Files
swift-mirror/lib/IDE/IDERequests.cpp
Robert Widmann 987cd55f50 [NFC] Drop llvm::Expected from Evaluation Points
A request is intended to be a pure function of its inputs. That function could, in theory, fail. In practice, there were basically no requests taking advantage of this ability - the few that were using it to explicitly detect cycles can just return reasonable defaults instead of forwarding the error on up the stack.

This is because cycles are checked by *the Evaluator*, and are unwound by the Evaluator.

Therefore, restore the idea that the evaluate functions are themselves pure, but keep the idea that *evaluation* of those requests may fail. This model enables the best of both worlds: we not only keep the evaluator flexible enough to handle future use cases like cancellation and diagnostic invalidation, but also request-based dependencies using the values computed at the evaluation points. These aforementioned use cases would use the llvm::Expected interface and the regular evaluation-point interface respectively.
2020-03-26 23:08:02 -07:00

1178 lines
40 KiB
C++

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ASTDemangler.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/IDE/CommentConversion.h"
#include "swift/IDE/Utils.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Markup/XMLUtils.h"
#include "swift/Subsystems.h"
#include "swift/IDE/IDERequests.h"
using namespace swift;
using namespace swift::ide;
namespace swift {
// Implement the IDE type zone.
#define SWIFT_TYPEID_ZONE IDE
#define SWIFT_TYPEID_HEADER "swift/IDE/IDERequestIDZone.def"
#include "swift/Basic/ImplementTypeIDZone.h"
#undef SWIFT_TYPEID_ZONE
#undef SWIFT_TYPEID_HEADER
}
// Define request evaluation functions for each of the IDE requests.
static AbstractRequestFunction *ideRequestFunctions[] = {
#define SWIFT_REQUEST(Zone, Name, Sig, Caching, LocOptions) \
reinterpret_cast<AbstractRequestFunction *>(&Name::evaluateRequest),
#include "swift/IDE/IDERequestIDZone.def"
#undef SWIFT_REQUEST
};
void swift::registerIDERequestFunctions(Evaluator &evaluator) {
evaluator.registerRequestFunctions(Zone::IDE,
ideRequestFunctions);
registerIDETypeCheckRequestFunctions(evaluator);
}
//----------------------------------------------------------------------------//
// Cusor info resolver
//----------------------------------------------------------------------------//
class CursorInfoResolver : public SourceEntityWalker {
SourceFile &SrcFile;
SourceLoc LocToResolve;
ResolvedCursorInfo CursorInfo;
Type ContainerType;
llvm::SmallVector<Expr*, 4> TrailingExprStack;
public:
explicit CursorInfoResolver(SourceFile &SrcFile) :
SrcFile(SrcFile), CursorInfo(&SrcFile) {}
ResolvedCursorInfo resolve(SourceLoc Loc);
SourceManager &getSourceMgr() const;
private:
bool walkToExprPre(Expr *E) override;
bool walkToExprPost(Expr *E) override;
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
bool walkToDeclPost(Decl *D) override;
bool walkToStmtPre(Stmt *S) override;
bool walkToStmtPost(Stmt *S) override;
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
ReferenceMetaData Data) override;
bool visitCallArgName(Identifier Name, CharSourceRange Range,
ValueDecl *D) override;
bool visitDeclarationArgumentName(Identifier Name, SourceLoc StartLoc,
ValueDecl *D) override;
bool visitModuleReference(ModuleEntity Mod, CharSourceRange Range) override;
bool rangeContainsLoc(SourceRange Range) const;
bool rangeContainsLoc(CharSourceRange Range) const;
bool isDone() const { return CursorInfo.isValid(); }
bool tryResolve(ValueDecl *D, TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef,
SourceLoc Loc, bool IsRef, Type Ty = Type());
bool tryResolve(ModuleEntity Mod, SourceLoc Loc);
bool tryResolve(Stmt *St);
bool visitSubscriptReference(ValueDecl *D, CharSourceRange Range,
ReferenceMetaData Data,
bool IsOpenBracket) override;
};
SourceManager &CursorInfoResolver::getSourceMgr() const
{
return SrcFile.getASTContext().SourceMgr;
}
bool CursorInfoResolver::tryResolve(ValueDecl *D, TypeDecl *CtorTyRef,
ExtensionDecl *ExtTyRef, SourceLoc Loc,
bool IsRef, Type Ty) {
if (!D->hasName())
return false;
if (Loc != LocToResolve)
return false;
if (auto *VD = dyn_cast<VarDecl>(D)) {
// Handle references to the implicitly generated vars in case statements
// matching multiple patterns
if (VD->isImplicit()) {
if (auto *Parent = VD->getParentVarDecl()) {
D = Parent;
}
}
}
CursorInfo.setValueRef(D, CtorTyRef, ExtTyRef, IsRef, Ty, ContainerType);
return true;
}
bool CursorInfoResolver::tryResolve(ModuleEntity Mod, SourceLoc Loc) {
if (Loc == LocToResolve) {
CursorInfo.setModuleRef(Mod);
return true;
}
return false;
}
bool CursorInfoResolver::tryResolve(Stmt *St) {
if (auto *LST = dyn_cast<LabeledStmt>(St)) {
if (LST->getStartLoc() == LocToResolve) {
CursorInfo.setTrailingStmt(St);
return true;
}
}
if (auto *CS = dyn_cast<CaseStmt>(St)) {
if (CS->getStartLoc() == LocToResolve) {
CursorInfo.setTrailingStmt(St);
return true;
}
}
return false;
}
bool CursorInfoResolver::visitSubscriptReference(ValueDecl *D,
CharSourceRange Range,
ReferenceMetaData Data,
bool IsOpenBracket) {
// We should treat both open and close brackets equally
return visitDeclReference(D, Range, nullptr, nullptr, Type(), Data);
}
ResolvedCursorInfo CursorInfoResolver::resolve(SourceLoc Loc) {
assert(Loc.isValid());
LocToResolve = Loc;
CursorInfo.Loc = Loc;
walk(SrcFile);
return CursorInfo;
}
bool CursorInfoResolver::walkToDeclPre(Decl *D, CharSourceRange Range) {
if (!rangeContainsLoc(D->getSourceRangeIncludingAttrs()))
return false;
if (isa<ExtensionDecl>(D))
return true;
if (auto *VD = dyn_cast<ValueDecl>(D))
return !tryResolve(VD, /*CtorTyRef=*/nullptr, /*ExtTyRef=*/nullptr,
Range.getStart(), /*IsRef=*/false);
return true;
}
bool CursorInfoResolver::walkToDeclPost(Decl *D) {
if (isDone())
return false;
if (getSourceMgr().isBeforeInBuffer(LocToResolve, D->getStartLoc()))
return false;
return true;
}
bool CursorInfoResolver::walkToStmtPre(Stmt *S) {
// Getting the character range for the statement, to account for interpolation
// strings. The token range for the interpolation string is the whole string,
// with begin/end locations pointing at the beginning of the string, so if
// there is a token location inside the string, it will seem as if it is out
// of the source range, unless we convert to character range.
// FIXME: Even implicit Stmts should have proper ranges that include any
// non-implicit Stmts (fix Stmts created for lazy vars).
if (!S->isImplicit() &&
!rangeContainsLoc(Lexer::getCharSourceRangeFromSourceRange(
getSourceMgr(), S->getSourceRange())))
return false;
return !tryResolve(S);
}
bool CursorInfoResolver::walkToStmtPost(Stmt *S) {
if (isDone())
return false;
// FIXME: Even implicit Stmts should have proper ranges that include any
// non-implicit Stmts (fix Stmts created for lazy vars).
if (!S->isImplicit() && getSourceMgr().isBeforeInBuffer(LocToResolve,
S->getStartLoc()))
return false;
return true;
}
bool CursorInfoResolver::visitDeclReference(ValueDecl *D,
CharSourceRange Range,
TypeDecl *CtorTyRef,
ExtensionDecl *ExtTyRef, Type T,
ReferenceMetaData Data) {
if (isDone())
return false;
if (Data.isImplicit)
return true;
return !tryResolve(D, CtorTyRef, ExtTyRef, Range.getStart(), /*IsRef=*/true, T);
}
bool CursorInfoResolver::walkToExprPre(Expr *E) {
if (!isDone()) {
if (auto SAE = dyn_cast<SelfApplyExpr>(E)) {
if (SAE->getFn()->getStartLoc() == LocToResolve) {
ContainerType = SAE->getBase()->getType();
}
} else if (auto ME = dyn_cast<MemberRefExpr>(E)) {
SourceLoc MemberLoc = ME->getNameLoc().getBaseNameLoc();
if (MemberLoc.isValid() && MemberLoc == LocToResolve) {
ContainerType = ME->getBase()->getType();
}
}
auto IsProperCursorLocation = E->getStartLoc() == LocToResolve;
// Handle cursor placement after `try` in ForceTry and OptionalTry Expr.
auto CheckLocation = [&IsProperCursorLocation, this](SourceLoc Loc) {
IsProperCursorLocation = Loc == LocToResolve || IsProperCursorLocation;
};
if (auto *FTE = dyn_cast<ForceTryExpr>(E)) {
CheckLocation(FTE->getExclaimLoc());
}
if (auto *OTE = dyn_cast<OptionalTryExpr>(E)) {
CheckLocation(OTE->getQuestionLoc());
}
// Keep track of trailing expressions.
if (!E->isImplicit() && IsProperCursorLocation)
TrailingExprStack.push_back(E);
}
return true;
}
bool CursorInfoResolver::walkToExprPost(Expr *E) {
if (isDone())
return false;
if (!TrailingExprStack.empty() && TrailingExprStack.back() == E) {
// We return the outtermost expression in the token info.
CursorInfo.setTrailingExpr(TrailingExprStack.front());
return false;
}
return true;
}
bool CursorInfoResolver::visitCallArgName(Identifier Name,
CharSourceRange Range,
ValueDecl *D) {
if (isDone())
return false;
// Handle invalid code where the called decl isn't actually callable, so this
// argument label doesn't really refer to it.
if (isa<ModuleDecl>(D))
return true;
bool Found = tryResolve(D, nullptr, nullptr, Range.getStart(), /*IsRef=*/true);
if (Found)
CursorInfo.IsKeywordArgument = true;
return !Found;
}
bool CursorInfoResolver::
visitDeclarationArgumentName(Identifier Name, SourceLoc StartLoc, ValueDecl *D) {
if (isDone())
return false;
return !tryResolve(D, nullptr, nullptr, StartLoc, /*IsRef=*/false);
}
bool CursorInfoResolver::visitModuleReference(ModuleEntity Mod,
CharSourceRange Range) {
if (isDone())
return false;
if (Mod.isBuiltinModule())
return true; // Ignore.
return !tryResolve(Mod, Range.getStart());
}
bool CursorInfoResolver::rangeContainsLoc(SourceRange Range) const {
return getSourceMgr().rangeContainsTokenLoc(Range, LocToResolve);
}
bool CursorInfoResolver::rangeContainsLoc(CharSourceRange Range) const {
return Range.contains(LocToResolve);
}
ide::ResolvedCursorInfo
CursorInfoRequest::evaluate(Evaluator &eval, CursorInfoOwner CI) const {
if (!CI.isValid())
return ResolvedCursorInfo();
CursorInfoResolver Resolver(*CI.File);
return Resolver.resolve(CI.Loc);
}
SourceLoc CursorInfoRequest::getNearestLoc() const {
return std::get<0>(getStorage()).Loc;
}
void swift::simple_display(llvm::raw_ostream &out, const CursorInfoOwner &owner) {
if (!owner.isValid())
return;
auto &SM = owner.File->getASTContext().SourceMgr;
out << SM.getIdentifierForBuffer(*owner.File->getBufferID());
auto LC = SM.getLineAndColumn(owner.Loc);
out << ":" << LC.first << ":" << LC.second;
}
void swift::ide::simple_display(llvm::raw_ostream &out,
const ide::ResolvedCursorInfo &info) {
if (info.isInvalid())
return;
out << "Resolved cursor info at ";
auto &SM = info.SF->getASTContext().SourceMgr;
out << SM.getIdentifierForBuffer(*info.SF->getBufferID());
auto LC = SM.getLineAndColumn(info.Loc);
out << ":" << LC.first << ":" << LC.second;
}
//----------------------------------------------------------------------------//
// Range info resolver
//----------------------------------------------------------------------------//
class RangeResolver : public SourceEntityWalker {
struct Implementation;
std::unique_ptr<Implementation> Impl;
bool walkToExprPre(Expr *E) override;
bool walkToExprPost(Expr *E) override;
bool walkToStmtPre(Stmt *S) override;
bool walkToStmtPost(Stmt *S) override;
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
bool walkToDeclPost(Decl *D) override;
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
ReferenceMetaData Data) override;
ResolvedRangeInfo moveArrayToASTContext(ResolvedRangeInfo Info);
public:
RangeResolver(SourceFile &File, SourceLoc Start, SourceLoc End);
~RangeResolver();
ResolvedRangeInfo resolve();
};
static bool hasUnhandledError(ArrayRef<ASTNode> Nodes) {
class ThrowingEntityAnalyzer : public SourceEntityWalker {
bool Throwing;
public:
ThrowingEntityAnalyzer(): Throwing(false) {}
bool walkToStmtPre(Stmt *S) override {
if (auto DCS = dyn_cast<DoCatchStmt>(S)) {
if (DCS->isSyntacticallyExhaustive())
return false;
Throwing = true;
} else if (isa<ThrowStmt>(S)) {
Throwing = true;
}
return !Throwing;
}
bool walkToExprPre(Expr *E) override {
if (isa<TryExpr>(E)) {
Throwing = true;
}
return !Throwing;
}
bool walkToDeclPre(Decl *D, CharSourceRange Range) override {
return false;
}
bool walkToDeclPost(Decl *D) override { return !Throwing; }
bool walkToStmtPost(Stmt *S) override { return !Throwing; }
bool walkToExprPost(Expr *E) override { return !Throwing; }
bool isThrowing() { return Throwing; }
};
return Nodes.end() != std::find_if(Nodes.begin(), Nodes.end(), [](ASTNode N) {
ThrowingEntityAnalyzer Analyzer;
Analyzer.walk(N);
return Analyzer.isThrowing();
});
}
struct RangeResolver::Implementation {
SourceFile &File;
ASTContext &Ctx;
SourceManager &SM;
private:
enum class RangeMatchKind : int8_t {
NoneMatch,
StartMatch,
EndMatch,
RangeMatch,
};
struct ContextInfo {
ASTNode Parent;
// Whether the context is entirely contained in the given range under
// scrutiny.
bool ContainedInRange;
std::vector<ASTNode> StartMatches;
std::vector<ASTNode> EndMatches;
ContextInfo(ASTNode Parent, bool ContainedInRange) : Parent(Parent),
ContainedInRange(ContainedInRange) {}
bool isMultiStatement() {
if (StartMatches.empty() || EndMatches.empty())
return false;
// Multi-statement should have a common parent of brace statement, this
// can be implicit brace statement, e.g. in case statement.
if (Parent.isStmt(StmtKind::Brace))
return true;
// Explicitly allow the selection of multiple case statements.
auto IsCase = [](ASTNode N) { return N.isStmt(StmtKind::Case); };
return llvm::any_of(StartMatches, IsCase) &&
llvm::any_of(EndMatches, IsCase);
}
bool isMultiTypeMemberDecl() {
if (StartMatches.empty() || EndMatches.empty())
return false;
// Multi-decls should have the same nominal type as a common parent
if (auto ParentDecl = Parent.dyn_cast<Decl *>())
return isa<NominalTypeDecl>(ParentDecl);
return false;
}
};
ArrayRef<Token> TokensInRange;
SourceLoc Start;
SourceLoc End;
Optional<ResolvedRangeInfo> Result;
std::vector<ContextInfo> ContextStack;
ContextInfo &getCurrentDC() {
assert(!ContextStack.empty());
return ContextStack.back();
}
std::vector<DeclaredDecl> DeclaredDecls;
std::vector<ReferencedDecl> ReferencedDecls;
// Keep track of the AST nodes contained in the range under question.
std::vector<ASTNode> ContainedASTNodes;
/// Collect the type that an ASTNode should be evaluated to.
ReturnInfo resolveNodeType(ASTNode N, RangeKind Kind) {
auto *VoidTy = Ctx.getVoidDecl()->getDeclaredInterfaceType().getPointer();
if (N.isNull())
return {VoidTy, ExitState::Negative};
switch(Kind) {
case RangeKind::Invalid:
case RangeKind::SingleDecl:
case RangeKind::MultiTypeMemberDecl:
case RangeKind::PartOfExpression:
llvm_unreachable("cannot get type.");
// For a single expression, its type is apparent.
case RangeKind::SingleExpression:
return {N.get<Expr*>()->getType().getPointer(), ExitState::Negative};
// For statements, we either resolve to the returning type or Void.
case RangeKind::SingleStatement:
case RangeKind::MultiStatement: {
if (N.is<Stmt*>()) {
if (auto RS = dyn_cast<ReturnStmt>(N.get<Stmt*>())) {
return {
resolveNodeType(RS->hasResult() ? RS->getResult() : nullptr,
RangeKind::SingleExpression).ReturnType,
ExitState::Positive };
}
// Unbox the brace statement to find its type.
if (auto BS = dyn_cast<BraceStmt>(N.get<Stmt*>())) {
if (!BS->getElements().empty()) {
return resolveNodeType(BS->getLastElement(),
RangeKind::SingleStatement);
}
}
// Unbox the if statement to find its type.
if (auto *IS = dyn_cast<IfStmt>(N.get<Stmt*>())) {
llvm::SmallVector<ReturnInfo, 2> Branches;
Branches.push_back(resolveNodeType(IS->getThenStmt(),
RangeKind::SingleStatement));
Branches.push_back(resolveNodeType(IS->getElseStmt(),
RangeKind::SingleStatement));
return {Ctx, Branches};
}
// Unbox switch statement to find return information.
if (auto *SWS = dyn_cast<SwitchStmt>(N.get<Stmt*>())) {
llvm::SmallVector<ReturnInfo, 4> Branches;
for (auto *CS : SWS->getCases()) {
Branches.push_back(resolveNodeType(CS->getBody(),
RangeKind::SingleStatement));
}
return {Ctx, Branches};
}
}
// For other statements, the type should be void.
return {VoidTy, ExitState::Negative};
}
}
llvm_unreachable("unhandled kind");
}
ResolvedRangeInfo getSingleNodeKind(ASTNode Node) {
assert(!Node.isNull());
assert(ContainedASTNodes.size() == 1);
// Single node implies single entry point, or is it?
bool SingleEntry = true;
bool UnhandledError = hasUnhandledError({Node});
OrphanKind Kind = getOrphanKind(ContainedASTNodes);
if (Node.is<Expr*>())
return ResolvedRangeInfo(RangeKind::SingleExpression,
resolveNodeType(Node, RangeKind::SingleExpression),
TokensInRange,
getImmediateContext(),
/*Common Parent Expr*/nullptr,
SingleEntry,
UnhandledError, Kind,
llvm::makeArrayRef(ContainedASTNodes),
llvm::makeArrayRef(DeclaredDecls),
llvm::makeArrayRef(ReferencedDecls));
else if (Node.is<Stmt*>())
return ResolvedRangeInfo(RangeKind::SingleStatement,
resolveNodeType(Node, RangeKind::SingleStatement),
TokensInRange,
getImmediateContext(),
/*Common Parent Expr*/nullptr,
SingleEntry,
UnhandledError, Kind,
llvm::makeArrayRef(ContainedASTNodes),
llvm::makeArrayRef(DeclaredDecls),
llvm::makeArrayRef(ReferencedDecls));
else {
assert(Node.is<Decl*>());
return ResolvedRangeInfo(RangeKind::SingleDecl,
ReturnInfo(),
TokensInRange,
getImmediateContext(),
/*Common Parent Expr*/nullptr,
SingleEntry,
UnhandledError, Kind,
llvm::makeArrayRef(ContainedASTNodes),
llvm::makeArrayRef(DeclaredDecls),
llvm::makeArrayRef(ReferencedDecls));
}
}
bool isContainedInSelection(CharSourceRange Range) {
if (SM.isBeforeInBuffer(Range.getStart(), Start))
return false;
if (SM.isBeforeInBuffer(End, Range.getEnd()))
return false;
return true;
}
DeclContext *getImmediateContext() {
for (auto It = ContextStack.rbegin(); It != ContextStack.rend(); It ++) {
if (auto *DC = It->Parent.getAsDeclContext())
return DC;
}
return static_cast<DeclContext*>(&File);
}
Implementation(SourceFile &File, ArrayRef<Token> TokensInRange) :
File(File), Ctx(File.getASTContext()), SM(Ctx.SourceMgr),
TokensInRange(TokensInRange),
Start(TokensInRange.front().getLoc()),
End(TokensInRange.back().getLoc()) {
assert(Start.isValid() && End.isValid());
}
public:
bool hasResult() { return Result.hasValue(); }
void enter(ASTNode Node) {
bool ContainedInRange;
if (!Node.getOpaqueValue()) {
// If the node is the root, it's not contained for sure.
ContainedInRange = false;
} else if (ContextStack.back().ContainedInRange) {
// If the node's parent is contained in the range, so is the node.
ContainedInRange = true;
} else {
// If the node's parent is not contained in the range, check if this node is.
ContainedInRange = isContainedInSelection(CharSourceRange(SM,
Node.getStartLoc(),
Node.getEndLoc()));
}
ContextStack.emplace_back(Node, ContainedInRange);
}
void leave(ASTNode Node) {
if (!hasResult() && !Node.isImplicit() && nodeContainSelection(Node)) {
if (auto Parent = Node.is<Expr*>() ? Node.get<Expr*>() : nullptr) {
Result = {
RangeKind::PartOfExpression,
ReturnInfo(),
TokensInRange,
getImmediateContext(),
Parent,
hasSingleEntryPoint(ContainedASTNodes),
hasUnhandledError(ContainedASTNodes),
getOrphanKind(ContainedASTNodes),
llvm::makeArrayRef(ContainedASTNodes),
llvm::makeArrayRef(DeclaredDecls),
llvm::makeArrayRef(ReferencedDecls)
};
}
}
assert(ContextStack.back().Parent.getOpaqueValue() == Node.getOpaqueValue());
ContextStack.pop_back();
}
static std::unique_ptr<Implementation>
createInstance(SourceFile &File, SourceLoc Start, SourceLoc End) {
if (Start.isInvalid() || End.isInvalid())
return nullptr;
auto AllTokens = File.getAllTokens();
// This points to the first token after or on the start loc.
auto StartIt = token_lower_bound(AllTokens, Start);
// Skip all the comments.
while(StartIt != AllTokens.end()) {
if (StartIt->getKind() != tok::comment)
break;
StartIt ++;
}
// Erroneous case.
if (StartIt == AllTokens.end())
return nullptr;
// This points to the first token after or on the end loc;
auto EndIt = token_lower_bound(AllTokens, End);
// Adjust end token to skip comments.
while (EndIt != AllTokens.begin()) {
EndIt --;
if (EndIt->getKind() != tok::comment)
break;
}
// Erroneous case.
if (EndIt < StartIt)
return nullptr;
unsigned StartIdx = StartIt - AllTokens.begin();
return std::unique_ptr<Implementation>(new Implementation(File,
AllTokens.slice(StartIdx, EndIt - StartIt + 1)));
}
void analyzeDecl(Decl *D) {
// Collect declared decls in the range.
if (auto *VD = dyn_cast_or_null<ValueDecl>(D)) {
if (isContainedInSelection(CharSourceRange(SM, VD->getStartLoc(),
VD->getEndLoc())))
if (std::find(DeclaredDecls.begin(), DeclaredDecls.end(),
DeclaredDecl(VD)) == DeclaredDecls.end())
DeclaredDecls.push_back(VD);
}
}
class CompleteWalker : public SourceEntityWalker {
Implementation *Impl;
bool walkToDeclPre(Decl *D, CharSourceRange Range) override {
if (D->isImplicit())
return false;
Impl->analyzeDecl(D);
return true;
}
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
ReferenceMetaData Data) override {
Impl->analyzeDeclRef(D, Range.getStart(), T, Data);
return true;
}
public:
CompleteWalker(Implementation *Impl) : Impl(Impl) {}
};
/// This walker walk the current decl context and analyze whether declared
/// decls in the range is referenced after it.
class FurtherReferenceWalker : public SourceEntityWalker {
Implementation *Impl;
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
ReferenceMetaData Data) override {
// If the reference is after the given range, continue logic.
if (!Impl->SM.isBeforeInBuffer(Impl->End, Range.getStart()))
return true;
// If the referenced decl is declared in the range, than the declared decl
// is referenced out of scope/range.
auto It = std::find(Impl->DeclaredDecls.begin(),
Impl->DeclaredDecls.end(), D);
if (It != Impl->DeclaredDecls.end()) {
It->ReferredAfterRange = true;
}
return true;
}
public:
FurtherReferenceWalker(Implementation *Impl) : Impl(Impl) {}
};
void postAnalysis(ASTNode EndNode) {
// Visit the content of this node thoroughly, because the walker may
// abort early.
CompleteWalker(this).walk(EndNode);
// Analyze whether declared decls in the range is referenced outside of it.
FurtherReferenceWalker(this).walk(getImmediateContext());
}
bool hasSingleEntryPoint(ArrayRef<ASTNode> Nodes) {
unsigned CaseCount = 0;
// Count the number of case/default statements.
for (auto N : Nodes) {
if (Stmt *S = N.is<Stmt*>() ? N.get<Stmt*>() : nullptr) {
if (S->getKind() == StmtKind::Case)
CaseCount++;
}
}
// If there are more than one case/default statements, there are more than
// one entry point.
return CaseCount == 0;
}
OrphanKind getOrphanKind(ArrayRef<ASTNode> Nodes) {
if (Nodes.empty())
return OrphanKind::None;
// Prepare the entire range.
SourceRange WholeRange(Nodes.front().getStartLoc(),
Nodes.back().getEndLoc());
struct ControlFlowStmtSelector : public SourceEntityWalker {
std::vector<std::pair<SourceRange, OrphanKind>> Ranges;
bool walkToStmtPre(Stmt *S) override {
// For each continue/break statement, record its target's range and the
// orphan kind.
if (auto *CS = dyn_cast<ContinueStmt>(S)) {
if (auto *Target = CS->getTarget()) {
Ranges.emplace_back(Target->getSourceRange(), OrphanKind::Continue);
}
} else if (auto *BS = dyn_cast<BreakStmt>(S)) {
if (auto *Target = BS->getTarget()) {
Ranges.emplace_back(Target->getSourceRange(), OrphanKind::Break);
}
}
return true;
}
};
for (auto N : Nodes) {
ControlFlowStmtSelector TheWalker;
TheWalker.walk(N);
for (auto Pair : TheWalker.Ranges) {
// If the entire range does not include the target's range, we find
// an orphan.
if (!SM.rangeContains(WholeRange, Pair.first))
return Pair.second;
}
}
// We find no orphan.
return OrphanKind::None;
}
void analyze(ASTNode Node) {
if (!shouldAnalyze(Node))
return;
Decl *D = Node.is<Decl*>() ? Node.get<Decl*>() : nullptr;
analyzeDecl(D);
auto &DCInfo = getCurrentDC();
auto NodeRange = Node.getSourceRange();
// Widen the node's source range to include all attributes to get a range
// match if a function with its attributes has been selected.
if (auto D = Node.dyn_cast<Decl *>())
NodeRange = D->getSourceRangeIncludingAttrs();
switch (getRangeMatchKind(NodeRange)) {
case RangeMatchKind::NoneMatch: {
// PatternBindingDecl is not visited; we need to explicitly analyze here.
if (auto *VA = dyn_cast_or_null<VarDecl>(D))
if (auto PBD = VA->getParentPatternBinding())
analyze(PBD);
break;
}
case RangeMatchKind::RangeMatch: {
postAnalysis(Node);
// The node is contained in the given range.
ContainedASTNodes.push_back(Node);
Result = getSingleNodeKind(Node);
return;
}
case RangeMatchKind::StartMatch:
DCInfo.StartMatches.emplace_back(Node);
break;
case RangeMatchKind::EndMatch:
DCInfo.EndMatches.emplace_back(Node);
break;
}
// If no parent is considered as a contained node; this node should be
// a top-level contained node.
if (std::none_of(ContainedASTNodes.begin(), ContainedASTNodes.end(),
[&](ASTNode N) { return SM.rangeContains(N.getSourceRange(),
Node.getSourceRange()); })) {
ContainedASTNodes.push_back(Node);
}
if (DCInfo.isMultiStatement()) {
postAnalysis(DCInfo.EndMatches.back());
Result = {RangeKind::MultiStatement,
/* Last node has the type */
resolveNodeType(DCInfo.EndMatches.back(),
RangeKind::MultiStatement),
TokensInRange,
getImmediateContext(), nullptr,
hasSingleEntryPoint(ContainedASTNodes),
hasUnhandledError(ContainedASTNodes),
getOrphanKind(ContainedASTNodes),
llvm::makeArrayRef(ContainedASTNodes),
llvm::makeArrayRef(DeclaredDecls),
llvm::makeArrayRef(ReferencedDecls)};
}
if (DCInfo.isMultiTypeMemberDecl()) {
postAnalysis(DCInfo.EndMatches.back());
Result = {RangeKind::MultiTypeMemberDecl,
ReturnInfo(),
TokensInRange,
getImmediateContext(),
/*Common Parent Expr*/ nullptr,
/*SinleEntry*/ true,
hasUnhandledError(ContainedASTNodes),
getOrphanKind(ContainedASTNodes),
llvm::makeArrayRef(ContainedASTNodes),
llvm::makeArrayRef(DeclaredDecls),
llvm::makeArrayRef(ReferencedDecls)};
}
}
bool shouldEnter(ASTNode Node) {
if (hasResult())
return false;
if (SM.isBeforeInBuffer(End, Node.getSourceRange().Start))
return false;
if (SM.isBeforeInBuffer(Node.getSourceRange().End, Start))
return false;
return true;
}
bool nodeContainSelection(ASTNode Node) {
// If the selection starts before the node, return false.
if (SM.isBeforeInBuffer(Start, Node.getStartLoc()))
return false;
// If the node ends before the selection, return false.
if (SM.isBeforeInBuffer(Lexer::getLocForEndOfToken(SM, Node.getEndLoc()),
End))
return false;
// Contained.
return true;
}
bool shouldAnalyze(ASTNode Node) {
// Avoid analyzing implicit nodes.
if (Node.isImplicit())
return false;
// Avoid analyzing nodes that are not enclosed.
if (SM.isBeforeInBuffer(End, Node.getEndLoc()))
return false;
if (SM.isBeforeInBuffer(Node.getStartLoc(), Start))
return false;
return true;
}
ResolvedRangeInfo getResult() {
if (Result.hasValue())
return Result.getValue();
return ResolvedRangeInfo(TokensInRange);
}
void analyzeDeclRef(ValueDecl *VD, SourceLoc Start, Type Ty,
ReferenceMetaData Data) {
// Add defensive check in case the given type is null.
// FIXME: we should receive error type instead of null type.
if (Ty.isNull())
return;
// Only collect decl ref.
if (Data.Kind != SemaReferenceKind::DeclRef)
return;
if (Data.isImplicit || !isContainedInSelection(CharSourceRange(Start, 0)))
return;
// If the VD is declared outside of current file, exclude such decl.
if (VD->getDeclContext()->getParentSourceFile() != &File)
return;
// Down-grade LValue type to RValue type if it's read-only.
if (auto Access = Data.AccKind) {
switch (Access.getValue()) {
case AccessKind::Read:
Ty = Ty->getRValueType();
break;
case AccessKind::Write:
case AccessKind::ReadWrite:
break;
}
}
auto It = llvm::find_if(ReferencedDecls,
[&](ReferencedDecl D) { return D.VD == VD; });
if (It == ReferencedDecls.end()) {
ReferencedDecls.emplace_back(VD, Ty);
} else {
// LValue type should take precedence.
if (!It->Ty->hasLValueType() && Ty->hasLValueType()) {
It->Ty = Ty;
}
}
}
private:
RangeMatchKind getRangeMatchKind(SourceRange Input) {
bool StartMatch = Input.Start == Start;
bool EndMatch = Input.End == End;
if (StartMatch && EndMatch)
return RangeMatchKind::RangeMatch;
else if (StartMatch)
return RangeMatchKind::StartMatch;
else if (EndMatch)
return RangeMatchKind::EndMatch;
else
return RangeMatchKind::NoneMatch;
}
};
RangeResolver::RangeResolver(SourceFile &File, SourceLoc Start, SourceLoc End):
Impl(Implementation::createInstance(File, Start, End)) {}
RangeResolver::~RangeResolver() = default;
bool RangeResolver::walkToExprPre(Expr *E) {
if (!Impl->shouldEnter(E))
return false;
Impl->analyze(E);
Impl->enter(E);
return true;
}
bool RangeResolver::walkToStmtPre(Stmt *S) {
if (!Impl->shouldEnter(S))
return false;
Impl->analyze(S);
Impl->enter(S);
return true;
};
bool RangeResolver::walkToDeclPre(Decl *D, CharSourceRange Range) {
if (D->isImplicit())
return false;
if (!Impl->shouldEnter(D))
return false;
Impl->analyze(D);
Impl->enter(D);
return true;
}
bool RangeResolver::walkToExprPost(Expr *E) {
Impl->leave(E);
return !Impl->hasResult();
}
bool RangeResolver::walkToStmtPost(Stmt *S) {
Impl->leave(S);
return !Impl->hasResult();
};
bool RangeResolver::walkToDeclPost(Decl *D) {
Impl->leave(D);
return !Impl->hasResult();
}
bool RangeResolver::
visitDeclReference(ValueDecl *D, CharSourceRange Range, TypeDecl *CtorTyRef,
ExtensionDecl *ExtTyRef, Type T, ReferenceMetaData Data) {
Impl->analyzeDeclRef(D, Range.getStart(), T, Data);
return true;
}
template <class T>
static ArrayRef<T> copyToContext(ASTContext &Ctx, ArrayRef<T> Arr) {
unsigned n = Arr.size();
auto buffer = Ctx.Allocate<T>(n);
for (unsigned i = 0; i != n; ++i) {
buffer[i] = Arr[i];
}
return buffer;
}
ResolvedRangeInfo
RangeResolver::moveArrayToASTContext(ResolvedRangeInfo Info) {
auto &Ctx = Impl->Ctx;
#define COPY(NAME) Info.NAME = copyToContext(Ctx, Info.NAME);
COPY(ContainedNodes)
COPY(DeclaredDecls)
COPY(ReferencedDecls)
#undef COPY
return Info;
}
ResolvedRangeInfo RangeResolver::resolve() {
if (!Impl)
return ResolvedRangeInfo();
Impl->enter(ASTNode());
walk(Impl->File);
return moveArrayToASTContext(Impl->getResult());
}
void swift::simple_display(llvm::raw_ostream &out,
const RangeInfoOwner &owner) {
if (!owner.isValid())
return;
auto &SM = owner.File->getASTContext().SourceMgr;
out << SM.getIdentifierForBuffer(*owner.File->getBufferID());
auto SLC = SM.getLineAndColumn(owner.StartLoc);
auto ELC = SM.getLineAndColumn(owner.EndLoc);
out << ": (" << SLC.first << ":" << SLC.second << ", "
<< ELC.first << ":" << ELC.second << ")";
}
RangeInfoOwner::RangeInfoOwner(SourceFile *File, unsigned Offset,
unsigned Length): File(File) {
SourceManager &SM = File->getASTContext().SourceMgr;
unsigned BufferId = File->getBufferID().getValue();
StartLoc = SM.getLocForOffset(BufferId, Offset);
EndLoc = SM.getLocForOffset(BufferId, Offset + Length);
}
ide::ResolvedRangeInfo
RangeInfoRequest::evaluate(Evaluator &eval, RangeInfoOwner CI) const {
if (!CI.isValid())
return ResolvedRangeInfo();
return RangeResolver(*CI.File, CI.StartLoc, CI.EndLoc).resolve();
}
SourceLoc RangeInfoRequest::getNearestLoc() const {
return std::get<0>(getStorage()).StartLoc;
}
void
swift::ide::simple_display(llvm::raw_ostream &out, const ResolvedRangeInfo &info) {
info.print(out);
}
//----------------------------------------------------------------------------//
// ProvideDefaultImplForRequest
//----------------------------------------------------------------------------//
static Type getContextFreeInterfaceType(ValueDecl *VD) {
if (auto AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
return AFD->getMethodInterfaceType();
}
return VD->getInterfaceType();
}
ArrayRef<ValueDecl *>
ProvideDefaultImplForRequest::evaluate(Evaluator &eval, ValueDecl* VD) const {
// Skip decls that don't have valid names.
if (!VD->getFullName())
return ArrayRef<ValueDecl*>();
// Check if VD is from a protocol extension.
auto P = VD->getDeclContext()->getExtendedProtocolDecl();
if (!P)
return ArrayRef<ValueDecl*>();
SmallVector<ValueDecl*, 8> Results;
// Look up all decls in the protocol's inheritance chain for the ones with
// the same name with VD.
ResolvedMemberResult LookupResult =
resolveValueMember(*P->getInnermostDeclContext(),
P->getDeclaredInterfaceType(), VD->getFullName());
auto VDType = getContextFreeInterfaceType(VD);
for (auto Mem : LookupResult.getMemberDecls(InterestedMemberKind::All)) {
if (isa<ProtocolDecl>(Mem->getDeclContext())) {
if (Mem->isProtocolRequirement() &&
getContextFreeInterfaceType(Mem)->isEqual(VDType)) {
// We find a protocol requirement VD can provide default
// implementation for.
Results.push_back(Mem);
}
}
}
return copyToContext(VD->getASTContext(), llvm::makeArrayRef(Results));
}
//----------------------------------------------------------------------------//
// CollectOverriddenDeclsRequest
//----------------------------------------------------------------------------//
ArrayRef<ValueDecl *>
CollectOverriddenDeclsRequest::evaluate(Evaluator &evaluator,
OverridenDeclsOwner Owner) const {
std::vector<ValueDecl*> results;
auto *VD = Owner.VD;
if (auto Overridden = VD->getOverriddenDecl()) {
results.push_back(Overridden);
while (Owner.Transitive && (Overridden = Overridden->getOverriddenDecl()))
results.push_back(Overridden);
}
for (auto Req : evaluateOrDefault(evaluator, ProvideDefaultImplForRequest(VD),
ArrayRef<ValueDecl*>())) {
results.push_back(Req);
}
if (Owner.IncludeProtocolRequirements) {
for (auto Satisfied : VD->getSatisfiedProtocolRequirements()) {
results.push_back(Satisfied);
}
}
return copyToContext(VD->getASTContext(), llvm::makeArrayRef(results));
}
//----------------------------------------------------------------------------//
// ResolveProtocolNameRequest
//----------------------------------------------------------------------------//
ProtocolDecl *
ResolveProtocolNameRequest::evaluate(Evaluator &evaluator,
ProtocolNameOwner Input) const {
auto &ctx = Input.DC->getASTContext();
auto name = Input.Name;
// First try to solve by usr
ProtocolDecl *pd = dyn_cast_or_null<ProtocolDecl>(Demangle::
getTypeDeclForUSR(ctx, name));
if (!pd) {
// Second try to solve by mangled symbol name
pd = dyn_cast_or_null<ProtocolDecl>(Demangle::getTypeDeclForMangling(ctx, name));
}
if (!pd) {
// Thirdly try to solve by mangled type name
if (auto ty = Demangle::getTypeForMangling(ctx, name)) {
pd = dyn_cast_or_null<ProtocolDecl>(ty->getAnyGeneric());
}
}
return pd;
}