Files
swift-mirror/lib/SILOptimizer/FunctionSignatureTransforms/FunctionSignatureOpts.cpp
Nate Chandler 9567bd4341 [SILOptimizer] Alter FSO arg explosion heuristic.
The new rule is that an argument will be exploded if one of the
following sets of conditions hold:

(1) (a) Specializing the function will result in a thunk.  That is, the
        thunk that is generated cannot be inlined everywhere.
    (b) The argument has dead non-trivial leaves.
    (c) The argument has fewer than three live leaves.

(2) (a) Specializing the function will not result in a thunk.  That is,
        the thunk that is generated will be inlined everywhere and
        eliminated as dead code.
    (b) The argument has dead potentially trivial leaves.
    (c) The argument has fewer than six live leaves.

This change is based heavily on @gottesm's
https://github.com/apple/swift/pull/16756 .

rdar://problem/39957093
2019-09-24 15:59:28 -07:00

884 lines
33 KiB
C++

//===--- FunctionSignatureOpts.cpp - Optimizes function signatures --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This pass defines function signature related optimizations.
/// When a function signature optimization is performed, changes are made to
/// the original function and after all function signature optimizations are
/// finished, a new function is created and the old function is turned into
/// a thunk.
///
/// Another possibility is to implement these optimizations as separate passes,
/// but then we would send slightly different functions to the pass pipeline
/// multiple times through notifyPassManagerOfFunction.
///
/// TODO: Optimize function with generic parameters.
///
/// TODO: Improve epilogue release matcher, i.e. do a data flow instead of
/// only finding releases in the return block.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-function-signature-opt"
#include "FunctionSignatureOpts.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/CallerAnalysis.h"
#include "swift/SILOptimizer/Analysis/EpilogueARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumFunctionSignaturesOptimized, "Total func sig optimized");
STATISTIC(NumDeadArgsEliminated, "Total dead args eliminated");
STATISTIC(NumOwnedConvertedToGuaranteed, "Total owned args -> guaranteed args");
STATISTIC(NumOwnedConvertedToNotOwnedResult, "Total owned result -> not owned result");
STATISTIC(NumSROAArguments, "Total SROA arguments optimized");
using SILParameterInfoList = llvm::SmallVector<SILParameterInfo, 8>;
using ArgumentIndexMap = llvm::SmallDenseMap<int, int>;
//===----------------------------------------------------------------------===//
// Optimization Hueristic
//===----------------------------------------------------------------------===//
/// Set to true to enable the support for partial specialization.
static llvm::cl::opt<bool>
FSOEnableGenerics("sil-fso-enable-generics", llvm::cl::init(true),
llvm::cl::desc("Support function signature optimization "
"of generic functions"));
static llvm::cl::opt<bool>
FSOOptimizeIfNotCalled("sil-fso-optimize-if-not-called",
llvm::cl::init(false),
llvm::cl::desc("Optimize even if a function isn't "
"called. For testing only!"));
static bool isSpecializableRepresentation(SILFunctionTypeRepresentation Rep,
bool OptForPartialApply) {
switch (Rep) {
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::CFunctionPointer:
return true;
case SILFunctionTypeRepresentation::WitnessMethod:
return OptForPartialApply;
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::Block:
return false;
}
llvm_unreachable("Unhandled SILFunctionTypeRepresentation in switch.");
}
/// Returns true if F is a function which the pass knows how to specialize
/// function signatures for.
static bool canSpecializeFunction(SILFunction *F,
const CallerAnalysis::FunctionInfo *FuncInfo,
bool OptForPartialApply) {
// Do not specialize the signature of SILFunctions that are external
// declarations since there is no body to optimize.
if (F->isExternalDeclaration())
return false;
// For now ignore functions with indirect results.
if (F->getConventions().hasIndirectSILResults())
return false;
// For now ignore coroutines.
if (F->getLoweredFunctionType()->isCoroutine())
return false;
// Do not specialize the signature of always inline functions. We
// will just inline them and specialize each one of the individual
// functions that these sorts of functions are inlined into.
// It is OK to specialize always inline functions if they are
// used by partial_apply instructions.
assert(!OptForPartialApply || FuncInfo);
if (F->getInlineStrategy() == Inline_t::AlwaysInline &&
(!OptForPartialApply || !FuncInfo->getMinPartialAppliedArgs()))
return false;
// For now ignore generic functions to keep things simple...
if (!FSOEnableGenerics && F->getLoweredFunctionType()->isPolymorphic())
return false;
// Make sure F has a linkage that we can optimize.
if (!isSpecializableRepresentation(F->getRepresentation(),
OptForPartialApply))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Function Signature Transform Descriptor
//===----------------------------------------------------------------------===//
void FunctionSignatureTransformDescriptor::addThunkArgument(
ArgumentDescriptor &AD, SILBuilder &Builder, SILBasicBlock *BB,
llvm::SmallVectorImpl<SILValue> &NewArgs) {
// Dead argument.
if (AD.IsEntirelyDead) {
return;
}
// Explode the argument.
if (AD.Explode) {
llvm::SmallVector<SILValue, 4> LeafValues;
AD.ProjTree.createTreeFromValue(Builder, BB->getParent()->getLocation(),
BB->getArgument(AD.Index), LeafValues);
NewArgs.append(LeafValues.begin(), LeafValues.end());
return;
}
// All other arguments get pushed as what they are.
NewArgs.push_back(BB->getArgument(AD.Index));
}
std::string
FunctionSignatureTransformDescriptor::createOptimizedSILFunctionName() {
SILFunction *F = OriginalFunction;
auto P = Demangle::SpecializationPass::FunctionSignatureOpts;
Mangle::FunctionSignatureSpecializationMangler Mangler(P, F->isSerialized(),
F);
// Handle arguments' changes.
for (unsigned i : indices(ArgumentDescList)) {
const ArgumentDescriptor &Arg = ArgumentDescList[i];
if (Arg.IsEntirelyDead) {
Mangler.setArgumentDead(i);
// No point setting other attribute if argument is dead.
continue;
}
// If we have an @owned argument and found a callee release for it,
// convert the argument to guaranteed.
if (Arg.OwnedToGuaranteed) {
Mangler.setArgumentOwnedToGuaranteed(i);
}
// If this argument is not dead and we can explode it, add 's' to the
// mangling.
if (Arg.Explode) {
Mangler.setArgumentSROA(i);
}
}
// Handle return value's change.
// FIXME: handle multiple direct results here
if (ResultDescList.size() == 1 && !ResultDescList[0].CalleeRetain.empty()) {
Mangler.setReturnValueOwnedToUnowned();
}
return Mangler.mangle();
}
/// Collect all archetypes used by a function.
static bool usesGenerics(SILFunction *F,
ArrayRef<SILParameterInfo> InterfaceParams,
ArrayRef<SILResultInfo> InterfaceResults) {
CanSILFunctionType FTy = F->getLoweredFunctionType();
auto HasGenericSignature = FTy->getGenericSignature() != nullptr;
if (!HasGenericSignature)
return false;
bool UsesGenerics = false;
auto FindArchetypesAndGenericTypes = [&UsesGenerics](Type Ty) {
if (Ty.findIf([](Type Ty) -> bool {
return (Ty->hasTypeParameter() || Ty->hasArchetype());
}))
UsesGenerics = true;
};
for (auto Param : InterfaceParams) {
Param.getType().visit(FindArchetypesAndGenericTypes);
}
for (auto Result : InterfaceResults) {
Result.getType().visit(FindArchetypesAndGenericTypes);
}
if (UsesGenerics)
return UsesGenerics;
for (auto &BB : *F) {
for (auto &I : BB) {
for (auto Arg : BB.getArguments()) {
if (&BB != &*F->begin()) {
// Scan types of all BB arguments. Ignore the entry BB, because
// it is handled in a special way.
Arg->getType().getASTType().visit(FindArchetypesAndGenericTypes);
if (UsesGenerics)
return UsesGenerics;
}
}
// Scan types of all operands.
for (auto &Op : I.getAllOperands()) {
Op.get()->getType().getASTType().visit(FindArchetypesAndGenericTypes);
}
// Scan all substitutions of apply instructions.
if (auto AI = ApplySite::isa(&I)) {
auto Subs = AI.getSubstitutionMap();
for (auto Replacement : Subs.getReplacementTypes()) {
Replacement.visit(FindArchetypesAndGenericTypes);
}
}
// Scan all substitutions of builtin instructions.
if (auto *BI = dyn_cast<BuiltinInst>(&I)) {
auto Subs = BI->getSubstitutions();
for (auto Ty : Subs.getReplacementTypes()) {
Ty.visit(FindArchetypesAndGenericTypes);
}
}
// Scan the result type of the instruction.
for (auto V : I.getResults()) {
V->getType().getASTType().visit(FindArchetypesAndGenericTypes);
}
if (UsesGenerics)
return UsesGenerics;
}
}
return UsesGenerics;
}
// Map the parameter, result and error types out of context to get the interface
// type.
static void mapInterfaceTypes(SILFunction *F,
MutableArrayRef<SILParameterInfo> InterfaceParams,
MutableArrayRef<SILResultInfo> InterfaceResults,
Optional<SILResultInfo> &InterfaceErrorResult) {
for (auto &Param : InterfaceParams) {
if (!Param.getType()->hasArchetype())
continue;
Param = SILParameterInfo(
Param.getType()->mapTypeOutOfContext()->getCanonicalType(),
Param.getConvention());
}
for (auto &Result : InterfaceResults) {
if (!Result.getType()->hasArchetype())
continue;
auto InterfaceResult = Result.getWithType(
Result.getType()->mapTypeOutOfContext()->getCanonicalType());
Result = InterfaceResult;
}
if (InterfaceErrorResult.hasValue()) {
if (InterfaceErrorResult.getValue().getType()->hasArchetype()) {
InterfaceErrorResult =
SILResultInfo(InterfaceErrorResult.getValue()
.getType()
->mapTypeOutOfContext()
->getCanonicalType(),
InterfaceErrorResult.getValue().getConvention());
}
}
}
CanSILFunctionType
FunctionSignatureTransformDescriptor::createOptimizedSILFunctionType() {
SILFunction *F = OriginalFunction;
CanSILFunctionType FTy = F->getLoweredFunctionType();
auto ExpectedFTy = F->getLoweredType().castTo<SILFunctionType>();
auto HasGenericSignature = FTy->getGenericSignature() != nullptr;
// The only way that we modify the arity of function parameters is here for
// dead arguments. Doing anything else is unsafe since by definition non-dead
// arguments will have SSA uses in the function. We would need to be smarter
// in our moving to handle such cases.
llvm::SmallVector<SILParameterInfo, 8> InterfaceParams;
for (auto &ArgDesc : ArgumentDescList) {
computeOptimizedArgInterface(ArgDesc, InterfaceParams);
}
// ResultDescs only covers the direct results; we currently can't ever
// change an indirect result. Piece the modified direct result information
// back into the all-results list.
llvm::SmallVector<SILResultInfo, 8> InterfaceResults;
for (SILResultInfo InterfaceResult : FTy->getResults()) {
if (InterfaceResult.isFormalDirect()) {
auto &RV = ResultDescList[0];
if (!RV.CalleeRetain.empty()) {
++NumOwnedConvertedToNotOwnedResult;
InterfaceResults.push_back(SILResultInfo(InterfaceResult.getType(),
ResultConvention::Unowned));
continue;
}
}
InterfaceResults.push_back(InterfaceResult);
}
llvm::SmallVector<SILYieldInfo, 8> InterfaceYields;
for (SILYieldInfo InterfaceYield : FTy->getYields()) {
// For now, don't touch the yield types.
InterfaceYields.push_back(InterfaceYield);
}
bool UsesGenerics = false;
if (HasGenericSignature) {
// Not all of the generic type parameters are used by the function
// parameters.
// Check which of the generic type parameters are not used and check if they
// are used anywhere in the function body. If this is not the case, we can
// remove the unused generic type parameters from the generic signature.
// This makes the code both smaller and faster, because no implicit
// parameters for type metadata and conformances need to be passed to the
// callee at the LLVM IR level.
// TODO: Implement a more precise analysis, so that we can eliminate only
// those generic parameters which are not used.
UsesGenerics = usesGenerics(F, InterfaceParams, InterfaceResults);
// The set of used archetypes is complete now.
if (!UsesGenerics) {
// None of the generic type parameters are used.
LLVM_DEBUG(llvm::dbgs() << "None of generic parameters are used by "
<< F->getName() << "\n";
llvm::dbgs() << "Interface params:\n";
for (auto Param : InterfaceParams) {
Param.getType().dump();
}
llvm::dbgs() << "Interface results:\n";
for (auto Result : InterfaceResults) {
Result.getType().dump();
});
}
}
// Don't use a method representation if we modified self.
auto ExtInfo = FTy->getExtInfo();
auto witnessMethodConformance = FTy->getWitnessMethodConformanceOrNone();
if (shouldModifySelfArgument) {
ExtInfo = ExtInfo.withRepresentation(SILFunctionTypeRepresentation::Thin);
witnessMethodConformance = None;
}
Optional<SILResultInfo> InterfaceErrorResult;
if (ExpectedFTy->hasErrorResult()) {
InterfaceErrorResult = ExpectedFTy->getErrorResult();
}
// Map the parameter, result and error types out of context to get the
// proper interface type. This is required for generic functions.
mapInterfaceTypes(F, InterfaceParams, InterfaceResults, InterfaceErrorResult);
GenericSignature *GenericSig =
UsesGenerics ? FTy->getGenericSignature() : nullptr;
return SILFunctionType::get(
GenericSig, ExtInfo, FTy->getCoroutineKind(), FTy->getCalleeConvention(),
InterfaceParams, InterfaceYields, InterfaceResults, InterfaceErrorResult,
F->getModule().getASTContext(), witnessMethodConformance);
}
/// Compute what the function interface will look like based on the
/// optimization we are doing on the given argument descriptor. Default
/// implementation simply passes it through.
void FunctionSignatureTransformDescriptor::computeOptimizedArgInterface(
ArgumentDescriptor &AD, SmallVectorImpl<SILParameterInfo> &Out) {
// If this argument is live, but we cannot optimize it.
if (!AD.canOptimizeLiveArg()) {
if (AD.PInfo.hasValue())
Out.push_back(AD.PInfo.getValue());
return;
}
// If we have a dead argument, bail.
if (AD.IsEntirelyDead) {
++NumDeadArgsEliminated;
return;
}
// Explode the argument or not ?
if (AD.Explode) {
++NumSROAArguments;
llvm::SmallVector<const ProjectionTreeNode *, 8> LeafNodes;
AD.ProjTree.getLiveLeafNodes(LeafNodes);
for (auto Node : LeafNodes) {
SILType Ty = Node->getType();
LLVM_DEBUG(llvm::dbgs() << " " << Ty << "\n");
// If Ty is trivial, just pass it directly.
if (Ty.isTrivial(*AD.Arg->getFunction())) {
SILParameterInfo NewInfo(Ty.getASTType(),
ParameterConvention::Direct_Unowned);
Out.push_back(NewInfo);
continue;
}
// Ty is not trivial, pass it through as the original calling convention.
auto ParameterConvention = AD.PInfo.getValue().getConvention();
if (AD.OwnedToGuaranteed) {
if (ParameterConvention == ParameterConvention::Direct_Owned)
ParameterConvention = ParameterConvention::Direct_Guaranteed;
else if (ParameterConvention == ParameterConvention::Indirect_In)
ParameterConvention = ParameterConvention::Indirect_In_Guaranteed;
else {
llvm_unreachable("Unknown parameter convention transformation");
}
}
SILParameterInfo NewInfo(Ty.getASTType(), ParameterConvention);
Out.push_back(NewInfo);
}
return;
}
// If we cannot explode this value, handle callee release and return.
// If we found releases in the callee in the last BB on an @owned
// parameter, change the parameter to @guaranteed and continue...
if (AD.OwnedToGuaranteed) {
++NumOwnedConvertedToGuaranteed;
auto ParameterConvention = AD.PInfo.getValue().getConvention();
if (ParameterConvention == ParameterConvention::Direct_Owned)
ParameterConvention = ParameterConvention::Direct_Guaranteed;
else if (ParameterConvention == ParameterConvention::Indirect_In)
ParameterConvention = ParameterConvention::Indirect_In_Guaranteed;
else {
llvm_unreachable("Unknown parameter convention transformation");
}
SILParameterInfo NewInfo(AD.PInfo.getValue().getType(),
ParameterConvention);
Out.push_back(NewInfo);
return;
}
// Otherwise just propagate through the parameter info.
Out.push_back(AD.PInfo.getValue());
}
//===----------------------------------------------------------------------===//
// Function Signature Transform
//===----------------------------------------------------------------------===//
void FunctionSignatureTransform::createFunctionSignatureOptimizedFunction() {
// Create the optimized function!
SILFunction *F = TransformDescriptor.OriginalFunction;
SILModule &M = F->getModule();
std::string Name = TransformDescriptor.createOptimizedSILFunctionName();
// The transformed function must not already exist. This would indicate
// repeated application of FSO on the same function. That situation should be
// detected earlier by avoiding reoptimization of FSO thunks.
assert(!F->getModule().hasFunction(Name));
SILLinkage linkage = getSpecializedLinkage(F, F->getLinkage());
LLVM_DEBUG(llvm::dbgs() << " -> create specialized function " << Name
<< "\n");
auto NewFTy = TransformDescriptor.createOptimizedSILFunctionType();
GenericEnvironment *NewFGenericEnv;
if (NewFTy->getGenericSignature()) {
NewFGenericEnv = F->getGenericEnvironment();
} else {
NewFGenericEnv = nullptr;
}
// The specialized function is an internal detail, so we need to disconnect it
// from a parent class, if one exists, thus the override of the
// classSubclassScope.
TransformDescriptor.OptimizedFunction = FunctionBuilder.createFunction(
linkage, Name, NewFTy, NewFGenericEnv, F->getLocation(), F->isBare(),
F->isTransparent(), F->isSerialized(), IsNotDynamic, F->getEntryCount(),
F->isThunk(),
/*classSubclassScope=*/SubclassScope::NotApplicable,
F->getInlineStrategy(), F->getEffectsKind(), nullptr, F->getDebugScope());
SILFunction *NewF = TransformDescriptor.OptimizedFunction.get();
if (!F->hasOwnership()) {
NewF->setOwnershipEliminated();
}
if (F->isSpecialization()) {
NewF->setSpecializationInfo(F->getSpecializationInfo());
}
// Then we transfer the body of F to NewF.
NewF->spliceBody(F);
// Array semantic clients rely on the signature being as in the original
// version.
for (auto &Attr : F->getSemanticsAttrs()) {
if (!StringRef(Attr).startswith("array."))
NewF->addSemanticsAttr(Attr);
}
// Do the last bit of work to the newly created optimized function.
DeadArgumentFinalizeOptimizedFunction();
ArgumentExplosionFinalizeOptimizedFunction();
// Update the ownership kinds of function entry BB arguments.
for (auto Arg : NewF->begin()->getFunctionArguments()) {
SILType MappedTy = Arg->getType();
auto Ownershipkind =
ValueOwnershipKind(*NewF, MappedTy, Arg->getArgumentConvention());
Arg->setOwnershipKind(Ownershipkind);
}
// Create the thunk body !
F->setThunk(IsSignatureOptimizedThunk);
// The thunk now carries the information on how the signature is
// optimized. If we inline the thunk, we will get the benefit of calling
// the signature optimized function without additional setup on the
// caller side.
F->setInlineStrategy(AlwaysInline);
SILBasicBlock *ThunkBody = F->createBasicBlock();
for (auto &ArgDesc : TransformDescriptor.ArgumentDescList) {
ThunkBody->createFunctionArgument(ArgDesc.Arg->getType(), ArgDesc.Decl);
}
SILLocation Loc = RegularLocation::getAutoGeneratedLocation();
SILBuilder Builder(ThunkBody);
Builder.setCurrentDebugScope(ThunkBody->getParent()->getDebugScope());
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
// Create the args for the thunk's apply, ignoring any dead arguments.
llvm::SmallVector<SILValue, 8> ThunkArgs;
for (auto &ArgDesc : TransformDescriptor.ArgumentDescList) {
TransformDescriptor.addThunkArgument(ArgDesc, Builder, ThunkBody,
ThunkArgs);
}
SILValue ReturnValue;
SILType LoweredType = NewF->getLoweredType();
SILType ResultType = NewF->getConventions().getSILResultType();
auto GenCalleeType = NewF->getLoweredFunctionType();
auto SubstCalleeSILType = LoweredType;
SubstitutionMap Subs;
// Handle generic functions.
if (GenCalleeType->isPolymorphic()) {
// Produce a substitutions list and a set of substituted SIL types
// required for creating a new SIL function.
Subs = F->getForwardingSubstitutionMap();
auto SubstCalleeType =
GenCalleeType->substGenericArgs(M, Subs);
SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeType);
SILFunctionConventions Conv(SubstCalleeType, M);
ResultType = Conv.getSILResultType();
}
auto FunctionTy = LoweredType.castTo<SILFunctionType>();
if (FunctionTy->hasErrorResult()) {
// We need a try_apply to call a function with an error result.
SILFunction *Thunk = ThunkBody->getParent();
SILBasicBlock *NormalBlock = Thunk->createBasicBlock();
ReturnValue =
NormalBlock->createPhiArgument(ResultType, ValueOwnershipKind::Owned);
SILBasicBlock *ErrorBlock = Thunk->createBasicBlock();
SILType Error =
SILType::getPrimitiveObjectType(FunctionTy->getErrorResult().getType());
auto *ErrorArg =
ErrorBlock->createPhiArgument(Error, ValueOwnershipKind::Owned);
Builder.createTryApply(Loc, FRI, Subs, ThunkArgs, NormalBlock, ErrorBlock);
Builder.setInsertionPoint(ErrorBlock);
Builder.createThrow(Loc, ErrorArg);
Builder.setInsertionPoint(NormalBlock);
} else {
ReturnValue = Builder.createApply(Loc, FRI, Subs, ThunkArgs);
}
// Set up the return results.
if (NewF->isNoReturnFunction()) {
Builder.createUnreachable(Loc);
} else {
Builder.createReturn(Loc, ReturnValue);
}
// Do the last bit work to finalize the thunk.
OwnedToGuaranteedFinalizeThunkFunction(Builder, F);
assert(F->getDebugScope()->Parent != NewF->getDebugScope()->Parent);
}
// Run the optimization.
bool FunctionSignatureTransform::run(bool hasCaller) {
// We use a reference here on purpose so our transformations can know if we
// are going to make a thunk and thus should just optimize.
bool &Changed = TransformDescriptor.Changed;
bool hasOnlyDirectInModuleCallers =
TransformDescriptor.hasOnlyDirectInModuleCallers;
SILFunction *F = TransformDescriptor.OriginalFunction;
// Never repeat the same function signature optimization on the same function.
// Multiple function signature optimizations are composed by successively
// optmizing the newly created functions. Each optimization creates a new
// level of thunk. Those should all be ultimately inlined away.
//
// This happens, for example, when a new reference to the original function is
// discovered during devirtualization. That will cause the original function
// (now and FSO thunk) to be pushed back on the function pass pipeline.
if (F->isThunk() == IsSignatureOptimizedThunk) {
LLVM_DEBUG(llvm::dbgs() << " FSO already performed on this thunk\n");
return false;
}
// If we are asked to assume a caller for testing purposes, set the flag.
hasCaller |= FSOOptimizeIfNotCalled;
if (!hasCaller && (F->getDynamicallyReplacedFunction() ||
canBeCalledIndirectly(F->getRepresentation()))) {
LLVM_DEBUG(llvm::dbgs() << " function has no caller -> abort\n");
return false;
}
// Run OwnedToGuaranteed optimization.
if (OwnedToGuaranteedAnalyze()) {
Changed = true;
LLVM_DEBUG(llvm::dbgs() << " transform owned-to-guaranteed\n");
OwnedToGuaranteedTransform();
}
// Run DeadArgument elimination transformation. We only specialize
// if this function has a caller inside the current module or we have
// already created a thunk.
if ((hasCaller || Changed || hasOnlyDirectInModuleCallers) &&
DeadArgumentAnalyzeParameters()) {
Changed = true;
LLVM_DEBUG(llvm::dbgs() << " remove dead arguments\n");
DeadArgumentTransformFunction();
}
// Run ArgumentExplosion transformation. We only specialize
// if this function has a caller inside the current module or we have
// already created a thunk.
//
// NOTE: we run argument explosion last because we've already initialized
// the ArgumentDescList to have unexploded number of arguments. Exploding
// it without changing the argument count is not going to help with
// owned-to-guaranteed transformation.
//
// In order to not miss any opportunity, we send the optimized function
// to the passmanager to optimize any opportunities exposed by argument
// explosion.
if ((hasCaller || Changed || hasOnlyDirectInModuleCallers) &&
ArgumentExplosionAnalyzeParameters()) {
Changed = true;
}
// Check if generic signature of the function could be changed by
// removed some unused generic arguments.
if (F->getLoweredFunctionType()->isPolymorphic() &&
TransformDescriptor.createOptimizedSILFunctionType() !=
F->getLoweredFunctionType()) {
Changed = true;
}
// Create the specialized function and invalidate the old function.
if (Changed) {
createFunctionSignatureOptimizedFunction();
}
return Changed;
}
// Run dead argument elimination of partially applied functions.
//
// After this optimization CapturePropagation can replace the partial_apply by a
// direct reference to the specialized function.
bool FunctionSignatureTransform::removeDeadArgs(int minPartialAppliedArgs) {
if (minPartialAppliedArgs < 1)
return false;
if (!DeadArgumentAnalyzeParameters())
return false;
SILFunction *F = TransformDescriptor.OriginalFunction;
auto ArgumentDescList = TransformDescriptor.ArgumentDescList;
// Check if at least the minimum number of partially applied arguments
// are dead. Otherwise no partial_apply can be removed anyway.
unsigned Size = ArgumentDescList.size();
for (unsigned Idx : range(Size)) {
if (Idx < Size - minPartialAppliedArgs) {
// Don't remove arguments other than the partial applied ones, even if
// they are dead.
ArgumentDescList[Idx].IsEntirelyDead = false;
continue;
}
// Is the partially applied argument dead?
if (!ArgumentDescList[Idx].IsEntirelyDead)
return false;
// Currently we require that all dead parameters have trivial types. The
// reason is that it's very hard to find places where we can release those
// parameters (as a replacement for the removed partial_apply).
//
// TODO: Maybe we can skip this restriction when we have semantic ARC.
if (ArgumentDescList[Idx].Arg->getType().isTrivial(*F))
continue;
return false;
}
LLVM_DEBUG(llvm::dbgs() << " remove dead arguments for partial_apply\n");
DeadArgumentTransformFunction();
createFunctionSignatureOptimizedFunction();
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Entry Point
//===----------------------------------------------------------------------===//
namespace {
class FunctionSignatureOpts : public SILFunctionTransform {
/// If true, perform a special kind of dead argument elimination to enable
/// removal of partial_apply instructions where all partially applied
/// arguments are dead.
bool OptForPartialApply;
public:
FunctionSignatureOpts(bool OptForPartialApply) :
OptForPartialApply(OptForPartialApply) { }
void run() override {
auto *F = getFunction();
// Don't run function signature optimizations at -Os.
if (F->optimizeForSize())
return;
// Don't optimize callees that should not be optimized.
if (!F->shouldOptimize())
return;
if (F->isDynamicallyReplaceable())
return;
// This is the function to optimize.
LLVM_DEBUG(llvm::dbgs() << "*** FSO on function: " << F->getName()
<< " ***\n");
// Check the signature of F to make sure that it is a function that we
// can specialize. These are conditions independent of the call graph.
// No need for CallerAnalysis if we are not optimizing for partial
// applies.
if (!OptForPartialApply &&
!canSpecializeFunction(F, nullptr, OptForPartialApply)) {
LLVM_DEBUG(llvm::dbgs() << " cannot specialize function -> abort\n");
return;
}
const CallerAnalysis *CA = PM->getAnalysis<CallerAnalysis>();
const CallerAnalysis::FunctionInfo &FuncInfo = CA->getFunctionInfo(F);
// Check the signature of F to make sure that it is a function that we
// can specialize. These are conditions independent of the call graph.
if (OptForPartialApply &&
!canSpecializeFunction(F, &FuncInfo, OptForPartialApply)) {
LLVM_DEBUG(llvm::dbgs() << " cannot specialize function -> abort\n");
return;
}
// Ok, we think we can perform optimization. Now perform a quick check
auto *RCIA = getAnalysis<RCIdentityAnalysis>();
auto *EA = PM->getAnalysis<EpilogueARCAnalysis>();
// As we optimize the function more and more, the name of the function is
// going to change, make sure the mangler is aware of all the changes done
// to the function.
auto P = Demangle::SpecializationPass::FunctionSignatureOpts;
Mangle::FunctionSignatureSpecializationMangler Mangler(P,
F->isSerialized(), F);
/// Keep a map between the exploded argument index and the original argument
/// index.
llvm::SmallDenseMap<int, int> AIM;
int asize = F->begin()->getArguments().size();
for (unsigned i : range(asize)) {
AIM[i] = i;
}
// Allocate the argument and result descriptors.
llvm::SpecificBumpPtrAllocator<ProjectionTreeNode> Allocator;
llvm::SmallVector<ArgumentDescriptor, 4> ArgumentDescList;
llvm::SmallVector<ResultDescriptor, 4> ResultDescList;
auto Args = F->begin()->getFunctionArguments();
for (unsigned i : indices(Args)) {
ArgumentDescList.emplace_back(Args[i], Allocator);
}
for (SILResultInfo IR : F->getLoweredFunctionType()->getResults()) {
ResultDescList.emplace_back(IR);
}
SILOptFunctionBuilder FuncBuilder(*this);
// Owned to guaranteed optimization.
FunctionSignatureTransform FST(FuncBuilder, F, RCIA, EA, Mangler, AIM,
ArgumentDescList, ResultDescList,
FuncInfo.foundAllCallers());
bool Changed = false;
if (OptForPartialApply) {
Changed = FST.removeDeadArgs(FuncInfo.getMinPartialAppliedArgs());
} else {
Changed = FST.run(FuncInfo.hasDirectCaller());
}
if (!Changed) {
return;
}
++NumFunctionSignaturesOptimized;
// The old function must be a thunk now.
assert(F->isThunk() && "Old function should have been turned into a thunk");
invalidateAnalysis(SILAnalysis::InvalidationKind::Everything);
// Make sure the PM knows about this function. This will also help us
// with self-recursion.
addFunctionToPassManagerWorklist(FST.getOptimizedFunction(), F);
if (!OptForPartialApply) {
// We have to restart the pipeline for this thunk in order to run the
// inliner (and other opts) again. This is important if the new
// specialized function (which is called from this thunk) is
// function-signature-optimized again and also becomes an
// always-inline-thunk.
restartPassPipeline();
}
}
};
} // end anonymous namespace
SILTransform *swift::createFunctionSignatureOpts() {
return new FunctionSignatureOpts(/* OptForPartialApply */ false);
}
SILTransform *swift::createDeadArgSignatureOpt() {
return new FunctionSignatureOpts(/* OptForPartialApply */ true);
}