Files
swift-mirror/lib/SILPasses/DefiniteInitialization.cpp
Mark Lacey 94d2c06e21 Replace MemPromotion with Definitie Init in debug output.
Also replace memory-promotion with definite-init for DEBUG_TYPE and fix
a typo.

Swift SVN r9191
2013-10-11 03:24:37 +00:00

1464 lines
53 KiB
C++

//===--- DefiniteInitialization.cpp - Perform definite init analysis ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "definite-init"
#include "swift/Subsystems.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/Diagnostics.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/Basic/Fixnum.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/ADT/StringExtras.h"
using namespace swift;
STATISTIC(NumLoadPromoted, "Number of loads promoted");
STATISTIC(NumAssignRewritten, "Number of assigns rewritten");
static llvm::cl::opt<bool>
EnableCopyAddrForwarding("enable-copyaddr-forwarding");
template<typename ...ArgTypes>
static void diagnose(SILModule &M, SILLocation loc, ArgTypes... args) {
M.getASTContext().Diags.diagnose(loc.getSourceLoc(), Diagnostic(args...));
}
/// Emit the sequence that an assign instruction lowers to once we know
/// if it is an initialization or an assignment. If it is an assignment,
/// a live-in value can be provided to optimize out the reload.
static void LowerAssignInstruction(SILBuilder &B, AssignInst *Inst,
bool isInitialization,
SILValue IncomingVal) {
DEBUG(llvm::errs() << " *** Lowering [isInit=" << isInitialization << "]: "
<< *Inst << "\n");
++NumAssignRewritten;
auto &M = Inst->getModule();
SILValue Src = Inst->getSrc();
auto &destTL = M.getTypeLowering(Inst->getDest().getType());
// If this is an initialization, or the storage type is trivial, we
// can just replace the assignment with a store.
// Otherwise, if it has trivial type, we can always just replace the
// assignment with a store. If it has non-trivial type and is an
// initialization, we can also replace it with a store.
if (isInitialization || destTL.isTrivial()) {
B.createStore(Inst->getLoc(), Src, Inst->getDest());
Inst->eraseFromParent();
return;
}
// Otherwise, we need to replace the assignment with the full
// load/store/release dance. Note that the new value is already
// considered to be retained (by the semantics of the storage type),
// and we're transfering that ownership count into the destination.
// This is basically destTL.emitStoreOfCopy, except that if we have
// a known incoming value, we can avoid the load.
if (!IncomingVal)
IncomingVal = B.createLoad(Inst->getLoc(), Inst->getDest());
B.createStore(Inst->getLoc(), Src, Inst->getDest());
destTL.emitDestroyValue(B, Inst->getLoc(), IncomingVal);
Inst->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// Tuple Element Flattening/Counting Logic
//===----------------------------------------------------------------------===//
/// getElementCount - Return the number of elements in the flattened SILType.
/// For tuples, this is the (recursive) count of the fields it contains.
static unsigned getElementCount(CanType T) {
TupleType *TT = T->getAs<TupleType>();
// If this isn't a tuple, it is a single element.
if (!TT) return 1;
unsigned NumElements = 0;
for (auto &Elt : TT->getFields())
NumElements += getElementCount(Elt.getType()->getCanonicalType());
return NumElements;
}
/// Push the symbolic path name to the specified element number onto the
/// specified std::string.
static void getPathStringToElement(CanType T, unsigned Element,
std::string &Result) {
TupleType *TT = T->getAs<TupleType>();
if (!TT) return;
unsigned FieldNo = 0;
for (auto &Field : TT->getFields()) {
unsigned ElementsForField =
getElementCount(Field.getType()->getCanonicalType());
if (Element < ElementsForField) {
Result += '.';
if (Field.hasName())
Result += Field.getName().str();
else
Result += llvm::utostr(FieldNo);
return getPathStringToElement(Field.getType()->getCanonicalType(),
Element, Result);
}
Element -= ElementsForField;
++FieldNo;
}
assert(0 && "Element number is out of range for this type!");
}
//===----------------------------------------------------------------------===//
// Scalarization Logic
//===----------------------------------------------------------------------===//
static bool isStructOrTupleToScalarize(SILType T) {
return T.is<TupleType>() || T.is<StructType>() ||
T.is<BoundGenericStructType>();
}
/// Given a pointer to an aggregate type, compute the addresses of each
/// element and add them to the ElementAddrs vector.
static void getScalarizedElementAddresses(SILValue Pointer,
SmallVectorImpl<SILInstruction*> &ElementAddrs) {
CanType AggType = Pointer.getType().getSwiftRValueType();
SILInstruction *PointerInst = cast<SILInstruction>(Pointer.getDef());
SILBuilder B(++SILBasicBlock::iterator(PointerInst));
if (TupleType *TT = AggType->getAs<TupleType>()) {
for (auto &Field : TT->getFields()) {
(void)Field;
ElementAddrs.push_back(B.createTupleElementAddr(PointerInst->getLoc(),
Pointer,
ElementAddrs.size()));
}
return;
}
assert(AggType->is<StructType>() || AggType->is<BoundGenericStructType>());
StructDecl *SD = cast<StructDecl>(AggType->getAnyNominal());
for (auto *VD : SD->getStoredProperties()) {
ElementAddrs.push_back(B.createStructElementAddr(PointerInst->getLoc(),
Pointer, VD));
}
}
/// Given an RValue of aggregate type, compute the values of the elements by
/// emitting a series of tuple_element instructions.
static void getScalarizedElements(SILValue V,
SmallVectorImpl<SILValue> &ElementVals,
SILLocation Loc, SILBuilder &B) {
CanType AggType = V.getType().getSwiftRValueType();
if (TupleType *TT = AggType->getAs<TupleType>()) {
// If this is exploding a tuple_inst, just return the element values. This
// can happen when recursively scalarizing stuff.
if (auto *TI = dyn_cast<TupleInst>(V)) {
for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i)
ElementVals.push_back(TI->getOperand(i));
return;
}
for (auto &Field : TT->getFields()) {
(void)Field;
ElementVals.push_back(B.createTupleExtract(Loc, V, ElementVals.size()));
}
return;
}
assert(AggType->is<StructType>() ||
AggType->is<BoundGenericStructType>());
// If this is exploding a struct_inst, just return the element values. This
// can happen when recursively scalarizing stuff.
if (auto *SI = dyn_cast<StructInst>(V)) {
for (unsigned i = 0, e = SI->getNumOperands(); i != e; ++i)
ElementVals.push_back(SI->getOperand(i));
return;
}
StructDecl *SD = cast<StructDecl>(AggType->getAnyNominal());
for (auto *VD : SD->getStoredProperties()) {
ElementVals.push_back(B.createStructExtract(Loc, V, VD));
}
}
/// Remove dead tuple_element_addr and struct_element_addr chains - only.
static void RemoveDeadAddressingInstructions(SILValue Pointer) {
if (!Pointer.use_empty()) return;
SILInstruction *I = dyn_cast<SILInstruction>(Pointer);
if (I == 0 ||
!(isa<TupleElementAddrInst>(Pointer) ||
isa<StructElementAddrInst>(Pointer)))
return;
Pointer = I->getOperand(0);
I->eraseFromParent();
RemoveDeadAddressingInstructions(Pointer);
}
/// Scalarize a load down to its subelements. If NewLoads is specified, this
/// can return the newly generated sub-element loads.
static SILValue scalarizeLoad(LoadInst *LI,
SmallVectorImpl<SILInstruction*> &ElementAddrs,
SmallVectorImpl<SILInstruction*> *NewLoads = nullptr) {
SILBuilder B(LI);
SmallVector<SILValue, 4> ElementTmps;
for (unsigned i = 0, e = ElementAddrs.size(); i != e; ++i) {
auto *SubLI = B.createLoad(LI->getLoc(), ElementAddrs[i]);
ElementTmps.push_back(SubLI);
if (NewLoads) NewLoads->push_back(SubLI);
}
if (LI->getType().is<TupleType>())
return B.createTuple(LI->getLoc(), LI->getType(), ElementTmps);
return B.createStruct(LI->getLoc(), LI->getType(), ElementTmps);
}
//===----------------------------------------------------------------------===//
// Access Path Analysis Logic
//===----------------------------------------------------------------------===//
// An access path is an array of tuple or struct members. Note that the path
// is actually stored backwards for efficiency, the back() is the element
// closest to the underlying alloc_box.
typedef Fixnum<31, unsigned> TupleIndexTy;
typedef PointerUnion<VarDecl*, TupleIndexTy> StructOrTupleElement;
typedef SmallVector<StructOrTupleElement, 8> AccessPathTy;
/// Given a pointer that is known to be derived from an alloc_box, chase up to
/// the alloc box, computing the access path. This returns true if the access
/// path to the specified RootInst was successfully computed, false otherwise.
static bool TryComputingAccessPath(SILValue Pointer, AccessPathTy &AccessPath,
SILInstruction *RootInst) {
while (1) {
// If we got to the root, we're done.
if (RootInst == Pointer.getDef())
return true;
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(Pointer)) {
AccessPath.push_back(Fixnum<31, unsigned>(TEAI->getFieldNo()));
Pointer = TEAI->getOperand();
} else if (auto *SEAI = dyn_cast<StructElementAddrInst>(Pointer)) {
AccessPath.push_back(SEAI->getField());
Pointer = SEAI->getOperand();
} else {
return false;
}
}
}
static void ComputeAccessPath(SILValue Pointer, AccessPathTy &AccessPath,
SILInstruction *RootInst) {
bool Result = TryComputingAccessPath(Pointer, AccessPath, RootInst);
assert(Result && "Failed to compute an access path to our root?");
(void)Result;
}
/// Given an aggregate value and an access path, extract the value indicated by
/// the path.
static SILValue ExtractElement(SILValue Val,
ArrayRef<StructOrTupleElement> AccessPath,
SILBuilder &B, SILLocation Loc) {
for (auto I = AccessPath.rbegin(), E = AccessPath.rend(); I != E; ++I) {
StructOrTupleElement Elt = *I;
if (Elt.is<VarDecl*>())
Val = B.createStructExtract(Loc, Val, Elt.get<VarDecl*>());
else
Val = B.createTupleExtract(Loc, Val, Elt.get<TupleIndexTy>());
}
return Val;
}
//===----------------------------------------------------------------------===//
// Per-Element Promotion Logic
//===----------------------------------------------------------------------===//
namespace {
enum UseKind {
// The instruction is a Load.
Load,
// The instruction is a Store.
Store,
// The instruction is a store to a member of a larger struct value.
PartialStore,
/// The instruction is an Apply, this is a inout or indirect return.
InOutUse,
/// This instruction is a general escape of the value, e.g. a call to a
/// closure that captures it.
Escape,
/// This instruction is a release, which may be a last use.
/// TODO: remove this when we support partially constructed values.
Release
};
/// ElementUses - This class keeps track of all of the uses of a single
/// element (i.e. tuple element or struct field) of a memory object.
typedef std::vector<std::pair<SILInstruction*, UseKind>> ElementUses;
enum class EscapeKind {
Unknown,
Yes,
No
};
/// LiveOutBlockState - Keep track of information about blocks that have
/// already been analyzed. Since this is a global analysis, we need this to
/// cache information about different paths through the CFG.
struct LiveOutBlockState {
/// For this block, keep track of whether there is a path from the entry
/// of the function to the end of the block that crosses an escape site.
EscapeKind EscapeInfo = EscapeKind::Unknown;
/// Keep track of whether there is a Store, InOutUse, or Escape locally in
/// this block.
bool HasNonLoadUse = false;
/// Keep track of whether the element is live out of this block or not.
///
enum LiveOutAvailability {
IsNotLiveOut,
IsLiveOut,
IsComputingLiveOut,
IsUnknown
} Availability = IsUnknown;
};
} // end anonymous namespace
namespace {
/// ElementPromotion - This is the main heavy lifting for processing the uses
/// of an element of an allocation.
class ElementPromotion {
/// TheMemory - This is either an alloc_box instruction or a
/// mark_uninitialized instruction. This represents the start of the
/// lifetime of the value being analyzed.
SILInstruction *TheMemory;
unsigned ElementNumber;
ElementUses &Uses;
llvm::SmallDenseMap<SILBasicBlock*, LiveOutBlockState, 32> PerBlockInfo;
/// This is the set of uses that are not loads (i.e., they are Stores,
/// InOutUses, and Escapes).
llvm::SmallPtrSet<SILInstruction*, 16> NonLoadUses;
/// Does this value escape anywhere in the function.
bool HasAnyEscape = false;
// Keep track of whether we've emitted an error. We only emit one error per
// element as a policy decision.
bool HadError = false;
public:
ElementPromotion(SILInstruction *TheMemory, unsigned ElementNumber,
ElementUses &Uses);
void doIt();
private:
void handleLoadUse(SILInstruction *Inst);
void handleStoreUse(SILInstruction *Inst, bool isPartialStore);
void handleInOutUse(SILInstruction *Inst);
void handleEscape(SILInstruction *Inst);
void handleRelease(SILInstruction *Inst);
enum DIKind {
DI_Yes,
DI_No,
DI_Partial
};
DIKind checkDefinitelyInit(SILInstruction *Inst, SILValue *AV = nullptr,
AccessPathTy *AccessPath = nullptr);
bool checkLoadAccessPathAndComputeValue(SILInstruction *Inst,
SILValue &LoadResultVal,
AccessPathTy &LoadAccessPath);
void explodeCopyAddr(CopyAddrInst *CAI, SILValue &StoredValue);
bool isLiveOut(SILBasicBlock *BB);
bool hasEscapedAt(SILInstruction *I);
void diagnoseInitError(SILInstruction *Use, Diag<StringRef> DiagMessage);
};
} // end anonymous namespace
ElementPromotion::ElementPromotion(SILInstruction *TheMemory,
unsigned ElementNumber, ElementUses &Uses)
: TheMemory(TheMemory), ElementNumber(ElementNumber), Uses(Uses) {
// The first step of processing an element is to collect information about the
// element into data structures we use later.
for (auto Use : Uses) {
assert(Use.first);
// Keep track of all the uses that aren't loads.
if (Use.second == UseKind::Load)
continue;
NonLoadUses.insert(Use.first);
auto &BBInfo = PerBlockInfo[Use.first->getParent()];
BBInfo.HasNonLoadUse = true;
// Each of the non-load instructions will each be checked to make sure that
// they are live-in or a full element store. This means that the block they
// are in should be treated as a live out for cross-block analysis purposes.
BBInfo.Availability = LiveOutBlockState::IsLiveOut;
if (Use.second == UseKind::Escape) {
// Determine which blocks the value can escape from. We aren't allowed to
// promote loads in blocks reachable from an escape point.
HasAnyEscape = true;
BBInfo.EscapeInfo = EscapeKind::Yes;
}
}
// If isn't really a use, but we account for the alloc_box/mark_uninitialized
// as a use so we see it in our dataflow walks.
NonLoadUses.insert(TheMemory);
PerBlockInfo[TheMemory->getParent()].HasNonLoadUse = true;
// If there was not another store in the memory definition block, then it is
// known to be not live out.
auto &BBInfo = PerBlockInfo[TheMemory->getParent()];
if (BBInfo.Availability == LiveOutBlockState::IsUnknown)
BBInfo.Availability = LiveOutBlockState::IsNotLiveOut;
}
void ElementPromotion::diagnoseInitError(SILInstruction *Use,
Diag<StringRef> DiagMessage) {
HadError = true;
// If the definition is a declaration, try to reconstruct a name and
// optionally an access path to the uninitialized element.
std::string Name;
if (ValueDecl *VD =
dyn_cast_or_null<ValueDecl>(TheMemory->getLoc().getAsASTNode<Decl>()))
Name = VD->getName().str();
else
Name = "<unknown>";
// If the overall memory allocation is a tuple with multiple elements,
// then dive in to explain *which* element is being used uninitialized.
CanType AllocTy;
if (auto *ABI = dyn_cast<AllocBoxInst>(TheMemory))
AllocTy = ABI->getElementType().getSwiftRValueType();
else if (auto *ASI = dyn_cast<AllocStackInst>(TheMemory))
AllocTy = ASI->getElementType().getSwiftRValueType();
else
AllocTy = TheMemory->getType(0).getObjectType().getSwiftRValueType();
getPathStringToElement(AllocTy, ElementNumber, Name);
diagnose(Use->getModule(), Use->getLoc(), DiagMessage, Name);
// Provide context as note diagnostics.
// TODO: The QoI could be improved in many different ways here. For example,
// We could give some path information where the use was uninitialized, like
// the static analyzer.
diagnose(Use->getModule(), TheMemory->getLoc(), diag::variable_defined_here);
}
void ElementPromotion::doIt() {
// With any escapes tallied up, we can work through all the uses, checking
// for definitive initialization, promoting loads, rewriting assigns, and
// performing other tasks.
// Note that this should not use a for-each loop, as the Uses list can grow
// and reallocate as we iterate over it.
for (unsigned i = 0; i != Uses.size(); ++i) {
auto &Use = Uses[i];
// Ignore entries for instructions that got expanded along the way.
if (Use.first == nullptr) continue;
switch (Use.second) {
case UseKind::Load: handleLoadUse(Use.first); break;
case UseKind::Store: handleStoreUse(Use.first, false); break;
case UseKind::PartialStore: handleStoreUse(Use.first, true); break;
case UseKind::InOutUse: handleInOutUse(Use.first); break;
case UseKind::Escape: handleEscape(Use.first); break;
case UseKind::Release: handleRelease(Use.first); break;
}
if (HadError) break;
}
}
/// Given a load (i.e., a LoadInst, CopyAddr, LoadWeak, or ProjectExistential),
/// determine whether the loaded value is definitely assigned or not. If not,
/// produce a diagnostic. If so, attempt to promote the value into SSA form.
void ElementPromotion::handleLoadUse(SILInstruction *Inst) {
SILValue Result;
// If this is a Load (not a CopyAddr or LoadWeak), we try to compute the
// loaded value as an SSA register. Otherwise, we don't ask for an available
// value to avoid constructing SSA for the value.
bool WantValue = isa<LoadInst>(Inst);
// If the box has escaped at this instruction, we do not want to promote the
// load, so don't try to compute the result value.
if (WantValue && hasEscapedAt(Inst))
WantValue = false;
// If this is a load from a struct field that we want to promote, compute the
// access path down to the field so we can determine precise def/use behavior.
AccessPathTy AccessPath;
if (WantValue)
ComputeAccessPath(Inst->getOperand(0), AccessPath, TheMemory);
// Note that we intentionally don't support forwarding of weak pointers,
// because the underlying value may drop be deallocated at any time. We would
// have to prove that something in this function is holding the weak value
// live across the promoted region and that isn't desired for a stable
// diagnostics pass this like one.
auto DI = checkDefinitelyInit(Inst, WantValue ? &Result : nullptr,
WantValue ? &AccessPath : nullptr);
// If the value is not definitively initialized, emit an error.
// TODO: In the "No" case, we can emit a fixit adding a default initialization
// of the type.
// TODO: In the "partial" case, we can produce a more specific diagnostic
// indicating where the control flow merged.
if (DI != DI_Yes) {
// Otherwise, this is a use of an uninitialized value. Emit a diagnostic.
diagnoseInitError(Inst, diag::variable_used_before_initialized);
return;
}
// If the value is definitely initialized, check to see if this is a load
// that we have a value available for.
if (!Result) return;
assert(!isStructOrTupleToScalarize(Inst->getType(0)));
DEBUG(llvm::errs() << " *** Promoting load: " << *Inst << "\n");
DEBUG(llvm::errs() << " To value: " << Result.getDef() << "\n");
SILValue(Inst, 0).replaceAllUsesWith(Result);
SILValue Addr = Inst->getOperand(0);
Inst->eraseFromParent();
RemoveDeadAddressingInstructions(Addr);
++NumLoadPromoted;
}
void ElementPromotion::handleStoreUse(SILInstruction *Inst,
bool isPartialStore) {
// We assume that SILGen knows what it is doing when it produces
// initializations of variables, because it only produces them when it knows
// they are correct, and this is a super common case for "var x = 4" cases.
if (!isPartialStore) {
if (isa<AssignInst>(Inst))
;
else if (auto CA = dyn_cast<CopyAddrInst>(Inst)) {
if (CA->isInitializationOfDest()) return;
} else if (auto SW = dyn_cast<StoreWeakInst>(Inst)) {
if (SW->isInitializationOfDest()) return;
} else if (isa<InitExistentialInst>(Inst) ||
isa<UpcastExistentialInst>(Inst) ||
isa<EnumDataAddrInst>(Inst) ||
isa<InjectEnumAddrInst>(Inst)) {
// These instructions *on a box* are only formed by direct initialization
// like "var x : Proto = foo".
return;
} else {
return;
}
}
SILType StoredType = Inst->getOperand(1).getType().getObjectType();
// If we are lowering/expanding an "assign", we may turn it into a read/write
// operation to release the old value. If so, we want to determine a live-in
// value and classify the type a bit.
bool HasTrivialType = false;
bool WantsValue = false;
AccessPathTy AccessPath;
if (isa<AssignInst>(Inst)) {
HasTrivialType = Inst->getModule().
Types.getTypeLowering(StoredType).isTrivial();
// Only compute the live-in type if we have a complete store of a
// non-trivial type.
WantsValue = !HasTrivialType && !isPartialStore;
if (WantsValue)
ComputeAccessPath(Inst->getOperand(1), AccessPath, TheMemory);
}
// Check to see if the value is known-initialized here or not. If the assign
// has non-trivial type, then we're interested in using any live-in value that
// is available.
SILValue IncomingVal;
auto DI = checkDefinitelyInit(Inst,
WantsValue ? &IncomingVal : nullptr,
WantsValue ? &AccessPath : nullptr);
// If this is a partial store into a struct and the whole struct hasn't been
// initialized, diagnose this as an error.
if (isPartialStore && DI != DI_Yes) {
diagnoseInitError(Inst, diag::struct_not_fully_initialized);
return;
}
// If it is initialized on some paths, but not others, then we have an
// inconsistent initialization error.
//
// FIXME: This needs to be supported through the introduction of a boolean
// control path, or (for reference types as an important special case) a store
// of zero at the definition point.
if (DI == DI_Partial) {
diagnoseInitError(Inst, diag::variable_initialized_on_some_paths);
return;
}
// If this is a copy_addr or store_weak, we just set the initialization bit
// depending on what we find.
if (auto *CA = dyn_cast<CopyAddrInst>(Inst)) {
CA->setIsInitializationOfDest(IsInitialization_t(DI == DI_No));
return;
}
if (auto *SW = dyn_cast<StoreWeakInst>(Inst)) {
SW->setIsInitializationOfDest(IsInitialization_t(DI == DI_No));
return;
}
// If this is an assign, rewrite it based on whether it is an initialization
// or not.
if (auto *AI = dyn_cast<AssignInst>(Inst)) {
NonLoadUses.erase(Inst);
SmallVector<SILInstruction*, 8> InsertedInsts;
SILBuilder B(Inst, &InsertedInsts);
LowerAssignInstruction(B, AI, HasTrivialType || DI == DI_No, IncomingVal);
// If lowering of the assign introduced any new stores, keep track of them.
for (auto I : InsertedInsts)
if (isa<StoreInst>(I))
NonLoadUses.insert(I);
}
}
/// Given a inout use (an Apply), determine whether the loaded
/// value is definitely assigned or not. If not, produce a diagnostic.
void ElementPromotion::handleInOutUse(SILInstruction *Inst) {
auto DI = checkDefinitelyInit(Inst);
if (DI == DI_Yes)
return;
// Otherwise, this is a use of an uninitialized value. Emit a diagnostic.
diagnoseInitError(Inst, diag::variable_inout_before_initialized);
}
void ElementPromotion::handleEscape(SILInstruction *Inst) {
auto DI = checkDefinitelyInit(Inst);
if (DI == DI_Yes)
return;
// Otherwise, this is a use of an uninitialized value. Emit a diagnostic.
if (isa<MarkFunctionEscapeInst>(Inst))
diagnoseInitError(Inst, diag::global_variable_function_use_uninit);
else
diagnoseInitError(Inst, diag::variable_escape_before_initialized);
}
/// At the time when a box is destroyed, it might be completely uninitialized,
/// and if it is a tuple, it may only be partially initialized. To avoid
/// ambiguity, we require that all elements of the value are completely
/// initialized at the point of a release.
///
/// TODO: We could make this more powerful to directly support these cases, at
/// lease when the value doesn't escape.
///
void ElementPromotion::handleRelease(SILInstruction *Inst) {
auto DI = checkDefinitelyInit(Inst);
if (DI == DI_Yes)
return;
// Otherwise, this is a release of an uninitialized value. Emit a diagnostic.
diagnoseInitError(Inst, diag::variable_destroyed_before_initialized);
}
/// hasEscapedAt - Return true if the box has escaped at the specified
/// instruction. We are not allowed to do load promotion in an escape region.
bool ElementPromotion::hasEscapedAt(SILInstruction *I) {
// FIXME: This is not an aggressive implementation. :)
return HasAnyEscape;
}
bool ElementPromotion::isLiveOut(SILBasicBlock *BB) {
LiveOutBlockState &BBState = PerBlockInfo[BB];
switch (BBState.Availability) {
case LiveOutBlockState::IsNotLiveOut: return false;
case LiveOutBlockState::IsLiveOut: return true;
case LiveOutBlockState::IsComputingLiveOut:
// Speculate that it will be live out in cyclic cases.
return true;
case LiveOutBlockState::IsUnknown:
// Otherwise, process this block.
break;
}
// Set the block's state to reflect that we're currently processing it. This
// is required to handle cycles properly.
BBState.Availability = LiveOutBlockState::IsComputingLiveOut;
// Recursively processes all of our predecessor blocks. If any of them is
// not live out, then we aren't either.
for (auto PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) {
if (!isLiveOut(*PI)) {
// If any predecessor fails, then we're not live out either.
PerBlockInfo[BB].Availability = LiveOutBlockState::IsNotLiveOut;
return false;
}
}
// Otherwise, we're golden. Return success.
PerBlockInfo[BB].Availability = LiveOutBlockState::IsLiveOut;
return true;
}
/// The specified instruction is a use of the element. Determine whether the
/// element is definitely initialized at this point or not. If the value is
/// initialized on some paths, but not others, this returns a partial result.
///
/// In addition to computing whether a value is definitely initialized or not,
/// if AV is non-null, this function can return the currently live value in some
/// cases.
ElementPromotion::DIKind
ElementPromotion::checkDefinitelyInit(SILInstruction *Inst, SILValue *AV,
AccessPathTy *AccessPath) {
SILBasicBlock *InstBB = Inst->getParent();
// If there is a store in the current block, scan the block to see if the
// store is before or after the load. If it is before, it produces the value
// we are looking for.
if (PerBlockInfo[InstBB].HasNonLoadUse) {
for (SILBasicBlock::iterator BBI = Inst, E = Inst->getParent()->begin();
BBI != E;) {
SILInstruction *TheInst = --BBI;
// If this instruction is unrelated to the alloc_box element, ignore it.
if (!NonLoadUses.count(TheInst))
continue;
// If we found the allocation itself, then we are loading something that
// is not defined at all yet.
if (TheInst == TheMemory)
return DI_No;
// If we're trying to compute a value (due to a load), check to see if the
// loaded pointer's access path and this potential store are to the same
// sub-element member. If not, this is a store to some other struct
// member. If it is to the right member, try to compute the available
// value that can replace the load.
if (AV) {
if (checkLoadAccessPathAndComputeValue(TheInst, *AV, *AccessPath))
continue;
}
return DI_Yes;
}
}
// Okay, the value isn't locally available in this block. Check to see if it
// is live in all predecessors and, if interested, collect the list of
// definitions we'll build SSA form from.
for (auto PI = InstBB->pred_begin(), E = InstBB->pred_end(); PI != E; ++PI) {
if (!isLiveOut(*PI))
return DI_No;
}
return DI_Yes;
}
/// If the specified instruction is a store of some value, check to see if it is
/// storing to something that intersects the access path of a load. If the two
/// accesses are non-intersecting, return true. Otherwise, attempt to compute
/// the accessed subelement value and return it in LoadResultVal.
bool ElementPromotion::
checkLoadAccessPathAndComputeValue(SILInstruction *Inst,
SILValue &LoadResultVal,
AccessPathTy &LoadAccessPath) {
// Get the access path for the store/assign.
AccessPathTy StoreAccessPath;
// We can always try to store forward from store and assign's.
if (isa<StoreInst>(Inst) || isa<AssignInst>(Inst)) {
ComputeAccessPath(Inst->getOperand(1), StoreAccessPath, TheMemory);
} else if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
// Temporarily gate copyaddr forwarding by a command line flag.
if (!EnableCopyAddrForwarding)
return false;
// We've already filtered to only look at stores to the box, this can't just
// be a "load" copy_addr from the box (unless it loads *and* stores).
ComputeAccessPath(CAI->getDest(), StoreAccessPath, TheMemory);
} else {
return false;
}
// Since loads are always completely scalarized, we know that the load access
// path will either be non-intersecting or that the load is deeper-or-equal in
// length than the store.
if (LoadAccessPath.size() < StoreAccessPath.size()) return true;
// In the case when the load is deeper (not equal) to the stored value, we'll
// have to do a number of extracts. Compute how many.
unsigned LoadUnwrapLevel = LoadAccessPath.size()-StoreAccessPath.size();
// Ignoring those extracts, the remaining access path needs to be exactly
// identical. If not, we have a non-intersecting access.
if (ArrayRef<StructOrTupleElement>(LoadAccessPath).slice(LoadUnwrapLevel) !=
ArrayRef<StructOrTupleElement>(StoreAccessPath))
return true;
// Set up a builder for anything we need to emit after this instruction.
SILBuilder B(Inst);
auto Loc = Inst->getLoc();
// Handle StoreInst and AssignInst, since they always have a value ready to
// use.
if (isa<StoreInst>(Inst) || isa<AssignInst>(Inst)) {
LoadResultVal = Inst->getOperand(0);
} else {
// Otherwise, this is a CopyAddr, which is a fused load+copy_value+store
// sequence. Explode out the copyaddr to its relevant parts so that we can
// get access to the intermediate value that is stored, and return the newly
// available value stored to memory.
// Move the insertion point of the builder to after the copy_addr, which is
// going to get removed when it is exploded.
B.setInsertionPoint(B.getInsertionBB(), ++B.getInsertionPoint());
// Explode it, replacing it with its composite pieces and getting the
// LoadResultVal.
explodeCopyAddr(cast<CopyAddrInst>(Inst), LoadResultVal);
}
// If the load is to a subelement of the available value, generate an extract
// value of the available value.
if (LoadUnwrapLevel != 0) {
ArrayRef<StructOrTupleElement> LoadPathRef(LoadAccessPath);
LoadResultVal = ExtractElement(LoadResultVal,
LoadPathRef.slice(0, LoadUnwrapLevel),
B, Loc);
}
return false;
}
/// Explode a copy_addr instruction of a loadable type into lower level
/// operations like loads, stores, retains, releases, copy_value, etc. This
/// returns the first instruction of the generated sequence.
void ElementPromotion::explodeCopyAddr(CopyAddrInst *CAI,
SILValue &StoredValue) {
SILType ValTy = CAI->getDest().getType().getObjectType();
auto &TL = CAI->getModule().getTypeLowering(ValTy);
// Keep track of the new instructions emitted.
SmallVector<SILInstruction*, 4> NewInsts;
SILBuilder B(CAI, &NewInsts);
// Use type lowering to lower the copyaddr into a load sequence + store
// sequence appropriate for the type.
StoredValue = TL.emitLoadOfCopy(B, CAI->getLoc(), CAI->getSrc(),
CAI->isTakeOfSrc());
TL.emitStoreOfCopy(B, CAI->getLoc(), StoredValue, CAI->getDest(),
CAI->isInitializationOfDest());
// Next, remove the copy_addr itself.
CAI->eraseFromParent();
// Update our internal state for this being gone.
NonLoadUses.erase(CAI);
// Remove the copy_addr from Uses.
UseKind CopyAddrKind = Release;
for (auto &Use : Uses) {
if (Use.first == CAI) {
CopyAddrKind = Use.second;
Use.first = nullptr;
break;
}
}
assert(CopyAddrKind != Release && "Didn't find entry for copyaddr?");
assert((CopyAddrKind == Store || CopyAddrKind == PartialStore) &&
"Expected copy_addrs that store");
// Now that we've emitted a bunch of instructions, including a load and store
// but also including other stuff, update the internal state of
// ElementPromotion to reflect them.
// Update the instructions that touch the memory. NewInst can grow as this
// iterates, so we can't use a foreach loop.
for (unsigned i = 0; i != NewInsts.size(); ++i) {
auto *NewInst = NewInsts[i];
switch (NewInst->getKind()) {
default:
NewInst->dump();
assert(0 && "Unknown instruction generated by copy_addr lowering");
case ValueKind::StoreInst:
Uses.push_back({ NewInst, CopyAddrKind });
NonLoadUses.insert(NewInst);
continue;
case ValueKind::LoadInst: {
auto *LI = cast<LoadInst>(NewInst);
// If this is the load of the input, ignore it. Note that copy_addrs can
// have both their input and result in the same memory object.
AccessPathTy NewLoadAccessPath;
if (!TryComputingAccessPath(LI->getOperand(), NewLoadAccessPath,
TheMemory))
continue;
// If the copy addr was of an aggregate type (a struct or tuple), we want
// to make sure to scalarize the load completely to make store->load
// forwarding simple.
if (isStructOrTupleToScalarize(LI->getType())) {
// Scalarize LoadInst. Compute the addresses of the elements, then
// scalarize it into smaller loads.
SmallVector<SILInstruction*, 4> ElementAddrs;
getScalarizedElementAddresses(LI->getOperand(), ElementAddrs);
SmallVector<SILInstruction*, 4> NewLoads;
SILValue Result = scalarizeLoad(LI, ElementAddrs, &NewLoads);
SILValue(LI, 0).replaceAllUsesWith(Result);
LI->eraseFromParent();
// Make sure we process the newly generated loads. They may need to be
// recursively scalarized and need to be registered as uses.
NewLoads.append(NewLoads.begin(), NewLoads.end());
continue;
}
// If it is a load from the memory object, track it as an access.
Uses.push_back({ NewInst, Load });
continue;
}
case ValueKind::CopyValueInst:
case ValueKind::StrongRetainInst:
case ValueKind::StrongReleaseInst:
case ValueKind::UnownedRetainInst:
case ValueKind::UnownedReleaseInst:
case ValueKind::DestroyValueInst: // Destroy overwritten value
// These are ignored.
continue;
}
}
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
namespace {
class ElementUseCollector {
SmallVectorImpl<ElementUses> &Uses;
/// When walking the use list, if we index into a struct element, keep track
/// of this, so that any indexes into tuple subelements don't affect the
/// element we attribute an access to.
bool InStructSubElement = false;
/// When walking the use list, if we index into an enum slice, keep track
/// of this.
bool InEnumSubElement = false;
public:
ElementUseCollector(SmallVectorImpl<ElementUses> &Uses)
: Uses(Uses) {
}
/// This is the main entry point for the use walker.
void collectUses(SILValue Pointer, unsigned BaseElt);
private:
void addElementUses(unsigned BaseElt, SILType UseTy,
SILInstruction *User, UseKind Kind);
void collectElementUses(SILInstruction *ElementPtr, unsigned BaseElt);
};
} // end anonymous namespace
/// addElementUses - An operation (e.g. load, store, inout use, etc) on a value
/// acts on all of the aggregate elements in that value. For example, a load
/// of $*(Int,Int) is a use of both Int elements of the tuple. This is a helper
/// to keep the Uses data structure up to date for aggregate uses.
void ElementUseCollector::addElementUses(unsigned BaseElt, SILType UseTy,
SILInstruction *User, UseKind Kind) {
// If we're in a subelement of a struct or enum, just mark the struct, not
// things that come after it in a parent tuple.
unsigned Slots = 1;
if (!InStructSubElement && !InEnumSubElement)
Slots = getElementCount(UseTy.getSwiftRValueType());
for (unsigned i = 0; i != Slots; ++i)
Uses[BaseElt+i].push_back({ User, Kind });
}
/// Given a tuple_element_addr or struct_element_addr, compute the new BaseElt
/// implicit in the selected member, and recursively add uses of the
/// instruction.
void ElementUseCollector::
collectElementUses(SILInstruction *ElementPtr, unsigned BaseElt) {
// struct_element_addr P, #field indexes into the current element.
if (auto *SEAI = dyn_cast<StructElementAddrInst>(ElementPtr)) {
// Set the "InStructSubElement" flag and recursively process the uses.
llvm::SaveAndRestore<bool> X(InStructSubElement, true);
collectUses(SILValue(SEAI, 0), BaseElt);
return;
}
auto *TEAI = cast<TupleElementAddrInst>(ElementPtr);
// If we're walking into a tuple within a struct, don't adjust the BaseElt.
// the uses hanging off the tuple_element_addr are going to be counted as uses
// of the struct itself.
if (InStructSubElement)
return collectUses(SILValue(TEAI, 0), BaseElt);
auto RValueType = TEAI->getOperand().getType().getSwiftRValueType();
// tuple_element_addr P, 42 indexes into the current element. Recursively
// process its uses with the adjusted element number.
unsigned FieldNo = TEAI->getFieldNo();
auto *TT = RValueType->castTo<TupleType>();
unsigned NewBaseElt = BaseElt;
for (unsigned i = 0; i != FieldNo; ++i) {
CanType EltTy = TT->getElementType(i)->getCanonicalType();
NewBaseElt += getElementCount(EltTy);
}
collectUses(SILValue(TEAI, 0), NewBaseElt);
}
void ElementUseCollector::collectUses(SILValue Pointer, unsigned BaseElt) {
assert(Pointer.getType().isAddress() &&
"Walked through the pointer to the value?");
SILType PointeeType = Pointer.getType().getObjectType();
/// This keeps track of instructions in the use list that touch multiple
/// elements and should be scalarized. This is done as a second phase to
/// avoid invalidating the use iterator.
///
SmallVector<SILInstruction*, 4> UsesToScalarize;
for (auto UI : Pointer.getUses()) {
auto *User = cast<SILInstruction>(UI->getUser());
// Instructions that compute a subelement are handled by a helper.
if (isa<TupleElementAddrInst>(User) || isa<StructElementAddrInst>(User)) {
collectElementUses(User, BaseElt);
continue;
}
// Loads are a use of the value.
if (isa<LoadInst>(User)) {
if (isStructOrTupleToScalarize(PointeeType))
UsesToScalarize.push_back(User);
else
Uses[BaseElt].push_back({User, UseKind::Load});
continue;
}
if (isa<LoadWeakInst>(User)) {
Uses[BaseElt].push_back({User, UseKind::Load});
continue;
}
// Stores *to* the allocation are writes.
if ((isa<StoreInst>(User) || isa<AssignInst>(User) ||
isa<StoreWeakInst>(User)) &&
UI->getOperandNumber() == 1) {
// We only scalarize stores of aggregate stores of tuples to their
// elements, we do not scalarize stores of structs to their elements.
if (PointeeType.is<TupleType>()) {
assert(!isa<StoreWeakInst>(User) &&
"Can't weak store a struct or tuple");
UsesToScalarize.push_back(User);
} else {
auto Kind = InStructSubElement ? UseKind::PartialStore : UseKind::Store;
Uses[BaseElt].push_back({ User, Kind });
}
continue;
}
if (isa<CopyAddrInst>(User)) {
// If this is the source of the copy_addr, then this is a load. If it is
// the destination, then this is a store.
auto Kind = InStructSubElement ? UseKind::PartialStore : UseKind::Store;
if (UI->getOperandNumber() == 0) Kind = UseKind::Load;
addElementUses(BaseElt, PointeeType, User, Kind);
continue;
}
// Initializations are definitions of the whole thing. This is currently
// used in constructors and should go away someday.
if (isa<InitializeVarInst>(User)) {
auto Kind = InStructSubElement ? UseKind::PartialStore : UseKind::Store;
addElementUses(BaseElt, PointeeType, User, Kind);
continue;
}
// The apply instruction does not capture the pointer when it is passed
// through [inout] arguments or for indirect returns. InOut arguments are
// treated as uses and may-store's, but an indirect return is treated as a
// full store.
//
// Note that partial_apply instructions always close over their argument.
//
if (auto *Apply = dyn_cast<ApplyInst>(User)) {
SILType FnTy = Apply->getSubstCalleeType();
SILFunctionType *FTI = FnTy.getFunctionTypeInfo(Apply->getModule());
unsigned ArgumentNumber = UI->getOperandNumber()-1;
auto Param = FTI->getParameters()[ArgumentNumber];
// If this is an indirect return slot, it is a store.
if (Param.isIndirectResult()) {
assert(!InStructSubElement && "We're initializing sub-members?");
addElementUses(BaseElt, PointeeType, User, UseKind::Store);
continue;
}
// Otherwise, check for @inout.
if (Param.isIndirectInOut()) {
addElementUses(BaseElt, PointeeType, User, UseKind::InOutUse);
continue;
}
// Otherwise, it is an escape.
}
// enum_data_addr is treated like a tuple_element_addr or other instruction
// that is looking into the memory object (i.e., the memory object needs to
// be explicitly initialized by a copy_addr or some other use of the
// projected address).
if (isa<EnumDataAddrInst>(User)) {
assert(!InStructSubElement && !InEnumSubElement &&
"enum_data_addr shouldn't apply to subelements");
// Keep track of the fact that we're inside of an enum. This informs our
// recursion that tuple
llvm::SaveAndRestore<bool> X(InEnumSubElement, true);
collectUses(SILValue(User, 0), BaseElt);
continue;
}
// init_existential is modeled as an initialization store, where the uses
// are treated as subelement accesses.
if (isa<InitExistentialInst>(User)) {
assert(!InStructSubElement && !InEnumSubElement &&
"init_existential should not apply to subelements");
Uses[BaseElt].push_back({ User, UseKind::Store });
// Set the "InStructSubElement" flag (so we don't consider stores to be
// full definitions) and recursively process the uses.
llvm::SaveAndRestore<bool> X(InStructSubElement, true);
collectUses(SILValue(User, 0), BaseElt);
continue;
}
// inject_enum_addr is treated as a store unconditionally.
if (isa<InjectEnumAddrInst>(User)) {
assert(!InStructSubElement &&
"inject_enum_addr the subelement of a struct unless in a ctor");
Uses[BaseElt].push_back({ User, UseKind::Store });
continue;
}
// upcast_existential is modeled as a load or store depending on which
// operand we're looking at.
if (isa<UpcastExistentialInst>(User)) {
if (UI->getOperandNumber() == 1)
Uses[BaseElt].push_back({ User, UseKind::Store });
else
Uses[BaseElt].push_back({ User, UseKind::Load });
continue;
}
// project_existential is a use of the protocol value, so it is modeled as a
// load.
if (isa<ProjectExistentialInst>(User) || isa<ProtocolMethodInst>(User)) {
Uses[BaseElt].push_back({User, UseKind::Load});
// TODO: Is it safe to ignore all uses of the project_existential?
continue;
}
// Otherwise, the use is something complicated, it escapes.
addElementUses(BaseElt, PointeeType, User, UseKind::Escape);
}
// Now that we've walked all of the immediate uses, scalarize any elements
// that we need to for canonicalization or analysis reasons.
if (!UsesToScalarize.empty()) {
SmallVector<SILInstruction*, 4> ElementAddrs;
getScalarizedElementAddresses(Pointer, ElementAddrs);
SmallVector<SILValue, 4> ElementTmps;
for (auto *User : UsesToScalarize) {
ElementTmps.clear();
DEBUG(llvm::errs() << " *** Scalarizing: " << *User << "\n");
// Scalarize LoadInst
if (auto *LI = dyn_cast<LoadInst>(User)) {
SILValue Result = scalarizeLoad(LI, ElementAddrs);
SILValue(LI, 0).replaceAllUsesWith(Result);
LI->eraseFromParent();
continue;
}
SILBuilder B(User);
// Scalarize AssignInst
if (auto *AI = dyn_cast<AssignInst>(User)) {
getScalarizedElements(AI->getOperand(0), ElementTmps, AI->getLoc(), B);
for (unsigned i = 0, e = ElementAddrs.size(); i != e; ++i)
B.createAssign(AI->getLoc(), ElementTmps[i], ElementAddrs[i]);
AI->eraseFromParent();
continue;
}
// Scalarize StoreInst
auto *SI = cast<StoreInst>(User);
getScalarizedElements(SI->getOperand(0), ElementTmps, SI->getLoc(), B);
for (unsigned i = 0, e = ElementAddrs.size(); i != e; ++i)
B.createStore(SI->getLoc(), ElementTmps[i], ElementAddrs[i]);
SI->eraseFromParent();
}
// Now that we've scalarized some stuff, recurse down into the newly created
// element address computations to recursively process it. This can cause
// further scalarization.
for (auto EltPtr : ElementAddrs)
collectElementUses(EltPtr, BaseElt);
}
}
static void processAllocBox(AllocBoxInst *ABI) {
DEBUG(llvm::errs() << "*** Definite Init looking at: " << *ABI << "\n");
// Set up the datastructure used to collect the uses of the alloc_box. The
// uses are bucketed up into the elements of the allocation that are being
// used. This matters for element-wise tuples and fragile structs.
SmallVector<ElementUses, 1> Uses;
Uses.resize(getElementCount(ABI->getElementType().getSwiftRValueType()));
// Walk the use list of the pointer, collecting them into the Uses array.
ElementUseCollector(Uses).collectUses(SILValue(ABI, 1), 0);
// Collect information about the retain count result as well.
for (auto UI : SILValue(ABI, 0).getUses()) {
auto *User = cast<SILInstruction>(UI->getUser());
// If this is a release, then remember it as such.
if (isa<StrongReleaseInst>(User)) {
for (auto &UseArray : Uses)
UseArray.push_back({ User, UseKind::Release });
}
}
// Process each scalar value in the uses array individually.
unsigned EltNo = 0;
for (auto &Elt : Uses)
ElementPromotion(ABI, EltNo++, Elt).doIt();
}
static void processAllocStack(AllocStackInst *ASI) {
DEBUG(llvm::errs() << "*** Definite Init looking at: " << *ASI << "\n");
// Set up the datastructure used to collect the uses of the alloc_box. The
// uses are bucketed up into the elements of the allocation that are being
// used. This matters for element-wise tuples and fragile structs.
SmallVector<ElementUses, 1> Uses;
Uses.resize(getElementCount(ASI->getElementType().getSwiftRValueType()));
// Walk the use list of the pointer, collecting them into the Uses array.
ElementUseCollector(Uses).collectUses(SILValue(ASI, 1), 0);
// Collect information about the retain count result as well.
for (auto UI : SILValue(ASI, 0).getUses()) {
auto *User = cast<SILInstruction>(UI->getUser());
// If this is a release or dealloc_stack, then remember it as such.
if (isa<StrongReleaseInst>(User) || isa<DeallocStackInst>(User)) {
for (auto &UseArray : Uses)
UseArray.push_back({ User, UseKind::Release });
}
}
// Process each scalar value in the uses array individually.
unsigned EltNo = 0;
for (auto &Elt : Uses)
ElementPromotion(ASI, EltNo++, Elt).doIt();
}
static void processMarkUninitialized(MarkUninitializedInst *MUI) {
DEBUG(llvm::errs() << "*** Definite Init looking at: " << *MUI << "\n");
// Set up the datastructure used to collect the uses of the
// mark_uninitialized. The uses are bucketed up into the elements of the
// allocation that are being used. This matters for element-wise tuples and
// fragile structs.
SmallVector<ElementUses, 1> Uses;
Uses.resize(getElementCount(MUI->getType().getObjectType()
.getSwiftRValueType()));
// Walk the use list of the pointer, collecting them into the Uses array.
ElementUseCollector(Uses).collectUses(SILValue(MUI, 0), 0);
// Process each scalar value in the uses array individually.
unsigned EltNo = 0;
for (auto &Elt : Uses)
ElementPromotion(MUI, EltNo++, Elt).doIt();
}
/// checkDefiniteInitialization - Check that all memory objects that require
/// initialization before use are properly set and transform the code as
/// required for flow-sensitive properties.
static void checkDefiniteInitialization(SILFunction &Fn) {
for (auto &BB : Fn) {
auto I = BB.begin(), E = BB.end();
while (I != E) {
if (auto *ABI = dyn_cast<AllocBoxInst>(I)) {
processAllocBox(ABI);
// Carefully move iterator to avoid invalidation problems.
++I;
if (ABI->use_empty())
ABI->eraseFromParent();
continue;
}
if (auto *ASI = dyn_cast<AllocStackInst>(I))
processAllocStack(ASI);
if (auto *MUI = dyn_cast<MarkUninitializedInst>(I))
processMarkUninitialized(MUI);
++I;
}
}
}
/// lowerRawSILOperations - There are a variety of raw-sil instructions like
/// 'assign' that are only used by this pass. Now that definite initialization
/// checking is done, remove them.
static void lowerRawSILOperations(SILFunction &Fn) {
for (auto &BB : Fn) {
auto I = BB.begin(), E = BB.end();
while (I != E) {
SILInstruction *Inst = I++;
// Unprocessed assigns just lower into assignments, not initializations.
if (auto *AI = dyn_cast<AssignInst>(Inst)) {
SILBuilder B(AI);
LowerAssignInstruction(B, AI, false, SILValue());
// Assign lowering may split the block. If it did,
// reset our iteration range to the block after the insertion.
if (B.getInsertionBB() != &BB)
I = E;
continue;
}
// mark_uninitialized just becomes a noop, resolving to its operand.
if (auto *MUI = dyn_cast<MarkUninitializedInst>(Inst)) {
SILValue(MUI, 0).replaceAllUsesWith(MUI->getOperand());
MUI->eraseFromParent();
continue;
}
// mark_function_escape just gets zapped.
if (isa<MarkFunctionEscapeInst>(Inst)) {
Inst->eraseFromParent();
continue;
}
}
}
}
/// performSILDefiniteInitialization - Perform definitive initialization
/// analysis and promote alloc_box uses into SSA registers for later SSA-based
/// dataflow passes.
void swift::performSILDefiniteInitialization(SILModule *M) {
for (auto &Fn : *M) {
// Walk through and promote all of the alloc_box's that we can.
checkDefiniteInitialization(Fn);
if (EnableCopyAddrForwarding)
Fn.dump();
// Lower raw-sil only instructions used by this pass, like "assign".
lowerRawSILOperations(Fn);
}
}