Files
swift-mirror/lib/Immediate/Immediate.cpp

764 lines
26 KiB
C++

//===--- Immediate.cpp - the swift immediate mode -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This is the implementation of the swift interpreter, which takes a
// source file and JITs it.
//
//===----------------------------------------------------------------------===//
#include "swift/Immediate/Immediate.h"
#include "ImmediateImpl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/IRGenRequests.h"
#include "swift/AST/Module.h"
#include "swift/Basic/LLVM.h"
#include "swift/Frontend/Frontend.h"
#include "swift/IRGen/IRGenPublic.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Subsystems.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Config/config.h"
#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
#include "llvm/ExecutionEngine/Orc/EPCIndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/ExecutionEngine/Orc/ObjectTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/TargetExecutionUtils.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#define DEBUG_TYPE "swift-immediate"
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#else
#include <dlfcn.h>
#endif
using namespace swift;
using namespace swift::immediate;
static void *loadRuntimeLib(StringRef runtimeLibPathWithName) {
#if defined(_WIN32)
return LoadLibraryA(runtimeLibPathWithName.str().c_str());
#else
return dlopen(runtimeLibPathWithName.str().c_str(), RTLD_LAZY | RTLD_GLOBAL);
#endif
}
static void *loadRuntimeLibAtPath(StringRef sharedLibName,
StringRef runtimeLibPath) {
// FIXME: Need error-checking.
llvm::SmallString<128> Path = runtimeLibPath;
llvm::sys::path::append(Path, sharedLibName);
return loadRuntimeLib(Path);
}
static void *loadRuntimeLib(StringRef sharedLibName,
ArrayRef<std::string> runtimeLibPaths) {
for (auto &runtimeLibPath : runtimeLibPaths) {
if (void *handle = loadRuntimeLibAtPath(sharedLibName, runtimeLibPath))
return handle;
}
return nullptr;
}
static void DumpLLVMIR(const llvm::Module &M) {
std::string path = (M.getName() + ".ll").str();
for (size_t count = 0; llvm::sys::fs::exists(path); )
path = (M.getName() + llvm::utostr(count++) + ".ll").str();
std::error_code error;
llvm::raw_fd_ostream stream(path, error);
if (error)
return;
M.print(stream, /*AssemblyAnnotationWriter=*/nullptr);
}
void *swift::immediate::loadSwiftRuntime(ArrayRef<std::string>
runtimeLibPaths) {
#if defined(_WIN32)
return loadRuntimeLib("swiftCore" LTDL_SHLIB_EXT, runtimeLibPaths);
#else
return loadRuntimeLib("libswiftCore" LTDL_SHLIB_EXT, runtimeLibPaths);
#endif
}
static bool tryLoadLibrary(LinkLibrary linkLib,
SearchPathOptions searchPathOpts) {
llvm::SmallString<128> path = linkLib.getName();
// If we have an absolute or relative path, just try to load it now.
if (llvm::sys::path::has_parent_path(path.str())) {
return loadRuntimeLib(path);
}
bool success = false;
switch (linkLib.getKind()) {
case LibraryKind::Library: {
llvm::SmallString<32> stem;
if (llvm::sys::path::has_extension(path.str())) {
stem = std::move(path);
} else {
// FIXME: Try the appropriate extension for the current platform?
stem = "lib";
stem += path;
stem += LTDL_SHLIB_EXT;
}
// Try user-provided library search paths first.
for (auto &libDir : searchPathOpts.LibrarySearchPaths) {
path = libDir;
llvm::sys::path::append(path, stem.str());
success = loadRuntimeLib(path);
if (success)
break;
}
// Let loadRuntimeLib determine the best search paths.
if (!success)
success = loadRuntimeLib(stem);
// If that fails, try our runtime library paths.
if (!success)
success = loadRuntimeLib(stem, searchPathOpts.RuntimeLibraryPaths);
break;
}
case LibraryKind::Framework: {
// If we have a framework, mangle the name to point to the framework
// binary.
llvm::SmallString<64> frameworkPart{std::move(path)};
frameworkPart += ".framework";
llvm::sys::path::append(frameworkPart, linkLib.getName());
// Try user-provided framework search paths first; frameworks contain
// binaries as well as modules.
for (const auto &frameworkDir : searchPathOpts.getFrameworkSearchPaths()) {
path = frameworkDir.Path;
llvm::sys::path::append(path, frameworkPart.str());
success = loadRuntimeLib(path);
if (success)
break;
}
// If that fails, let loadRuntimeLib search for system frameworks.
if (!success)
success = loadRuntimeLib(frameworkPart);
break;
}
}
return success;
}
bool swift::immediate::tryLoadLibraries(ArrayRef<LinkLibrary> LinkLibraries,
SearchPathOptions SearchPathOpts,
DiagnosticEngine &Diags) {
SmallVector<bool, 4> LoadedLibraries;
LoadedLibraries.append(LinkLibraries.size(), false);
// Libraries are not sorted in the topological order of dependencies, and we
// don't know the dependencies in advance. Try to load all libraries until
// we stop making progress.
bool HadProgress;
do {
HadProgress = false;
for (unsigned i = 0; i != LinkLibraries.size(); ++i) {
if (!LoadedLibraries[i] &&
tryLoadLibrary(LinkLibraries[i], SearchPathOpts)) {
LoadedLibraries[i] = true;
HadProgress = true;
}
}
} while (HadProgress);
return std::all_of(LoadedLibraries.begin(), LoadedLibraries.end(),
[](bool Value) { return Value; });
}
/// Workaround for rdar://94645534.
///
/// The framework layout of some frameworks have changed over time, causing
/// unresolved symbol errors in immediate mode when running on older OS versions
/// with a newer SDK. This workaround scans through the list of dependencies and
/// manually adds the right libraries as necessary.
///
/// FIXME: JITLink should emulate the Darwin linker's handling of ld$previous
/// mappings so this is handled automatically.
static void addMergedLibraries(SmallVectorImpl<LinkLibrary> &AllLinkLibraries,
const llvm::Triple &Target) {
assert(Target.isMacOSX());
struct MergedLibrary {
StringRef OldLibrary;
llvm::VersionTuple MovedIn;
};
using VersionTuple = llvm::VersionTuple;
static const llvm::StringMap<MergedLibrary> MergedLibs = {
// Merged in macOS 14.0
{"AppKit", {"libswiftAppKit.dylib", VersionTuple{14}}},
{"HealthKit", {"libswiftHealthKit.dylib", VersionTuple{14}}},
{"Network", {"libswiftNetwork.dylib", VersionTuple{14}}},
{"Photos", {"libswiftPhotos.dylib", VersionTuple{14}}},
{"PhotosUI", {"libswiftPhotosUI.dylib", VersionTuple{14}}},
{"SoundAnalysis", {"libswiftSoundAnalysis.dylib", VersionTuple{14}}},
{"Virtualization", {"libswiftVirtualization.dylib", VersionTuple{14}}},
// Merged in macOS 13.0
{"Foundation", {"libswiftFoundation.dylib", VersionTuple{13}}},
};
SmallVector<StringRef> NewLibs;
for (auto &Lib : AllLinkLibraries) {
auto I = MergedLibs.find(Lib.getName());
if (I != MergedLibs.end() && Target.getOSVersion() < I->second.MovedIn)
NewLibs.push_back(I->second.OldLibrary);
}
for (StringRef NewLib : NewLibs)
AllLinkLibraries.push_back(LinkLibrary(NewLib, LibraryKind::Library));
}
bool swift::immediate::autolinkImportedModules(ModuleDecl *M,
const IRGenOptions &IRGenOpts) {
// Perform autolinking.
SmallVector<LinkLibrary, 4> AllLinkLibraries(IRGenOpts.LinkLibraries);
auto addLinkLibrary = [&](LinkLibrary linkLib) {
AllLinkLibraries.push_back(linkLib);
};
M->collectLinkLibraries(addLinkLibrary);
auto &Target = M->getASTContext().LangOpts.Target;
if (Target.isMacOSX())
addMergedLibraries(AllLinkLibraries, Target);
tryLoadLibraries(AllLinkLibraries, M->getASTContext().SearchPathOpts,
M->getASTContext().Diags);
return false;
}
/// The suffix appended to function bodies when creating lazy reexports
const std::string ManglingSuffix = "$impl";
/// Mangle a function for a lazy reexport
std::string mangleFunctionBody(const StringRef Unmangled) {
return Unmangled.str() + ManglingSuffix;
}
/// Whether a function name is mangled to be a lazy reexport
bool isMangled(const StringRef Symbol) {
return Symbol.endswith(ManglingSuffix);
}
/// Demangle a lazy reexport
StringRef demangleFunctionBody(const StringRef Mangled) {
return Mangled.drop_back(ManglingSuffix.size());
}
/// Creates an `LLJIT` instance with the given target options and an
/// attached generator that resolves symbols from the current process
static llvm::Expected<std::unique_ptr<llvm::orc::LLJIT>>
createLLJIT(const IRGenOptions &IRGenOpts, ASTContext &Ctx) {
llvm::TargetOptions TargetOpt;
std::string CPU;
std::string Triple;
std::vector<std::string> Features;
std::tie(TargetOpt, CPU, Features, Triple) =
getIRTargetOptions(IRGenOpts, Ctx);
auto JTMB = llvm::orc::JITTargetMachineBuilder(llvm::Triple(Triple))
.setRelocationModel(llvm::Reloc::PIC_)
.setOptions(std::move(TargetOpt))
.setCPU(std::move(CPU))
.addFeatures(Features)
.setCodeGenOptLevel(llvm::CodeGenOpt::Default);
auto J = llvm::orc::LLJITBuilder()
.setJITTargetMachineBuilder(std::move(JTMB))
.create();
if (!J)
return J.takeError();
auto G = llvm::orc::DynamicLibrarySearchGenerator::GetForCurrentProcess(
(*J)->getDataLayout().getGlobalPrefix());
if (!G)
return G.takeError();
(*J)->getMainJITDylib().addGenerator(std::move(*G));
return J;
}
class SILMaterializationUnit;
/// Wraps an LLJIT instance, adds lazy compilation.
class SwiftJIT {
public:
SwiftJIT(const SwiftJIT &) = delete;
SwiftJIT(SwiftJIT &&) = delete;
SwiftJIT &operator=(const SwiftJIT &) = delete;
SwiftJIT &operator=(SwiftJIT &&) = delete;
/// Attempt to create and initialize a new `SwiftJIT` with lazy compilation
/// enabled and an attached generator to search for symbols defined in the
/// current process.
static llvm::Expected<std::unique_ptr<SwiftJIT>>
Create(const IRGenOptions &IRGenOpts, ASTContext &Ctx) {
auto J = createLLJIT(IRGenOpts, Ctx);
if (!J)
return J.takeError();
// Create generator to resolve symbols defined in current process
auto EPCIU = llvm::orc::EPCIndirectionUtils::Create(
(*J)->getExecutionSession().getExecutorProcessControl());
if (!EPCIU)
return EPCIU.takeError();
(*EPCIU)->createLazyCallThroughManager(
(*J)->getExecutionSession(),
llvm::pointerToJITTargetAddress(&handleLazyCompilationFailure));
if (auto Err = setUpInProcessLCTMReentryViaEPCIU(**EPCIU))
return std::move(Err);
return std::unique_ptr<SwiftJIT>(
new SwiftJIT(std::move(*J), std::move(*EPCIU)));
}
~SwiftJIT() {
if (auto Err = EPCIU->cleanup())
J->getExecutionSession().reportError(std::move(Err));
}
llvm::orc::LLJIT &getJIT() { return *J; }
llvm::orc::JITDylib &getMainJITDylib() { return J->getMainJITDylib(); }
/// Register a the materialization unit `MU` with the `JITDylib``JD` and
/// create lazy reexports for all functions defined in the interface of `MU`
llvm::Error addSwift(llvm::orc::JITDylib &JD,
std::unique_ptr<SILMaterializationUnit> MU);
llvm::Error initialize(llvm::orc::JITDylib &JD) { return J->initialize(JD); }
llvm::Error deinitialize(llvm::orc::JITDylib &JD) {
return J->deinitialize(JD);
}
llvm::Expected<llvm::orc::ExecutorAddr> lookup(llvm::StringRef Name) {
return J->lookup(Name);
}
llvm::Expected<llvm::orc::ExecutorAddr>
lookupLinkerMangled(llvm::StringRef Name) {
return J->lookupLinkerMangled(Name);
}
// TODO: Replace with ExecutionSession::intern + a proper (TBD-based?)
// interface generator for Swift.
llvm::orc::SymbolStringPtr mangleAndIntern(StringRef Name) {
return J->mangleAndIntern(Name);
}
llvm::orc::IRCompileLayer &getIRCompileLayer() {
return J->getIRCompileLayer();
}
llvm::orc::ObjectTransformLayer &getObjTransformLayer() {
return J->getObjTransformLayer();
}
private:
/// An ORC layer to rename the names of function bodies to support lazy
/// reexports
class SwiftJITPlugin : public llvm::orc::ObjectLinkingLayer::Plugin {
public:
void
modifyPassConfig(llvm::orc::MaterializationResponsibility &MR,
llvm::jitlink::LinkGraph &G,
llvm::jitlink::PassConfiguration &PassConfig) override {
PassConfig.PrePrunePasses.push_back([&](llvm::jitlink::LinkGraph &G) {
return renameFunctionBodies(MR, G);
});
};
llvm::Error
notifyFailed(llvm::orc::MaterializationResponsibility &MR) override {
return llvm::Error::success();
}
llvm::Error notifyRemovingResources(llvm::orc::ResourceKey K) override {
return llvm::Error::success();
}
void notifyTransferringResources(llvm::orc::ResourceKey DstKey,
llvm::orc::ResourceKey SrcKey) override {}
private:
static llvm::Error
renameFunctionBodies(llvm::orc::MaterializationResponsibility &MR,
llvm::jitlink::LinkGraph &G) {
using namespace llvm;
using namespace llvm::orc;
llvm::DenseSet<StringRef> ToRename;
for (auto &KV : MR.getSymbols()) {
const auto &Name = *KV.first;
if (isMangled(Name))
// All mangled functions we are responsible for
// materializing must be mangled at the object level
ToRename.insert(demangleFunctionBody(Name));
}
for (auto &Sec : G.sections()) {
// Skip non-executable sections.
if ((Sec.getMemProt() & llvm::orc::MemProt::Exec) ==
llvm::orc::MemProt::None)
continue;
for (auto *Sym : Sec.symbols()) {
// Skip all anonymous and non-callables.
if (!Sym->hasName() || !Sym->isCallable())
continue;
if (ToRename.count(Sym->getName())) {
// FIXME: Get rid of the temporary when Swift's llvm-project is
// updated to LLVM 17.
auto NewName = G.allocateString(mangleFunctionBody(Sym->getName()));
Sym->setName({NewName.data(), NewName.size()});
}
}
}
return Error::success();
}
};
static void handleLazyCompilationFailure() {
llvm::errs() << "Lazy compilation error\n";
exit(1);
}
SwiftJIT(std::unique_ptr<llvm::orc::LLJIT> J,
std::unique_ptr<llvm::orc::EPCIndirectionUtils> EPCIU)
: J(std::move(J)), EPCIU(std::move(EPCIU)),
LCTM(this->EPCIU->getLazyCallThroughManager()),
ISM(this->EPCIU->createIndirectStubsManager()) {
static_cast<llvm::orc::ObjectLinkingLayer &>(this->J->getObjLinkingLayer())
.addPlugin(std::make_unique<SwiftJITPlugin>());
}
std::unique_ptr<llvm::orc::LLJIT> J;
std::unique_ptr<llvm::orc::EPCIndirectionUtils> EPCIU;
llvm::orc::LazyCallThroughManager &LCTM;
std::unique_ptr<llvm::orc::IndirectStubsManager> ISM;
};
/// Dump the contents of `Module` if requested
static void dumpJIT(llvm::orc::LLJIT &JIT, const llvm::Module &Module,
const IRGenOptions &IRGenOpts) {
LLVM_DEBUG(llvm::dbgs() << "Module to be executed:\n"; Module.dump());
switch (IRGenOpts.DumpJIT) {
case JITDebugArtifact::None:
break;
case JITDebugArtifact::LLVMIR:
DumpLLVMIR(Module);
break;
case JITDebugArtifact::Object:
JIT.getObjTransformLayer().setTransform(llvm::orc::DumpObjects());
break;
}
}
/// IRGen the provided `SILModule` with the specified options.
/// Returns `std::nullopt` if a compiler error is encountered
static std::optional<GeneratedModule>
generateModule(const CompilerInstance &CI, const IRGenOptions &IRGenOpts,
std::unique_ptr<SILModule> SM) {
// TODO: Use OptimizedIRRequest for this.
const auto &Context = CI.getASTContext();
auto *swiftModule = CI.getMainModule();
const auto PSPs = CI.getPrimarySpecificPathsForAtMostOnePrimary();
const auto &TBDOpts = CI.getInvocation().getTBDGenOptions();
// Lower the SIL module to LLVM IR
auto GenModule = performIRGeneration(
swiftModule, IRGenOpts, TBDOpts, std::move(SM),
swiftModule->getName().str(), PSPs, ArrayRef<std::string>());
if (Context.hadError()) {
return std::nullopt;
}
assert(GenModule && "Emitted no diagnostics but IR generation failed?");
auto *Module = GenModule.getModule();
// Run LLVM passes on the resulting module
performLLVM(IRGenOpts, Context.Diags, /*diagMutex*/ nullptr,
/*hash*/ nullptr, Module, GenModule.getTargetMachine(),
CI.getPrimarySpecificPathsForAtMostOnePrimary().OutputFilename,
CI.getOutputBackend(), Context.Stats);
if (Context.hadError()) {
return std::nullopt;
}
return GenModule;
}
/// Log a compilation error to standard error
static void logError(llvm::Error Err) {
logAllUnhandledErrors(std::move(Err), llvm::errs(), "");
}
/// Lazily materializes an entire SIL module
class SILMaterializationUnit : public llvm::orc::MaterializationUnit {
public:
SILMaterializationUnit(SwiftJIT &JIT, const CompilerInstance &CI,
const IRGenOptions &IRGenOpts,
std::unique_ptr<SILModule> SM)
: MaterializationUnit(getInterface(JIT, CI)), JIT(JIT), CI(CI),
IRGenOpts(IRGenOpts), SM(std::move(SM)) {}
void materialize(
std::unique_ptr<llvm::orc::MaterializationResponsibility> R) override {
auto GenModule = generateModule(CI, IRGenOpts, std::move(SM));
if (!GenModule) {
R->failMaterialization();
return;
}
auto *Module = GenModule->getModule();
// Dump IR if requested
dumpJIT(*Module);
// Now we must register all other public symbols defined by
// the module with the JIT
llvm::orc::SymbolFlagsMap Symbols;
// Register all global values, including global
// variables and functions
for (const auto &GV : Module->global_values()) {
addGlobal(Symbols, GV);
}
// Register the symbols we have discovered with the JIT
if (auto Err = R->defineMaterializing(Symbols)) {
logError(std::move(Err));
}
auto TSM = std::move(*GenModule).intoThreadSafeContext();
JIT.getIRCompileLayer().emit(std::move(R), std::move(TSM));
}
StringRef getName() const override { return "SILMaterializationUnit"; }
private:
/// Dump the contents of `Module` if requested
void dumpJIT(const llvm::Module &Module) {
::dumpJIT(JIT.getJIT(), Module, IRGenOpts);
}
/// All global value `Global` to `Symbols` if it is a public definition
void addGlobal(llvm::orc::SymbolFlagsMap &Symbols,
const llvm::GlobalValue &Global) {
// Ignore all symbols that will not appear in symbol table
if (Global.hasLocalLinkage() || Global.isDeclaration() ||
Global.hasAppendingLinkage())
return;
auto Name = Global.getName();
// The entry point is already registered up front with the
// interface, so ignore it as well
if (Name == CI.getASTContext().getEntryPointFunctionName())
return;
auto MangledName = JIT.mangleAndIntern(Name);
// Register this symbol with the proper flags
Symbols[MangledName] = llvm::JITSymbolFlags::fromGlobalValue(Global);
}
void discard(const llvm::orc::JITDylib &JD,
const llvm::orc::SymbolStringPtr &Sym) override {}
/// Get the public interface of the main module, which for a script just
/// comprises the entry point
static MaterializationUnit::Interface
getInterface(SwiftJIT &JIT, const CompilerInstance &CI) {
const auto &EntryPoint = CI.getASTContext().getEntryPointFunctionName();
auto MangledEntryPoint =
JIT.mangleAndIntern(mangleFunctionBody(EntryPoint));
auto Flags =
llvm::JITSymbolFlags::Callable | llvm::JITSymbolFlags::Exported;
llvm::orc::SymbolFlagsMap Symbols{{MangledEntryPoint, Flags}};
return {std::move(Symbols), nullptr};
}
SwiftJIT &JIT;
const CompilerInstance &CI;
const IRGenOptions &IRGenOpts;
std::unique_ptr<SILModule> SM;
};
llvm::Error SwiftJIT::addSwift(llvm::orc::JITDylib &JD,
std::unique_ptr<SILMaterializationUnit> MU) {
// Create stub map.
llvm::orc::SymbolAliasMap Stubs;
for (auto &[Name, Flags] : MU->getSymbols()) {
if (isMangled(*Name)) {
// Create a stub for mangled functions
auto OriginalName = demangleFunctionBody(*Name);
Stubs.insert(
{J->getExecutionSession().intern(OriginalName), {Name, Flags}});
}
}
assert(ISM.get() && "No ISM?");
if (!Stubs.empty())
if (auto Err = JD.define(lazyReexports(LCTM, *ISM, JD, std::move(Stubs))))
return Err;
return JD.define(std::move(MU));
}
/// Lookup the entry point in `J` and run it with the given command line
/// arguments `CmdLine`. Returns `-1` if failed to compile, or the status
/// returned by the entry point following execution.
static int runMain(llvm::orc::LLJIT &J, const ProcessCmdLine &CmdLine) {
LLVM_DEBUG(llvm::dbgs() << "Running static constructors\n");
if (auto Err = J.initialize(J.getMainJITDylib())) {
logError(std::move(Err));
return -1;
}
auto MainSym = J.lookup("main");
if (!MainSym) {
logError(MainSym.takeError());
return -1;
}
using MainFnTy = int (*)(int, char *[]);
MainFnTy JITMain = MainSym->toPtr<MainFnTy>();
LLVM_DEBUG(llvm::dbgs() << "Running main\n");
int Result = llvm::orc::runAsMain(JITMain, CmdLine);
LLVM_DEBUG(llvm::dbgs() << "Running static destructors\n");
if (auto Err = J.deinitialize(J.getMainJITDylib())) {
logError(std::move(Err));
return -1;
}
return Result;
}
int swift::RunImmediately(CompilerInstance &CI, const ProcessCmdLine &CmdLine,
const IRGenOptions &IRGenOpts,
const SILOptions &SILOpts,
std::unique_ptr<SILModule> &&SM) {
auto &Context = CI.getASTContext();
// Load libSwiftCore to setup process arguments.
//
// This must be done here, before any library loading has been done, to avoid
// racing with the static initializers in user code.
// Setup interpreted process arguments.
using ArgOverride = void (* SWIFT_CC(swift))(const char **, int);
#if defined(_WIN32)
auto stdlib = loadSwiftRuntime(Context.SearchPathOpts.RuntimeLibraryPaths);
if (!stdlib) {
CI.getDiags().diagnose(SourceLoc(),
diag::error_immediate_mode_missing_stdlib);
return -1;
}
auto module = static_cast<HMODULE>(stdlib);
auto emplaceProcessArgs = reinterpret_cast<ArgOverride>(
GetProcAddress(module, "_swift_stdlib_overrideUnsafeArgvArgc"));
if (emplaceProcessArgs == nullptr)
return -1;
#else
// In case the compiler is built with swift modules, it already has the stdlib
// linked to. First try to lookup the symbol with the standard library
// resolving.
auto emplaceProcessArgs
= (ArgOverride)dlsym(RTLD_DEFAULT, "_swift_stdlib_overrideUnsafeArgvArgc");
if (dlerror()) {
// If this does not work (= the Swift modules are not linked to the tool),
// we have to explicitly load the stdlib.
auto stdlib = loadSwiftRuntime(Context.SearchPathOpts.RuntimeLibraryPaths);
if (!stdlib) {
CI.getDiags().diagnose(SourceLoc(),
diag::error_immediate_mode_missing_stdlib);
return -1;
}
dlerror();
emplaceProcessArgs
= (ArgOverride)dlsym(stdlib, "_swift_stdlib_overrideUnsafeArgvArgc");
if (dlerror())
return -1;
}
#endif
SmallVector<const char *, 32> argBuf;
for (size_t i = 0; i < CmdLine.size(); ++i) {
argBuf.push_back(CmdLine[i].c_str());
}
argBuf.push_back(nullptr);
(*emplaceProcessArgs)(argBuf.data(), CmdLine.size());
auto *swiftModule = CI.getMainModule();
if (autolinkImportedModules(swiftModule, IRGenOpts))
return -1;
auto &Target = swiftModule->getASTContext().LangOpts.Target;
if (Target.isMacOSX()) {
auto JIT = SwiftJIT::Create(IRGenOpts, swiftModule->getASTContext());
if (auto Err = JIT.takeError()) {
logError(std::move(Err));
return -1;
}
auto MU = std::make_unique<SILMaterializationUnit>(**JIT, CI, IRGenOpts,
std::move(SM));
if (auto Err = (*JIT)->addSwift((*JIT)->getMainJITDylib(), std::move(MU))) {
logError(std::move(Err));
return -1;
}
return runMain((*JIT)->getJIT(), CmdLine);
}
auto JIT = createLLJIT(IRGenOpts, swiftModule->getASTContext());
if (auto Err = JIT.takeError()) {
logError(std::move(Err));
return -1;
}
auto GenModule = generateModule(CI, IRGenOpts, std::move(SM));
if (!GenModule)
return -1;
auto *Module = GenModule->getModule();
dumpJIT(**JIT, *Module, IRGenOpts);
auto TSM = std::move(*GenModule).intoThreadSafeContext();
if (auto Err = (*JIT)->addIRModule(std::move(TSM))) {
logError(std::move(Err));
return -1;
}
return runMain(**JIT, CmdLine);
}