeyPathComputedComponentIdKindEncoding::DeclRef);
handleSILDeclRef(S, id.getDeclRef(), ListOfValues);
break;
}
};
auto handleComputedExternalReferenceAndIndices
= [&](const KeyPathPatternComponent &component) {
ListOfValues.push_back(S.addDeclRef(component.getExternalDecl()));
ListOfValues.push_back(
S.addSubstitutionMapRef(component.getExternalSubstitutions()));
auto indices = component.getArguments();
ListOfValues.push_back(indices.size());
for (auto &index : indices) {
ListOfValues.push_back(index.Operand);
ListOfValues.push_back(S.addTypeRef(index.FormalType));
ListOfValues.push_back(
S.addTypeRef(index.LoweredType.getRawASTType()));
ListOfValues.push_back((unsigned)index.LoweredType.getCategory());
ListOfValues.push_back(S.addConformanceRef(index.Hashable));
}
if (!indices.empty()) {
ListOfValues.push_back(addSILFunctionRef(component.getIndexEquals()));
ListOfValues.push_back(addSILFunctionRef(component.getIndexHash()));
}
};
switch (component.getKind()) {
case KeyPathPatternComponent::Kind::Method:
printf("SerializeSIL:writeKeyPathPatternComponent");
break;
case KeyPathPatternComponent::Kind::StoredProperty:
handleComponentCommon(KeyPathComponentKindEncoding::StoredProperty);
ListOfValues.push_back(S.addDeclRef(component.getStoredPropertyDecl()));
break;
case KeyPathPatternComponent::Kind::GettableProperty:
handleComponentCommon(KeyPathComponentKindEncoding::GettableProperty);
handleComputedId(component.getComputedPropertyId());
ListOfValues.push_back(
addSILFunctionRef(component.getComputedPropertyForGettable()));
handleComputedExternalReferenceAndIndices(component);
break;
case KeyPathPatternComponent::Kind::SettableProperty:
handleComponentCommon(KeyPathComponentKindEncoding::SettableProperty);
handleComputedId(component.getComputedPropertyId());
ListOfValues.push_back(
addSILFunctionRef(component.getComputedPropertyForGettable()));
ListOfValues.push_back(
addSILFunctionRef(component.getComputedPropertyForSettable()));
handleComputedExternalReferenceAndIndices(component);
break;
case KeyPathPatternComponent::Kind::OptionalChain:
handleComponentCommon(KeyPathComponentKindEncoding::OptionalChain);
break;
case KeyPathPatternComponent::Kind::OptionalForce:
handleComponentCommon(KeyPathComponentKindEncoding::OptionalForce);
break;
case KeyPathPatternComponent::Kind::OptionalWrap:
handleComponentCommon(KeyPathComponentKindEncoding::OptionalWrap);
break;
case KeyPathPatternComponent::Kind::TupleElement:
handleComponentCommon(KeyPathComponentKindEncoding::TupleElement);
ListOfValues.push_back((unsigned)component.getTupleIndex());
break;
}
}
void SILSerializer::writeSILInstruction(const SILInstruction &SI) {
PrettyStackTraceSILNode stackTrace("Serializing", &SI);
switch (SI.getKind()) {
case SILInstructionKind::ObjectInst: {
const ObjectInst *OI = cast<ObjectInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
SmallVector<ValueID, 4> Args;
Args.push_back((unsigned)OI->getBaseElements().size());
for (const Operand &op : OI->getAllOperands()) {
SILValue OpVal = op.get();
Args.push_back(addValueRef(OpVal));
SILType OpType = OpVal->getType();
assert(OpType.isObject());
Args.push_back(S.addTypeRef(OpType.getRawASTType()));
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(),
S.addTypeRef(OI->getType().getRawASTType()),
(unsigned)OI->getType().getCategory(), Args);
break;
}
case SILInstructionKind::VectorInst: {
auto *vi = cast<VectorInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : vi->getElements()) {
ListOfValues.push_back(addValueRef(Elt));
}
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(vi->getType().getRawASTType()),
(unsigned)vi->getType().getCategory(),
ListOfValues);
break;
}
case SILInstructionKind::DebugValueInst: {
if (!Options.SerializeDebugInfoSIL)
return;
auto DVI = cast<DebugValueInst>(&SI);
unsigned attrs = unsigned(DVI->poisonRefs() & 0x1);
attrs |= unsigned(DVI->usesMoveableValueDebugInfo()) << 1;
attrs |= unsigned(DVI->hasTrace()) << 2;
auto Operand = DVI->getOperand();
auto Type = Operand->getType();
unsigned DebugVarTypeCategory = 0;
auto DebugVar = DVI->getVarInfo();
const SILDebugScope *ScopeToWrite = nullptr;
auto &SM = SI.getFunction()->getModule().getSourceManager();
SmallVector<uint64_t, 8> ListOfValues;
ListOfValues.push_back(addValueRef(Operand));
ListOfValues.push_back(S.addTypeRef(Type.getRawASTType()));
if (DebugVar) {
// Is a DebugVariable being serialized.
attrs |= 1 << 3;
attrs |= DebugVar->isLet() << 4;
// isDenseMapSingleton needs two bits.
attrs |= DebugVar->isDenseMapSingleton << 5;
ListOfValues.push_back(S.addUniquedStringRef(DebugVar->Name));
ListOfValues.push_back(DebugVar->ArgNo);
if (DebugVar->Type.has_value()) {
attrs |= 1 << 7;
ListOfValues.push_back(S.addTypeRef(DebugVar->Type->getRawASTType()));
DebugVarTypeCategory = (unsigned)DebugVar->Type->getCategory();
}
if (DebugVar->Scope) {
attrs |= 1 << 8;
ScopeToWrite = DebugVar->Scope;
}
if (DebugVar->Loc) {
auto RawLoc = DebugVar->Loc.value();
SourceLoc Loc = RawLoc.getSourceLoc();
if (Loc.isValid()) {
attrs |= 1 << 9;
auto LC = SM.getPresumedLineAndColumnForLoc(Loc);
auto FName = SM.getDisplayNameForLoc(Loc);
auto FNameID = S.addUniquedStringRef(FName);
ListOfValues.push_back(LC.first);
ListOfValues.push_back(LC.second);
ListOfValues.push_back(FNameID);
} else if (RawLoc.isFilenameAndLocation()) {
// getSourceLoc produces an empty SourceLoc for FilenameAndLocation,
// so this needs to be handled separately. rdar://25225083.
attrs |= 1 << 9;
auto FNameLoc = RawLoc.getFilenameAndLocation();
ListOfValues.push_back(FNameLoc->line);
ListOfValues.push_back(FNameLoc->column);
ListOfValues.push_back(S.addUniquedStringRef(FNameLoc->filename));
}
}
for (auto &Expr : DebugVar->DIExpr.elements()) {
attrs |= 1 << 10;
ListOfValues.push_back(Expr.getKind());
switch (Expr.getKind()) {
case SILDIExprElement::Kind::OperatorKind:
ListOfValues.push_back((unsigned)Expr.getAsOperator());
break;
case SILDIExprElement::Kind::DeclKind:
ListOfValues.push_back(S.addDeclRef(Expr.getAsDecl()));
break;
case SILDIExprElement::Kind::ConstIntKind: {
llvm::SmallString<10> Str;
APInt(64, Expr.getAsConstInt().value()).toStringUnsigned(Str);
ListOfValues.push_back(S.addUniquedStringRef(Str));
break;
}
case SILDIExprElement::Kind::TypeKind:
ListOfValues.push_back(S.addTypeRef(Expr.getAsType()));
}
}
}
SILDebugValueLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILDebugValueLayout::Code],
(unsigned)Type.getCategory(), DebugVarTypeCategory, attrs,
ListOfValues);
if (ScopeToWrite) {
assert(DebugVar->Scope->getInlinedFunction() == DVI->getDebugScope()->getInlinedFunction());
writeDebugScopes(ScopeToWrite, SM);
// Add a delimiter record since debug scope records are read by the
// deserializer in a loop until the first non debug scope record is
// found. As a result, the deserializer might read debug scopes of
// subsequent instructions while deserializing scopes for the current
// DebugValue instruction.
// TODO: Maybe add a bit to the debug scope layout to mark the ending.
DebugValueDelimiterLayout::emitRecord(Out, ScratchRecord, SILAbbrCodes[DebugValueDelimiterLayout::Code]);
}
break;
}
case SILInstructionKind::DebugStepInst:
// Currently we don't serialize debug info, so it doesn't make
// sense to write those instructions at all.
// TODO: decide if we want to serialize those instructions.
return;
case SILInstructionKind::SpecifyTestInst:
// Instruction exists only for tests. Ignore it.
return;
case SILInstructionKind::AllocPackMetadataInst:
case SILInstructionKind::DeallocPackMetadataInst:
// Shoulud never be serialized: only introduced in an IRGen pass
// (PackMetadataMarkerInserter).
return;
case SILInstructionKind::UnwindInst:
case SILInstructionKind::ThrowAddrInst:
case SILInstructionKind::UnreachableInst: {
writeNoOperandLayout(&SI);
break;
}
case SILInstructionKind::AllocExistentialBoxInst:
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitExistentialValueInst:
case SILInstructionKind::InitExistentialMetatypeInst:
case SILInstructionKind::InitExistentialRefInst: {
SILValue operand;
SILType Ty;
CanType FormalConcreteType;
ArrayRef<ProtocolConformanceRef> conformances;
switch (SI.getKind()) {
default: llvm_unreachable("out of sync with parent");
case SILInstructionKind::InitExistentialAddrInst: {
auto &IEI = cast<InitExistentialAddrInst>(SI);
operand = IEI.getOperand();
Ty = IEI.getLoweredConcreteType();
FormalConcreteType = IEI.getFormalConcreteType();
conformances = IEI.getConformances();
break;
}
case SILInstructionKind::InitExistentialValueInst: {
auto &IEOI = cast<InitExistentialValueInst>(SI);
operand = IEOI.getOperand();
Ty = IEOI.getType();
FormalConcreteType = IEOI.getFormalConcreteType();
conformances = IEOI.getConformances();
break;
}
case SILInstructionKind::InitExistentialRefInst: {
auto &IERI = cast<InitExistentialRefInst>(SI);
operand = IERI.getOperand();
Ty = IERI.getType();
FormalConcreteType = IERI.getFormalConcreteType();
conformances = IERI.getConformances();
break;
}
case SILInstructionKind::InitExistentialMetatypeInst: {
auto &IEMI = cast<InitExistentialMetatypeInst>(SI);
operand = IEMI.getOperand();
Ty = IEMI.getType();
conformances = IEMI.getConformances();
break;
}
case SILInstructionKind::AllocExistentialBoxInst: {
auto &AEBI = cast<AllocExistentialBoxInst>(SI);
Ty = AEBI.getExistentialType();
FormalConcreteType = AEBI.getFormalConcreteType();
conformances = AEBI.getConformances();
break;
}
}
TypeID operandType = 0;
SILValueCategory operandCategory = SILValueCategory::Object;
ValueID operandID = 0;
if (operand) {
operandType = S.addTypeRef(operand->getType().getRawASTType());
operandCategory = operand->getType().getCategory();
operandID = addValueRef(operand);
}
TypeID formalConcreteTypeID = S.addTypeRef(FormalConcreteType);
auto conformanceIDs = S.addConformanceRefs(conformances);
unsigned abbrCode = SILAbbrCodes[SILInitExistentialLayout::Code];
SILInitExistentialLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(Ty.getRawASTType()),
(unsigned)Ty.getCategory(),
operandType,
(unsigned)operandCategory,
operandID,
formalConcreteTypeID,
conformanceIDs);
break;
}
case SILInstructionKind::DeallocBoxInst: {
auto DBI = cast<DeallocBoxInst>(&SI);
unsigned Attr = unsigned(DBI->isDeadEnd());
writeOneTypeOneOperandLayout(
DBI->getKind(), Attr, DBI->getOperand()->getType(), DBI->getOperand());
break;
}
case SILInstructionKind::DeallocExistentialBoxInst: {
auto DBI = cast<DeallocExistentialBoxInst>(&SI);
writeOneTypeOneOperandLayout(DBI->getKind(), 0,
DBI->getConcreteType(),
DBI->getOperand());
break;
}
case SILInstructionKind::ValueMetatypeInst: {
auto VMI = cast<ValueMetatypeInst>(&SI);
writeOneTypeOneOperandLayout(VMI->getKind(), 0,
VMI->getType(),
VMI->getOperand());
break;
}
case SILInstructionKind::ExistentialMetatypeInst: {
auto EMI = cast<ExistentialMetatypeInst>(&SI);
writeOneTypeOneOperandLayout(EMI->getKind(), 0,
EMI->getType(),
EMI->getOperand());
break;
}
case SILInstructionKind::AllocBoxInst: {
const AllocBoxInst *ABI = cast<AllocBoxInst>(&SI);
unsigned flags = 0;
flags |= unsigned(ABI->hasDynamicLifetime());
flags |= unsigned(ABI->emitReflectionMetadata()) << 1;
flags |= unsigned(ABI->usesMoveableValueDebugInfo()) << 2;
flags |= unsigned(ABI->hasPointerEscape()) << 3;
writeOneTypeLayout(ABI->getKind(),
flags,
ABI->getType());
break;
}
case SILInstructionKind::AllocRefInst:
case SILInstructionKind::AllocRefDynamicInst: {
const AllocRefInstBase *ARI = cast<AllocRefInstBase>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
SmallVector<ValueID, 4> Args;
bool isBare = false;
if (auto *ar = dyn_cast<AllocRefInst>(&SI))
isBare = ar->isBare();
Args.push_back((unsigned)ARI->isObjC() |
((unsigned)ARI->canAllocOnStack() << 1) |
((unsigned)isBare << 2));
ArrayRef<SILType> TailTypes = ARI->getTailAllocatedTypes();
ArrayRef<Operand> AllOps = ARI->getAllOperands();
unsigned NumTailAllocs = TailTypes.size();
unsigned NumOpsToWrite = NumTailAllocs;
if (SI.getKind() == SILInstructionKind::AllocRefDynamicInst)
++NumOpsToWrite;
for (unsigned Idx = 0; Idx < NumOpsToWrite; ++Idx) {
if (Idx < NumTailAllocs) {
assert(TailTypes[Idx].isObject());
Args.push_back(S.addTypeRef(TailTypes[Idx].getRawASTType()));
}
SILValue OpVal = AllOps[Idx].get();
Args.push_back(addValueRef(OpVal));
SILType OpType = OpVal->getType();
assert(OpType.isObject());
Args.push_back(S.addTypeRef(OpType.getRawASTType()));
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(),
S.addTypeRef(ARI->getType().getRawASTType()),
(unsigned)ARI->getType().getCategory(), Args);
break;
}
case SILInstructionKind::AllocStackInst: {
const AllocStackInst *ASI = cast<AllocStackInst>(&SI);
unsigned attr = 0;
attr |= unsigned(ASI->hasDynamicLifetime());
attr |= unsigned(ASI->isLexical()) << 1;
attr |= unsigned(ASI->isFromVarDecl()) << 2;
attr |= unsigned(ASI->usesMoveableValueDebugInfo()) << 3;
writeOneTypeLayout(ASI->getKind(), attr, ASI->getElementType());
break;
}
case SILInstructionKind::AllocPackInst: {
const AllocPackInst *API = cast<AllocPackInst>(&SI);
writeOneTypeLayout(API->getKind(), 0, API->getPackType());
break;
}
case SILInstructionKind::PackLengthInst: {
const PackLengthInst *PLI = cast<PackLengthInst>(&SI);
writeOneTypeLayout(PLI->getKind(), 0, PLI->getPackType());
break;
}
case SILInstructionKind::ProjectBoxInst: {
auto PBI = cast<ProjectBoxInst>(&SI);
// Use SILOneTypeOneOperandLayout with the field index crammed in the TypeID
auto boxOperand = PBI->getOperand();
auto boxRef = addValueRef(boxOperand);
auto boxType = boxOperand->getType();
auto boxTypeRef = S.addTypeRef(boxType.getRawASTType());
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
unsigned(PBI->getKind()), 0,
PBI->getFieldIndex(), 0,
boxTypeRef, unsigned(boxType.getCategory()),
boxRef);
break;
}
case SILInstructionKind::ProjectExistentialBoxInst: {
auto PEBI = cast<ProjectExistentialBoxInst>(&SI);
writeOneTypeOneOperandLayout(PEBI->getKind(), 0,
PEBI->getType(),
PEBI->getOperand());
break;
}
case SILInstructionKind::BuiltinInst: {
// Format: substitutions map ID, the builtin name, result type, and
// a list of values for the arguments. Each value in the list
// is represented with 4 IDs:
// ValueID, ValueResultNumber, TypeID, TypeCategory.
// The record is followed by the substitution list.
const BuiltinInst *BI = cast<BuiltinInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg : BI->getArguments()) {
Args.push_back(addValueRef(Arg));
Args.push_back(S.addTypeRef(Arg->getType().getRawASTType()));
Args.push_back((unsigned)Arg->getType().getCategory());
}
SILInstApplyLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstApplyLayout::Code], SIL_BUILTIN,
0, S.addSubstitutionMapRef(BI->getSubstitutions()),
S.addTypeRef(BI->getType().getRawASTType()),
(unsigned)BI->getType().getCategory(),
S.addDeclBaseNameRef(BI->getName()),
unsigned(swift::ActorIsolation::Unspecified),
unsigned(swift::ActorIsolation::Unspecified), Args);
break;
}
case SILInstructionKind::ApplyInst: {
// Format: attributes such as transparent and number of substitutions,
// the callee's substituted and unsubstituted types, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The record
// is followed by the substitution list.
const ApplyInst *AI = cast<ApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: AI->getArguments()) {
Args.push_back(addValueRef(Arg));
}
auto callerIsolation = swift::ActorIsolation::Unspecified;
auto calleeIsolation = swift::ActorIsolation::Unspecified;
if (auto isolationCrossing = AI->getIsolationCrossing()) {
callerIsolation = isolationCrossing->getCallerIsolation();
calleeIsolation = isolationCrossing->getCalleeIsolation();
}
SILInstApplyLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstApplyLayout::Code], SIL_APPLY,
unsigned(AI->getApplyOptions().toRaw()),
S.addSubstitutionMapRef(AI->getSubstitutionMap()),
S.addTypeRef(AI->getCallee()->getType().getRawASTType()),
S.addTypeRef(AI->getSubstCalleeType()), addValueRef(AI->getCallee()),
unsigned(callerIsolation), unsigned(calleeIsolation), Args);
break;
}
case SILInstructionKind::BeginApplyInst: {
// Format: attributes such as transparent and number of substitutions,
// the callee's substituted and unsubstituted types, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The record
// is followed by the substitution list.
const BeginApplyInst *AI = cast<BeginApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: AI->getArguments()) {
Args.push_back(addValueRef(Arg));
}
auto callerIsolation = swift::ActorIsolation::Unspecified;
auto calleeIsolation = swift::ActorIsolation::Unspecified;
if (auto isolationCrossing = AI->getIsolationCrossing()) {
callerIsolation = isolationCrossing->getCallerIsolation();
calleeIsolation = isolationCrossing->getCalleeIsolation();
}
SILInstApplyLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstApplyLayout::Code],
SIL_BEGIN_APPLY, unsigned(AI->getApplyOptions().toRaw()),
S.addSubstitutionMapRef(AI->getSubstitutionMap()),
S.addTypeRef(AI->getCallee()->getType().getRawASTType()),
S.addTypeRef(AI->getSubstCalleeType()), addValueRef(AI->getCallee()),
unsigned(callerIsolation), unsigned(calleeIsolation), Args);
break;
}
case SILInstructionKind::TryApplyInst: {
// Format: attributes such as transparent and number of substitutions,
// the callee's substituted and unsubstituted types, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The final two
// entries in the list are the basic block destinations. The record
// is followed by the substitution list.
const TryApplyInst *AI = cast<TryApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: AI->getArguments()) {
Args.push_back(addValueRef(Arg));
}
Args.push_back(BasicBlockMap[AI->getNormalBB()]);
Args.push_back(BasicBlockMap[AI->getErrorBB()]);
auto callerIsolation = swift::ActorIsolation::Unspecified;
auto calleeIsolation = swift::ActorIsolation::Unspecified;
if (auto isolationCrossing = AI->getIsolationCrossing()) {
callerIsolation = isolationCrossing->getCallerIsolation();
calleeIsolation = isolationCrossing->getCalleeIsolation();
}
SILInstApplyLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstApplyLayout::Code],
SIL_TRY_APPLY, unsigned(AI->getApplyOptions().toRaw()),
S.addSubstitutionMapRef(AI->getSubstitutionMap()),
S.addTypeRef(AI->getCallee()->getType().getRawASTType()),
S.addTypeRef(AI->getSubstCalleeType()), addValueRef(AI->getCallee()),
unsigned(callerIsolation), unsigned(calleeIsolation), Args);
break;
}
case SILInstructionKind::PartialApplyInst: {
const PartialApplyInst *PAI = cast<PartialApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: PAI->getArguments()) {
Args.push_back(addValueRef(Arg));
}
SILInstApplyLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstApplyLayout::Code],
SIL_PARTIAL_APPLY, 0,
S.addSubstitutionMapRef(PAI->getSubstitutionMap()),
S.addTypeRef(PAI->getCallee()->getType().getRawASTType()),
S.addTypeRef(PAI->getType().getRawASTType()),
addValueRef(PAI->getCallee()),
unsigned(swift::ActorIsolation::Unspecified),
unsigned(swift::ActorIsolation::Unspecified), Args);
break;
}
case SILInstructionKind::AllocGlobalInst: {
// Format: Name and type. Use SILOneOperandLayout.
const AllocGlobalInst *AGI = cast<AllocGlobalInst>(&SI);
auto *G = AGI->getReferencedGlobal();
addReferencedGlobalVariable(G);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
(unsigned)SI.getKind(), 0, 0, 0,
S.addUniquedStringRef(G->getName()));
break;
}
case SILInstructionKind::GlobalValueInst: {
// Format: Name and type. Use SILOneOperandLayout.
auto *gv = cast<GlobalValueInst>(&SI);
auto *G = gv->getReferencedGlobal();
addReferencedGlobalVariable(G);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
(unsigned)SI.getKind(), gv->isBare() ? 1 : 0,
S.addTypeRef(gv->getType().getRawASTType()),
(unsigned)gv->getType().getCategory(),
S.addUniquedStringRef(G->getName()));
break;
}
case SILInstructionKind::GlobalAddrInst: {
// Format: Name and type. Use SILOneOperandLayout.
auto *ga = cast<GlobalAddrInst>(&SI);
auto *G = ga->getReferencedGlobal();
addReferencedGlobalVariable(G);
SILOneValueOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneValueOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addUniquedStringRef(G->getName()),
S.addTypeRef(ga->getType().getRawASTType()),
(unsigned)ga->getType().getCategory(),
addValueRef(ga->getDependencyToken()));
break;
}
case SILInstructionKind::BaseAddrForOffsetInst: {
const BaseAddrForOffsetInst *BAI = cast<BaseAddrForOffsetInst>(&SI);
writeOneTypeLayout(BAI->getKind(), /*attrs*/ 0, BAI->getType());
break;
}
case SILInstructionKind::BranchInst: {
// Format: destination basic block ID, a list of arguments. Use
// SILOneTypeValuesLayout.
const BranchInst *BrI = cast<BranchInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : BrI->getArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt->getType().getRawASTType()));
ListOfValues.push_back((unsigned)Elt->getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), BasicBlockMap[BrI->getDestBB()], 0,
ListOfValues);
break;
}
case SILInstructionKind::CondBranchInst: {
// Format: condition, true basic block ID, a list of arguments, false basic
// block ID, a list of arguments. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, true basic block ID,
// false basic block ID, number of true arguments, and a list of true|false
// arguments.
const CondBranchInst *CBI = cast<CondBranchInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(CBI->getCondition()));
ListOfValues.push_back(BasicBlockMap[CBI->getTrueBB()]);
ListOfValues.push_back(BasicBlockMap[CBI->getFalseBB()]);
ListOfValues.push_back(CBI->getTrueArgs().size());
for (auto Elt : CBI->getTrueArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt->getType().getRawASTType()));
ListOfValues.push_back((unsigned)Elt->getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
}
for (auto Elt : CBI->getFalseArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt->getType().getRawASTType()));
ListOfValues.push_back((unsigned)Elt->getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(CBI->getCondition()->getType().getRawASTType()),
(unsigned)CBI->getCondition()->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::AwaitAsyncContinuationInst: {
const AwaitAsyncContinuationInst *AACI
= cast<AwaitAsyncContinuationInst>(&SI);
// Format: continuation, resume block ID, error block ID if given
SmallVector<ValueID, 3> ListOfValues;
ListOfValues.push_back(addValueRef(AACI->getOperand()));
ListOfValues.push_back(BasicBlockMap[AACI->getResumeBB()]);
if (auto errorBB = AACI->getErrorBB()) {
ListOfValues.push_back(BasicBlockMap[errorBB]);
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(AACI->getOperand()->getType().getRawASTType()),
(unsigned)AACI->getOperand()->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::SwitchEnumAddrInst: {
// Format:
// - [ownership]
// - the type of the condition operand,
// - a list a values: operand, hasDefault, defaultBB,
// [EnumElementDecl, Basic Block ID]*
SwitchEnumTermInst SOI(&SI);
assert(SOI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SOI.getOperand()));
ListOfValues.push_back((unsigned)SOI.hasDefault());
if (SOI.hasDefault())
ListOfValues.push_back(BasicBlockMap[SOI.getDefaultBB()]);
else
ListOfValues.push_back(0);
for (unsigned i = 0, e = SOI.getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI.getCase(i);
ListOfValues.push_back(S.addDeclRef(elt));
ListOfValues.push_back(BasicBlockMap[dest]);
}
if (auto *switchEnum = dyn_cast<SwitchEnumInst>(&SI)) {
unsigned ownershipField =
encodeValueOwnership(switchEnum->getForwardingOwnershipKind());
SILOneTypeOwnershipValuesLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOwnershipValuesLayout::Code],
(unsigned)SI.getKind(), ownershipField,
S.addTypeRef(SOI.getOperand()->getType().getRawASTType()),
(unsigned)SOI.getOperand()->getType().getCategory(), ListOfValues);
} else {
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SOI.getOperand()->getType().getRawASTType()),
(unsigned)SOI.getOperand()->getType().getCategory(), ListOfValues);
}
break;
}
case SILInstructionKind::SelectEnumInst:
case SILInstructionKind::SelectEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Value ID),
// default value ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, result type,
// hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
auto SEO = SelectEnumOperation(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SEO.getEnumOperand()));
ListOfValues.push_back(S.addTypeRef(SEO->getType().getRawASTType()));
ListOfValues.push_back((unsigned)SEO->getType().getCategory());
ListOfValues.push_back((unsigned)SEO.hasDefault());
if (SEO.hasDefault()) {
ListOfValues.push_back(addValueRef(SEO.getDefaultResult()));
} else {
ListOfValues.push_back(0);
}
for (unsigned i = 0, e = SEO.getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILValue result;
std::tie(elt, result) = SEO.getCase(i);
ListOfValues.push_back(S.addDeclRef(elt));
ListOfValues.push_back(addValueRef(result));
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SEO.getEnumOperand()->getType().getRawASTType()),
(unsigned)SEO.getEnumOperand()->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::SwitchValueInst: {
// Format: condition, a list of cases (Value ID + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list contains value for condition, hasDefault, default
// basic block ID, a list of (Value ID, BasicBlock ID).
const SwitchValueInst *SII = cast<SwitchValueInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SII->getOperand()));
ListOfValues.push_back((unsigned)SII->hasDefault());
if (SII->hasDefault())
ListOfValues.push_back(BasicBlockMap[SII->getDefaultBB()]);
else
ListOfValues.push_back(0);
for (unsigned i = 0, e = SII->getNumCases(); i < e; ++i) {
SILValue value;
SILBasicBlock *dest;
std::tie(value, dest) = SII->getCase(i);
ListOfValues.push_back(addValueRef(value));
ListOfValues.push_back(BasicBlockMap[dest]);
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SII->getOperand()->getType().getRawASTType()),
(unsigned)SII->getOperand()->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::UnownedCopyValueInst:
case SILInstructionKind::WeakCopyValueInst:
#define UNCHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst: \
case SILInstructionKind::Load##Name##Inst:
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##RetainInst: \
case SILInstructionKind::Name##ReleaseInst: \
case SILInstructionKind::StrongRetain##Name##Inst: \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Load##Name##Inst: \
case SILInstructionKind::Name##RetainInst: \
case SILInstructionKind::Name##ReleaseInst: \
case SILInstructionKind::StrongRetain##Name##Inst: \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst:
case SILInstructionKind::RetainValueAddrInst:
case SILInstructionKind::UnmanagedRetainValueInst:
case SILInstructionKind::EndBorrowInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::ExplicitCopyValueInst:
case SILInstructionKind::MoveValueInst:
case SILInstructionKind::DropDeinitInst:
case SILInstructionKind::MarkUnresolvedReferenceBindingInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableValueInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperValueInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::ReleaseValueAddrInst:
case SILInstructionKind::UnmanagedReleaseValueInst:
case SILInstructionKind::AutoreleaseValueInst:
case SILInstructionKind::UnmanagedAutoreleaseValueInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::DeallocStackRefInst:
case SILInstructionKind::DeallocPackInst:
case SILInstructionKind::DeallocRefInst:
case SILInstructionKind::DeinitExistentialAddrInst:
case SILInstructionKind::DeinitExistentialValueInst:
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::LoadInst:
case SILInstructionKind::LoadBorrowInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::ClassifyBridgeObjectInst:
case SILInstructionKind::ValueToBridgeObjectInst:
case SILInstructionKind::FixLifetimeInst:
case SILInstructionKind::EndLifetimeInst:
case SILInstructionKind::ExtendLifetimeInst:
case SILInstructionKind::CopyBlockInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::IsUniqueInst:
case SILInstructionKind::BeginCOWMutationInst:
case SILInstructionKind::EndCOWMutationInst:
case SILInstructionKind::EndCOWMutationAddrInst:
case SILInstructionKind::EndInitLetRefInst:
case SILInstructionKind::HopToExecutorInst:
case SILInstructionKind::ExtractExecutorInst:
case SILInstructionKind::FunctionExtractIsolationInst:
case SILInstructionKind::AbortApplyInst:
case SILInstructionKind::ReturnInst:
case SILInstructionKind::UncheckedOwnershipConversionInst:
case SILInstructionKind::DestroyNotEscapedClosureInst:
case SILInstructionKind::ThrowInst: {
unsigned Attr = 0;
if (auto *LI = dyn_cast<LoadInst>(&SI))
Attr = unsigned(LI->getOwnershipQualifier());
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
else if (auto *LI = dyn_cast<Load##Name##Inst>(&SI)) \
Attr = LI->isTake();
#include "swift/AST/ReferenceStorage.def"
else if (auto *RCI = dyn_cast<RefCountingInst>(&SI))
Attr = RCI->isNonAtomic();
else if (auto *UOCI = dyn_cast<UncheckedOwnershipConversionInst>(&SI)) {
Attr = encodeValueOwnership(UOCI->getOwnershipKind());
} else if (auto *IEC = dyn_cast<DestroyNotEscapedClosureInst>(&SI)) {
Attr = IEC->getVerificationType();
} else if (auto *HTE = dyn_cast<HopToExecutorInst>(&SI)) {
Attr = HTE->isMandatory();
} else if (auto *DVI = dyn_cast<DestroyValueInst>(&SI)) {
Attr = unsigned(DVI->poisonRefs()) | (unsigned(DVI->isDeadEnd()) << 1);
} else if (auto *BCMI = dyn_cast<BeginCOWMutationInst>(&SI)) {
Attr = BCMI->isNative();
} else if (auto *ECMI = dyn_cast<EndCOWMutationInst>(&SI)) {
Attr = ECMI->doKeepUnique();
} else if (auto *BBI = dyn_cast<BeginBorrowInst>(&SI)) {
Attr = unsigned(BBI->isLexical()) |
(unsigned(BBI->hasPointerEscape() << 1)) |
(unsigned(BBI->isFromVarDecl() << 2)) |
(unsigned(BBI->isFixed() << 3));
} else if (auto *MVI = dyn_cast<MoveValueInst>(&SI)) {
Attr = unsigned(MVI->getAllowDiagnostics()) |
(unsigned(MVI->isLexical() << 1)) |
(unsigned(MVI->hasPointerEscape() << 2)) |
(unsigned(MVI->isFromVarDecl() << 3));
} else if (auto *I = dyn_cast<MarkUnresolvedNonCopyableValueInst>(&SI)) {
Attr = unsigned(I->getCheckKind());
assert(Attr < (1 << 3));
Attr |= unsigned(I->isStrict()) << 3;
} else if (auto *I = dyn_cast<MarkUnresolvedReferenceBindingInst>(&SI)) {
Attr = unsigned(I->getKind());
} else if (auto *I = dyn_cast<MoveOnlyWrapperToCopyableValueInst>(&SI)) {
Attr = I->getForwardingOwnershipKind() == OwnershipKind::Owned ? true
: false;
} else if (auto *I = dyn_cast<CopyableToMoveOnlyWrapperValueInst>(&SI)) {
Attr = I->getForwardingOwnershipKind() == OwnershipKind::Owned ? true
: false;
} else if (auto *LB = dyn_cast<LoadBorrowInst>(&SI)) {
Attr = LB->isUnchecked();
}
writeOneOperandLayout(SI.getKind(), Attr, SI.getOperand(0));
break;
}
case SILInstructionKind::EndApplyInst: {
const auto *eai = cast<EndApplyInst>(&SI);
writeOneTypeOneOperandLayout(
eai->getKind(), 0, eai->getType(), eai->getOperand());
break;
}
case SILInstructionKind::MarkUnresolvedNonCopyableValueInst: {
unsigned Attr =
unsigned(cast<MarkUnresolvedNonCopyableValueInst>(&SI)->getCheckKind());
writeOneOperandExtraAttributeLayout(SI.getKind(), Attr, SI.getOperand(0));
break;
}
case SILInstructionKind::MarkUninitializedInst: {
unsigned Attr =
(unsigned)cast<MarkUninitializedInst>(&SI)->getMarkUninitializedKind();
writeOneOperandExtraAttributeLayout(SI.getKind(), Attr, SI.getOperand(0));
break;
}
case SILInstructionKind::UncheckedOwnershipInst: {
llvm_unreachable("Invalid unchecked_ownership during serialzation");
}
case SILInstructionKind::YieldInst: {
auto YI = cast<YieldInst>(&SI);
SmallVector<ValueID, 4> args;
for (auto arg: YI->getYieldedValues()) {
args.push_back(S.addTypeRef(arg->getType().getRawASTType()));
args.push_back((unsigned)arg->getType().getCategory());
args.push_back(addValueRef(arg));
}
args.push_back(BasicBlockMap[YI->getResumeBB()]);
args.push_back(BasicBlockMap[YI->getUnwindBB()]);
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)YI->getKind(), 0, 0, args);
break;
}
case SILInstructionKind::FunctionRefInst: {
// Use SILOneOperandLayout to specify the function type and the function
// name (IdentifierID).
const FunctionRefInst *FRI = cast<FunctionRefInst>(&SI);
SILFunction *ReferencedFunction = FRI->getReferencedFunction();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(FRI->getType().getRawASTType()),
(unsigned)FRI->getType().getCategory(),
addSILFunctionRef(ReferencedFunction));
break;
}
case SILInstructionKind::IgnoredUseInst: {
// Use SILOneOperandLayout to specify our operand.
auto *iui = cast<IgnoredUseInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)iui->getKind(), 0,
S.addTypeRef(iui->getOperand()->getType().getRawASTType()),
(unsigned)iui->getOperand()->getType().getCategory(),
addValueRef(iui->getOperand()));
break;
}
case SILInstructionKind::DynamicFunctionRefInst: {
// Use SILOneOperandLayout to specify the function type and the function
// name (IdentifierID).
const auto *FRI = cast<DynamicFunctionRefInst>(&SI);
SILFunction *ReferencedFunction = FRI->getInitiallyReferencedFunction();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(FRI->getType().getRawASTType()),
(unsigned)FRI->getType().getCategory(),
addSILFunctionRef(ReferencedFunction));
break;
}
case SILInstructionKind::PreviousDynamicFunctionRefInst: {
// Use SILOneOperandLayout to specify the function type and the function
// name (IdentifierID).
const auto *FRI = cast<PreviousDynamicFunctionRefInst>(&SI);
SILFunction *ReferencedFunction = FRI->getInitiallyReferencedFunction();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(FRI->getType().getRawASTType()),
(unsigned)FRI->getType().getCategory(),
addSILFunctionRef(ReferencedFunction));
break;
}
case SILInstructionKind::CopyBlockWithoutEscapingInst:
case SILInstructionKind::DeallocPartialRefInst:
case SILInstructionKind::BeginDeallocRefInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MarkDependenceAddrInst:
case SILInstructionKind::IndexAddrInst:
case SILInstructionKind::IndexRawPointerInst: {
SILValue operand, operand2;
unsigned Attr = 0;
if (SI.getKind() == SILInstructionKind::CopyBlockWithoutEscapingInst) {
const CopyBlockWithoutEscapingInst *C = cast<CopyBlockWithoutEscapingInst>(&SI);
operand = C->getBlock();
operand2 = C->getClosure();
} else if (SI.getKind() == SILInstructionKind::DeallocPartialRefInst) {
const DeallocPartialRefInst *DPRI = cast<DeallocPartialRefInst>(&SI);
operand = DPRI->getInstance();
operand2 = DPRI->getMetatype();
} else if (SI.getKind() == SILInstructionKind::BeginDeallocRefInst) {
const BeginDeallocRefInst *bdr = cast<BeginDeallocRefInst>(&SI);
operand = bdr->getReference();
operand2 = bdr->getAllocation();
} else if (SI.getKind() == SILInstructionKind::IndexRawPointerInst) {
const IndexRawPointerInst *IRP = cast<IndexRawPointerInst>(&SI);
operand = IRP->getBase();
operand2 = IRP->getIndex();
} else if (SI.getKind() == SILInstructionKind::MarkDependenceInst) {
const MarkDependenceInst *MDI = cast<MarkDependenceInst>(&SI);
operand = MDI->getValue();
operand2 = MDI->getBase();
Attr = unsigned(MDI->dependenceKind());
} else if (SI.getKind() == SILInstructionKind::MarkDependenceAddrInst) {
const MarkDependenceAddrInst *MDI = cast<MarkDependenceAddrInst>(&SI);
operand = MDI->getAddress();
operand2 = MDI->getBase();
Attr = unsigned(MDI->dependenceKind());
} else {
const IndexAddrInst *IAI = cast<IndexAddrInst>(&SI);
operand = IAI->getBase();
operand2 = IAI->getIndex();
Attr = (IAI->needsStackProtection() ? 1 : 0);
}
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code],
(unsigned)SI.getKind(), Attr,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand),
S.addTypeRef(operand2->getType().getRawASTType()),
(unsigned)operand2->getType().getCategory(),
addValueRef(operand2));
break;
}
case SILInstructionKind::PackElementGetInst: {
auto PEGI = cast<PackElementGetInst>(&SI);
auto elementType = PEGI->getElementType();
auto elementTypeRef = S.addTypeRef(elementType.getRawASTType());
auto pack = PEGI->getPack();
auto packType = pack->getType();
auto packTypeRef = S.addTypeRef(packType.getRawASTType());
auto packRef = addValueRef(pack);
auto indexRef = addValueRef(PEGI->getIndex());
SILPackElementGetLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILPackElementGetLayout::Code],
(unsigned)SI.getKind(),
elementTypeRef,
(unsigned) elementType.getCategory(),
packTypeRef,
(unsigned) packType.getCategory(),
packRef,
indexRef);
break;
}
case SILInstructionKind::PackElementSetInst: {
auto PESI = cast<PackElementSetInst>(&SI);
auto value = PESI->getValue();
auto valueType = value->getType();
auto valueTypeRef = S.addTypeRef(valueType.getRawASTType());
auto valueRef = addValueRef(value);
auto pack = PESI->getPack();
auto packType = pack->getType();
auto packTypeRef = S.addTypeRef(packType.getRawASTType());
auto packRef = addValueRef(pack);
auto indexRef = addValueRef(PESI->getIndex());
SILPackElementSetLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILPackElementSetLayout::Code],
valueTypeRef,
(unsigned) valueType.getCategory(),
valueRef,
packTypeRef,
(unsigned) packType.getCategory(),
packRef,
indexRef);
break;
}
case SILInstructionKind::TuplePackElementAddrInst: {
auto TPEAI = cast<TuplePackElementAddrInst>(&SI);
auto elementType = TPEAI->getElementType();
auto elementTypeRef = S.addTypeRef(elementType.getRawASTType());
auto tuple = TPEAI->getTuple();
auto tupleType = tuple->getType();
auto tupleTypeRef = S.addTypeRef(tupleType.getRawASTType());
auto tupleRef = addValueRef(tuple);
auto indexRef = addValueRef(TPEAI->getIndex());
SILPackElementGetLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILPackElementGetLayout::Code],
(unsigned)SI.getKind(), elementTypeRef,
(unsigned)elementType.getCategory(), tupleTypeRef,
(unsigned)tupleType.getCategory(), tupleRef, indexRef);
break;
}
case SILInstructionKind::TuplePackExtractInst: {
auto TPEI = cast<TuplePackExtractInst>(&SI);
auto elementType = TPEI->getElementType();
auto elementTypeRef = S.addTypeRef(elementType.getRawASTType());
auto tuple = TPEI->getTuple();
auto tupleType = tuple->getType();
auto tupleTypeRef = S.addTypeRef(tupleType.getRawASTType());
auto tupleRef = addValueRef(tuple);
auto indexRef = addValueRef(TPEI->getIndex());
SILPackElementGetLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILPackElementGetLayout::Code],
(unsigned)SI.getKind(), elementTypeRef,
(unsigned)elementType.getCategory(), tupleTypeRef,
(unsigned)tupleType.getCategory(), tupleRef, indexRef);
break;
}
case SILInstructionKind::TailAddrInst: {
const TailAddrInst *TAI = cast<TailAddrInst>(&SI);
SILTailAddrLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTailAddrLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(TAI->getBase()->getType().getRawASTType()),
addValueRef(TAI->getBase()),
S.addTypeRef(TAI->getIndex()->getType().getRawASTType()),
addValueRef(TAI->getIndex()),
S.addTypeRef(TAI->getTailType().getRawASTType()));
break;
}
case SILInstructionKind::CondFailInst: {
auto *CFI = cast<CondFailInst>(&SI);
SILValue operand = CFI->getOperand();
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code],
(unsigned)SI.getKind(), /*attributes*/ 0,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand),
0, 0, S.addUniquedStringRef(CFI->getMessage()));
break;
}
case SILInstructionKind::IncrementProfilerCounterInst: {
auto *IPCI = cast<IncrementProfilerCounterInst>(&SI);
llvm::SmallString<10> HashStr;
APInt(64, IPCI->getPGOFuncHash()).toStringUnsigned(HashStr);
SILInstIncrementProfilerCounterLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[SILInstIncrementProfilerCounterLayout::Code],
S.addUniquedStringRef(IPCI->getPGOFuncName()),
S.addUniquedStringRef(HashStr),
IPCI->getCounterIndex(),
IPCI->getNumCounters());
break;
}
case SILInstructionKind::StringLiteralInst: {
auto SLI = cast<StringLiteralInst>(&SI);
StringRef Str = SLI->getValue();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
unsigned encoding = toStableStringEncoding(SLI->getEncoding());
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), encoding, 0, 0,
S.addUniquedStringRef(Str));
break;
}
case SILInstructionKind::FloatLiteralInst:
case SILInstructionKind::IntegerLiteralInst: {
// Use SILOneOperandLayout to specify the type and the literal.
llvm::SmallString<10> Str;
SILType Ty;
switch (SI.getKind()) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::IntegerLiteralInst:
cast<IntegerLiteralInst>(&SI)->getValue().toString(Str, 10,
/*signed*/ true);
Ty = cast<IntegerLiteralInst>(&SI)->getType();
break;
case SILInstructionKind::FloatLiteralInst:
cast<FloatLiteralInst>(&SI)->getBits().toString(Str, 16,
/*signed*/ true);
Ty = cast<FloatLiteralInst>(&SI)->getType();
break;
}
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), 0,
S.addTypeRef(Ty.getRawASTType()), (unsigned)Ty.getCategory(),
S.addUniquedStringRef(Str.str()));
break;
}
case SILInstructionKind::MarkFunctionEscapeInst: {
// Format: a list of typed values. A typed value is expressed by 4 IDs:
// TypeID, TypeCategory, ValueID, ValueResultNumber.
const MarkFunctionEscapeInst *MFE = cast<MarkFunctionEscapeInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : MFE->getElements()) {
ListOfValues.push_back(S.addTypeRef(Elt->getType().getRawASTType()));
ListOfValues.push_back((unsigned)Elt->getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), 0, 0, ListOfValues);
break;
}
case SILInstructionKind::MetatypeInst: {
auto &MI = cast<MetatypeInst>(SI);
writeOneTypeLayout(MI.getKind(), 0, MI.getType());
break;
}
case SILInstructionKind::ObjCProtocolInst: {
const ObjCProtocolInst *PI = cast<ObjCProtocolInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(PI->getType().getRawASTType()),
(unsigned)PI->getType().getCategory(),
S.addDeclRef(PI->getProtocol()));
break;
}
case SILInstructionKind::OpenExistentialAddrInst: {
auto &open = cast<OpenExistentialAddrInst>(SI);
assert(open.getNumOperands() - open.getTypeDependentOperands().size() == 1);
unsigned attrs = open.getAccessKind() == OpenedExistentialAccess::Immutable
? 0 : 1;
writeOneTypeOneOperandLayout(open.getKind(), attrs, open.getType(),
open.getOperand());
break;
}
case SILInstructionKind::DynamicPackIndexInst: {
auto &dpii = cast<DynamicPackIndexInst>(SI);
writeOneTypeOneOperandLayout(dpii.getKind(), 0,
dpii.getIndexedPackType(),
dpii.getOperand());
break;
}
case SILInstructionKind::PackPackIndexInst: {
auto &ppii = cast<PackPackIndexInst>(SI);
writeOneTypeOneOperandLayout(ppii.getKind(),
ppii.getComponentStartIndex(),
ppii.getIndexedPackType(),
ppii.getOperand());
break;
}
case SILInstructionKind::ScalarPackIndexInst: {
auto &spii = cast<ScalarPackIndexInst>(SI);
writeOneTypeLayout(spii.getKind(),
spii.getComponentIndex(),
spii.getIndexedPackType());
break;
}
case SILInstructionKind::OpenPackElementInst: {
auto &opei = cast<OpenPackElementInst>(SI);
auto envRef =
S.addGenericEnvironmentRef(opei.getOpenedGenericEnvironment());
auto operand = opei.getIndexOperand();
auto operandRef = addValueRef(operand);
auto operandType = operand->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
SILOpenPackElementLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOpenPackElementLayout::Code],
envRef,
operandTypeRef, unsigned(operandType.getCategory()),
operandRef);
break;
}
case SILInstructionKind::GetAsyncContinuationAddrInst: {
auto &gaca = cast<GetAsyncContinuationAddrInst>(SI);
writeOneTypeOneOperandLayout(gaca.getKind(), gaca.throws(),
gaca.getFormalResumeType(),
gaca.getOperand());
break;
}
case SILInstructionKind::GetAsyncContinuationInst: {
auto &gaca = cast<GetAsyncContinuationInst>(SI);
writeOneTypeLayout(gaca.getKind(), gaca.throws(),
gaca.getFormalResumeType());
break;
}
case SILInstructionKind::ThunkInst: {
auto &ti = cast<ThunkInst>(SI);
auto operandType = ti.getOperand()->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto operandRef = addValueRef(ti.getOperand());
SILThunkLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILThunkLayout::Code],
unsigned(ti.getThunkKind()), operandTypeRef,
unsigned(operandType.getCategory()), operandRef,
S.addSubstitutionMapRef(ti.getSubstitutionMap()));
break;
}
// Conversion instructions (and others of similar form).
#define LOADABLE_REF_STORAGE(Name, ...) \
case SILInstructionKind::RefTo##Name##Inst: \
case SILInstructionKind::Name##ToRefInst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::OpenExistentialRefInst:
case SILInstructionKind::OpenExistentialMetatypeInst:
case SILInstructionKind::OpenExistentialBoxInst:
case SILInstructionKind::OpenExistentialValueInst:
case SILInstructionKind::OpenExistentialBoxValueInst:
case SILInstructionKind::UncheckedRefCastInst:
case SILInstructionKind::UncheckedAddrCastInst:
case SILInstructionKind::UncheckedTrivialBitCastInst:
case SILInstructionKind::UncheckedBitwiseCastInst:
case SILInstructionKind::UncheckedValueCastInst:
case SILInstructionKind::VectorBaseAddrInst:
case SILInstructionKind::BridgeObjectToRefInst:
case SILInstructionKind::BridgeObjectToWordInst:
case SILInstructionKind::UpcastInst:
case SILInstructionKind::AddressToPointerInst:
case SILInstructionKind::RefToRawPointerInst:
case SILInstructionKind::RawPointerToRefInst:
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::ThickToObjCMetatypeInst:
case SILInstructionKind::ObjCToThickMetatypeInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
case SILInstructionKind::ObjCMetatypeToObjectInst:
case SILInstructionKind::ObjCExistentialMetatypeToObjectInst:
case SILInstructionKind::ProjectBlockStorageInst: {
unsigned attrs = 0;
if (SI.getKind() == SILInstructionKind::ConvertEscapeToNoEscapeInst) {
if (cast<ConvertEscapeToNoEscapeInst>(SI).isLifetimeGuaranteed())
attrs |= 0x01;
}
if (SI.getKind() == SILInstructionKind::ConvertFunctionInst) {
if (cast<ConvertFunctionInst>(SI).withoutActuallyEscaping())
attrs |= 0x01;
} else if (auto *refCast = dyn_cast<UncheckedRefCastInst>(&SI)) {
attrs = encodeValueOwnership(refCast->getOwnershipKind());
} else if (auto *atp = dyn_cast<AddressToPointerInst>(&SI)) {
attrs = atp->needsStackProtection() ? 1 : 0;
}
writeConversionLikeInstruction(cast<SingleValueInstruction>(&SI), attrs);
break;
}
case SILInstructionKind::PointerToAddressInst: {
auto &PAI = cast<PointerToAddressInst>(SI);
assert(PAI.getNumOperands() - PAI.getTypeDependentOperands().size() == 1);
uint8_t encodedAlignment = llvm::encode(PAI.alignment());
assert(encodedAlignment == llvm::encode(PAI.alignment())
&& "pointer_to_address alignment overflow");
unsigned attrs = encodedAlignment | (PAI.isStrict() ? 0x100 : 0)
| (PAI.isInvariant() ? 0x200 : 0);
writeOneTypeOneOperandExtraAttributeLayout(
PAI.getKind(), attrs, PAI.getType(), PAI.getOperand());
break;
}
case SILInstructionKind::RefToBridgeObjectInst: {
auto RI = cast<RefToBridgeObjectInst>(&SI);
auto op = RI->getOperand(0);
SILTwoOperandsLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILTwoOperandsLayout::Code],
(unsigned)SI.getKind(),
/*attr*/ 0, S.addTypeRef(op->getType().getRawASTType()),
(unsigned)op->getType().getCategory(), addValueRef(op),
S.addTypeRef(RI->getBitsOperand()->getType().getRawASTType()),
(unsigned)RI->getBitsOperand()->getType().getCategory(),
addValueRef(RI->getBitsOperand()));
break;
}
// Checked Conversion instructions.
case SILInstructionKind::UnconditionalCheckedCastInst: {
auto CI = cast<UnconditionalCheckedCastInst>(&SI);
unsigned flags = CI->getCheckedCastOptions().getStorage();
ValueID listOfValues[] = {
addValueRef(CI->getOperand()),
S.addTypeRef(CI->getSourceLoweredType().getRawASTType()),
(unsigned)CI->getSourceLoweredType().getCategory(),
S.addTypeRef(CI->getTargetFormalType()),
flags
};
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(CI->getTargetLoweredType().getRawASTType()),
(unsigned)CI->getTargetLoweredType().getCategory(),
llvm::ArrayRef(listOfValues));
break;
}
case SILInstructionKind::UnconditionalCheckedCastAddrInst: {
auto CI = cast<UnconditionalCheckedCastAddrInst>(&SI);
unsigned flags = CI->getCheckedCastOptions().getStorage();
ValueID listOfValues[] = {
S.addTypeRef(CI->getSourceFormalType()),
addValueRef(CI->getSrc()),
S.addTypeRef(CI->getSourceLoweredType().getRawASTType()),
(unsigned)CI->getSourceLoweredType().getCategory(),
S.addTypeRef(CI->getTargetFormalType()),
addValueRef(CI->getDest()),
flags
};
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(CI->getTargetLoweredType().getRawASTType()),
(unsigned)CI->getTargetLoweredType().getCategory(),
llvm::ArrayRef(listOfValues));
break;
}
case SILInstructionKind::UncheckedRefCastAddrInst: {
auto CI = cast<UncheckedRefCastAddrInst>(&SI);
ValueID listOfValues[] = {
S.addTypeRef(CI->getSourceFormalType()),
addValueRef(CI->getSrc()),
S.addTypeRef(CI->getSourceLoweredType().getRawASTType()),
(unsigned)CI->getSourceLoweredType().getCategory(),
S.addTypeRef(CI->getTargetFormalType()),
addValueRef(CI->getDest())
};
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(CI->getTargetLoweredType().getRawASTType()),
(unsigned)CI->getTargetLoweredType().getCategory(),
llvm::ArrayRef(listOfValues));
break;
}
case SILInstructionKind::BeginAccessInst: {
unsigned abbrCode = SILAbbrCodes[SILOneOperandExtraAttributeLayout::Code];
auto *BAI = cast<BeginAccessInst>(&SI);
unsigned attr = unsigned(BAI->getAccessKind())
+ (unsigned(BAI->getEnforcement()) << 2)
+ (BAI->hasNoNestedConflict() << 5)
+ (BAI->isFromBuiltin() << 6);
SILValue operand = BAI->getOperand();
SILOneOperandExtraAttributeLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), attr,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand));
break;
}
case SILInstructionKind::MoveOnlyWrapperToCopyableAddrInst: {
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
auto *BAI = cast<MoveOnlyWrapperToCopyableAddrInst>(&SI);
SILValue operand = BAI->getOperand();
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), 0,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(), addValueRef(operand));
break;
}
case SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst: {
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
auto *BAI = cast<MoveOnlyWrapperToCopyableBoxInst>(&SI);
SILValue operand = BAI->getOperand();
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), 0,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(), addValueRef(operand));
break;
}
case SILInstructionKind::CopyableToMoveOnlyWrapperAddrInst: {
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
auto *BAI = cast<CopyableToMoveOnlyWrapperAddrInst>(&SI);
SILValue operand = BAI->getOperand();
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), 0,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(), addValueRef(operand));
break;
}
case SILInstructionKind::EndAccessInst: {
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
auto *EAI = cast<EndAccessInst>(&SI);
unsigned attr = unsigned(EAI->isAborting());
SILValue operand = EAI->getOperand();
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), attr,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand));
break;
}
case SILInstructionKind::ImplicitActorToOpaqueIsolationCastInst: {
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
auto operand =
cast<ImplicitActorToOpaqueIsolationCastInst>(&SI)->getOperand();
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), 0 /*attr*/,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(), addValueRef(operand));
break;
}
case SILInstructionKind::BeginUnpairedAccessInst: {
unsigned abbrCode = SILAbbrCodes[SILTwoOperandsExtraAttributeLayout::Code];
auto *BAI = cast<BeginUnpairedAccessInst>(&SI);
unsigned attr = unsigned(BAI->getAccessKind())
+ (unsigned(BAI->getEnforcement()) << 2)
+ (unsigned(BAI->hasNoNestedConflict()) << 5)
+ (unsigned(BAI->isFromBuiltin()) << 6);
SILValue source = BAI->getSource();
SILValue buffer = BAI->getBuffer();
SILTwoOperandsExtraAttributeLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), attr,
S.addTypeRef(source->getType().getRawASTType()),
(unsigned)source->getType().getCategory(),
addValueRef(source),
S.addTypeRef(buffer->getType().getRawASTType()),
(unsigned)buffer->getType().getCategory(),
addValueRef(buffer));
break;
}
case SILInstructionKind::EndUnpairedAccessInst: {
unsigned abbrCode = SILAbbrCodes[SILOneOperandExtraAttributeLayout::Code];
auto *EAI = cast<EndUnpairedAccessInst>(&SI);
unsigned attr = unsigned(EAI->isAborting())
+ (unsigned(EAI->getEnforcement()) << 1)
+ (unsigned(EAI->isFromBuiltin()) << 4);
SILValue operand = EAI->getOperand();
SILOneOperandExtraAttributeLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(), attr,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand));
break;
}
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::AssignInst:
case SILInstructionKind::CopyAddrInst:
case SILInstructionKind::ExplicitCopyAddrInst:
case SILInstructionKind::MarkUnresolvedMoveAddrInst:
case SILInstructionKind::StoreInst:
case SILInstructionKind::StoreBorrowInst: {
SILValue operand, value;
unsigned Attr = 0;
if (SI.getKind() == SILInstructionKind::StoreInst) {
Attr = unsigned(cast<StoreInst>(&SI)->getOwnershipQualifier());
operand = cast<StoreInst>(&SI)->getDest();
value = cast<StoreInst>(&SI)->getSrc();
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
} else if (SI.getKind() == SILInstructionKind::Store##Name##Inst) { \
Attr = cast<Store##Name##Inst>(&SI)->isInitializationOfDest(); \
operand = cast<Store##Name##Inst>(&SI)->getDest(); \
value = cast<Store##Name##Inst>(&SI)->getSrc();
#include "swift/AST/ReferenceStorage.def"
} else if (SI.getKind() == SILInstructionKind::AssignInst) {
Attr = unsigned(cast<AssignInst>(&SI)->getOwnershipQualifier());
operand = cast<AssignInst>(&SI)->getDest();
value = cast<AssignInst>(&SI)->getSrc();
} else if (SI.getKind() == SILInstructionKind::CopyAddrInst) {
const CopyAddrInst *CAI = cast<CopyAddrInst>(&SI);
Attr = (CAI->isInitializationOfDest() << 1) | CAI->isTakeOfSrc();
operand = cast<CopyAddrInst>(&SI)->getDest();
value = cast<CopyAddrInst>(&SI)->getSrc();
} else if (SI.getKind() == SILInstructionKind::ExplicitCopyAddrInst) {
const auto *CAI = cast<ExplicitCopyAddrInst>(&SI);
Attr = (CAI->isInitializationOfDest() << 1) | CAI->isTakeOfSrc();
operand = cast<ExplicitCopyAddrInst>(&SI)->getDest();
value = cast<ExplicitCopyAddrInst>(&SI)->getSrc();
} else if (SI.getKind() == SILInstructionKind::MarkUnresolvedMoveAddrInst) {
auto *mai = cast<MarkUnresolvedMoveAddrInst>(&SI);
operand = mai->getDest();
value = mai->getSrc();
} else if (auto *SBI = dyn_cast<StoreBorrowInst>(&SI)) {
operand = SBI->getDest();
value = SBI->getSrc();
} else {
llvm_unreachable("switch out of sync");
}
unsigned abbrCode = SILAbbrCodes[SILOneValueOneOperandLayout::Code];
SILOneValueOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), Attr, addValueRef(value),
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand));
break;
}
case SILInstructionKind::AssignOrInitInst:
llvm_unreachable("not supported");
case SILInstructionKind::BindMemoryInst: {
auto *BI = cast<BindMemoryInst>(&SI);
SILValue baseOperand = BI->getBase();
SILValue indexOperand = BI->getIndex();
SILType boundType = BI->getBoundType();
SmallVector<ValueID, 6> ListOfValues;
ListOfValues.push_back(S.addTypeRef(
baseOperand->getType().getRawASTType()));
ListOfValues.push_back((unsigned)baseOperand->getType().getCategory());
ListOfValues.push_back(addValueRef(baseOperand));
ListOfValues.push_back(S.addTypeRef(
indexOperand->getType().getRawASTType()));
ListOfValues.push_back((unsigned)indexOperand->getType().getCategory());
ListOfValues.push_back(addValueRef(indexOperand));
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(boundType.getRawASTType()),
(unsigned)boundType.getCategory(), ListOfValues);
break;
}
case SILInstructionKind::RebindMemoryInst: {
auto *RBI = cast<RebindMemoryInst>(&SI);
SILValue baseOperand = RBI->getBase();
SILValue inToken = RBI->getInToken();
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code], (unsigned)SI.getKind(),
/*attr*/0,
S.addTypeRef(baseOperand->getType().getRawASTType()),
(unsigned)baseOperand->getType().getCategory(),
addValueRef(baseOperand),
S.addTypeRef(inToken->getType().getRawASTType()),
(unsigned)inToken->getType().getCategory(),
addValueRef(inToken));
break;
}
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::InitEnumDataAddrInst:
case SILInstructionKind::UncheckedEnumDataInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
case SILInstructionKind::InjectEnumAddrInst: {
// Has a typed valueref and a field decl. We use SILOneValueOneOperandLayout
// where the field decl is streamed as a ValueID.
SILValue operand;
Decl *tDecl;
unsigned attr = 0;
switch (SI.getKind()) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::RefElementAddrInst:
operand = cast<RefElementAddrInst>(&SI)->getOperand();
tDecl = cast<RefElementAddrInst>(&SI)->getField();
attr = unsigned(cast<RefElementAddrInst>(&SI)->isImmutable());
break;
case SILInstructionKind::StructElementAddrInst:
operand = cast<StructElementAddrInst>(&SI)->getOperand();
tDecl = cast<StructElementAddrInst>(&SI)->getField();
break;
case SILInstructionKind::StructExtractInst:
operand = cast<StructExtractInst>(&SI)->getOperand();
tDecl = cast<StructExtractInst>(&SI)->getField();
break;
case SILInstructionKind::InitEnumDataAddrInst:
operand = cast<InitEnumDataAddrInst>(&SI)->getOperand();
tDecl = cast<InitEnumDataAddrInst>(&SI)->getElement();
break;
case SILInstructionKind::UncheckedEnumDataInst:
operand = cast<UncheckedEnumDataInst>(&SI)->getOperand();
tDecl = cast<UncheckedEnumDataInst>(&SI)->getElement();
break;
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
operand = cast<UncheckedTakeEnumDataAddrInst>(&SI)->getOperand();
tDecl = cast<UncheckedTakeEnumDataAddrInst>(&SI)->getElement();
break;
case SILInstructionKind::InjectEnumAddrInst:
operand = cast<InjectEnumAddrInst>(&SI)->getOperand();
tDecl = cast<InjectEnumAddrInst>(&SI)->getElement();
break;
}
SILOneValueOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneValueOneOperandLayout::Code],
(unsigned)SI.getKind(), attr, S.addDeclRef(tDecl),
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand));
break;
}
case SILInstructionKind::RefTailAddrInst: {
auto *RTAI = cast<RefTailAddrInst>(&SI);
writeOneTypeOneOperandLayout(RTAI->getKind(), unsigned(RTAI->isImmutable()),
RTAI->getType(),
RTAI->getOperand());
break;
}
case SILInstructionKind::StructInst:
case SILInstructionKind::BorrowedFromInst: {
// Format: a type followed by a list of typed values. A typed value is
// expressed by 4 IDs: TypeID, TypeCategory, ValueID, ValueResultNumber.
const auto *svi = cast<SingleValueInstruction>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : svi->getOperandValues()) {
ListOfValues.push_back(S.addTypeRef(Elt->getType().getRawASTType()));
ListOfValues.push_back((unsigned)Elt->getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(svi->getType().getRawASTType()),
(unsigned)svi->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::ReturnBorrowInst: {
// Format: a type followed by a list of typed values. A typed value is
// expressed by 4 IDs: TypeID, TypeCategory, ValueID, ValueResultNumber.
const auto *rbi = cast<ReturnBorrowInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : rbi->getOperandValues()) {
ListOfValues.push_back(S.addTypeRef(Elt->getType().getRawASTType()));
ListOfValues.push_back((unsigned)Elt->getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
}
SILValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILValuesLayout::Code],
(unsigned)SI.getKind(), ListOfValues);
break;
}
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::TupleExtractInst: {
SILValue operand;
unsigned FieldNo;
switch (SI.getKind()) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::TupleElementAddrInst:
operand = cast<TupleElementAddrInst>(&SI)->getOperand();
FieldNo = cast<TupleElementAddrInst>(&SI)->getFieldIndex();
break;
case SILInstructionKind::TupleExtractInst:
operand = cast<TupleExtractInst>(&SI)->getOperand();
FieldNo = cast<TupleExtractInst>(&SI)->getFieldIndex();
break;
}
// Use OneTypeOneOperand layout where the field number is stored in TypeID.
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
FieldNo, 0,
S.addTypeRef(operand->getType().getRawASTType()),
(unsigned)operand->getType().getCategory(),
addValueRef(operand));
break;
}
case SILInstructionKind::TupleInst: {
// Format: a type followed by a list of values. A value is expressed by
// 2 IDs: ValueID, ValueResultNumber.
const TupleInst *TI = cast<TupleInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : TI->getElements()) {
ListOfValues.push_back(addValueRef(Elt));
}
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(),
S.addTypeRef(TI->getType().getRawASTType()),
(unsigned)TI->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::MergeIsolationRegionInst: {
const auto *mir = cast<MergeIsolationRegionInst>(&SI);
SmallVector<uint64_t, 4> ListOfValues;
auto getValue = [&](SILValue value) -> uint64_t {
uint32_t result = addValueRef(value);
// Set the top bit if we are an address. We only transfer raw ast types,
// so we lose this bit otherwise. This is safe since all of our IDs are
// guaranteed to be 31 bits meaning we can always take the top bit.
result |= value->getType().isObject() ? 0 : 0x80000000;
return result;
};
for (auto value : mir->getArguments()) {
ListOfValues.push_back(getValue(value));
ListOfValues.push_back(S.addTypeRef(value->getType().getRawASTType()));
}
unsigned abbrCode = SILAbbrCodes[SILValuesLayout::Code];
SILValuesLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), ListOfValues);
break;
}
case SILInstructionKind::TupleAddrConstructorInst: {
// Format: a type followed by a list of values. A value is expressed by
// 2 IDs: ValueID, ValueResultNumber.
const auto *TI = cast<TupleAddrConstructorInst>(&SI);
SmallVector<uint64_t, 4> ListOfValues;
auto getValue = [&](SILValue value) -> uint64_t {
uint32_t result = addValueRef(value);
// Set the top bit if we are an address.
result |= value->getType().isObject() ? 0 : 0x80000000;
return result;
};
ListOfValues.push_back(getValue(TI->getDest()));
for (auto Elt : TI->getElements()) {
ListOfValues.push_back(getValue(Elt));
}
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesCategoriesLayout::Code];
unsigned options = 0;
options |= bool(TI->isInitializationOfDest());
SILOneTypeValuesCategoriesLayout::emitRecord(
Out, ScratchRecord, abbrCode, (unsigned)SI.getKind(),
S.addTypeRef(TI->getDest()->getType().getRawASTType()),
(unsigned)SILValueCategory::Address, options, ListOfValues);
break;
}
case SILInstructionKind::EnumInst: {
// Format: a type, an operand and a decl ID. Use SILTwoOperandsLayout: type,
// (DeclID + hasOperand), and an operand.
const EnumInst *UI = cast<EnumInst>(&SI);
TypeID OperandTy = UI->hasOperand() ?
S.addTypeRef(UI->getOperand()->getType().getRawASTType()) : TypeID();
unsigned OperandTyCategory = UI->hasOperand() ?
(unsigned)UI->getOperand()->getType().getCategory() : 0;
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code], (unsigned)SI.getKind(),
UI->hasOperand(),
S.addTypeRef(UI->getType().getRawASTType()),
(unsigned)UI->getType().getCategory(),
S.addDeclRef(UI->getElement()),
OperandTy, OperandTyCategory,
UI->hasOperand() ? addValueRef(UI->getOperand()) : ValueID());
break;
}
case SILInstructionKind::WitnessMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC), and a type.
const WitnessMethodInst *WMI = cast<WitnessMethodInst>(&SI);
CanType Ty = WMI->getLookupType();
SILType Ty2 = WMI->getType();
SmallVector<uint64_t, 8> ListOfValues;
handleSILDeclRef(S, WMI->getMember(), ListOfValues);
// Add an optional operand.
TypeID OperandTy = TypeID();
unsigned OperandTyCategory = 0;
SILValue OptionalOpenedExistential = SILValue();
auto OperandValueId = addValueRef(OptionalOpenedExistential);
auto ConformanceId = S.addConformanceRef(WMI->getConformance());
SILInstWitnessMethodLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstWitnessMethodLayout::Code],
S.addTypeRef(Ty), 0, 0,
S.addTypeRef(Ty2.getRawASTType()), (unsigned)Ty2.getCategory(),
OperandTy, OperandTyCategory, OperandValueId, ConformanceId,
ListOfValues);
break;
}
case SILInstructionKind::ClassMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel),
// and an operand.
const ClassMethodInst *CMI = cast<ClassMethodInst>(&SI);
SILType Ty = CMI->getType();
SmallVector<uint64_t, 9> ListOfValues;
handleMethodInst(CMI, CMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(Ty.getRawASTType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case SILInstructionKind::SuperMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel),
// and an operand.
const SuperMethodInst *SMI = cast<SuperMethodInst>(&SI);
SILType Ty = SMI->getType();
SmallVector<uint64_t, 9> ListOfValues;
handleMethodInst(SMI, SMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(Ty.getRawASTType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case SILInstructionKind::ObjCMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel),
// and an operand.
const ObjCMethodInst *OMI = cast<ObjCMethodInst>(&SI);
SILType Ty = OMI->getType();
SmallVector<uint64_t, 9> ListOfValues;
handleMethodInst(OMI, OMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(Ty.getRawASTType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case SILInstructionKind::ObjCSuperMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel),
// and an operand.
const ObjCSuperMethodInst *SMI = cast<ObjCSuperMethodInst>(&SI);
SILType Ty = SMI->getType();
SmallVector<uint64_t, 9> ListOfValues;
handleMethodInst(SMI, SMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(Ty.getRawASTType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case SILInstructionKind::DynamicMethodBranchInst: {
// Format: a typed value, a SILDeclRef, a BasicBlock ID for method,
// a BasicBlock ID for no method. Use SILOneTypeValuesLayout.
const DynamicMethodBranchInst *DMB = cast<DynamicMethodBranchInst>(&SI);
SmallVector<uint64_t, 8> ListOfValues;
ListOfValues.push_back(addValueRef(DMB->getOperand()));
handleSILDeclRef(S, DMB->getMember(), ListOfValues);
ListOfValues.push_back(BasicBlockMap[DMB->getHasMethodBB()]);
ListOfValues.push_back(BasicBlockMap[DMB->getNoMethodBB()]);
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(DMB->getOperand()->getType().getRawASTType()),
(unsigned)DMB->getOperand()->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::CheckedCastBranchInst: {
const CheckedCastBranchInst *CBI = cast<CheckedCastBranchInst>(&SI);
unsigned flags = 0;
if (CBI->isExact())
flags |= 0x01;
flags |= (CBI->getCheckedCastOptions().getStorage() << 1);
ValueID listOfValues[] = {
flags,
S.addTypeRef(CBI->getSourceFormalType()),
addValueRef(CBI->getOperand()),
S.addTypeRef(CBI->getSourceLoweredType().getRawASTType()),
(unsigned)CBI->getSourceLoweredType().getCategory(),
S.addTypeRef(CBI->getTargetFormalType()),
BasicBlockMap[CBI->getSuccessBB()],
BasicBlockMap[CBI->getFailureBB()]
};
unsigned ownershipField =
encodeValueOwnership(CBI->getForwardingOwnershipKind());
SILOneTypeOwnershipValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeOwnershipValuesLayout::Code],
(unsigned)SI.getKind(), ownershipField,
S.addTypeRef(CBI->getTargetLoweredType().getRawASTType()),
(unsigned)CBI->getTargetLoweredType().getCategory(),
llvm::ArrayRef(listOfValues));
break;
}
case SILInstructionKind::CheckedCastAddrBranchInst: {
auto CBI = cast<CheckedCastAddrBranchInst>(&SI);
unsigned flags =
toStableCastConsumptionKind(CBI->getConsumptionKind()) << 8;
flags |= CBI->getCheckedCastOptions().getStorage();
ValueID listOfValues[] = {
flags,
S.addTypeRef(CBI->getSourceFormalType()),
addValueRef(CBI->getSrc()),
S.addTypeRef(CBI->getSourceLoweredType().getRawASTType()),
(unsigned)CBI->getSourceLoweredType().getCategory(),
S.addTypeRef(CBI->getTargetFormalType()),
addValueRef(CBI->getDest()),
BasicBlockMap[CBI->getSuccessBB()],
BasicBlockMap[CBI->getFailureBB()]
};
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(CBI->getTargetLoweredType().getRawASTType()),
(unsigned)CBI->getTargetLoweredType().getCategory(),
llvm::ArrayRef(listOfValues));
break;
}
case SILInstructionKind::InitBlockStorageHeaderInst: {
auto IBSHI = cast<InitBlockStorageHeaderInst>(&SI);
SmallVector<ValueID, 6> ListOfValues;
ListOfValues.push_back(addValueRef(IBSHI->getBlockStorage()));
ListOfValues.push_back(
S.addTypeRef(IBSHI->getBlockStorage()->getType().getRawASTType()));
// Always an address, don't need to save category
ListOfValues.push_back(addValueRef(IBSHI->getInvokeFunction()));
ListOfValues.push_back(
S.addTypeRef(IBSHI->getInvokeFunction()->getType().getRawASTType()));
// Always a value, don't need to save category
ListOfValues.push_back(S.addSubstitutionMapRef(IBSHI->getSubstitutions()));
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(IBSHI->getType().getRawASTType()),
(unsigned)IBSHI->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::KeyPathInst: {
auto KPI = cast<KeyPathInst>(&SI);
SmallVector<uint64_t, 6> ListOfValues;
auto pattern = KPI->getPattern();
ListOfValues.push_back(S.addTypeRef(pattern->getRootType()));
ListOfValues.push_back(S.addTypeRef(pattern->getValueType()));
ListOfValues.push_back(pattern->getComponents().size());
ListOfValues.push_back(pattern->getNumOperands());
ListOfValues.push_back(S.addSubstitutionMapRef(KPI->getSubstitutions()));
ListOfValues.push_back(S.addUniquedStringRef(pattern->getObjCString()));
if (auto sig = pattern->getGenericSignature()) {
assert(sig.getGenericParams().size() > 0);
ListOfValues.push_back(sig.getGenericParams().size());
for (auto param : sig.getGenericParams())
ListOfValues.push_back(S.addTypeRef(param));
auto reqts = sig.getRequirements();
S.serializeGenericRequirements(reqts, ListOfValues);
} else {
ListOfValues.push_back(0);
}
for (auto &component : pattern->getComponents()) {
writeKeyPathPatternComponent(component, ListOfValues);
}
for (auto &operand : KPI->getPatternOperands()) {
auto value = operand.get();
ListOfValues.push_back(addValueRef(value));
ListOfValues.push_back(S.addTypeRef(value->getType().getRawASTType()));
ListOfValues.push_back((unsigned)value->getType().getCategory());
}
SILOneTypeValuesLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), S.addTypeRef(KPI->getType().getRawASTType()),
(unsigned)KPI->getType().getCategory(), ListOfValues);
break;
}
case SILInstructionKind::DifferentiableFunctionInst: {
auto *dfi = cast<DifferentiableFunctionInst>(&SI);
SmallVector<ValueID, 4> trailingInfo;
auto *paramIndices = dfi->getParameterIndices();
for (unsigned i : paramIndices->getIndices())
trailingInfo.push_back(i);
auto *resultIndices = dfi->getResultIndices();
for (unsigned i : resultIndices->getIndices())
trailingInfo.push_back(i);
for (auto &op : dfi->getAllOperands()) {
auto val = op.get();
trailingInfo.push_back(S.addTypeRef(val->getType().getRawASTType()));
trailingInfo.push_back((unsigned)val->getType().getCategory());
trailingInfo.push_back(addValueRef(val));
}
SILInstDifferentiableFunctionLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[SILInstDifferentiableFunctionLayout::Code],
paramIndices->getCapacity(), resultIndices->getCapacity(),
paramIndices->getNumIndices(), dfi->hasDerivativeFunctions(),
trailingInfo);
break;
}
case SILInstructionKind::LinearFunctionInst: {
auto *lfi = cast<LinearFunctionInst>(&SI);
SmallVector<ValueID, 4> trailingInfo;
auto *paramIndices = lfi->getParameterIndices();
for (unsigned idx : paramIndices->getIndices())
trailingInfo.push_back(idx);
for (auto &op : lfi->getAllOperands()) {
auto val = op.get();
trailingInfo.push_back(S.addTypeRef(val->getType().getRawASTType()));
trailingInfo.push_back((unsigned)val->getType().getCategory());
trailingInfo.push_back(addValueRef(val));
}
SILInstLinearFunctionLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstLinearFunctionLayout::Code],
paramIndices->getCapacity(), lfi->hasTransposeFunction(),
trailingInfo);
break;
}
case SILInstructionKind::DifferentiableFunctionExtractInst: {
auto *dfei = cast<DifferentiableFunctionExtractInst>(&SI);
auto operandRef = addValueRef(dfei->getOperand());
auto operandType = dfei->getOperand()->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto rawExtractee = (unsigned)dfei->getExtractee();
auto extracteeTypeRef = S.addTypeRef(dfei->getType().getRawASTType());
SILInstDifferentiableFunctionExtractLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[SILInstDifferentiableFunctionExtractLayout::Code],
operandTypeRef, (unsigned)operandType.getCategory(), operandRef,
rawExtractee, (unsigned)dfei->hasExplicitExtracteeType(),
extracteeTypeRef);
break;
}
case SILInstructionKind::LinearFunctionExtractInst: {
auto *lfei = cast<LinearFunctionExtractInst>(&SI);
auto operandRef = addValueRef(lfei->getOperand());
auto operandType = lfei->getOperand()->getType();
auto operandTypeRef = S.addTypeRef(operandType.getRawASTType());
auto rawExtractee = (unsigned)lfei->getExtractee();
SILInstLinearFunctionExtractLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstLinearFunctionExtractLayout::Code],
operandTypeRef, (unsigned)operandType.getCategory(), operandRef,
rawExtractee);
break;
}
case SILInstructionKind::DifferentiabilityWitnessFunctionInst: {
auto *dwfi = cast<DifferentiabilityWitnessFunctionInst>(&SI);
auto *witness = dwfi->getWitness();
DifferentiabilityWitnessesToEmit.insert(witness);
Mangle::ASTMangler mangler(witness->getOriginalFunction()->getASTContext());
auto mangledKey = mangler.mangleSILDifferentiabilityWitness(
witness->getOriginalFunction()->getName(), witness->getKind(),
witness->getConfig());
auto rawWitnessKind = (unsigned)dwfi->getWitnessKind();
// We only store the type when the instruction has an explicit type.
bool hasExplicitFnTy = dwfi->getHasExplicitFunctionType();
SILOneOperandLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILOneOperandLayout::Code],
(unsigned)dwfi->getKind(), rawWitnessKind,
hasExplicitFnTy ? S.addTypeRef(dwfi->getType().getRawASTType()) : TypeID(),
hasExplicitFnTy ? (unsigned)dwfi->getType().getCategory() : 0,
S.addUniquedStringRef(mangledKey));
break;
}
case SILInstructionKind::HasSymbolInst: {
auto *hsi = cast<HasSymbolInst>(&SI);
auto *decl = hsi->getDecl();
// Although the instruction doesn't have them as members, we need to
// ensure that any SILFunctions that are technically referenced by the
// instruction get serialized.
SmallVector<SILFunction *, 4> fns;
hsi->getReferencedFunctions(fns);
SmallVector<IdentifierID, 4> functionRefs;
for (auto fn : fns) {
functionRefs.push_back(addSILFunctionRef(fn));
}
SILInstHasSymbolLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILInstHasSymbolLayout::Code],
S.addDeclRef(decl), functionRefs);
break;
}
case SILInstructionKind::TypeValueInst: {
auto *tvi = cast<TypeValueInst>(&SI);
auto valueTy = tvi->getType();
SILTypeValueLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTypeValueLayout::Code],
S.addTypeRef(valueTy.getRawASTType()),
(unsigned)valueTy.getCategory(),
S.addTypeRef(tvi->getParamType()));
break;
}
}
// Non-void values get registered in the value table.
for (auto result : SI.getResults()) {
addValueRef(result);
++InstID;
}
}
/// Depending on the RecordKind, we write the SILFunction table, the global
/// variable table, the table for SILVTable, or the table for SILWitnessTable.
static void writeIndexTable(Serializer &S,
const sil_index_block::ListLayout &List,
sil_index_block::RecordKind kind,
const SILSerializer::Table &table) {
assert((kind == sil_index_block::SIL_FUNC_NAMES ||
kind == sil_index_block::SIL_VTABLE_NAMES ||
kind == sil_index_block::SIL_MOVEONLYDEINIT_NAMES ||
kind == sil_index_block::SIL_GLOBALVAR_NAMES ||
kind == sil_index_block::SIL_WITNESS_TABLE_NAMES ||
kind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES ||
kind == sil_index_block::SIL_DEFAULT_OVERRIDE_TABLE_NAMES ||
kind == sil_index_block::SIL_DIFFERENTIABILITY_WITNESS_NAMES) &&
"SIL function table, global, vtable, (default) witness table, default "
"override table and differentiability witness table are supported");
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<FuncTableInfo> generator;
FuncTableInfo tableInfo(S);
for (auto &entry : table)
generator.insert(entry.first, entry.second, tableInfo);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0.
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream, tableInfo);
}
SmallVector<uint64_t, 8> scratch;
List.emit(scratch, kind, tableOffset, hashTableBlob);
}
static void writeStringTable(Serializer &S,
const sil_index_block::ListLayout &List,
sil_index_block::RecordKind kind,
const SILSerializer::StringMapTable &table) {
assert((kind == sil_index_block::SIL_ASM_NAMES) &&
"Only SIL asm names table is supported");
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<StringTableInfo> generator;
StringTableInfo tableInfo;
for (auto &entry : table)
generator.insert(entry.first, entry.second, tableInfo);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0.
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream, tableInfo);
}
SmallVector<uint64_t, 8> scratch;
List.emit(scratch, kind, tableOffset, hashTableBlob);
}
void SILSerializer::writeIndexTables() {
BCBlockRAII restoreBlock(Out, SIL_INDEX_BLOCK_ID, 5);
sil_index_block::ListLayout List(Out);
sil_index_block::OffsetLayout Offset(Out);
if (!FuncTable.empty()) {
writeIndexTable(S, List, sil_index_block::SIL_FUNC_NAMES, FuncTable);
Offset.emit(ScratchRecord, sil_index_block::SIL_FUNC_OFFSETS, Funcs);
}
if (!VTableList.empty()) {
writeIndexTable(S, List, sil_index_block::SIL_VTABLE_NAMES, VTableList);
Offset.emit(ScratchRecord, sil_index_block::SIL_VTABLE_OFFSETS,
VTableOffset);
}
if (!MoveOnlyDeinitList.empty()) {
writeIndexTable(S, List, sil_index_block::SIL_MOVEONLYDEINIT_NAMES,
MoveOnlyDeinitList);
Offset.emit(ScratchRecord, sil_index_block::SIL_MOVEONLYDEINIT_OFFSETS,
MoveOnlyDeinitOffset);
}
if (!GlobalVarList.empty()) {
writeIndexTable(S, List, sil_index_block::SIL_GLOBALVAR_NAMES,
GlobalVarList);
Offset.emit(ScratchRecord, sil_index_block::SIL_GLOBALVAR_OFFSETS,
GlobalVarOffset);
}
if (!WitnessTableList.empty()) {
writeIndexTable(S, List, sil_index_block::SIL_WITNESS_TABLE_NAMES,
WitnessTableList);
Offset.emit(ScratchRecord, sil_index_block::SIL_WITNESS_TABLE_OFFSETS,
WitnessTableOffset);
}
if (!DefaultWitnessTableList.empty()) {
writeIndexTable(S, List, sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES,
DefaultWitnessTableList);
Offset.emit(ScratchRecord,
sil_index_block::SIL_DEFAULT_WITNESS_TABLE_OFFSETS,
DefaultWitnessTableOffset);
}
if (!DefaultOverrideTableList.empty()) {
writeIndexTable(S, List, sil_index_block::SIL_DEFAULT_OVERRIDE_TABLE_NAMES,
DefaultOverrideTableList);
Offset.emit(ScratchRecord,
sil_index_block::SIL_DEFAULT_OVERRIDE_TABLE_OFFSETS,
DefaultOverrideTableOffset);
}
if (!PropertyOffset.empty()) {
Offset.emit(ScratchRecord, sil_index_block::SIL_PROPERTY_OFFSETS,
PropertyOffset);
}
if (!DifferentiabilityWitnessList.empty()) {
writeIndexTable(S, List,
sil_index_block::SIL_DIFFERENTIABILITY_WITNESS_NAMES,
DifferentiabilityWitnessList);
Offset.emit(ScratchRecord,
sil_index_block::SIL_DIFFERENTIABILITY_WITNESS_OFFSETS,
DifferentiabilityWitnessOffset);
}
if (!AsmNameTable.empty()) {
writeStringTable(S, List, sil_index_block::SIL_ASM_NAMES, AsmNameTable);
}
}
void SILSerializer::writeSILGlobalVar(const SILGlobalVariable &g) {
GlobalVarList[g.getName()] = NextGlobalVarID++;
GlobalVarOffset.push_back(Out.GetCurrentBitNo());
TypeID TyID = S.addTypeRef(g.getLoweredType().getRawASTType());
DeclID dID = S.addDeclRef(g.getDecl());
ModuleID parentModuleID;
if (auto *parentModule = g.getParentModule())
parentModuleID = S.addModuleRef(parentModule);
unsigned numTrailingRecords = 0;
// Each extra string emitted below needs to update the trailing record
// count here.
if (!g.asmName().empty()) {
++numTrailingRecords;
// Record asmname mapping.
if (g.asmName() != g.getName()) {
AsmNameTable[g.asmName()] = g.getName();
}
}
if (!g.section().empty())
++numTrailingRecords;
SILGlobalVarLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILGlobalVarLayout::Code],
toStableSILLinkage(g.getLinkage()),
(unsigned)g.getSerializedKind(),
(unsigned)!g.isDefinition(),
(unsigned)g.isLet(),
(unsigned)g.markedAsUsed(),
numTrailingRecords,
TyID, dID, parentModuleID);
writeExtraStringIfNonEmpty(ExtraStringFlavor::AsmName, g.asmName());
writeExtraStringIfNonEmpty(ExtraStringFlavor::Section, g.section());
// Don't emit the initializer instructions if not marked as "serialized".
if (!g.isAnySerialized())
return;
ValueIDs.clear();
InstID = 0;
unsigned ValueID = 2;
for (const SILInstruction &initInst : g) {
for (auto result : initInst.getResults()) {
ValueIDs[result] = ValueID++;
}
}
for (const SILInstruction &initInst : g) {
writeSILInstruction(initInst);
}
}
void SILSerializer::writeSILVTable(const SILVTable &vt) {
// Do not emit vtables for non-public classes unless everything has to be
// serialized.
if (!Options.SerializeAllSIL &&
vt.getClass()->getEffectiveAccess() < swift::AccessLevel::Package)
return;
if (vt.isSpecialized())
return;
// Use the mangled name of the class as a key to distinguish between classes
// which have the same name (but are in different contexts).
Mangle::ASTMangler mangler(vt.getClass()->getASTContext());
std::string mangledClassName = mangler.mangleNominalType(vt.getClass());
size_t nameLength = mangledClassName.size();
char *stringStorage = (char *)StringTable.Allocate(nameLength, 1);
std::memcpy(stringStorage, mangledClassName.data(), nameLength);
VTableList[StringRef(stringStorage, nameLength)] = NextVTableID++;
VTableOffset.push_back(Out.GetCurrentBitNo());
VTableLayout::emitRecord(Out, ScratchRecord, SILAbbrCodes[VTableLayout::Code],
S.addDeclRef(vt.getClass()),
(unsigned)vt.getSerializedKind());
for (auto &entry : vt.getEntries()) {
SmallVector<uint64_t, 4> ListOfValues;
SILFunction *impl = entry.getImplementation();
if (Options.SerializeAllSIL ||
(vt.isAnySerialized() &&
impl->hasValidLinkageForFragileRef(vt.getSerializedKind()))) {
handleSILDeclRef(S, entry.getMethod(), ListOfValues);
addReferencedSILFunction(impl, true);
// Each entry is a pair of SILDeclRef and SILFunction.
VTableEntryLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[VTableEntryLayout::Code],
// SILFunction name
S.addUniquedStringRef(impl->getName()),
toStableVTableEntryKind(entry.getKind()),
entry.isNonOverridden(),
ListOfValues);
}
}
}
void SILSerializer::writeSILMoveOnlyDeinit(const SILMoveOnlyDeinit &deinit) {
// Do not emit deinit for non-public nominal types unless everything has to be
// serialized.
if (!Options.SerializeAllSIL && deinit.getNominalDecl()->getEffectiveAccess() <
swift::AccessLevel::Package)
return;
SILFunction *impl = deinit.getImplementation();
if (!Options.SerializeAllSIL &&
// Package CMO for MoveOnlyDeinit is not supported so
// pass the IsSerialized argument to keep the behavior
// consistent with or without the optimization.
!impl->hasValidLinkageForFragileRef(IsSerialized))
return;
// Use the mangled name of the class as a key to distinguish between classes
// which have the same name (but are in different contexts).
Mangle::ASTMangler mangler(deinit.getNominalDecl()->getASTContext());
std::string mangledNominalName =
mangler.mangleNominalType(deinit.getNominalDecl());
size_t nameLength = mangledNominalName.size();
char *stringStorage = (char *)StringTable.Allocate(nameLength, 1);
std::memcpy(stringStorage, mangledNominalName.data(), nameLength);
MoveOnlyDeinitList[StringRef(stringStorage, nameLength)] =
NextMoveOnlyDeinitOffsetID++;
MoveOnlyDeinitOffset.push_back(Out.GetCurrentBitNo());
addReferencedSILFunction(impl, true);
MoveOnlyDeinitLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[MoveOnlyDeinitLayout::Code],
S.addDeclRef(deinit.getNominalDecl()),
S.addUniquedStringRef(impl->getName()),
deinit.getSerializedKind());
}
void SILSerializer::writeSILProperty(const SILProperty &prop) {
PropertyOffset.push_back(Out.GetCurrentBitNo());
SmallVector<uint64_t, 4> componentValues;
if (auto component = prop.getComponent()) {
writeKeyPathPatternComponent(*component, componentValues);
} else {
componentValues.push_back((unsigned)KeyPathComponentKindEncoding::Trivial);
}
PropertyLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[PropertyLayout::Code],
S.addDeclRef(prop.getDecl()),
prop.getSerializedKind(),
componentValues);
}
void SILSerializer::writeSourceLoc(SILLocation Loc, const SourceManager &SM) {
auto SLoc = Loc.getSourceLoc();
auto OpaquePtr = SLoc.getOpaquePointerValue();
uint8_t LocationKind;
switch(Loc.getKind()) {
case SILLocation::ReturnKind:
LocationKind = SILLocation::ReturnKind;
break;
case SILLocation::ImplicitReturnKind:
LocationKind = SILLocation::ImplicitReturnKind;
break;
case SILLocation::InlinedKind:
case SILLocation::MandatoryInlinedKind:
case SILLocation::CleanupKind:
case SILLocation::ArtificialUnreachableKind:
case SILLocation::RegularKind:
LocationKind = SILLocation::RegularKind;
break;
}
if (SourceLocMap.find(OpaquePtr) != SourceLocMap.end()) {
SourceLocRefLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SourceLocRefLayout::Code],
SourceLocMap[OpaquePtr], LocationKind, (unsigned)Loc.isImplicit());
return;
}
ValueID Row = 0;
ValueID Column = 0;
ValueID FNameID = 0;
if (!SLoc.isValid()) {
//emit empty source loc
SourceLocRefLayout::emitRecord(Out, ScratchRecord, SILAbbrCodes[SourceLocRefLayout::Code], 0, 0, (unsigned)0);
return;
}
std::tie(Row, Column) = SM.getPresumedLineAndColumnForLoc(SLoc);
FNameID = S.addUniquedStringRef(SM.getDisplayNameForLoc(SLoc));
SourceLocMap.insert({OpaquePtr, SourceLocMap.size() + 1});
SourceLocLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SourceLocLayout::Code], Row, Column,
FNameID, LocationKind, (unsigned)Loc.isImplicit());
}
void SILSerializer::writeExtraStringIfNonEmpty(
ExtraStringFlavor flavor, StringRef string) {
if (string.empty())
return;
SILExtraStringLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILExtraStringLayout::Code],
static_cast<uint8_t>(flavor), string);
}
void SILSerializer::writeDebugScopes(const SILDebugScope *Scope,
const SourceManager &SM) {
if (DebugScopeMap.find(Scope) != DebugScopeMap.end()) {
// We won't be in a recursive call here.
SILDebugScopeRefLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILDebugScopeRefLayout::Code],
DebugScopeMap[Scope]);
return;
}
ValueID ParentID = 0, InlinedID = 0;
TypeID ParentType = 0;
SILValueCategory ParentCat = (SILValueCategory)0;
unsigned isFuncParent = 0;
assert(!Scope->Parent.isNull());
if (!Scope->Parent)
return;
// A debug scope's parent can either be a function or a debug scope.
// Handle both cases appropriately.
if (isa<const SILDebugScope *>(Scope->Parent)) {
auto Parent = cast<const SILDebugScope *>(Scope->Parent);
if (DebugScopeMap.find(Parent) == DebugScopeMap.end())
writeDebugScopes(Parent, SM);
ParentID = DebugScopeMap[Parent];
} else {
const SILFunction *ParentFn = cast<SILFunction *>(Scope->Parent);
assert(ParentFn);
isFuncParent = true;
FuncsToEmitDebug.insert(ParentFn);
ParentID = S.addUniquedStringRef(ParentFn->getName());
}
assert(ParentID != 0);
if (auto Inlined = Scope->InlinedCallSite) {
if (DebugScopeMap.find(Inlined) == DebugScopeMap.end())
writeDebugScopes(Inlined, SM);
InlinedID = DebugScopeMap[Inlined];
}
SourceLoc SLoc = Scope->getLoc().getSourceLoc();
ValueID Row = 0;
ValueID Column = 0;
ValueID FNameID = 0;
// TODO: we can emit SourceLocRef here
if (SLoc.isValid()) {
std::tie(Row, Column) = SM.getPresumedLineAndColumnForLoc(SLoc);
FNameID = S.addUniquedStringRef(SM.getDisplayNameForLoc(SLoc));
} else if (Scope->Loc.isFilenameAndLocation()) {
// getSourceLoc produces an empty SourceLoc for FilenameAndLocation, so
// this needs to be handled separately. rdar://25225083.
auto FNameLoc = Scope->Loc.getFilenameAndLocation();
Row = FNameLoc->line;
Column = FNameLoc->column;
FNameID = S.addUniquedStringRef(FNameLoc->filename);
}
DebugScopeMap.insert({Scope, DebugScopeMap.size() + 1});
SILDebugScopeLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[SILDebugScopeLayout::Code], isFuncParent,
ParentID, InlinedID, Row, Column, FNameID, ParentType,
(unsigned)ParentCat);
}
void SILSerializer::writeSILWitnessTable(const SILWitnessTable &wt) {
if (Options.SkipImplementationOnlyDecls &&
wt.getConformingNominal()->getAttrs().hasAttribute<
ImplementationOnlyAttr>()) {
return;
}
WitnessTableList[wt.getName()] = NextWitnessTableID++;
WitnessTableOffset.push_back(Out.GetCurrentBitNo());
auto conformanceID = S.addConformanceRef(wt.getConformance());
WitnessTableLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[WitnessTableLayout::Code],
toStableSILLinkage(wt.getLinkage()),
unsigned(wt.isDeclaration()),
unsigned(wt.isSpecialized()),
unsigned(wt.getSerializedKind()),
conformanceID);
// If we have a declaration, do not attempt to serialize entries.
if (wt.isDeclaration())
return;
for (auto &entry : wt.getEntries()) {
writeSILWitnessTableEntry(entry, wt.getSerializedKind());
}
for (auto conditional : wt.getConditionalConformances()) {
auto conformanceID = S.addConformanceRef(conditional);
WitnessConditionalConformanceLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[WitnessConditionalConformanceLayout::Code],
conformanceID);
}
}
void SILSerializer::writeSILWitnessTableEntry(
const SILWitnessTable::Entry &entry,
SerializedKind_t serializedKind) {
if (entry.getKind() == SILWitnessTable::BaseProtocol) {
auto &baseWitness = entry.getBaseProtocolWitness();
auto requirementID = S.addDeclRef(baseWitness.Requirement);
auto conformanceID = S.addConformanceRef(baseWitness.Witness);
WitnessBaseEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessBaseEntryLayout::Code],
requirementID, conformanceID);
return;
}
if (entry.getKind() == SILWitnessTable::AssociatedConformance) {
auto &assoc = entry.getAssociatedConformanceWitness();
auto requirementID = S.addTypeRef(assoc.Requirement);
auto conformanceID = S.addConformanceRef(assoc.Witness);
WitnessAssocProtocolLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[WitnessAssocProtocolLayout::Code],
requirementID, conformanceID);
return;
}
if (entry.getKind() == SILWitnessTable::AssociatedType) {
auto &assoc = entry.getAssociatedTypeWitness();
WitnessAssocEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessAssocEntryLayout::Code],
S.addDeclRef(assoc.Requirement),
S.addTypeRef(assoc.Witness));
return;
}
auto &methodWitness = entry.getMethodWitness();
SmallVector<uint64_t, 4> ListOfValues;
handleSILDeclRef(S, methodWitness.Requirement, ListOfValues);
IdentifierID witnessID = 0;
SILFunction *witness = methodWitness.Witness;
if (witness &&
serializedKind != IsNotSerialized &&
witness->hasValidLinkageForFragileRef(serializedKind)) {
addReferencedSILFunction(witness, true);
witnessID = S.addUniquedStringRef(witness->getName());
}
WitnessMethodEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessMethodEntryLayout::Code],
// SILFunction name
witnessID,
ListOfValues);
}
void SILSerializer::
writeSILDefaultWitnessTable(const SILDefaultWitnessTable &wt) {
if (wt.isDeclaration())
return;
StringRef name = S.addUniquedString(wt.getUniqueName()).first;
DefaultWitnessTableList[name] = NextDefaultWitnessTableID++;
DefaultWitnessTableOffset.push_back(Out.GetCurrentBitNo());
DefaultWitnessTableLayout::emitRecord(
Out, ScratchRecord,
SILAbbrCodes[DefaultWitnessTableLayout::Code],
S.addDeclRef(wt.getProtocol()),
toStableSILLinkage(wt.getLinkage()));
for (auto &entry : wt.getEntries()) {
if (!entry.isValid()) {
DefaultWitnessTableNoEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[DefaultWitnessTableNoEntryLayout::Code]);
continue;
}
// Default witness table is not serialized. The IsSerialized
// argument is passed here to call hasValidLinkageForFragileRef
// to keep the behavior consistent with or without any optimizations.
writeSILWitnessTableEntry(entry, IsSerialized);
}
}
void SILSerializer::writeSILDefaultOverrideTableEntry(
const SILDefaultOverrideTable::Entry &entry,
SerializedKind_t serializedKind) {
SmallVector<uint64_t, 8> ListOfValues;
handleSILDeclRef(S, entry.method, ListOfValues);
handleSILDeclRef(S, entry.original, ListOfValues);
IdentifierID implID = 0;
SILFunction *impl = entry.impl;
if (impl && serializedKind != IsNotSerialized &&
impl->hasValidLinkageForFragileRef(serializedKind)) {
addReferencedSILFunction(impl, true);
implID = S.addUniquedStringRef(impl->getName());
}
DefaultOverrideTableEntryLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[DefaultOverrideTableEntryLayout::Code],
// SILFunction name
implID, ListOfValues);
}
void SILSerializer::writeSILDefaultOverrideTable(
const SILDefaultOverrideTable &ot) {
if (ot.isDeclaration())
return;
StringRef name = S.addUniquedString(ot.getUniqueName()).first;
DefaultOverrideTableList[name] = NextDefaultOverrideTableID++;
DefaultOverrideTableOffset.push_back(Out.GetCurrentBitNo());
DefaultOverrideTableLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[DefaultOverrideTableLayout::Code],
S.addDeclRef(ot.getClass()), toStableSILLinkage(ot.getLinkage()));
for (auto &entry : ot.getEntries()) {
// Default override table is not serialized. The IsSerialized
// argument is passed here to call hasValidLinkageForFragileRef
// to keep the behavior consistent with or without any optimizations.
writeSILDefaultOverrideTableEntry(entry, IsSerialized);
}
}
void SILSerializer::writeSILDifferentiabilityWitness(
const SILDifferentiabilityWitness &dw) {
Mangle::ASTMangler mangler(dw.getOriginalFunction()->getASTContext());
auto mangledKey = mangler.mangleSILDifferentiabilityWitness(
dw.getOriginalFunction()->getName(), dw.getKind(), dw.getConfig());
size_t nameLength = mangledKey.size();
char *stringStorage =
static_cast<char *>(StringTable.Allocate(nameLength, 1));
std::memcpy(stringStorage, mangledKey.data(), nameLength);
DifferentiabilityWitnessList[StringRef(stringStorage, nameLength)] =
NextDifferentiabilityWitnessID++;
DifferentiabilityWitnessOffset.push_back(Out.GetCurrentBitNo());
auto *original = dw.getOriginalFunction();
IdentifierID jvpID = 0;
IdentifierID vjpID = 0;
if (auto *jvp = dw.getJVP())
jvpID = addSILFunctionRef(jvp);
if (auto *vjp = dw.getVJP())
vjpID = addSILFunctionRef(vjp);
SmallVector<unsigned, 8> parameterAndResultIndices(
dw.getParameterIndices()->begin(), dw.getParameterIndices()->end());
parameterAndResultIndices.append(dw.getResultIndices()->begin(),
dw.getResultIndices()->end());
auto originalFnType = original->getLoweredFunctionType();
assert(originalFnType->getNumParameters() ==
dw.getParameterIndices()->getCapacity() &&
"Original function parameter count should match differentiability "
"witness parameter indices capacity");
unsigned numInoutParameters = llvm::count_if(
originalFnType->getParameters(), [](SILParameterInfo paramInfo) {
return paramInfo.isIndirectMutating();
});
assert(originalFnType->getNumResults() + numInoutParameters ==
dw.getResultIndices()->getCapacity() &&
"Original function result count should match differentiability "
"witness result indices capacity");
DifferentiabilityWitnessLayout::emitRecord(
Out, ScratchRecord, SILAbbrCodes[DifferentiabilityWitnessLayout::Code],
addSILFunctionRef(original), toStableSILLinkage(dw.getLinkage()),
dw.isDeclaration(), dw.isSerialized(),
toStableDifferentiabilityKind(dw.getKind()),
S.addGenericSignatureRef(dw.getDerivativeGenericSignature()), jvpID,
vjpID, dw.getParameterIndices()->getNumIndices(),
dw.getResultIndices()->getNumIndices(), parameterAndResultIndices);
}
/// Helper function for whether to emit a function body.
bool SILSerializer::shouldEmitFunctionBody(const SILFunction *F,
bool isReference) {
// If F is a declaration, it has no body to emit...
// The declaration will be serialized anyways if it is referenced anywhere.
if (F->isExternalDeclaration())
return false;
// Never serialize any function definitions available externally.
if (F->isAvailableExternally())
return false;
if (F->getDeclRef().hasDecl()) {
if (auto decl = F->getDeclRef().getDecl())
if (decl->isNeverEmittedIntoClient())
return false;
}
// If we are asked to serialize everything, go ahead and do it.
if (Options.SerializeAllSIL)
return true;
// If F is serialized, we should always emit its body.
// Shared functions are only serialized if they are referenced from another
// serialized function. This is handled in `addReferencedSILFunction`.
if (F->isAnySerialized() && !hasSharedVisibility(F->getLinkage()))
return true;
return false;
}
void SILSerializer::writeSILBlock(const SILModule *SILMod) {
BCBlockRAII subBlock(Out, SIL_BLOCK_ID, 6);
registerSILAbbr<SILFunctionLayout>();
registerSILAbbr<SILBasicBlockLayout>();
registerSILAbbr<SILOneValueOneOperandLayout>();
registerSILAbbr<SILOneTypeLayout>();
registerSILAbbr<SILOneOperandLayout>();
registerSILAbbr<SILOneOperandExtraAttributeLayout>();
registerSILAbbr<SILOneTypeOneOperandLayout>();
registerSILAbbr<SILOneTypeOneOperandExtraAttributeLayout>();
registerSILAbbr<SILInitExistentialLayout>();
registerSILAbbr<SILOneTypeValuesLayout>();
registerSILAbbr<SILOneTypeOwnershipValuesLayout>();
registerSILAbbr<SILOneTypeValuesCategoriesLayout>();
registerSILAbbr<SILValuesLayout>();
registerSILAbbr<SILTwoOperandsLayout>();
registerSILAbbr<SILTwoOperandsExtraAttributeLayout>();
registerSILAbbr<SILTailAddrLayout>();
registerSILAbbr<SILInstApplyLayout>();
registerSILAbbr<SILInstNoOperandLayout>();
registerSILAbbr<SILOneOperandLayout>();
registerSILAbbr<SILTwoOperandsLayout>();
registerSILAbbr<SILInstWitnessMethodLayout>();
registerSILAbbr<SILSpecializeAttrLayout>();
registerSILAbbr<SILArgEffectsAttrLayout>();
registerSILAbbr<SILInstDifferentiableFunctionLayout>();
registerSILAbbr<SILInstLinearFunctionLayout>();
registerSILAbbr<SILInstDifferentiableFunctionExtractLayout>();
registerSILAbbr<SILInstLinearFunctionExtractLayout>();
registerSILAbbr<SILInstIncrementProfilerCounterLayout>();
registerSILAbbr<SILInstHasSymbolLayout>();
registerSILAbbr<SILOpenPackElementLayout>();
registerSILAbbr<SILPackElementGetLayout>();
registerSILAbbr<SILPackElementSetLayout>();
registerSILAbbr<SILTypeValueLayout>();
registerSILAbbr<SILThunkLayout>();
registerSILAbbr<VTableLayout>();
registerSILAbbr<VTableEntryLayout>();
registerSILAbbr<MoveOnlyDeinitLayout>();
registerSILAbbr<SILGlobalVarLayout>();
registerSILAbbr<WitnessTableLayout>();
registerSILAbbr<WitnessMethodEntryLayout>();
registerSILAbbr<WitnessBaseEntryLayout>();
registerSILAbbr<WitnessAssocProtocolLayout>();
registerSILAbbr<WitnessAssocEntryLayout>();
registerSILAbbr<WitnessConditionalConformanceLayout>();
registerSILAbbr<DefaultWitnessTableLayout>();
registerSILAbbr<DefaultWitnessTableNoEntryLayout>();
registerSILAbbr<DefaultOverrideTableLayout>();
registerSILAbbr<DefaultOverrideTableEntryLayout>();
registerSILAbbr<PropertyLayout>();
registerSILAbbr<DifferentiabilityWitnessLayout>();
registerSILAbbr<SILDebugValueLayout>();
registerSILAbbr<SILDebugScopeLayout>();
registerSILAbbr<SILDebugScopeRefLayout>();
registerSILAbbr<SourceLocLayout>();
registerSILAbbr<SourceLocRefLayout>();
registerSILAbbr<DebugValueDelimiterLayout>();
registerSILAbbr<SILExtraStringLayout>();
// Write out VTables first because it may require serializations of
// non-transparent SILFunctions (body is not needed).
// Go through all SILVTables in SILMod and write them if we should
// serialize everything.
// FIXME: Resilience: could write out vtable for fragile classes.
for (const auto &vt : SILMod->getVTables()) {
if ((Options.SerializeAllSIL || vt->isAnySerialized()) &&
SILMod->shouldSerializeEntitiesAssociatedWithDeclContext(vt->getClass()))
writeSILVTable(*vt);
}
for (const auto &deinit : SILMod->getMoveOnlyDeinits()) {
if ((Options.SerializeAllSIL || deinit->isAnySerialized()) &&
SILMod->shouldSerializeEntitiesAssociatedWithDeclContext(
deinit->getNominalDecl()))
writeSILMoveOnlyDeinit(*deinit);
}
// Write out property descriptors.
for (const SILProperty &prop : SILMod->getPropertyList()) {
if ((Options.SerializeAllSIL || prop.isAnySerialized()) &&
SILMod->shouldSerializeEntitiesAssociatedWithDeclContext(
prop.getDecl()->getInnermostDeclContext()))
writeSILProperty(prop);
}
// Write out fragile WitnessTables.
for (const SILWitnessTable &wt : SILMod->getWitnessTables()) {
if ((Options.SerializeAllSIL || wt.isAnySerialized()) &&
SILMod->shouldSerializeEntitiesAssociatedWithDeclContext(
wt.getConformance()->getDeclContext()))
writeSILWitnessTable(wt);
}
// Write out DefaultWitnessTables.
for (const SILDefaultWitnessTable &wt : SILMod->getDefaultWitnessTables()) {
// FIXME: Don't need to serialize private and internal default witness
// tables.
if (SILMod->shouldSerializeEntitiesAssociatedWithDeclContext(
wt.getProtocol()))
writeSILDefaultWitnessTable(wt);
}
for (const SILDefaultOverrideTable &ot : SILMod->getDefaultOverrideTables()) {
if (!SILMod->shouldSerializeEntitiesAssociatedWithDeclContext(
ot.getClass()))
continue;
writeSILDefaultOverrideTable(ot);
}
// Add global variables that must be emitted to the list.
for (const SILGlobalVariable &g : SILMod->getSILGlobals()) {
if (g.isAnySerialized() || Options.SerializeAllSIL)
addReferencedGlobalVariable(&g);
}
// Emit only declarations if it is a module with pre-specializations.
// And only do it in optimized builds.
bool emitDeclarationsForOnoneSupport =
SILMod->isOptimizedOnoneSupportModule();
// Go through all the SILFunctions in SILMod and write out any
// mandatory function bodies.
for (const SILFunction &F : *SILMod) {
if (emitDeclarationsForOnoneSupport) {
// Only declarations of hardcoded pre-specializations with
// public linkage need to be serialized as they will be used
// by the UsePrespecializations pass during -Onone compilation to
// check for availability of concrete pre-specializations.
if (!hasPublicVisibility(F.getLinkage()) ||
!isKnownPrespecialization(F.getName()))
continue;
}
addMandatorySILFunction(&F, emitDeclarationsForOnoneSupport);
processWorklists();
}
// Write out differentiability witnesses.
// Note: this must be done after visiting SIL functions above so that
// differentiability witness references (`differentiability_witness_function`
// instructions) have been tracked.
for (const auto &diffWitness : SILMod->getDifferentiabilityWitnessList()) {
// TODO(TF-893): Consider checking
// `SILMod->shouldSerializeEntitiesAssociatedWithDeclContext` on the JVP/VJP
// functions.
if ((Options.SerializeAllSIL || diffWitness.isSerialized()))
DifferentiabilityWitnessesToEmit.insert(&diffWitness);
}
for (auto *diffWitness : DifferentiabilityWitnessesToEmit)
writeSILDifferentiabilityWitness(*diffWitness);
// Process SIL functions referenced by differentiability witnesses.
// Note: this is necessary despite processing `FuncsToEmit` below because
// `Worklist` is processed separately.
processWorklists();
// Now write function declarations for every function we've
// emitted a reference to without emitting a function body for.
auto resilience = SILMod->getSwiftModule()->getResilienceStrategy();
for (const SILFunction &F : *SILMod) {
auto iter = FuncsToEmit.find(&F);
if (iter != FuncsToEmit.end()) {
if (iter->second) {
assert((emitDeclarationsForOnoneSupport ||
!shouldEmitFunctionBody(&F)) &&
"Should have emitted function body earlier");
writeSILFunction(F, true);
}
} else if (F.getLinkage() == SILLinkage::Public &&
resilience != ResilienceStrategy::Resilient &&
F.hasArgumentEffects()) {
writeSILFunction(F, true);
}
}
for (auto Fn : FuncsToEmitDebug) {
if (FuncsToEmit.count(Fn) == 0) {
FuncsToEmit[Fn] = true; // emit decl only
functionWorklist.push_back(Fn);
}
}
OnlyReferencedByDebugInfo = true;
processWorklists();
OnlyReferencedByDebugInfo = false;
FuncsToEmitDebug.clear();
assert(functionWorklist.empty() && globalWorklist.empty() &&
"Did not emit everything in worklists");
}
void SILSerializer::writeSILModule(const SILModule *SILMod) {
writeSILBlock(SILMod);
writeIndexTables();
}
void Serializer::writeSIL(const SILModule *SILMod) {
if (!SILMod)
return;
SILSerializer SILSer(*this, Out, Options);
SILSer.writeSILModule(SILMod);
}