mirror of
https://github.com/apple/swift.git
synced 2025-12-25 12:15:36 +01:00
Previously, SSADestroyHoisting was attempting to check whether an unknown use of a variable was an address_to_pointer. UniqueStorageUseVisitor, however, doesn't call back with that instruction. Instead, it adds its uses to the stack of uses to visit. Instead, we need to check whether the use was produced by an address_to_pointer or more generally whether it's a BuiltinRawPointerType.
913 lines
34 KiB
C++
913 lines
34 KiB
C++
//===--- SSADestroyHoisting.cpp - SSA-based destroy hoisting --------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This is a light-weight utility for hoisting destroy instructions for unique
|
|
/// storage--typically alloc_stack or owned incoming arguments. Shrinking an
|
|
/// object's memory lifetime can allow removal of copy_addr and other
|
|
/// optimization.
|
|
///
|
|
/// This algorithm is:
|
|
/// - Incremental
|
|
/// - SSA-based
|
|
/// - Canonical
|
|
/// - Free from alias analysis
|
|
///
|
|
/// Incremental: Handle a single in-memory value at a time. The value's address
|
|
/// typically originates from an alloc_stack or owned function argument
|
|
/// (@in). It does not depend on any analysis result, which would need to be
|
|
/// preserved by a pass.
|
|
///
|
|
/// SSA-based: Starting with uniquely identified (exclusive) storage,
|
|
/// discovers all known uses based on recognizable SIL patterns. Bails-out on
|
|
/// unknown uses. Derivation of a raw pointer is considered a "known use".
|
|
///
|
|
/// Canonical: Assumes that aggregate values, which are allocated in a single
|
|
/// operation, are also destroyed in a single operation. This canonical form is
|
|
/// not fully enforced, so violations result in a bail-out.
|
|
///
|
|
/// Free from alias analysis: this only handles exclusively identified
|
|
/// addresses to owned values, which cannot be derived from object references.
|
|
///
|
|
/// ----------------------------------------------------------------------------
|
|
///
|
|
/// DestroyAddr hoisting stops at either a direct use, or a deinitialization
|
|
/// barrier. Direct uses are checked by guaranteeing that all storage uses are
|
|
/// known.
|
|
///
|
|
/// Deinitialization barriers:
|
|
///
|
|
/// Case #1. Weak reference loads: Any load of a weak or unowned referenceto an
|
|
/// object that may be deallocated when this variable is destroyed. Any use of
|
|
/// the weak reference is considered a barrier, even if the referenced object is
|
|
/// not accessed. This only applies to loads within the current lexical
|
|
/// scope. Programmers must properly check escaping weak references for null.
|
|
///
|
|
/// Case #2. Derived pointers: Any memory access based on a raw pointer to
|
|
/// memory that may be deallocated when this variable is destroyed. This only
|
|
/// applies to pointer access within this variable's lexical scope. Programmers
|
|
/// must manage escaping pointers explicitly via Builtin.fixLifetime.
|
|
///
|
|
/// Case #3. Synchronization points: If the object potentially has a custom
|
|
/// deinitializer with side effects, then any external function call, which may
|
|
/// contain a memory barrier or system call, prevents hoisting. If the external
|
|
/// function call is annotated as "read-only", then it is safe. Since Swift does
|
|
/// not directly support atomics, no SIL instructions are currently considered
|
|
/// synchronization points.
|
|
///
|
|
/// ----------------------------------------------------------------------------
|
|
///
|
|
/// TODO: replace the destroy hoisting in CopyForwarding::forwardCopiesOf and
|
|
/// ensure related tests still pass. This requires hoisting over certain
|
|
/// calls. We can do this as long as the call takes a copy of the storage value
|
|
/// as an argument. The copy will be guarded by the callee's lexical scope, so
|
|
/// the deinits cannot be invoked by the hoisted destroy (in fact it should be
|
|
/// possible to eliminate the destroy).
|
|
///
|
|
/// TODO: As a utility, hoistDestroys should be repeatable. Subsequent runs
|
|
/// without changing input should have no effect, including putting new
|
|
/// instructions on a worklist. MergeDestroys currently breaks this because the
|
|
/// destroys are inserted first before they are merged. This will trigger the
|
|
/// createdNewInst callback and cause hadCallbackInvocation() to return true
|
|
/// even when the merged result is identical to the input. Fix this by keeping
|
|
/// track of the newly created destroys, defer calling createdNewInst, and defer
|
|
/// deleting dead instructions. When merging, check if the merged destroy is
|
|
/// inserted at the old destroy to reuse it and bypass triggering callbacks.
|
|
///
|
|
/// TODO: enforce an invariant that destroy_addrs jointly post-dominate any
|
|
/// exclusive owned address, that would simplify the algorithm.
|
|
///
|
|
/// ===--------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "ssa-destroy-hoisting"
|
|
|
|
#include "swift/Basic/GraphNodeWorklist.h"
|
|
#include "swift/Basic/SmallPtrSetVector.h"
|
|
#include "swift/SIL/BasicBlockDatastructures.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/SILBasicBlock.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/Reachability.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
|
|
|
|
using namespace swift;
|
|
|
|
namespace {
|
|
|
|
/// Step #1: Find all known uses of the unique storage object.
|
|
struct KnownStorageUses : UniqueStorageUseVisitor {
|
|
bool preserveDebugInfo;
|
|
|
|
SmallPtrSet<SILInstruction *, 16> storageUsers;
|
|
SmallVector<SILInstruction *, 4> originalDestroys;
|
|
SmallPtrSet<SILInstruction *, 4> debugInsts;
|
|
|
|
KnownStorageUses(AccessStorage storage, SILFunction *function)
|
|
: UniqueStorageUseVisitor(storage, function),
|
|
preserveDebugInfo(function->preserveDebugInfo()) {}
|
|
|
|
bool empty() const {
|
|
return storageUsers.empty() && originalDestroys.empty()
|
|
&& debugInsts.empty();
|
|
}
|
|
|
|
SILFunction *getFunction() const { return function; }
|
|
|
|
AccessStorage getStorage() const { return storage; }
|
|
|
|
// Return true if all leaf users of the root address are recognized.
|
|
//
|
|
// Populate addressUsers, originalDestroys, and debugInsts.
|
|
bool findUses() {
|
|
assert(empty() && "already initialized");
|
|
|
|
return UniqueStorageUseVisitor::findUses(*this);
|
|
}
|
|
|
|
protected:
|
|
KnownStorageUses(KnownStorageUses const &) = delete;
|
|
KnownStorageUses &operator=(KnownStorageUses const &) = delete;
|
|
|
|
bool recordUser(SILInstruction *user) {
|
|
storageUsers.insert(user);
|
|
return true;
|
|
}
|
|
|
|
bool visitBeginAccess(Operand *use) override {
|
|
auto *bai = cast<BeginAccessInst>(use->getUser());
|
|
for (auto *eai : bai->getEndAccesses()) {
|
|
storageUsers.insert(eai);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool visitLoad(Operand *use) override { return recordUser(use->getUser()); }
|
|
|
|
bool visitStore(Operand *use) override { return recordUser(use->getUser()); }
|
|
|
|
bool visitDestroy(Operand *use) override {
|
|
originalDestroys.push_back(use->getUser());
|
|
return true;
|
|
}
|
|
|
|
bool visitDealloc(Operand *use) override { return true; }
|
|
|
|
bool visitDebugUse(Operand *use) override {
|
|
if (preserveDebugInfo) {
|
|
storageUsers.insert(use->getUser());
|
|
} else {
|
|
debugInsts.insert(use->getUser());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool visitUnknownUse(Operand *use) override {
|
|
auto *user = use->getUser();
|
|
if (isa<BuiltinRawPointerType>(use->get()->getType().getASTType())) {
|
|
// Destroy hoisting considers address_to_pointer to be a leaf use because
|
|
// any potential pointer access is already considered to be a
|
|
// deinitializtion barrier. Consequently, any instruction that uses a
|
|
// value produced by address_to_pointer isn't regarded as a storage use.
|
|
return true;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "Unknown user " << *user);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// Step #2: Perform backward dataflow from KnownStorageUses.originalDestroys to
|
|
/// KnownStorageUses.storageUsers to find deinitialization barriers.
|
|
class DeinitBarriers {
|
|
public:
|
|
// Data flow state: blocks whose beginning is backward reachable from a
|
|
// destroy without first reaching a barrier or storage use.
|
|
SmallPtrSetVector<SILBasicBlock *, 4> destroyReachesBeginBlocks;
|
|
|
|
// Data flow state: blocks whose end is backward reachable from a destroy
|
|
// without first reaching a barrier or storage use.
|
|
SmallPtrSet<SILBasicBlock *, 4> destroyReachesEndBlocks;
|
|
|
|
// Deinit barriers or storage uses within a block, reachable from a destroy.
|
|
SmallVector<SILInstruction *, 4> barriers;
|
|
|
|
// Debug instructions that are no longer within this lifetime after shrinking.
|
|
SmallVector<SILInstruction *, 4> deadUsers;
|
|
|
|
// The access scopes which are hoisting barriers.
|
|
//
|
|
// They are hoisting barriers if they include any barriers. We need to be
|
|
// sure not to hoist a destroy_addr into an access scope and by doing so cause
|
|
// a deinit which had previously executed outside an access scope to start
|
|
// executing within it--that could violate exclusivity.
|
|
llvm::SmallPtrSet<BeginAccessInst *, 8> barrierAccessScopes;
|
|
|
|
explicit DeinitBarriers(bool ignoreDeinitBarriers,
|
|
const KnownStorageUses &knownUses,
|
|
SILFunction *function)
|
|
: ignoreDeinitBarriers(ignoreDeinitBarriers), knownUses(knownUses) {
|
|
auto rootValue = knownUses.getStorage().getRoot();
|
|
assert(rootValue && "HoistDestroys requires a single storage root");
|
|
// null for function args
|
|
storageDefInst = rootValue->getDefiningInstruction();
|
|
}
|
|
|
|
void compute() {
|
|
FindBarrierAccessScopes(*this).solveBackward();
|
|
if (barrierAccessScopes.size() == 0)
|
|
return;
|
|
destroyReachesBeginBlocks.clear();
|
|
destroyReachesEndBlocks.clear();
|
|
barriers.clear();
|
|
deadUsers.clear();
|
|
DestroyReachability(*this).solveBackward();
|
|
}
|
|
|
|
bool isBarrier(SILInstruction *instruction) const {
|
|
return classificationIsBarrier(
|
|
classifyInstruction(instruction, ignoreDeinitBarriers, storageDefInst,
|
|
barrierAccessScopes, knownUses));
|
|
};
|
|
|
|
private:
|
|
DeinitBarriers(DeinitBarriers const &) = delete;
|
|
DeinitBarriers &operator=(DeinitBarriers const &) = delete;
|
|
|
|
bool ignoreDeinitBarriers;
|
|
const KnownStorageUses &knownUses;
|
|
SILInstruction *storageDefInst = nullptr;
|
|
|
|
enum class Classification { DeadUser, Barrier, Other };
|
|
|
|
Classification classifyInstruction(SILInstruction *inst) {
|
|
return classifyInstruction(inst, ignoreDeinitBarriers, storageDefInst,
|
|
barrierAccessScopes, knownUses);
|
|
}
|
|
|
|
static Classification classifyInstruction(
|
|
SILInstruction *inst, bool ignoreDeinitBarriers,
|
|
SILInstruction *storageDefInst,
|
|
const llvm::SmallPtrSetImpl<BeginAccessInst *> &barrierAccessScopes,
|
|
const KnownStorageUses &knownUses);
|
|
|
|
void visitedInstruction(SILInstruction *instruction,
|
|
Classification classification);
|
|
|
|
static bool classificationIsBarrier(Classification classification);
|
|
|
|
// Implements BackwardReachability::BlockReachability
|
|
//
|
|
// Determine which end_access instructions must be treated as barriers.
|
|
//
|
|
// An end_access is a barrier if the access scope it ends contains any deinit
|
|
// barriers. Suppose that it weren't treated as a barrier. Then the
|
|
// destroy_addr would be hoisted up to the in-scope deinit barrier. That
|
|
// could result in a deinit being executed within the scope which was
|
|
// previously executed outside it. Executing a deinit in the scope could
|
|
// violate exclusivity.
|
|
//
|
|
// So before determining what ALL the barriers are, we need to determine which
|
|
// end_access instructions are barriers. Do that by observing which access
|
|
// scopes are open when encountering a barrier. The access scopes which are
|
|
// open are those for which we've seen an end_access instruction when walking
|
|
// backwards from the destroy_addrs. Add these access scopes to
|
|
// DeinitBarriers::barrierAccessScopes.
|
|
//
|
|
// Tracking which access scopes are open consists of two parts:
|
|
// (1) in-block analysis
|
|
// (2) cross-block analysis
|
|
// For (1), maintain a set of access scopes which are currently open. Insert
|
|
// and erase scopes when seeing begin_access and end_access instructions when
|
|
// they're visited in checkReachableBarrier. A stack can't be used here
|
|
// because access scopes are not necessarily nested.
|
|
// For (2), when entering a block, the access scope is the union of all the
|
|
// open access scopes in the block's predecessors.
|
|
class FindBarrierAccessScopes {
|
|
DeinitBarriers &result;
|
|
llvm::DenseMap<SILBasicBlock *, llvm::SmallPtrSet<BeginAccessInst *, 2>>
|
|
liveInAccessScopes;
|
|
llvm::SmallPtrSet<BeginAccessInst *, 2> runningLiveAccessScopes;
|
|
|
|
BackwardReachability<FindBarrierAccessScopes> reachability;
|
|
|
|
public:
|
|
FindBarrierAccessScopes(DeinitBarriers &result)
|
|
: result(result), reachability(result.knownUses.getFunction(), *this) {
|
|
// Seed backward reachability with destroy points.
|
|
for (SILInstruction *destroy : result.knownUses.originalDestroys) {
|
|
reachability.initLastUse(destroy);
|
|
}
|
|
}
|
|
|
|
void markLiveAccessScopesAsBarriers() {
|
|
for (auto *scope : runningLiveAccessScopes) {
|
|
result.barrierAccessScopes.insert(scope);
|
|
}
|
|
}
|
|
|
|
bool hasReachableBegin(SILBasicBlock *block) {
|
|
return result.destroyReachesBeginBlocks.contains(block);
|
|
}
|
|
|
|
void markReachableBegin(SILBasicBlock *block) {
|
|
result.destroyReachesBeginBlocks.insert(block);
|
|
if (!runningLiveAccessScopes.empty()) {
|
|
liveInAccessScopes[block] = runningLiveAccessScopes;
|
|
}
|
|
}
|
|
|
|
void markReachableEnd(SILBasicBlock *block) {
|
|
result.destroyReachesEndBlocks.insert(block);
|
|
runningLiveAccessScopes.clear();
|
|
for (auto *predecessor : block->getPredecessorBlocks()) {
|
|
auto iterator = liveInAccessScopes.find(predecessor);
|
|
if (iterator != liveInAccessScopes.end()) {
|
|
for (auto *bai : iterator->getSecond()) {
|
|
runningLiveAccessScopes.insert(bai);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool checkReachableBarrier(SILInstruction *inst) {
|
|
// For correctness, it is required that
|
|
// FindBarrierAccessScopes::checkReachableBarrier return true whenever
|
|
// DestroyReachability::checkReachableBarrier does, with one exception:
|
|
// DestryReachability::checkReachableBarrier will also return true for any
|
|
// end_access barrier that FindBarrierAccessScopes finds.
|
|
if (auto *eai = dyn_cast<EndAccessInst>(inst)) {
|
|
runningLiveAccessScopes.insert(eai->getBeginAccess());
|
|
} else if (auto *bai = dyn_cast<BeginAccessInst>(inst)) {
|
|
runningLiveAccessScopes.erase(bai);
|
|
}
|
|
auto classification = result.classifyInstruction(inst);
|
|
result.visitedInstruction(inst, classification);
|
|
auto isBarrier = result.classificationIsBarrier(classification);
|
|
if (isBarrier) {
|
|
markLiveAccessScopesAsBarriers();
|
|
}
|
|
// If we've seen a barrier, then we can stop looking for access scopes.
|
|
// Any that were open already have now been marked as barriers. And if
|
|
// none are open, the second data flow won't get beyond this barrier to
|
|
// face subsequent end_access instructions.
|
|
return isBarrier;
|
|
}
|
|
|
|
bool checkReachablePhiBarrier(SILBasicBlock *block) {
|
|
bool isBarrier =
|
|
llvm::any_of(block->getPredecessorBlocks(), [&](auto *predecessor) {
|
|
return result.isBarrier(predecessor->getTerminator());
|
|
});
|
|
if (isBarrier) {
|
|
// If there's a barrier preventing us from hoisting out of this block,
|
|
// then every open access scope contains a barrier, so all the
|
|
// corresponding end_access instructions are barriers too.
|
|
markLiveAccessScopesAsBarriers();
|
|
}
|
|
return isBarrier;
|
|
}
|
|
|
|
void solveBackward() { reachability.solveBackward(); }
|
|
};
|
|
|
|
// Conforms to BackwardReachability::BlockReachability
|
|
class DestroyReachability {
|
|
DeinitBarriers &result;
|
|
|
|
BackwardReachability<DestroyReachability> reachability;
|
|
|
|
public:
|
|
DestroyReachability(DeinitBarriers &result)
|
|
: result(result), reachability(result.knownUses.getFunction(), *this) {
|
|
// Seed backward reachability with destroy points.
|
|
for (SILInstruction *destroy : result.knownUses.originalDestroys) {
|
|
reachability.initLastUse(destroy);
|
|
}
|
|
}
|
|
|
|
bool hasReachableBegin(SILBasicBlock *block) {
|
|
return result.destroyReachesBeginBlocks.contains(block);
|
|
}
|
|
|
|
void markReachableBegin(SILBasicBlock *block) {
|
|
result.destroyReachesBeginBlocks.insert(block);
|
|
}
|
|
|
|
void markReachableEnd(SILBasicBlock *block) {
|
|
result.destroyReachesEndBlocks.insert(block);
|
|
}
|
|
|
|
bool checkReachableBarrier(SILInstruction *);
|
|
|
|
bool checkReachablePhiBarrier(SILBasicBlock *);
|
|
|
|
void solveBackward() { reachability.solveBackward(); }
|
|
};
|
|
};
|
|
|
|
DeinitBarriers::Classification DeinitBarriers::classifyInstruction(
|
|
SILInstruction *inst, bool ignoreDeinitBarriers,
|
|
SILInstruction *storageDefInst,
|
|
const llvm::SmallPtrSetImpl<BeginAccessInst *> &barrierAccessScopes,
|
|
const KnownStorageUses &knownUses) {
|
|
if (knownUses.debugInsts.contains(inst)) {
|
|
return Classification::DeadUser;
|
|
}
|
|
if (inst == storageDefInst) {
|
|
return Classification::Barrier;
|
|
}
|
|
if (knownUses.storageUsers.contains(inst)) {
|
|
return Classification::Barrier;
|
|
}
|
|
if (!ignoreDeinitBarriers && isDeinitBarrier(inst)) {
|
|
return Classification::Barrier;
|
|
}
|
|
if (auto *eai = dyn_cast<EndAccessInst>(inst)) {
|
|
return barrierAccessScopes.contains(eai->getBeginAccess())
|
|
? Classification::Barrier
|
|
: Classification::Other;
|
|
}
|
|
return Classification::Other;
|
|
}
|
|
|
|
bool DeinitBarriers::classificationIsBarrier(Classification classification) {
|
|
switch (classification) {
|
|
case Classification::DeadUser:
|
|
case Classification::Other:
|
|
return false;
|
|
case Classification::Barrier:
|
|
return true;
|
|
}
|
|
llvm_unreachable("exhaustive switch is not exhaustive?!");
|
|
}
|
|
|
|
void DeinitBarriers::visitedInstruction(SILInstruction *instruction,
|
|
Classification classification) {
|
|
assert(classifyInstruction(instruction) == classification);
|
|
switch (classification) {
|
|
case Classification::DeadUser:
|
|
deadUsers.push_back(instruction);
|
|
break;
|
|
case Classification::Barrier:
|
|
barriers.push_back(instruction);
|
|
break;
|
|
case Classification::Other:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Return true if \p inst is a barrier.
|
|
///
|
|
/// Called exactly once for each reachable instruction. This is guaranteed to
|
|
/// hold as a barrier occurs between any original destroys that are reachable
|
|
/// from each. Any path reaching multiple destroys requires initialization,
|
|
/// which is a storageUser and therefore a barrier.
|
|
bool DeinitBarriers::DestroyReachability::checkReachableBarrier(
|
|
SILInstruction *instruction) {
|
|
// For correctness, it is required that
|
|
// DestroyReachability::checkReachableBarrier return true whenever
|
|
// FindBarrierAccessScopes::checkReachableBarrier does. It must additionally
|
|
// return true when encountering an end_access barrier that
|
|
// FindBarrierAccessScope determined is a barrier.
|
|
auto classification = result.classifyInstruction(instruction);
|
|
result.visitedInstruction(instruction, classification);
|
|
return result.classificationIsBarrier(classification);
|
|
}
|
|
|
|
bool DeinitBarriers::DestroyReachability::checkReachablePhiBarrier(
|
|
SILBasicBlock *block) {
|
|
assert(llvm::all_of(block->getArguments(),
|
|
[&](auto argument) { return PhiValue(argument); }));
|
|
return llvm::any_of(block->getPredecessorBlocks(), [&](auto *predecessor) {
|
|
return result.isBarrier(predecessor->getTerminator());
|
|
});
|
|
}
|
|
|
|
/// Algorithm for hoisting the destroys of a single uniquely identified storage
|
|
/// object.
|
|
class HoistDestroys {
|
|
SILValue storageRoot;
|
|
bool ignoreDeinitBarriers;
|
|
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs;
|
|
InstructionDeleter &deleter;
|
|
|
|
// Book-keeping for the rewriting stage.
|
|
SmallPtrSet<SILInstruction *, 4> reusedDestroys;
|
|
|
|
BasicBlockSetVector destroyMergeBlocks;
|
|
|
|
public:
|
|
HoistDestroys(SILValue storageRoot, bool ignoreDeinitBarriers,
|
|
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs,
|
|
InstructionDeleter &deleter)
|
|
: storageRoot(storageRoot), ignoreDeinitBarriers(ignoreDeinitBarriers),
|
|
remainingDestroyAddrs(remainingDestroyAddrs), deleter(deleter),
|
|
destroyMergeBlocks(getFunction()) {}
|
|
|
|
bool perform();
|
|
|
|
protected:
|
|
SILFunction *getFunction() const { return storageRoot->getFunction(); }
|
|
|
|
bool foldBarrier(SILInstruction *barrier, SILValue accessScope);
|
|
|
|
bool foldBarrier(SILInstruction *barrier, const KnownStorageUses &knownUses,
|
|
const DeinitBarriers &deinitBarriers);
|
|
|
|
void insertDestroy(SILInstruction *barrier, SILInstruction *insertBefore,
|
|
const KnownStorageUses &knownUses);
|
|
|
|
void createDestroy(SILInstruction *insertBefore,
|
|
const SILDebugScope *scope);
|
|
|
|
void createSuccessorDestroys(SILBasicBlock *barrierBlock);
|
|
|
|
bool rewriteDestroys(const KnownStorageUses &knownUses,
|
|
const DeinitBarriers &deinitBarriers);
|
|
|
|
void mergeDestroys(SILBasicBlock *mergeBlock);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
bool HoistDestroys::perform() {
|
|
auto storage = AccessStorage::computeInScope(storageRoot);
|
|
if (!storage.isUniquelyIdentified() &&
|
|
storage.getKind() != AccessStorage::Kind::Nested)
|
|
return false;
|
|
|
|
KnownStorageUses knownUses(storage, getFunction());
|
|
if (!knownUses.findUses())
|
|
return false;
|
|
|
|
DeinitBarriers deinitBarriers(ignoreDeinitBarriers, knownUses, getFunction());
|
|
deinitBarriers.compute();
|
|
|
|
// No SIL changes happen before rewriting.
|
|
return rewriteDestroys(knownUses, deinitBarriers);
|
|
}
|
|
|
|
bool HoistDestroys::rewriteDestroys(const KnownStorageUses &knownUses,
|
|
const DeinitBarriers &deinitBarriers) {
|
|
// Place a new destroy after each barrier instruction.
|
|
for (SILInstruction *barrier : deinitBarriers.barriers) {
|
|
auto *barrierBlock = barrier->getParent();
|
|
if (barrier != barrierBlock->getTerminator()) {
|
|
if (!foldBarrier(barrier, knownUses, deinitBarriers))
|
|
insertDestroy(barrier, barrier->getNextInstruction(), knownUses);
|
|
continue;
|
|
}
|
|
for (auto *successor : barrierBlock->getSuccessorBlocks()) {
|
|
insertDestroy(barrier, &successor->front(), knownUses);
|
|
}
|
|
}
|
|
// Place a new destroy at each CFG edge in which the successor's beginning is
|
|
// reached but the predecessors end is not reached.
|
|
for (auto *beginReachedBlock : deinitBarriers.destroyReachesBeginBlocks) {
|
|
SILInstruction *barrier = nullptr;
|
|
if (auto *predecessor = beginReachedBlock->getSinglePredecessorBlock()) {
|
|
if (deinitBarriers.destroyReachesEndBlocks.contains(predecessor))
|
|
continue;
|
|
|
|
barrier = predecessor->getTerminator();
|
|
|
|
} else if (!beginReachedBlock->pred_empty()) {
|
|
// This is the only successor, so the destroy must reach the predecessors.
|
|
assert(llvm::all_of(
|
|
beginReachedBlock->getPredecessorBlocks(), [&](auto *predecessor) {
|
|
return deinitBarriers.destroyReachesEndBlocks.contains(predecessor);
|
|
}));
|
|
continue;
|
|
}
|
|
// The destroy does not reach the end of any predecessors.
|
|
insertDestroy(barrier, &beginReachedBlock->front(), knownUses);
|
|
}
|
|
// Delete dead users before merging destroys.
|
|
for (auto *deadInst : deinitBarriers.deadUsers) {
|
|
deleter.forceDelete(deadInst);
|
|
}
|
|
for (auto *destroyInst : knownUses.originalDestroys) {
|
|
if (reusedDestroys.contains(destroyInst))
|
|
continue;
|
|
|
|
remainingDestroyAddrs.erase(destroyInst);
|
|
deleter.forceDelete(destroyInst);
|
|
}
|
|
deleter.cleanupDeadInstructions();
|
|
|
|
for (auto *mergeBlock : destroyMergeBlocks) {
|
|
mergeDestroys(mergeBlock);
|
|
}
|
|
return deleter.hadCallbackInvocation();
|
|
}
|
|
|
|
bool HoistDestroys::foldBarrier(SILInstruction *barrier, SILValue storageRoot) {
|
|
if (auto *load = dyn_cast<LoadInst>(barrier)) {
|
|
if (stripAccessMarkers(load->getOperand()) ==
|
|
stripAccessMarkers(storageRoot)) {
|
|
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
|
|
load->setOwnershipQualifier(LoadOwnershipQualifier::Take);
|
|
return true;
|
|
} else {
|
|
assert(load->getOperand()->getType().isTrivial(*load->getFunction()));
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (auto *copy = dyn_cast<CopyAddrInst>(barrier)) {
|
|
if (stripAccessMarkers(copy->getSrc()) == stripAccessMarkers(storageRoot)) {
|
|
assert(!copy->isTakeOfSrc());
|
|
copy->setIsTakeOfSrc(IsTake);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool HoistDestroys::foldBarrier(SILInstruction *barrier,
|
|
const KnownStorageUses &knownUses,
|
|
const DeinitBarriers &deinitBarriers) {
|
|
if (auto *eai = dyn_cast<EndAccessInst>(barrier)) {
|
|
auto *bai = eai->getBeginAccess();
|
|
// Don't hoist a destroy into an unrelated access scope.
|
|
if (stripAccessMarkers(bai) != stripAccessMarkers(storageRoot))
|
|
return false;
|
|
SILInstruction *instruction = eai;
|
|
while ((instruction = instruction->getPreviousInstruction())) {
|
|
if (instruction == bai)
|
|
return false;
|
|
if (foldBarrier(instruction, storageRoot))
|
|
return true;
|
|
if (deinitBarriers.isBarrier(instruction))
|
|
return false;
|
|
}
|
|
}
|
|
return foldBarrier(barrier, storageRoot);
|
|
}
|
|
|
|
// \p barrier may be null if the destroy is at function entry.
|
|
void HoistDestroys::insertDestroy(SILInstruction *barrier,
|
|
SILInstruction *insertBefore,
|
|
const KnownStorageUses &knownUses) {
|
|
if (auto *branch = dyn_cast<BranchInst>(insertBefore)) {
|
|
destroyMergeBlocks.insert(branch->getDestBB());
|
|
}
|
|
// Avoid mutating SIL for no reason. This could lead to infinite loops.
|
|
if (isa<DestroyAddrInst>(insertBefore)
|
|
|| isa<DestroyValueInst>(insertBefore)) {
|
|
if (llvm::find(knownUses.originalDestroys, insertBefore)
|
|
!= knownUses.originalDestroys.end()) {
|
|
reusedDestroys.insert(insertBefore);
|
|
return;
|
|
}
|
|
}
|
|
const SILDebugScope *scope = barrier
|
|
? barrier->getDebugScope() : getFunction()->getDebugScope();
|
|
createDestroy(insertBefore, scope);
|
|
}
|
|
|
|
void HoistDestroys::createDestroy(SILInstruction *insertBefore,
|
|
const SILDebugScope *scope) {
|
|
auto loc = RegularLocation::getAutoGeneratedLocation();
|
|
SILInstruction *newDestroy;
|
|
if (storageRoot->getType().isAddress()) {
|
|
newDestroy =
|
|
SILBuilder(insertBefore, scope).createDestroyAddr(loc, storageRoot);
|
|
} else {
|
|
newDestroy =
|
|
SILBuilder(insertBefore, scope).createDestroyValue(loc, storageRoot);
|
|
}
|
|
deleter.getCallbacks().createdNewInst(newDestroy);
|
|
}
|
|
|
|
void HoistDestroys::mergeDestroys(SILBasicBlock *mergeBlock) {
|
|
SmallVector<SILInstruction *, 4> deadDestroys;
|
|
for (auto *predecessors : mergeBlock->getPredecessorBlocks()) {
|
|
auto *tailDestroy = predecessors->getTerminator()->getPreviousInstruction();
|
|
if (!tailDestroy || (!isa<DestroyAddrInst>(tailDestroy)
|
|
&& !isa<DestroyValueInst>(tailDestroy))) {
|
|
return;
|
|
}
|
|
if (tailDestroy->getOperand(0) != storageRoot)
|
|
return;
|
|
|
|
deadDestroys.push_back(tailDestroy);
|
|
}
|
|
if (deadDestroys.size() < 2) // ignore trivial fall-thru
|
|
return;
|
|
|
|
createDestroy(&mergeBlock->front(), deadDestroys[0]->getDebugScope());
|
|
|
|
for (auto *deadDestroy : deadDestroys) {
|
|
remainingDestroyAddrs.erase(deadDestroy);
|
|
deleter.forceDelete(deadDestroy);
|
|
}
|
|
}
|
|
|
|
// =============================================================================
|
|
// Top-Level API
|
|
// =============================================================================
|
|
|
|
bool hoistDestroys(SILValue root, bool ignoreDeinitBarriers,
|
|
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs,
|
|
InstructionDeleter &deleter) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Performing destroy hoisting on " << root);
|
|
|
|
SILFunction *function = root->getFunction();
|
|
if (!function)
|
|
return false;
|
|
|
|
// The algorithm assumes no critical edges.
|
|
assert(function->hasOwnership() && "requires OSSA");
|
|
|
|
return HoistDestroys(root, ignoreDeinitBarriers, remainingDestroyAddrs,
|
|
deleter)
|
|
.perform();
|
|
}
|
|
|
|
// =============================================================================
|
|
// Pipeline Pass
|
|
// =============================================================================
|
|
|
|
namespace {
|
|
class SSADestroyHoisting : public swift::SILFunctionTransform {
|
|
void run() override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// TODO: Handle alloc_box the same way, as long as the box doesn't escape.
|
|
//
|
|
// TODO: Handle address and boxes that are captured in no-escape closures.
|
|
void SSADestroyHoisting::run() {
|
|
if (!getFunction()->hasOwnership())
|
|
return;
|
|
|
|
InstructionDeleter deleter;
|
|
bool changed = false;
|
|
|
|
llvm::SmallVector<AllocStackInst *, 4> asis;
|
|
llvm::SmallVector<BeginAccessInst *, 4> bais;
|
|
llvm::SmallVector<StoreInst *, 4> sis;
|
|
llvm::SmallVector<CopyAddrInst *, 4> cais;
|
|
|
|
// Collect the instructions that we'll be transforming.
|
|
for (auto &block : *getFunction()) {
|
|
for (auto &inst : block) {
|
|
if (auto *asi = dyn_cast<AllocStackInst>(&inst)) {
|
|
asis.push_back(asi);
|
|
} else if (auto *bai = dyn_cast<BeginAccessInst>(&inst)) {
|
|
if (bai->getAccessKind() == SILAccessKind::Modify) {
|
|
bais.push_back(bai);
|
|
}
|
|
} else if (auto *si = dyn_cast<StoreInst>(&inst)) {
|
|
if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
|
|
sis.push_back(si);
|
|
}
|
|
} else if (auto *cai = dyn_cast<CopyAddrInst>(&inst)) {
|
|
if (cai->isInitializationOfDest() == IsNotInitialization) {
|
|
cais.push_back(cai);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Before hoisting, expand all
|
|
//
|
|
// store [assign]
|
|
//
|
|
// instructions into
|
|
//
|
|
// destroy_addr
|
|
// store [init]
|
|
//
|
|
// sequences to create more destroy_addrs to hoist.
|
|
//
|
|
// Record the newly created destroy_addrs and the stores they were split off
|
|
// of. After hoisting, if they have not been hoisted away from the store
|
|
// instruction, we will merge them back together.
|
|
llvm::SmallVector<std::pair<DestroyAddrInst *, StoreInst *>, 8>
|
|
splitDestroysAndStores;
|
|
// The destroy_addrs that were created that have not been deleted. Items are
|
|
// erased from the set as the destroy_addrs are deleted.
|
|
SmallPtrSet<SILInstruction *, 8> remainingDestroyAddrs;
|
|
// The number of destroys that were split off of store [init]s and not
|
|
// recombined.
|
|
int splitDestroys = 0;
|
|
for (auto *si : sis) {
|
|
auto builder = SILBuilderWithScope(si);
|
|
auto *dai = builder.createDestroyAddr(
|
|
RegularLocation::getAutoGeneratedLocation(si->getLoc()),
|
|
si->getOperand(1));
|
|
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
|
|
splitDestroysAndStores.push_back({dai, si});
|
|
remainingDestroyAddrs.insert(dai);
|
|
++splitDestroys;
|
|
}
|
|
// Similarly, also expand each
|
|
//
|
|
// copy_addr to
|
|
//
|
|
// instruction into
|
|
//
|
|
// destroy_addr
|
|
// copy_addr to [initialization]
|
|
//
|
|
// sequences to create still more destroy_addrs to hoist.
|
|
//
|
|
// As above, record the newly created destroy_addrs and copy_addrs off of
|
|
// which they were split. After hoisting, we'll merge them back together when
|
|
// possible.
|
|
llvm::SmallVector<std::pair<DestroyAddrInst *, CopyAddrInst *>, 8>
|
|
splitDestroysAndCopies;
|
|
for (auto *cai : cais) {
|
|
auto builder = SILBuilderWithScope(cai);
|
|
auto *dai = builder.createDestroyAddr(
|
|
RegularLocation::getAutoGeneratedLocation(cai->getLoc()),
|
|
cai->getOperand(1));
|
|
cai->setIsInitializationOfDest(IsInitialization);
|
|
splitDestroysAndCopies.push_back({dai, cai});
|
|
remainingDestroyAddrs.insert(dai);
|
|
++splitDestroys;
|
|
}
|
|
|
|
// We assume that the function is in reverse post order so visiting the
|
|
// blocks and pushing begin_access as we see them and then popping them off
|
|
// the end will result in hoisting inner begin_access' destroy_addrs first.
|
|
while (!bais.empty()) {
|
|
auto *bai = bais.pop_back_val();
|
|
changed |= hoistDestroys(bai, /*ignoreDeinitBarriers=*/true,
|
|
remainingDestroyAddrs, deleter);
|
|
}
|
|
// Alloc stacks always enclose their accesses.
|
|
for (auto *asi : asis) {
|
|
changed |= hoistDestroys(asi, /*ignoreDeinitBarriers=*/false,
|
|
remainingDestroyAddrs, deleter);
|
|
}
|
|
// Arguments enclose everything.
|
|
for (auto *arg : getFunction()->getArguments()) {
|
|
if (arg->getType().isAddress()) {
|
|
auto convention = cast<SILFunctionArgument>(arg)->getArgumentConvention();
|
|
// This is equivalent to writing
|
|
//
|
|
// convention == SILArgumentConvention::Indirect_Inout
|
|
//
|
|
// but communicates the rationale: in order to ignore deinit barriers, the
|
|
// address must be exclusively accessed and be a modification.
|
|
bool ignoreDeinitBarriers = convention.isInoutConvention() &&
|
|
convention.isExclusiveIndirectParameter();
|
|
changed |= hoistDestroys(arg, ignoreDeinitBarriers, remainingDestroyAddrs,
|
|
deleter);
|
|
}
|
|
}
|
|
|
|
for (auto pair : splitDestroysAndStores) {
|
|
auto *dai = pair.first;
|
|
if (!remainingDestroyAddrs.contains(dai))
|
|
continue;
|
|
auto *si = pair.second;
|
|
if (dai->getNextInstruction() != si)
|
|
continue;
|
|
// No stores should have been rewritten during hoisting. Their ownership
|
|
// qualifiers were set to [init] when splitting off the destroy_addrs.
|
|
assert(si->getOwnershipQualifier() == StoreOwnershipQualifier::Init);
|
|
// If a newly created destroy_addr has not been hoisted from its previous
|
|
// location, combine it back together with the store [init] which it was
|
|
// split off from.
|
|
deleter.forceDelete(dai);
|
|
si->setOwnershipQualifier(StoreOwnershipQualifier::Assign);
|
|
--splitDestroys;
|
|
}
|
|
for (auto pair : splitDestroysAndCopies) {
|
|
auto *dai = pair.first;
|
|
if (!remainingDestroyAddrs.contains(dai))
|
|
continue;
|
|
auto *cai = pair.second;
|
|
if (dai->getNextInstruction() != cai)
|
|
continue;
|
|
assert(cai->isInitializationOfDest() == IsInitialization);
|
|
deleter.forceDelete(dai);
|
|
cai->setIsInitializationOfDest(IsNotInitialization);
|
|
--splitDestroys;
|
|
}
|
|
// If there were any destroy_addrs split off of stores and not recombined
|
|
// with them, then the function has changed.
|
|
changed |= splitDestroys > 0;
|
|
|
|
if (changed) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
|
|
}
|
|
}
|
|
|
|
SILTransform *swift::createSSADestroyHoisting() {
|
|
return new SSADestroyHoisting();
|
|
}
|