Files
swift-mirror/lib/AST/RequirementMachine/RewriteSystem.h
Holly Borla 7ce6504b93 [RequirementMachine] Avoid passing the requirement error vector through
initialization of the rewrite system.

Instead, the rewrite system can determine trivially redundant requirements
by finding structural requirements with no associated rewrite rules.
2022-03-10 13:13:50 -08:00

566 lines
17 KiB
C++

//===--- RewriteSystem.h - Generics with term rewriting ---------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_REWRITESYSTEM_H
#define SWIFT_REWRITESYSTEM_H
#include "swift/AST/Requirement.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerUnion.h"
#include "Debug.h"
#include "Diagnostics.h"
#include "RewriteLoop.h"
#include "Symbol.h"
#include "Term.h"
#include "Trie.h"
#include "TypeDifference.h"
namespace llvm {
class raw_ostream;
}
namespace swift {
namespace rewriting {
class PropertyMap;
class RewriteContext;
class RewriteSystem;
/// A rewrite rule that replaces occurrences of LHS with RHS.
///
/// LHS must be greater than RHS in the linear order over terms.
///
/// Out-of-line methods are documented in RewriteSystem.cpp.
class Rule final {
Term LHS;
Term RHS;
/// The written requirement ID, which can be used to index into the
/// \c WrittenRequirements array in the rewrite system to retrieve
/// the structural requirement.
Optional<unsigned> requirementID;
/// A 'permanent' rule cannot be deleted by homotopy reduction. These
/// do not correspond to generic requirements and are re-added when the
/// rewrite system is built.
unsigned Permanent : 1;
/// An 'explicit' rule is a generic requirement written by the user.
unsigned Explicit : 1;
/// An 'LHS simplified' rule's left hand side was reduced via another rule.
/// Set by simplifyLeftHandSides().
unsigned LHSSimplified : 1;
/// An 'RHS simplified' rule's right hand side can be reduced via another rule.
/// Set by simplifyRightHandSides().
unsigned RHSSimplified : 1;
/// A 'substitution simplified' rule's left hand side contains substitutions
/// which can be reduced via another rule.
/// Set by simplifyLeftHandSideSubstitutions().
unsigned SubstitutionSimplified : 1;
/// A 'redundant' rule was eliminated by homotopy reduction. Redundant rules
/// still participate in term rewriting, but they are not part of the minimal
/// set of requirements in a generic signature.
unsigned Redundant : 1;
/// A 'conflicting' rule is a property rule which cannot be satisfied by any
/// concrete type because it is mutually exclusive with some other rule.
/// An example would be a pair of concrete type rules:
///
/// T.[concrete: Int] => T
/// T.[concrete: String] => T
///
/// Conflicting rules are detected in property map construction, and are
/// dropped from the minimal set of requirements.
unsigned Conflicting : 1;
public:
Rule(Term lhs, Term rhs)
: LHS(lhs), RHS(rhs) {
Permanent = false;
Explicit = false;
LHSSimplified = false;
RHSSimplified = false;
SubstitutionSimplified = false;
Redundant = false;
Conflicting = false;
}
const Term &getLHS() const { return LHS; }
const Term &getRHS() const { return RHS; }
Optional<unsigned> getRequirementID() const {
return requirementID;
}
void setRequirementID(Optional<unsigned> requirementID) {
assert(!getRequirementID().hasValue());
this->requirementID = requirementID;
}
Optional<Symbol> isPropertyRule() const;
const ProtocolDecl *isProtocolConformanceRule() const;
const ProtocolDecl *isAnyConformanceRule() const;
bool isIdentityConformanceRule() const;
bool isProtocolRefinementRule() const;
bool isCircularConformanceRule() const;
/// See above for an explanation of these predicates.
bool isPermanent() const {
return Permanent;
}
bool isExplicit() const {
return Explicit;
}
bool isLHSSimplified() const {
return LHSSimplified;
}
bool isRHSSimplified() const {
return RHSSimplified;
}
bool isSubstitutionSimplified() const {
return SubstitutionSimplified;
}
bool isRedundant() const {
return Redundant;
}
bool isConflicting() const {
return Conflicting;
}
bool containsUnresolvedSymbols() const {
return (LHS.containsUnresolvedSymbols() ||
RHS.containsUnresolvedSymbols());
}
Optional<Identifier> isProtocolTypeAliasRule() const;
void markLHSSimplified() {
assert(!LHSSimplified);
LHSSimplified = true;
}
void markRHSSimplified() {
assert(!RHSSimplified);
RHSSimplified = true;
}
void markSubstitutionSimplified() {
assert(!SubstitutionSimplified);
SubstitutionSimplified = true;
}
void markPermanent() {
assert(!Explicit && !Permanent &&
"Permanent and explicit are mutually exclusive");
Permanent = true;
}
void markExplicit() {
assert(!Explicit && !Permanent &&
"Permanent and explicit are mutually exclusive");
Explicit = true;
}
void markRedundant() {
assert(!Redundant);
Redundant = true;
}
void markConflicting() {
// It's okay to mark a rule as conflicting multiple times, but it must not
// be a permanent rule.
assert(!Permanent && "Permanent rule should not conflict with anything");
Conflicting = true;
}
unsigned getDepth() const;
unsigned getNesting() const;
Optional<int> compare(const Rule &other, RewriteContext &ctx) const;
void dump(llvm::raw_ostream &out) const;
friend llvm::raw_ostream &operator<<(llvm::raw_ostream &out,
const Rule &rule) {
rule.dump(out);
return out;
}
};
/// Result type for RequirementMachine::computeCompletion().
enum class CompletionResult {
/// Completion was successful.
Success,
/// Maximum number of rules exceeded.
MaxRuleCount,
/// Maximum rule length exceeded.
MaxRuleLength,
/// Maximum concrete type nesting depth exceeded.
MaxConcreteNesting
};
/// A term rewrite system for working with types in a generic signature.
///
/// Out-of-line methods are documented in RewriteSystem.cpp.
class RewriteSystem final {
/// Rewrite context for memory allocation.
RewriteContext &Context;
/// If this is a rewrite system for a connected component of protocols,
/// this array is non-empty. Otherwise, it is a rewrite system for a
/// top-level generic signature and this array is empty.
ArrayRef<const ProtocolDecl *> Protos;
/// The requirements written in source code.
std::vector<StructuralRequirement> WrittenRequirements;
/// The rules added so far, including rules from our client, as well
/// as rules introduced by the completion procedure.
std::vector<Rule> Rules;
/// A prefix trie of rule left hand sides to optimize lookup. The value
/// type is an index into the Rules array defined above.
Trie<unsigned, MatchKind::Shortest> Trie;
/// The set of protocols known to this rewrite system. The boolean associated
/// with each key is true if the protocol is part of the 'Protos' set above,
/// otherwies it is false.
///
/// See RuleBuilder::ProtocolMap for a more complete explanation. For the most
/// part, this is only used while building the rewrite system, but conditional
/// requirement inference forces us to be able to add new protocols to the
/// rewrite system after the fact, so this little bit of RuleBuilder state
/// outlives the initialization phase.
llvm::DenseMap<const ProtocolDecl *, bool> ProtocolMap;
DebugOptions Debug;
/// Whether we've initialized the rewrite system with a call to initialize().
unsigned Initialized : 1;
/// Whether we've computed the confluent completion at least once.
///
/// It might be computed multiple times if the property map's concrete type
/// unification procedure adds new rewrite rules.
unsigned Complete : 1;
/// Whether we've minimized the rewrite system.
unsigned Minimized : 1;
/// If set, the completion procedure records rewrite loops describing the
/// identities among rewrite rules discovered while resolving critical pairs.
unsigned RecordLoops : 1;
public:
explicit RewriteSystem(RewriteContext &ctx);
~RewriteSystem();
RewriteSystem(const RewriteSystem &) = delete;
RewriteSystem(RewriteSystem &&) = delete;
RewriteSystem &operator=(const RewriteSystem &) = delete;
RewriteSystem &operator=(RewriteSystem &&) = delete;
/// Return the rewrite context used for allocating memory.
RewriteContext &getRewriteContext() const { return Context; }
llvm::DenseMap<const ProtocolDecl *, bool> &getProtocolMap() {
return ProtocolMap;
}
DebugOptions getDebugOptions() const { return Debug; }
void initialize(bool recordLoops, ArrayRef<const ProtocolDecl *> protos,
ArrayRef<StructuralRequirement> writtenRequirements,
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
std::vector<std::tuple<MutableTerm, MutableTerm, Optional<unsigned>>> &&requirementRules);
ArrayRef<const ProtocolDecl *> getProtocols() const {
return Protos;
}
bool isKnownProtocol(const ProtocolDecl *proto) const {
return ProtocolMap.find(proto) != ProtocolMap.end();
}
unsigned getRuleID(const Rule &rule) const {
assert((unsigned)(&rule - &*Rules.begin()) < Rules.size());
return (unsigned)(&rule - &*Rules.begin());
}
ArrayRef<Rule> getRules() const {
return Rules;
}
Rule &getRule(unsigned ruleID) {
return Rules[ruleID];
}
const Rule &getRule(unsigned ruleID) const {
return Rules[ruleID];
}
bool addRule(MutableTerm lhs, MutableTerm rhs,
const RewritePath *path=nullptr);
bool addPermanentRule(MutableTerm lhs, MutableTerm rhs);
bool addExplicitRule(MutableTerm lhs, MutableTerm rhs,
Optional<unsigned> requirementID);
bool simplify(MutableTerm &term, RewritePath *path=nullptr) const;
Optional<unsigned>
simplifySubstitutions(Term baseTerm, Symbol symbol, const PropertyMap *map,
RewritePath *path=nullptr);
//////////////////////////////////////////////////////////////////////////////
///
/// Completion
///
//////////////////////////////////////////////////////////////////////////////
/// Pairs of rules which have already been checked for overlap.
llvm::DenseSet<std::pair<unsigned, unsigned>> CheckedOverlaps;
std::pair<CompletionResult, unsigned>
computeConfluentCompletion(unsigned maxRuleCount,
unsigned maxRuleLength);
void simplifyLeftHandSides();
void simplifyRightHandSides();
void simplifyLeftHandSideSubstitutions(const PropertyMap *map);
enum ValidityPolicy {
AllowInvalidRequirements,
DisallowInvalidRequirements
};
void verifyRewriteRules(ValidityPolicy policy) const;
//////////////////////////////////////////////////////////////////////////////
///
/// Diagnostics
///
//////////////////////////////////////////////////////////////////////////////
void computeRedundantRequirementDiagnostics(SmallVectorImpl<RequirementError> &errors);
private:
struct CriticalPair {
MutableTerm LHS;
MutableTerm RHS;
RewritePath Path;
CriticalPair(MutableTerm lhs, MutableTerm rhs, RewritePath path)
: LHS(lhs), RHS(rhs), Path(path) {}
};
bool
computeCriticalPair(
ArrayRef<Symbol>::const_iterator from,
const Rule &lhs, const Rule &rhs,
std::vector<CriticalPair> &pairs,
std::vector<RewriteLoop> &loops) const;
//////////////////////////////////////////////////////////////////////////////
///
/// Relations are "pseudo-rules" introduced by the property map
///
//////////////////////////////////////////////////////////////////////////////
public:
/// The left hand side is known to be smaller than the right hand side.
using Relation = std::pair<Term, Term>;
private:
/// The map's values are indices into the vector. The map is used for
/// uniquing, then the index is returned and lookups are performed into
/// the vector.
llvm::DenseMap<Relation, unsigned> RelationMap;
std::vector<Relation> Relations;
public:
unsigned recordRelation(Term lhs, Term rhs);
Relation getRelation(unsigned index) const;
unsigned recordRelation(Symbol lhs, Symbol rhs);
unsigned recordConcreteConformanceRelation(
Symbol concreteSymbol, Symbol protocolSymbol,
Symbol concreteConformanceSymbol);
unsigned recordConcreteTypeWitnessRelation(
Symbol concreteConformanceSymbol,
Symbol associatedTypeSymbol,
Symbol typeWitnessSymbol);
unsigned recordSameTypeWitnessRelation(
Symbol concreteConformanceSymbol,
Symbol associatedTypeSymbol);
private:
/// The map's values are indices into the vector. The map is used for
/// uniquing, then the index is returned and lookups are performed into
/// the vector.
llvm::DenseMap<std::tuple<Term, Symbol, Symbol>, unsigned> DifferenceMap;
std::vector<TypeDifference> Differences;
/// Avoid duplicate work when simplifying substitutions or rebuilding
/// the property map.
llvm::DenseSet<unsigned> CheckedDifferences;
public:
unsigned recordTypeDifference(const TypeDifference &difference);
bool
computeTypeDifference(Term term, Symbol lhs, Symbol rhs,
Optional<unsigned> &lhsDifferenceID,
Optional<unsigned> &rhsDifferenceID);
const TypeDifference &getTypeDifference(unsigned index) const;
void processTypeDifference(const TypeDifference &difference,
unsigned differenceID,
unsigned lhsRuleID,
const RewritePath &rhsPath);
void buildRewritePathForJoiningTerms(MutableTerm lhsTerm,
MutableTerm rhsTerm,
RewritePath *path) const;
void buildRewritePathForUnifier(Term key,
unsigned lhsRuleID,
const RewritePath &rhsPath,
RewritePath *path) const;
private:
//////////////////////////////////////////////////////////////////////////////
///
/// Homotopy reduction
///
//////////////////////////////////////////////////////////////////////////////
/// Homotopy generators for this rewrite system. These are the
/// rewrite loops which rewrite a term back to itself.
///
/// In the category theory interpretation, a rewrite rule is a generating
/// 2-cell, and a rewrite path is a 2-cell made from a composition of
/// generating 2-cells.
///
/// Homotopy generators, in turn, are 3-cells. The special case of a
/// 3-cell discovered during completion can be viewed as two parallel
/// 2-cells; this is actually represented as a single 2-cell forming a
/// loop around a base point.
///
/// This data is used by the homotopy reduction and minimal conformances
/// algorithms.
std::vector<RewriteLoop> Loops;
/// A list of pairs where the first element is a rule number and the second
/// element is an equivalent rewrite path in terms of non-redundant rules.
std::vector<std::pair<unsigned, RewritePath>> RedundantRules;
/// Pairs of rules which together preclude a concrete type from satisfying the
/// requirements of the generic signature.
///
/// Conflicts are detected in property map construction. Conflicts are
/// diagnosed and one of the rules in each pair is dropped during
/// minimization.
std::vector<std::pair<unsigned, unsigned>> ConflictingRules;
void propagateExplicitBits();
void propagateRedundantRequirementIDs();
void processConflicts();
Optional<std::pair<unsigned, unsigned>>
findRuleToDelete(llvm::function_ref<bool(unsigned)> isRedundantRuleFn);
void deleteRule(unsigned ruleID, const RewritePath &replacementPath);
void performHomotopyReduction(
llvm::function_ref<bool(unsigned)> isRedundantRuleFn);
void computeMinimalConformances(
llvm::DenseSet<unsigned> &redundantConformances);
void normalizeRedundantRules();
public:
void recordRewriteLoop(MutableTerm basepoint,
RewritePath path);
void recordConflict(unsigned existingRuleID, unsigned newRuleID);
bool isInMinimizationDomain(const ProtocolDecl *proto) const;
ArrayRef<RewriteLoop> getLoops() const {
return Loops;
}
void minimizeRewriteSystem();
bool hadError() const;
struct MinimizedProtocolRules {
std::vector<unsigned> Requirements;
std::vector<unsigned> TypeAliases;
};
llvm::DenseMap<const ProtocolDecl *, MinimizedProtocolRules>
getMinimizedProtocolRules() const;
std::vector<unsigned> getMinimizedGenericSignatureRules() const;
private:
void verifyRewriteLoops() const;
void verifyRedundantConformances(
const llvm::DenseSet<unsigned> &redundantConformances) const;
void verifyMinimizedRules(
const llvm::DenseSet<unsigned> &redundantConformances) const;
public:
void dump(llvm::raw_ostream &out) const;
};
} // end namespace rewriting
} // end namespace swift
#endif