Files
swift-mirror/lib/SILPasses/LoopRotate.cpp
Michael Gottesman 93b92a8f9f Add in Passes.def for metaprogramming with SILPassKinds.
This simplifies some code in SILOpt and SILPasses. The real reason to do it is
to use it to procedurally generate random pipelines.

Swift SVN r23996
2014-12-17 23:56:26 +00:00

477 lines
16 KiB
C++

//===--------- LoopSimplify.cpp - Loop structure simplify -*- C++ -*-------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-looprotate"
#include "swift/SIL/Dominance.h"
#include "swift/SILAnalysis/Analysis.h"
#include "swift/SILAnalysis/DominanceAnalysis.h"
#include "swift/SILAnalysis/LoopAnalysis.h"
#include "swift/SILPasses/Passes.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/SILPasses/Utils/CFG.h"
#include "swift/SILPasses/Utils/SILSSAUpdater.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
static llvm::cl::opt<bool> ShouldRotate("sil-looprotate",
llvm::cl::init(true));
/// Splits the critical edges between from and to. This code assumes there is
/// only one edge between the two basic blocks.
static SILBasicBlock *splitIfCriticalEdge(SILBasicBlock *From,
SILBasicBlock *To,
DominanceInfo *DT,
SILLoopInfo *LI) {
auto *T = From->getTerminator();
for (unsigned i = 0, e = T->getSuccessors().size(); i != e; ++i) {
if (T->getSuccessors()[i] == To)
return splitCriticalEdge(T, i, DT, LI);
}
llvm_unreachable("Destination block not found");
}
static SILBasicBlock *getSingleOutsideLoopPredecessor(SILLoop *L,
SILBasicBlock *BB) {
SmallVector<SILBasicBlock *, 8> Preds;
for (auto *Pred : BB->getPreds())
if (!L->contains(Pred))
Preds.push_back(Pred);
if (Preds.size() != 1)
return nullptr;
return Preds[0];
}
/// Check whether all operands are loop invariant.
static bool hasLoopInvariantOperands(SILInstruction *I, SILLoop *L,
llvm::DenseSet<SILInstruction *> &Inv) {
auto Opds = I->getAllOperands();
return std::all_of(Opds.begin(), Opds.end(), [=](Operand &Op) {
auto *Def = Op.get().getDef();
// Operand is outside the loop or marked invariant.
if (auto *Inst = dyn_cast<SILInstruction>(Def))
return !L->contains(Inst->getParent()) || Inv.count(Inst);
if (auto *Arg = dyn_cast<SILArgument>(Def))
return !L->contains(Arg->getParent());
return false;
});
}
/// We can not duplicate blocks with AllocStack instructions (they need to be
/// FIFO). Other instructions can be moved to the preheader.
static bool
canDuplicateOrMoveToPreheader(SILLoop *L, SILBasicBlock *Preheader,
SILBasicBlock *Blk,
SmallVectorImpl<SILInstruction *> &Move) {
llvm::DenseSet<SILInstruction *> Invariant;
for (auto &I : *Blk) {
auto *Inst = &I;
if (auto *MI = dyn_cast<MethodInst>(Inst)) {
if (MI->getMember().isForeign && MI->isVolatile())
return false;
if (MI->isVolatile() || !hasLoopInvariantOperands(Inst, L, Invariant))
continue;
Move.push_back(Inst);
Invariant.insert(Inst);
} else if (!I.isTriviallyDuplicatable())
return false;
else if (isa<FunctionRefInst>(Inst)) {
Move.push_back(Inst);
Invariant.insert(Inst);
} else if (isa<IntegerLiteralInst>(Inst)) {
Move.push_back(Inst);
Invariant.insert(Inst);
} else if (!Inst->mayHaveSideEffects() &&
!Inst->mayReadFromMemory() &&
!isa<TermInst>(Inst) &&
!isa<AllocationInst>(Inst) && /* not marked mayhavesideffects */
hasLoopInvariantOperands(Inst, L, Invariant)) {
Move.push_back(Inst);
Invariant.insert(Inst);
}
}
return true;
}
static void mapOperands(SILInstruction *I,
llvm::DenseMap<ValueBase *, SILValue> ValueMap) {
for (auto &Opd : I->getAllOperands()) {
SILValue OrigVal = Opd.get();
ValueBase *OrigDef = OrigVal.getDef();
if (SILValue MappedVal = ValueMap[OrigDef]) {
unsigned ResultIdx = OrigVal.getResultNumber();
// All mapped instructions have their result number set to zero. Except
// for arguments that we followed along one edge to their incoming value
// on that edge.
if (isa<SILArgument>(OrigDef))
ResultIdx = MappedVal.getResultNumber();
Opd.set(SILValue(MappedVal.getDef(), ResultIdx));
}
}
}
static void
updateSSAForUseOfInst(SILSSAUpdater &Updater,
SmallVectorImpl<SILArgument*> &InsertedPHIs,
llvm::DenseMap<ValueBase *, SILValue> &ValueMap,
SILBasicBlock *Header, SILBasicBlock *EntryCheckBlock,
ValueBase *Inst) {
if (Inst->use_empty())
return;
// Find the mapped instruction.
SILValue MappedValue = ValueMap[Inst];
auto *MappedInst = MappedValue.getDef();
assert(MappedValue);
assert(MappedInst);
// For each use of a specific result value of the instruction.
for (unsigned i = 0, e = Inst->getNumTypes(); i != e; ++i) {
SILValue Res(Inst, i);
SILValue MappedRes(MappedInst, i);
InsertedPHIs.clear();
Updater.Initialize(Res.getType());
Updater.AddAvailableValue(Header, Res);
Updater.AddAvailableValue(EntryCheckBlock, MappedRes);
// Because of the way that phi nodes are represented we have to collect all
// uses before we update SSA. Modifying one phi node can invalidate another
// unrelated phi nodes operands through the common branch instruction (that
// has to be modified). This would invalidate a plain ValueUseIterator.
// Instead we collect uses wrapping uses in branches specially so that we
// can reconstruct the use even after the branch has been modified.
SmallVector<UseWrapper, 8> StoredUses;
for (auto *U : Res.getUses())
StoredUses.push_back(UseWrapper(U));
for (auto U : StoredUses) {
Operand *Use = U;
SILInstruction *User = Use->getUser();
assert(User && "Missing user");
// Ignore uses in the same basic block.
if (User->getParent() == Header)
continue;
assert(User->getParent() != EntryCheckBlock &&
"The entry check block should dominate the header");
Updater.RewriteUse(*Use);
}
// Canonicalize inserted phis to avoid extra BB Args.
for (SILArgument *Arg : InsertedPHIs) {
if (SILInstruction *Inst = replaceBBArgWithCast(Arg)) {
Arg->replaceAllUsesWith(Inst);
// DCE+SimplifyCFG runs as a post-pass cleanup.
// DCE replaces dead arg values with undef.
// SimplifyCFG deletes the dead BB arg.
}
}
}
}
/// Rewrite the code we just created in the preheader and update SSA form.
static void
rewriteNewLoopEntryCheckBlock(SILBasicBlock *Header,
SILBasicBlock *EntryCheckBlock,
llvm::DenseMap<ValueBase *, SILValue> ValueMap) {
SmallVector<SILArgument*, 4> InsertedPHIs;
SILSSAUpdater Updater(&InsertedPHIs);
// Fix PHIs (incomming arguments).
for (auto *Inst: Header->getBBArgs())
updateSSAForUseOfInst(Updater, InsertedPHIs, ValueMap, Header,
EntryCheckBlock, Inst);
auto InstIter = Header->begin();
// The terminator might change from under us.
while (InstIter != Header->end()) {
auto &Inst = *InstIter;
updateSSAForUseOfInst(Updater, InsertedPHIs, ValueMap, Header,
EntryCheckBlock, &Inst);
InstIter++;
}
}
/// Update the dominator tree after rotating the loop.
/// The former preheader now dominates all of the former headers children. The
/// former latch now dominates the former header.
static void updateDomTree(DominanceInfo *DT, SILBasicBlock *Preheader,
SILBasicBlock *Latch, SILBasicBlock *Header) {
auto *HeaderN = DT->getNode(Header);
SmallVector<DominanceInfoNode *, 4> Children(HeaderN->begin(),
HeaderN->end());
auto *PreheaderN = DT->getNode(Preheader);
for (auto *Child : Children)
DT->changeImmediateDominator(Child, PreheaderN);
if (Header != Latch)
DT->changeImmediateDominator(HeaderN, DT->getNode(Latch));
}
static bool rotateLoopAtMostUpToLatch(SILLoop *L, DominanceInfo *DT,
SILLoopInfo *LI, bool ShouldVerify) {
auto *Latch = L->getLoopLatch();
if (!Latch) {
DEBUG(llvm::dbgs() << *L << " does not have a single latch block\n");
return false;
}
// Rotate single basic block loops.
if (!ShouldRotate)
return false;
bool DidRotate = rotateLoop(L, DT, LI, false /* RotateSingleBlockLoops */,
Latch, ShouldVerify);
// Keep rotating at most until we hit the original latch.
if (DidRotate)
while (rotateLoop(L, DT, LI, false, Latch, ShouldVerify)) {}
return DidRotate;
}
/// We rotated a loop if it has the following properties.
///
/// * It has an exiting header with a conditional branch.
/// * It has a preheader (the function will try to create one for critical edges
/// from cond_br).
///
/// We will rotate at most up to the basic block passed as an argument.
/// We will not rotate a loop where the header is equal to the latch except is
/// RotateSingleBlockLoops is true.
///
/// Note: The code relies on the 'UpTo' basic block to stay within the rotate
/// loop for termination.
bool swift::rotateLoop(SILLoop *L, DominanceInfo *DT, SILLoopInfo *LI,
bool RotateSingleBlockLoops, SILBasicBlock *UpTo,
bool ShouldVerify) {
assert(L != nullptr && DT != nullptr && LI != nullptr &&
"Missing loop information");
auto *Header = L->getHeader();
if (!Header)
return false;
// We need a preheader - this is also a cannonicalization for follow-up
// passes.
auto *Preheader = L->getLoopPreheader();
bool ChangedCFG = false;
if (!Preheader) {
// Try to create a preheader.
if (auto LoopPred = getSingleOutsideLoopPredecessor(L, Header))
if (isa<CondBranchInst>(LoopPred->getTerminator())) {
Preheader = splitIfCriticalEdge(LoopPred, Header, DT, LI);
ChangedCFG = true;
assert(Preheader && "Must have a preheader now");
}
if (!Preheader) {
DEBUG(llvm::dbgs() << *L << " no preheader\n");
DEBUG(L->getHeader()->getParent()->dump());
return false;
}
}
if (!RotateSingleBlockLoops && Header == UpTo)
return ChangedCFG;
assert(RotateSingleBlockLoops || L->getBlocks().size() != 1);
// Need a conditional branch that guards the entry into the loop.
auto *LoopEntryBranch = dyn_cast<CondBranchInst>(Header->getTerminator());
if (!LoopEntryBranch)
return ChangedCFG;
// The header needs to exit the loop.
if (!L->isLoopExiting(Header)) {
DEBUG(llvm::dbgs() << *L << " not a exiting header\n");
DEBUG(L->getHeader()->getParent()->dump());
return ChangedCFG;
}
// We need a single backedge and the latch must not exit the loop if it is
// also the header.
auto *Latch = L->getLoopLatch();
if (!Latch) {
DEBUG(llvm::dbgs() << *L << " no single latch\n");
return ChangedCFG;
}
// Make sure we can duplicate the header.
SmallVector<SILInstruction *, 8> MoveToPreheader;
if (!canDuplicateOrMoveToPreheader(L, Preheader, Header, MoveToPreheader)) {
DEBUG(llvm::dbgs() << *L << " instructions in header preventing rotating\n");
return ChangedCFG;
}
auto *NewHeader = LoopEntryBranch->getTrueBB();
auto *Exit = LoopEntryBranch->getFalseBB();
if (L->contains(Exit))
std::swap(NewHeader, Exit);
assert(L->contains(NewHeader) && !L->contains(Exit) &&
"Could not find loop header and exit block");
// We don't want to rotate such that we merge two headers of separate loops
// into one. This can be turned into an assert again once we have guaranteed
// preheader insertions.
if (!NewHeader->getSinglePredecessor() && Header != Latch)
return ChangedCFG;
// Now that we know we can perform the rotation - move the instructions that
// need moving.
for (auto *Inst : MoveToPreheader)
Inst->moveBefore(Preheader->getTerminator());
DEBUG(llvm::dbgs() << " Rotating " << *L);
// Map the values for the duplicated header block. We are duplicating the
// header instructions into the end of the preheader.
llvm::DenseMap<ValueBase *, SILValue> ValueMap;
// The original 'phi' argument values are just the values coming from the
// preheader edge.
ArrayRef<SILArgument *> PHIs = Header->getBBArgs();
OperandValueArrayRef PreheaderArgs =
cast<BranchInst>(Preheader->getTerminator())->getArgs();
assert(PHIs.size() == PreheaderArgs.size() &&
"Basic block arguments and incoming edge mismatch");
// Here we also store the value index to use into the value map (versus
// non-argument values where the operand use decides which value index to
// use).
for (unsigned Idx = 0, E = PHIs.size(); Idx != E; ++Idx)
ValueMap[PHIs[Idx]] = PreheaderArgs[Idx];
// The other instructions are just cloned to the preheader.
TermInst *PreheaderBranch = Preheader->getTerminator();
for (auto &Inst : *Header) {
SILInstruction *I = Inst.clone(PreheaderBranch);
mapOperands(I, ValueMap);
// The actual operand will sort out which result idx to use.
ValueMap[&Inst] = SILValue(I, 0);
}
PreheaderBranch->dropAllReferences();
PreheaderBranch->eraseFromParent();
// If there were any uses of instructions in the duplicated loop entry check
// block rewrite them using the ssa updater.
rewriteNewLoopEntryCheckBlock(Header, Preheader, ValueMap);
L->moveToHeader(NewHeader);
// Now the original preheader dominates all of headers children and the
// original latch dominates the header.
updateDomTree(DT, Preheader, Latch, Header);
assert(DT->getNode(NewHeader)->getIDom() == DT->getNode(Preheader));
assert(!DT->dominates(Header, Exit) ||
DT->getNode(Exit)->getIDom() == DT->getNode(Preheader));
assert(DT->getNode(Header)->getIDom() == DT->getNode(Latch) ||
((Header == Latch) &&
DT->getNode(Header)->getIDom() == DT->getNode(Preheader)));
// Create a new preheader.
splitIfCriticalEdge(Preheader, NewHeader, DT, LI);
// Beautify the IR. Move the old header to after the old latch as it is now
// the latch.
Header->moveAfter(Latch);
if (ShouldVerify) {
DT->verify();
LI->verify();
Latch->getParent()->verify();
}
DEBUG(llvm::dbgs() << " to " << *L);
DEBUG(L->getHeader()->getParent()->dump());
return true;
}
namespace {
class LoopRotation : public SILFunctionTransform {
StringRef getName() override { return "SIL Loop Rotation"; }
void run() override {
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
assert(LA);
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
assert(DA);
SILFunction *F = getFunction();
assert(F);
SILLoopInfo *LI = LA->getLoopInfo(F);
assert(LI);
DominanceInfo *DT = DA->getDomInfo(F);
if (LI->empty()) {
DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
return;
}
DEBUG(llvm::dbgs() << "Rotating loops in " << F->getName() << "\n");
bool ShouldVerify = getOptions().VerifyAll;
bool Changed = false;
for (auto *LoopIt : *LI) {
// Rotate loops recursively bottom-up in the loop tree.
SmallVector<SILLoop *, 8> Worklist;
Worklist.push_back(LoopIt);
for (unsigned i = 0; i < Worklist.size(); ++i) {
auto *L = Worklist[i];
for (auto *SubLoop : *L)
Worklist.push_back(SubLoop);
}
while (!Worklist.empty()) {
Changed |= rotateLoopAtMostUpToLatch(Worklist.pop_back_val(), DT, LI,
ShouldVerify);
}
}
if (Changed) {
// We preserve loop info and the dominator tree.
auto PreservedDT = DA->preserveDomAnalysis(F);
auto PreservedLI = LA->preserveAnalysis(F);
PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::CFG);
// Update domtree and loop info.
DA->updateAnalysis(F, std::move(PreservedDT));
LA->updateAnalysis(F, std::move(PreservedLI));
}
}
};
} // end anonymous namespace
SILTransform *swift::createLoopRotate() {
return new LoopRotation();
}