Files
swift-mirror/lib/Sema/CSFix.cpp
2025-03-19 10:54:09 -07:00

2790 lines
108 KiB
C++

//===--- CSFix.cpp - Constraint Fixes -------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c ConstraintFix class and its related types,
// which is used by constraint solver to attempt to fix constraints to be
// able to produce a solution which is easily diagnosable.
//
//===----------------------------------------------------------------------===//
#include "CSDiagnostics.h"
#include "TypeCheckConcurrency.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/RequirementSignature.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Version.h"
#include "swift/Sema/ConstraintLocator.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/CSFix.h"
#include "swift/Sema/OverloadChoice.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
using namespace swift;
using namespace constraints;
ConstraintFix::~ConstraintFix() {}
std::optional<ScoreKind> ConstraintFix::impact() const {
switch (fixBehavior) {
case FixBehavior::AlwaysWarning:
return std::nullopt;
case FixBehavior::Error:
return SK_Fix;
case FixBehavior::DowngradeToWarning:
return SK_DisfavoredOverload;
case FixBehavior::Suppress:
return std::nullopt;
}
}
ASTNode ConstraintFix::getAnchor() const { return getLocator()->getAnchor(); }
void ConstraintFix::print(llvm::raw_ostream &Out) const {
Out << "[fix: ";
Out << getName();
Out << ']';
Out << " @ ";
getLocator()->dump(&CS.getASTContext().SourceMgr, Out);
}
void ConstraintFix::dump() const {print(llvm::errs()); }
std::string ForceDowncast::getName() const {
llvm::SmallString<16> name;
name += "force downcast (";
name += getFromType()->getString();
name += " as! ";
name += getToType()->getString();
name += ")";
return name.c_str();
}
bool ForceDowncast::diagnose(const Solution &solution, bool asNote) const {
MissingExplicitConversionFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
ForceDowncast *ForceDowncast::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator()) ForceDowncast(cs, fromType, toType, locator);
}
bool ForceOptional::diagnose(const Solution &solution, bool asNote) const {
MissingOptionalUnwrapFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
ForceOptional *ForceOptional::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator()) ForceOptional(cs, fromType, toType, locator);
}
bool UnwrapOptionalBase::diagnose(const Solution &solution, bool asNote) const {
bool resultIsOptional =
getKind() == FixKind::UnwrapOptionalBaseWithOptionalResult;
MemberAccessOnOptionalBaseFailure failure(solution, getLocator(), MemberName,
MemberBaseType, resultIsOptional);
return failure.diagnose(asNote);
}
UnwrapOptionalBase *UnwrapOptionalBase::create(ConstraintSystem &cs,
DeclNameRef member,
Type memberBaseType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) UnwrapOptionalBase(
cs, FixKind::UnwrapOptionalBase, member, memberBaseType, locator);
}
UnwrapOptionalBase *UnwrapOptionalBase::createWithOptionalResult(
ConstraintSystem &cs, DeclNameRef member, Type memberBaseType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
UnwrapOptionalBase(cs, FixKind::UnwrapOptionalBaseWithOptionalResult,
member, memberBaseType, locator);
}
bool AddAddressOf::diagnose(const Solution &solution, bool asNote) const {
MissingAddressOfFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AddAddressOf *AddAddressOf::create(ConstraintSystem &cs, Type argTy,
Type paramTy, ConstraintLocator *locator) {
return new (cs.getAllocator()) AddAddressOf(cs, argTy, paramTy, locator);
}
bool TreatRValueAsLValue::diagnose(const Solution &solution,
bool asNote) const {
RValueTreatedAsLValueFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
unsigned TreatRValueAsLValue::assessImpact(ConstraintSystem &cs,
ConstraintLocator *atLoc) {
// Results of calls can never be l-value.
unsigned impact = isExpr<CallExpr>(atLoc->getAnchor()) ? 2 : 1;
// An overload choice that isn't settable is least interesting for
// diagnosis.
auto *calleeLoc = cs.getCalleeLocator(atLoc, /*lookThroughApply=*/false);
if (auto overload = cs.findSelectedOverloadFor(calleeLoc)) {
if (auto *var = dyn_cast_or_null<AbstractStorageDecl>(
overload->choice.getDeclOrNull())) {
impact += !var->isSettableInSwift(cs.DC) ? 1 : 0;
} else {
impact += 1;
}
}
// This is extra impactful if location has other issues.
if (cs.hasFixFor(atLoc) || cs.hasFixFor(calleeLoc))
impact += 2;
return impact;
}
TreatRValueAsLValue *TreatRValueAsLValue::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forInOut());
return new (cs.getAllocator()) TreatRValueAsLValue(cs, locator);
}
bool CoerceToCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
InvalidCoercionFailure failure(solution, getFromType(), getToType(),
UseConditionalCast, getLocator());
return failure.diagnose(asNote);
}
CoerceToCheckedCast *CoerceToCheckedCast::attempt(ConstraintSystem &cs,
Type fromType, Type toType,
bool useConditionalCast,
ConstraintLocator *locator) {
// If any of the types has a type variable, don't add the fix.
if (fromType->hasTypeVariable() || toType->hasTypeVariable())
return nullptr;
auto anchor = locator->getAnchor();
if (auto *assignExpr = getAsExpr<AssignExpr>(anchor))
anchor = assignExpr->getSrc();
auto *coerceExpr = getAsExpr<CoerceExpr>(anchor);
if (!coerceExpr)
return nullptr;
const auto castKind = TypeChecker::typeCheckCheckedCast(
fromType, toType, CheckedCastContextKind::Coercion, cs.DC);
// Invalid cast.
if (castKind == CheckedCastKind::Unresolved)
return nullptr;
return new (cs.getAllocator())
CoerceToCheckedCast(cs, fromType, toType, useConditionalCast, locator);
}
bool TreatArrayLiteralAsDictionary::diagnose(const Solution &solution,
bool asNote) const {
ArrayLiteralToDictionaryConversionFailure failure(solution,
getToType(), getFromType(),
getLocator());
return failure.diagnose(asNote);
}
TreatArrayLiteralAsDictionary *
TreatArrayLiteralAsDictionary::attempt(ConstraintSystem &cs, Type dictionaryTy,
Type arrayTy,
ConstraintLocator *locator) {
if (!arrayTy->isArrayType())
return nullptr;
// Determine the ArrayExpr from the locator.
auto *expr = getAsExpr(simplifyLocatorToAnchor(locator));
if (!expr)
return nullptr;
if (auto *AE = dyn_cast<AssignExpr>(expr))
expr = AE->getSrc();
auto *arrayExpr = dyn_cast<ArrayExpr>(expr);
if (!arrayExpr)
return nullptr;
// This fix only applies if the array is used as a dictionary.
auto unwrappedDict = dictionaryTy->lookThroughAllOptionalTypes();
if (unwrappedDict->isTypeVariableOrMember())
return nullptr;
auto &ctx = cs.getASTContext();
if (auto *proto = ctx.getProtocol(KnownProtocolKind::ExpressibleByDictionaryLiteral))
if (!lookupConformance(unwrappedDict, proto))
return nullptr;
auto arrayLoc = cs.getConstraintLocator(arrayExpr);
return new (cs.getAllocator())
TreatArrayLiteralAsDictionary(cs, dictionaryTy, arrayTy, arrayLoc);
}
bool MarkExplicitlyEscaping::diagnose(const Solution &solution,
bool asNote) const {
AttributedFuncToTypeConversionFailure failure(
solution, getFromType(), getToType(), getLocator(),
AttributedFuncToTypeConversionFailure::Escaping);
return failure.diagnose(asNote);
}
MarkExplicitlyEscaping *
MarkExplicitlyEscaping::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forEscaping());
return new (cs.getAllocator()) MarkExplicitlyEscaping(cs, lhs, rhs, locator);
}
bool MarkGlobalActorFunction::diagnose(const Solution &solution,
bool asNote) const {
DroppedGlobalActorFunctionAttr failure(
solution, getFromType(), getToType(), getLocator(), fixBehavior);
return failure.diagnose(asNote);
}
/// The fix behavior to apply to a concurrency-related diagnostic.
static std::optional<FixBehavior>
getConcurrencyFixBehavior(ConstraintSystem &cs, ConstraintKind constraintKind,
ConstraintLocatorBuilder locator, bool forSendable) {
// We can only handle the downgrade for conversions.
switch (constraintKind) {
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::Subtype:
break;
default:
if (!cs.shouldAttemptFixes())
return std::nullopt;
return FixBehavior::Error;
}
// For a @preconcurrency callee outside of a strict concurrency
// context, ignore.
if (cs.hasPreconcurrencyCallee(locator)) {
// Preconcurrency failures are always downgraded to warnings, even in
// Swift 6 mode.
if (contextRequiresStrictConcurrencyChecking(
cs.DC, GetClosureType{cs}, ClosureIsolatedByPreconcurrency{cs})) {
return FixBehavior::DowngradeToWarning;
}
return FixBehavior::Suppress;
}
// Otherwise, warn until Swift 6.
if (!cs.getASTContext().LangOpts.isSwiftVersionAtLeast(6))
return FixBehavior::DowngradeToWarning;
return FixBehavior::Error;
}
MarkGlobalActorFunction *
MarkGlobalActorFunction::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator,
FixBehavior fixBehavior) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forGlobalActor());
return new (cs.getAllocator()) MarkGlobalActorFunction(
cs, lhs, rhs, locator, fixBehavior);
}
bool MarkGlobalActorFunction::attempt(ConstraintSystem &cs,
ConstraintKind constraintKind,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocatorBuilder locator) {
auto fixBehavior = getConcurrencyFixBehavior(
cs, constraintKind, locator, /*forSendable=*/false);
if (!fixBehavior)
return true;
auto *fix = MarkGlobalActorFunction::create(
cs, fromType, toType, cs.getConstraintLocator(locator),
*fixBehavior);
return cs.recordFix(fix);
}
bool AddSendableAttribute::diagnose(const Solution &solution,
bool asNote) const {
AttributedFuncToTypeConversionFailure failure(
solution, getFromType(), getToType(), getLocator(),
AttributedFuncToTypeConversionFailure::Concurrent, fixBehavior);
return failure.diagnose(asNote);
}
AddSendableAttribute *
AddSendableAttribute::create(ConstraintSystem &cs,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocator *locator,
FixBehavior fixBehavior) {
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
locator = cs.getConstraintLocator(
locator, LocatorPathElt::ArgumentAttribute::forConcurrent());
return new (cs.getAllocator()) AddSendableAttribute(
cs, fromType, toType, locator, fixBehavior);
}
bool AddSendableAttribute::attempt(ConstraintSystem &cs,
ConstraintKind constraintKind,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocatorBuilder locator) {
auto fixBehavior = getConcurrencyFixBehavior(
cs, constraintKind, locator, /*forSendable=*/true);
if (!fixBehavior)
return true;
auto *fix = AddSendableAttribute::create(
cs, fromType, toType, cs.getConstraintLocator(locator), *fixBehavior);
return cs.recordFix(fix);
}
bool RelabelArguments::diagnose(const Solution &solution, bool asNote) const {
LabelingFailure failure(solution, getLocator(), getLabels());
return failure.diagnose(asNote);
}
bool RelabelArguments::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
SmallPtrSet<ValueDecl *, 4> overloadChoices;
// First, let's find overload choice associated with each
// re-labeling fix.
for (const auto &fix : commonFixes) {
auto &solution = *fix.first;
auto calleeLocator = solution.getCalleeLocator(getLocator());
if (!calleeLocator)
return false;
auto overloadChoice = solution.getOverloadChoiceIfAvailable(calleeLocator);
if (!overloadChoice)
return false;
auto *decl = overloadChoice->choice.getDeclOrNull();
if (!decl)
return false;
(void)overloadChoices.insert(decl);
}
// If all of the fixes point to the same overload choice then it's
// exactly the same issue since the call site is static.
if (overloadChoices.size() == 1)
return diagnose(*commonFixes.front().first);
return false;
}
RelabelArguments *
RelabelArguments::create(ConstraintSystem &cs,
llvm::ArrayRef<Identifier> correctLabels,
ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<Identifier>(correctLabels.size());
void *mem = cs.getAllocator().Allocate(size, alignof(RelabelArguments));
return new (mem) RelabelArguments(cs, correctLabels, locator);
}
bool MissingConformance::diagnose(const Solution &solution, bool asNote) const {
auto *locator = getLocator();
if (IsContextual) {
auto &cs = solution.getConstraintSystem();
auto context = cs.getContextualTypePurpose(locator->getAnchor());
MissingContextualConformanceFailure failure(
solution, context, getNonConformingType(), getProtocolType(), locator);
return failure.diagnose(asNote);
}
MissingConformanceFailure failure(
solution, locator,
std::make_pair(getNonConformingType(), getProtocolType()));
return failure.diagnose(asNote);
}
bool RequirementFix::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix = commonFixes.front().second;
assert(primaryFix);
if (llvm::all_of(
commonFixes,
[&primaryFix](
const std::pair<const Solution *, const ConstraintFix *> &entry) {
return primaryFix->getLocator() == entry.second->getLocator();
}))
return diagnose(*commonFixes.front().first);
// If the location is the same but there are different requirements
// involved let's not attempt to diagnose that as an ambiguity.
return false;
}
bool MissingConformance::isEqual(const ConstraintFix *other) const {
auto *conformanceFix = other->getAs<MissingConformance>();
if (!conformanceFix)
return false;
return IsContextual == conformanceFix->IsContextual &&
getNonConformingType()->isEqual(
conformanceFix->getNonConformingType()) &&
getProtocolType()->isEqual(conformanceFix->getProtocolType());
}
MissingConformance *
MissingConformance::forContextual(ConstraintSystem &cs, Type type,
Type protocolType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) MissingConformance(
cs, /*isContextual=*/true, type, protocolType, locator);
}
MissingConformance *
MissingConformance::forRequirement(ConstraintSystem &cs, Type type,
Type protocolType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) MissingConformance(
cs, /*isContextual=*/false, type, protocolType, locator);
}
bool SkipSameTypeRequirement::diagnose(const Solution &solution,
bool asNote) const {
SameTypeRequirementFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SkipSameTypeRequirement *
SkipSameTypeRequirement::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SkipSameTypeRequirement(cs, lhs, rhs, locator);
}
bool SkipSameShapeRequirement::diagnose(const Solution &solution,
bool asNote) const {
if (getLocator()->isLastElement<LocatorPathElt::PackShape>()) {
SameShapeExpansionFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SameShapeRequirementFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SkipSameShapeRequirement *
SkipSameShapeRequirement::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SkipSameShapeRequirement(cs, lhs, rhs, locator);
}
bool SkipSuperclassRequirement::diagnose(const Solution &solution,
bool asNote) const {
SuperclassRequirementFailure failure(solution, LHS, RHS, getLocator());
return failure.diagnose(asNote);
}
SkipSuperclassRequirement *
SkipSuperclassRequirement::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SkipSuperclassRequirement(cs, lhs, rhs, locator);
}
bool ContextualMismatch::diagnose(const Solution &solution, bool asNote) const {
ContextualFailure failure(solution, getFromType(), getToType(), getLocator());
return failure.diagnose(asNote);
}
bool ContextualMismatch::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto getTypes =
[&](const std::pair<const Solution *, const ConstraintFix *> &entry)
-> std::pair<Type, Type> {
auto &solution = *entry.first;
auto *fix = static_cast<const ContextualMismatch *>(entry.second);
return {solution.simplifyType(fix->getFromType()),
solution.simplifyType(fix->getToType())};
};
auto etalonTypes = getTypes(commonFixes.front());
if (llvm::all_of(
commonFixes,
[&](const std::pair<const Solution *, const ConstraintFix *> &entry) {
auto types = getTypes(entry);
return etalonTypes.first->isEqual(types.first) &&
etalonTypes.second->isEqual(types.second);
})) {
const auto &primary = commonFixes.front();
return primary.second->diagnose(*primary.first, /*asNote=*/false);
}
return false;
}
ContextualMismatch *ContextualMismatch::create(ConstraintSystem &cs, Type lhs,
Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) ContextualMismatch(
cs, lhs, rhs, locator, FixBehavior::Error);
}
bool AllowWrappedValueMismatch::diagnose(const Solution &solution, bool asError) const {
WrappedValueMismatch failure(solution, getFromType(), getToType(), getLocator());
return failure.diagnoseAsError();
}
AllowWrappedValueMismatch *AllowWrappedValueMismatch::create(ConstraintSystem &cs,
Type lhs,
Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowWrappedValueMismatch(cs, lhs, rhs, locator);
}
/// Computes the contextual type information for a type mismatch of a
/// component in a structural type (tuple or function type).
///
/// \returns A tuple containing the contextual type purpose, the source type,
/// and the contextual type.
static std::optional<std::tuple<ContextualTypePurpose, Type, Type>>
getStructuralTypeContext(const Solution &solution, ConstraintLocator *locator) {
if (auto contextualTypeElt =
locator->findLast<LocatorPathElt::ContextualType>()) {
assert(locator->isLastElement<LocatorPathElt::ContextualType>() ||
locator->isLastElement<LocatorPathElt::FunctionArgument>());
auto anchor = locator->getAnchor();
auto contextualInfo = solution.getContextualTypeInfo(anchor);
// For some patterns the type could be empty and the entry is
// there to indicate the purpose only.
if (!contextualInfo || !contextualInfo->getType())
return std::nullopt;
auto exprType = solution.getType(anchor);
return std::make_tuple(contextualInfo->purpose, exprType,
contextualInfo->getType());
} else if (auto argApplyInfo = solution.getFunctionArgApplyInfo(locator)) {
Type fromType = argApplyInfo->getArgType();
Type toType = argApplyInfo->getParamType();
// In case locator points to the function result we want the
// argument and param function types result.
if (locator->isLastElement<LocatorPathElt::FunctionResult>()) {
auto fromFnType = fromType->getAs<FunctionType>();
auto toFnType = toType->getAs<FunctionType>();
if (fromFnType && toFnType) {
return std::make_tuple(
solution.getContextualTypePurpose(locator->getAnchor()),
fromFnType->getResult(), toFnType->getResult());
}
}
return std::make_tuple(CTP_CallArgument, fromType, toType);
} else if (auto *coerceExpr = getAsExpr<CoerceExpr>(locator->getAnchor())) {
return std::make_tuple(CTP_CoerceOperand,
solution.getType(coerceExpr->getSubExpr()),
solution.getType(coerceExpr));
} else if (auto *assignExpr = getAsExpr<AssignExpr>(locator->getAnchor())) {
auto CTP = isa<SubscriptExpr>(assignExpr->getDest()) ? CTP_SubscriptAssignSource
: CTP_AssignSource;
return std::make_tuple(CTP,
solution.getType(assignExpr->getSrc()),
solution.getType(assignExpr->getDest())->getRValueType());
}
return std::nullopt;
}
bool AllowTupleTypeMismatch::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> fixes,
bool asNote) const {
llvm::SmallVector<unsigned, 4> indices;
if (isElementMismatch())
indices.push_back(*Index);
for (auto fix : fixes) {
auto *tupleFix = fix->getAs<AllowTupleTypeMismatch>();
if (!tupleFix || !tupleFix->isElementMismatch())
continue;
indices.push_back(*tupleFix->Index);
}
auto *locator = getLocator();
ContextualTypePurpose purpose;
if (isExpr<CoerceExpr>(locator->getAnchor())) {
purpose = CTP_CoerceOperand;
} else if (auto *assignExpr = getAsExpr<AssignExpr>(locator->getAnchor())) {
purpose = isa<SubscriptExpr>(assignExpr->getDest()) ? CTP_SubscriptAssignSource
: CTP_AssignSource;
} else {
auto &cs = getConstraintSystem();
purpose = cs.getContextualTypePurpose(locator->getAnchor());
}
if (!getFromType()->is<TupleType>() || !getToType()->is<TupleType>()) {
return false;
}
TupleContextualFailure failure(solution, purpose, getFromType(), getToType(),
indices, locator);
return failure.diagnose(asNote);
}
bool AllowTupleTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
return coalesceAndDiagnose(solution, {}, asNote);
}
AllowTupleTypeMismatch *
AllowTupleTypeMismatch::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator,
std::optional<unsigned> index) {
return new (cs.getAllocator())
AllowTupleTypeMismatch(cs, lhs, rhs, locator, index);
}
bool AllowFunctionTypeMismatch::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> fixes,
bool asNote) const {
llvm::SmallVector<unsigned, 4> indices{ParamIndex};
for (auto fix : fixes) {
if (auto *fnFix = fix->getAs<AllowFunctionTypeMismatch>())
indices.push_back(fnFix->ParamIndex);
}
auto *locator = getLocator();
ContextualTypePurpose purpose;
Type fromType;
Type toType;
auto contextualTypeInfo = getStructuralTypeContext(solution, locator);
if (!contextualTypeInfo)
return false;
std::tie(purpose, fromType, toType) = *contextualTypeInfo;
FunctionTypeMismatch failure(solution, purpose, fromType, toType, indices,
locator);
return failure.diagnose(asNote);
}
bool AllowFunctionTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
return coalesceAndDiagnose(solution, {}, asNote);
}
bool AllowFunctionTypeMismatch::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
if (ContextualMismatch::diagnoseForAmbiguity(commonFixes))
return true;
auto *locator = getLocator();
// If this is a mismatch between two function types at argument
// position, there is a tailored diagnostic for that.
if (auto argConv =
locator->getLastElementAs<LocatorPathElt::ApplyArgToParam>()) {
auto &cs = getConstraintSystem();
auto &DE = cs.getASTContext().Diags;
auto &solution = *commonFixes[0].first;
auto info = getStructuralTypeContext(solution, locator);
if (!info)
return false;
auto *argLoc = cs.getConstraintLocator(simplifyLocatorToAnchor(locator));
auto overload = solution.getOverloadChoiceIfAvailable(
solution.getCalleeLocator(argLoc));
if (!overload)
return false;
auto name = overload->choice.getName().getBaseName();
DE.diagnose(getLoc(getAnchor()), diag::no_candidates_match_argument_type,
name.userFacingName(), std::get<2>(*info),
argConv->getParamIdx());
for (auto &entry : commonFixes) {
auto &solution = *entry.first;
auto overload = solution.getOverloadChoiceIfAvailable(
solution.getCalleeLocator(argLoc));
if (!(overload && overload->choice.isDecl()))
continue;
auto *decl = overload->choice.getDecl();
if (decl->getLoc().isValid()) {
DE.diagnose(decl, diag::found_candidate_type,
solution.simplifyType(overload->adjustedOpenedType));
}
}
return true;
}
return false;
}
AllowFunctionTypeMismatch *
AllowFunctionTypeMismatch::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator, unsigned index) {
return new (cs.getAllocator())
AllowFunctionTypeMismatch(cs, lhs, rhs, locator, index);
}
bool GenericArgumentsMismatch::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> secondaryFixes,
bool asNote) const {
std::set<unsigned> scratch(getMismatches().begin(), getMismatches().end());
for (auto *fix : secondaryFixes) {
auto *genericArgsFix = fix->castTo<GenericArgumentsMismatch>();
for (auto mismatchIdx : genericArgsFix->getMismatches())
scratch.insert(mismatchIdx);
}
SmallVector<unsigned> mismatches(scratch.begin(), scratch.end());
return diagnose(solution, mismatches, asNote);
}
bool GenericArgumentsMismatch::diagnose(const Solution &solution,
bool asNote) const {
return diagnose(solution, getMismatches(), asNote);
}
bool GenericArgumentsMismatch::diagnose(const Solution &solution,
ArrayRef<unsigned> mismatches,
bool asNote) const {
GenericArgumentsMismatchFailure failure(solution, getFromType(), getToType(),
mismatches, getLocator());
return failure.diagnose(asNote);
}
GenericArgumentsMismatch *GenericArgumentsMismatch::create(
ConstraintSystem &cs, Type actual, Type required,
llvm::ArrayRef<unsigned> mismatches, ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<unsigned>(mismatches.size());
void *mem =
cs.getAllocator().Allocate(size, alignof(GenericArgumentsMismatch));
return new (mem)
GenericArgumentsMismatch(cs, actual, required, mismatches, locator);
}
bool AllowAutoClosurePointerConversion::diagnose(const Solution &solution,
bool asNote) const {
AutoClosurePointerConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
AllowAutoClosurePointerConversion *
AllowAutoClosurePointerConversion::create(ConstraintSystem &cs, Type pointeeType,
Type pointerType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowAutoClosurePointerConversion(cs, pointeeType, pointerType, locator);
}
bool RemoveUnwrap::diagnose(const Solution &solution, bool asNote) const {
NonOptionalUnwrapFailure failure(solution, BaseType, getLocator());
return failure.diagnose(asNote);
}
RemoveUnwrap *RemoveUnwrap::create(ConstraintSystem &cs, Type baseType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveUnwrap(cs, baseType, locator);
}
bool InsertExplicitCall::diagnose(const Solution &solution, bool asNote) const {
MissingCallFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
InsertExplicitCall *InsertExplicitCall::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) InsertExplicitCall(cs, locator);
}
bool UsePropertyWrapper::diagnose(const Solution &solution, bool asNote) const {
ExtraneousPropertyWrapperUnwrapFailure failure(
solution, Wrapped, UsingProjection, Base, Wrapper, getLocator());
return failure.diagnose(asNote);
}
UsePropertyWrapper *UsePropertyWrapper::create(ConstraintSystem &cs,
VarDecl *wrapped,
bool usingProjection,
Type base, Type wrapper,
ConstraintLocator *locator) {
return new (cs.getAllocator()) UsePropertyWrapper(
cs, wrapped, usingProjection, base, wrapper, locator);
}
bool UseWrappedValue::diagnose(const Solution &solution, bool asNote) const {
MissingPropertyWrapperUnwrapFailure failure(solution, PropertyWrapper,
usingProjection(), Base,
Wrapper, getLocator());
return failure.diagnose(asNote);
}
UseWrappedValue *UseWrappedValue::create(ConstraintSystem &cs,
VarDecl *propertyWrapper, Type base,
Type wrapper,
ConstraintLocator *locator) {
return new (cs.getAllocator())
UseWrappedValue(cs, propertyWrapper, base, wrapper, locator);
}
bool AllowInvalidPropertyWrapperType::diagnose(const Solution &solution, bool asNote) const {
InvalidPropertyWrapperType failure(solution, wrapperType, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPropertyWrapperType *
AllowInvalidPropertyWrapperType::create(ConstraintSystem &cs, Type wrapperType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowInvalidPropertyWrapperType(cs, wrapperType, locator);
}
bool RemoveProjectedValueArgument::diagnose(const Solution &solution, bool asNote) const {
InvalidProjectedValueArgument failure(solution, wrapperType, param, getLocator());
return failure.diagnose(asNote);
}
RemoveProjectedValueArgument *
RemoveProjectedValueArgument::create(ConstraintSystem &cs, Type wrapperType,
ParamDecl *param, ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveProjectedValueArgument(cs, wrapperType, param, locator);
}
bool UseSubscriptOperator::diagnose(const Solution &solution,
bool asNote) const {
SubscriptMisuseFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
UseSubscriptOperator *UseSubscriptOperator::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) UseSubscriptOperator(cs, locator);
}
bool DefineMemberBasedOnUse::diagnose(const Solution &solution,
bool asNote) const {
MissingMemberFailure failure(solution, BaseType, Name, getLocator());
return AlreadyDiagnosed || failure.diagnose(asNote);
}
bool
DefineMemberBasedOnUse::diagnoseForAmbiguity(CommonFixesArray commonFixes) const {
Type concreteBaseType;
for (const auto &solutionAndFix : commonFixes) {
const auto *solution = solutionAndFix.first;
const auto *fix = solutionAndFix.second->getAs<DefineMemberBasedOnUse>();
auto baseType = solution->simplifyType(fix->BaseType);
if (!concreteBaseType)
concreteBaseType = baseType;
if (concreteBaseType->getCanonicalType() != baseType->getCanonicalType()) {
auto &DE = getConstraintSystem().getASTContext().Diags;
DE.diagnose(getLoc(getAnchor()), diag::unresolved_member_no_inference,
Name);
return true;
}
}
return diagnose(*commonFixes.front().first);
}
DefineMemberBasedOnUse *
DefineMemberBasedOnUse::create(ConstraintSystem &cs, Type baseType,
DeclNameRef member, bool alreadyDiagnosed,
ConstraintLocator *locator) {
return new (cs.getAllocator())
DefineMemberBasedOnUse(cs, baseType, member, alreadyDiagnosed, locator);
}
bool DefineMemberBasedOnUnintendedGenericParam::diagnose(
const Solution &solution, bool asNote) const {
UnintendedExtraGenericParamMemberFailure failure(solution, BaseType, Name,
ParamName, getLocator());
return failure.diagnose(asNote);
}
DefineMemberBasedOnUnintendedGenericParam *
DefineMemberBasedOnUnintendedGenericParam::create(ConstraintSystem &cs,
Type baseType,
DeclNameRef member,
Identifier paramName,
ConstraintLocator *locator) {
return new (cs.getAllocator()) DefineMemberBasedOnUnintendedGenericParam(
cs, baseType, member, paramName, locator);
}
AllowMemberRefOnExistential *
AllowMemberRefOnExistential::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef memberName,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowMemberRefOnExistential(cs, baseType, memberName, member, locator);
}
bool AllowMemberRefOnExistential::diagnose(const Solution &solution,
bool asNote) const {
InvalidMemberRefOnExistential failure(solution, getBaseType(),
getMemberName(), getLocator());
return failure.diagnose(asNote);
}
bool AllowInvalidMemberRef::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix =
static_cast<const AllowInvalidMemberRef *>(commonFixes.front().second);
Type baseTy = primaryFix->getBaseType();
for (const auto &entry : commonFixes) {
auto *memberFix = static_cast<const AllowInvalidMemberRef *>(entry.second);
if (!baseTy->isEqual(memberFix->getBaseType()))
return false;
}
return diagnose(*commonFixes.front().first);
}
bool AllowTypeOrInstanceMember::diagnose(const Solution &solution,
bool asNote) const {
AllowTypeOrInstanceMemberFailure failure(solution, getBaseType(), getMember(),
getMemberName(), getLocator());
return failure.diagnose(asNote);
}
AllowTypeOrInstanceMember *
AllowTypeOrInstanceMember::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef usedName,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowTypeOrInstanceMember(cs, baseType, member, usedName, locator);
}
bool AllowInvalidPartialApplication::diagnose(const Solution &solution,
bool asNote) const {
PartialApplicationFailure failure(isWarning, solution, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPartialApplication *
AllowInvalidPartialApplication::create(bool isWarning, ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidPartialApplication(isWarning, cs, locator);
}
bool AllowInvalidInitRef::diagnose(const Solution &solution,
bool asNote) const {
switch (Kind) {
case RefKind::DynamicOnMetatype: {
InvalidDynamicInitOnMetatypeFailure failure(solution, BaseType, Init,
BaseRange, getLocator());
return failure.diagnose(asNote);
}
case RefKind::ProtocolMetatype: {
InitOnProtocolMetatypeFailure failure(
solution, BaseType, Init, IsStaticallyDerived, BaseRange, getLocator());
return failure.diagnose(asNote);
}
case RefKind::NonConstMetatype: {
ImplicitInitOnNonConstMetatypeFailure failure(solution, BaseType, Init,
getLocator());
return failure.diagnose(asNote);
}
}
llvm_unreachable("covered switch");
}
AllowInvalidInitRef *AllowInvalidInitRef::dynamicOnMetatype(
ConstraintSystem &cs, Type baseTy, ConstructorDecl *init,
SourceRange baseRange, ConstraintLocator *locator) {
return create(RefKind::DynamicOnMetatype, cs, baseTy, init,
/*isStaticallyDerived=*/false, baseRange, locator);
}
AllowInvalidInitRef *AllowInvalidInitRef::onProtocolMetatype(
ConstraintSystem &cs, Type baseTy, ConstructorDecl *init,
bool isStaticallyDerived, SourceRange baseRange,
ConstraintLocator *locator) {
return create(RefKind::ProtocolMetatype, cs, baseTy, init,
isStaticallyDerived, baseRange, locator);
}
AllowInvalidInitRef *
AllowInvalidInitRef::onNonConstMetatype(ConstraintSystem &cs, Type baseTy,
ConstructorDecl *init,
ConstraintLocator *locator) {
return create(RefKind::NonConstMetatype, cs, baseTy, init,
/*isStaticallyDerived=*/false, SourceRange(), locator);
}
AllowInvalidInitRef *
AllowInvalidInitRef::create(RefKind kind, ConstraintSystem &cs, Type baseTy,
ConstructorDecl *init, bool isStaticallyDerived,
SourceRange baseRange, ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowInvalidInitRef(
cs, kind, baseTy, init, isStaticallyDerived, baseRange, locator);
}
bool AllowClosureParamDestructuring::diagnose(const Solution &solution,
bool asNote) const {
ClosureParamDestructuringFailure failure(solution, ContextualType,
getLocator());
return failure.diagnose(asNote);
}
AllowClosureParamDestructuring *
AllowClosureParamDestructuring::create(ConstraintSystem &cs,
FunctionType *contextualType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowClosureParamDestructuring(cs, contextualType, locator);
}
bool AddMissingArguments::diagnose(const Solution &solution,
bool asNote) const {
MissingArgumentsFailure failure(solution, getSynthesizedArguments(),
getLocator());
return failure.diagnose(asNote);
}
AddMissingArguments *
AddMissingArguments::create(ConstraintSystem &cs,
ArrayRef<SynthesizedArg> synthesizedArgs,
ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<SynthesizedArg>(synthesizedArgs.size());
void *mem = cs.getAllocator().Allocate(size, alignof(AddMissingArguments));
return new (mem) AddMissingArguments(cs, synthesizedArgs, locator);
}
bool RemoveExtraneousArguments::diagnose(const Solution &solution,
bool asNote) const {
ExtraneousArgumentsFailure failure(solution, ContextualType,
getExtraArguments(), getLocator());
return failure.diagnose(asNote);
}
bool RemoveExtraneousArguments::isMinMaxNameShadowing(
ConstraintSystem &cs, ConstraintLocatorBuilder locator) {
auto *anchor = getAsExpr<CallExpr>(locator.getAnchor());
if (!anchor)
return false;
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor->getFn())) {
if (auto *baseExpr = dyn_cast<DeclRefExpr>(UDE->getBase())) {
auto *decl = baseExpr->getDecl();
if (baseExpr->isImplicit() && decl &&
decl->getName() == cs.getASTContext().Id_self) {
auto memberName = UDE->getName();
return memberName.isSimpleName("min") || memberName.isSimpleName("max");
}
}
}
return false;
}
RemoveExtraneousArguments *RemoveExtraneousArguments::create(
ConstraintSystem &cs, FunctionType *contextualType,
llvm::ArrayRef<IndexedParam> extraArgs, ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<IndexedParam>(extraArgs.size());
void *mem = cs.getAllocator().Allocate(size, alignof(RemoveExtraneousArguments));
return new (mem)
RemoveExtraneousArguments(cs, contextualType, extraArgs, locator);
}
bool MoveOutOfOrderArgument::diagnose(const Solution &solution,
bool asNote) const {
OutOfOrderArgumentFailure failure(solution, ArgIdx, PrevArgIdx, Bindings,
getLocator());
return failure.diagnose(asNote);
}
bool MoveOutOfOrderArgument::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix =
commonFixes.front().second->getAs<MoveOutOfOrderArgument>();
assert(primaryFix);
if (llvm::all_of(
commonFixes,
[&primaryFix](
const std::pair<const Solution *, const ConstraintFix *> &entry) {
return primaryFix->isEqual(entry.second);
}))
return diagnose(*commonFixes.front().first);
return false;
}
bool MoveOutOfOrderArgument::isEqual(const ConstraintFix *other) const {
auto OoOFix = other->getAs<MoveOutOfOrderArgument>();
return OoOFix ? ArgIdx == OoOFix->ArgIdx && PrevArgIdx == OoOFix->PrevArgIdx
: false;
}
MoveOutOfOrderArgument *MoveOutOfOrderArgument::create(
ConstraintSystem &cs, unsigned argIdx, unsigned prevArgIdx,
ArrayRef<ParamBinding> bindings, ConstraintLocator *locator) {
return new (cs.getAllocator())
MoveOutOfOrderArgument(cs, argIdx, prevArgIdx, bindings, locator);
}
bool AllowInaccessibleMember::diagnose(const Solution &solution,
bool asNote) const {
InaccessibleMemberFailure failure(solution, getMember(), getLocator());
return failure.diagnose(asNote);
}
AllowInaccessibleMember *
AllowInaccessibleMember::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInaccessibleMember(cs, baseType, member, name, locator);
}
bool AllowAnyObjectKeyPathRoot::diagnose(const Solution &solution,
bool asNote) const {
AnyObjectKeyPathRootFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowAnyObjectKeyPathRoot *
AllowAnyObjectKeyPathRoot::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowAnyObjectKeyPathRoot(cs, locator);
}
bool AllowMultiArgFuncKeyPathMismatch::diagnose(const Solution &solution,
bool asNote) const {
MultiArgFuncKeyPathFailure failure(solution, functionType, getLocator());
return failure.diagnose(asNote);
}
AllowMultiArgFuncKeyPathMismatch *
AllowMultiArgFuncKeyPathMismatch::create(ConstraintSystem &cs, Type fnType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowMultiArgFuncKeyPathMismatch(cs, fnType, locator);
}
bool TreatKeyPathSubscriptIndexAsHashable::diagnose(const Solution &solution,
bool asNote) const {
KeyPathSubscriptIndexHashableFailure failure(solution, NonConformingType,
getLocator());
return failure.diagnose(asNote);
}
TreatKeyPathSubscriptIndexAsHashable *
TreatKeyPathSubscriptIndexAsHashable::create(ConstraintSystem &cs, Type type,
ConstraintLocator *locator) {
return new (cs.getAllocator())
TreatKeyPathSubscriptIndexAsHashable(cs, type, locator);
}
bool AllowInvalidRefInKeyPath::diagnose(const Solution &solution,
bool asNote) const {
switch (Kind) {
case RefKind::StaticMember: {
InvalidStaticMemberRefInKeyPath failure(solution, BaseType, Member,
getLocator());
return failure.diagnose(asNote);
}
case RefKind::UnsupportedStaticMember: {
UnsupportedStaticMemberRefInKeyPath failure(solution, BaseType, Member,
getLocator());
return failure.diagnose(asNote);
}
case RefKind::EnumCase: {
InvalidEnumCaseRefInKeyPath failure(solution, Member, getLocator());
return failure.diagnose(asNote);
}
case RefKind::MutatingGetter: {
InvalidMemberWithMutatingGetterInKeyPath failure(solution, Member,
getLocator());
return failure.diagnose(asNote);
}
case RefKind::Method:
case RefKind::Initializer: {
UnsupportedMethodRefInKeyPath failure(solution, Member, getLocator());
return failure.diagnose(asNote);
}
case RefKind::MutatingMethod: {
InvalidMutatingMethodRefInKeyPath failure(solution, Member, getLocator());
return failure.diagnose(asNote);
}
case RefKind::AsyncOrThrowsMethod: {
InvalidAsyncOrThrowsMethodRefInKeyPath failure(solution, Member,
getLocator());
return failure.diagnose(asNote);
}
}
llvm_unreachable("covered switch");
}
bool AllowInvalidRefInKeyPath::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto *primaryFix =
commonFixes.front().second->getAs<AllowInvalidRefInKeyPath>();
assert(primaryFix);
if (llvm::all_of(
commonFixes,
[&primaryFix](
const std::pair<const Solution *, const ConstraintFix *> &entry) {
return primaryFix->isEqual(entry.second);
})) {
return diagnose(*commonFixes.front().first);
}
return false;
}
bool AllowInvalidRefInKeyPath::isEqual(const ConstraintFix *other) const {
auto *refFix = other->getAs<AllowInvalidRefInKeyPath>();
return refFix ? Kind == refFix->Kind && Member == refFix->Member : false;
}
AllowInvalidRefInKeyPath *
AllowInvalidRefInKeyPath::forRef(ConstraintSystem &cs, Type baseType,
ValueDecl *member,
ConstraintLocator *locator) {
if (member->isStatic() && !isa<FuncDecl>(member)) {
// References to static members are supported only for modules that
// are built with 6.1+ compilers, libraries produced by earlier
// compilers don't have required symbols.
if (auto *module = member->getDeclContext()->getParentModule()) {
if (module->isBuiltFromInterface()) {
auto compilerVersion = module->getSwiftInterfaceCompilerVersion();
if (!compilerVersion.isVersionAtLeast(6, 1))
return AllowInvalidRefInKeyPath::create(
cs, baseType, RefKind::UnsupportedStaticMember, member, locator);
}
}
if (!baseType->getRValueType()->is<AnyMetatypeType>())
return AllowInvalidRefInKeyPath::create(
cs, baseType, RefKind::StaticMember, member, locator);
}
// Referencing enum cases in key path is not currently allowed.
if (isa<EnumElementDecl>(member)) {
return AllowInvalidRefInKeyPath::create(cs, baseType, RefKind::EnumCase,
member, locator);
}
if (auto *storage = dyn_cast<AbstractStorageDecl>(member)) {
// Referencing members with mutating getters in key path is not
// currently allowed.
if (storage->isGetterMutating())
return AllowInvalidRefInKeyPath::create(
cs, baseType, RefKind::MutatingGetter, member, locator);
}
if (cs.getASTContext().LangOpts.hasFeature(
Feature::KeyPathWithMethodMembers)) {
// Referencing mutating, throws or async method members is not currently
// allowed.
if (auto method = dyn_cast<FuncDecl>(member)) {
if (method->isAsyncContext())
return AllowInvalidRefInKeyPath::create(
cs, baseType, RefKind::AsyncOrThrowsMethod, member, locator);
if (auto methodType =
method->getInterfaceType()->getAs<AnyFunctionType>()) {
if (methodType->getResult()->getAs<AnyFunctionType>()->isThrowing())
return AllowInvalidRefInKeyPath::create(
cs, baseType, RefKind::AsyncOrThrowsMethod, member, locator);
}
if (method->isMutating())
return AllowInvalidRefInKeyPath::create(
cs, baseType, RefKind::MutatingMethod, member, locator);
return nullptr;
}
if (isa<ConstructorDecl>(member))
return nullptr;
}
// Referencing (instance or static) methods in key path is
// not currently allowed.
if (isa<FuncDecl>(member))
return AllowInvalidRefInKeyPath::create(cs, baseType, RefKind::Method,
member, locator);
// Referencing initializers in key path is not currently allowed.
if (isa<ConstructorDecl>(member))
return AllowInvalidRefInKeyPath::create(cs, baseType, RefKind::Initializer,
member, locator);
return nullptr;
}
AllowInvalidRefInKeyPath *
AllowInvalidRefInKeyPath::create(ConstraintSystem &cs, Type baseType,
RefKind kind, ValueDecl *member,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidRefInKeyPath(cs, baseType, kind, member, locator);
}
bool RemoveAddressOf::diagnose(const Solution &solution, bool asNote) const {
InvalidUseOfAddressOf failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
RemoveAddressOf *RemoveAddressOf::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveAddressOf(cs, lhs, rhs, locator);
}
RemoveReturn::RemoveReturn(ConstraintSystem &cs, Type resultTy,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::RemoveReturn, resultTy,
cs.getASTContext().TheEmptyTupleType, locator) {}
bool RemoveReturn::diagnose(const Solution &solution, bool asNote) const {
ExtraneousReturnFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
RemoveReturn *RemoveReturn::create(ConstraintSystem &cs, Type resultTy,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveReturn(cs, resultTy, locator);
}
NotCompileTimeLiteral::NotCompileTimeLiteral(ConstraintSystem &cs, Type paramTy,
ConstraintLocator *locator):
ContextualMismatch(cs, FixKind::NotCompileTimeLiteral, paramTy,
cs.getASTContext().TheEmptyTupleType, locator,
FixBehavior::AlwaysWarning) {}
NotCompileTimeLiteral *
NotCompileTimeLiteral::create(ConstraintSystem &cs, Type paramTy,
ConstraintLocator *locator) {
return new (cs.getAllocator()) NotCompileTimeLiteral(cs, paramTy, locator);
}
bool NotCompileTimeLiteral::diagnose(const Solution &solution, bool asNote) const {
auto *locator = getLocator();
if (auto *E = getAsExpr(locator->getAnchor())) {
auto isAccepted = E->isSemanticallyConstExpr([&](Expr *E) {
if (auto *UMC = dyn_cast<UnresolvedMemberChainResultExpr>(E)) {
E = UMC->getSubExpr();
}
auto locator = solution.getConstraintSystem().getConstraintLocator(E);
// Referencing an enum element directly is considered a compile-time literal.
if (auto *d = solution.resolveLocatorToDecl(locator).getDecl()) {
if (isa<EnumElementDecl>(d)) {
if (!d->hasParameterList()) {
return true;
}
}
}
return false;
});
if (isAccepted)
return true;
}
NotCompileTimeLiteralFailure failure(solution, locator);
return failure.diagnose(asNote);
}
bool AllowInvalidPackElement::diagnose(const Solution &solution,
bool asNote) const {
InvalidPackElement failure(solution, packElementType, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPackElement *
AllowInvalidPackElement::create(ConstraintSystem &cs,
Type packElementType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidPackElement(cs, packElementType, locator);
}
bool AllowInvalidPackReference::diagnose(const Solution &solution,
bool asNote) const {
InvalidPackReference failure(solution, packType, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPackReference *
AllowInvalidPackReference::create(ConstraintSystem &cs, Type packType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidPackReference(cs, packType, locator);
}
bool AllowInvalidPackExpansion::diagnose(const Solution &solution,
bool asNote) const {
InvalidPackExpansion failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidPackExpansion *
AllowInvalidPackExpansion::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowInvalidPackExpansion(cs, locator);
}
bool IgnoreWhereClauseInPackIteration::diagnose(const Solution &solution,
bool asNote) const {
InvalidWhereClauseInPackIteration failure(solution, getLocator());
return failure.diagnose(asNote);
}
IgnoreWhereClauseInPackIteration *
IgnoreWhereClauseInPackIteration::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreWhereClauseInPackIteration(cs, locator);
}
bool CollectionElementContextualMismatch::diagnose(const Solution &solution,
bool asNote) const {
CollectionElementContextualFailure failure(
solution, getElements(), getFromType(), getToType(), getLocator());
return failure.diagnose(asNote);
}
CollectionElementContextualMismatch *
CollectionElementContextualMismatch::create(ConstraintSystem &cs, Type srcType,
Type dstType,
ConstraintLocator *locator) {
// It's common for a single literal element to represent types of other
// literal elements of the same kind, let's check whether that is the case
// here and record all of the affected positions.
SmallVector<Expr *, 4> affected;
{
if (auto *elementLoc = getAsExpr(simplifyLocatorToAnchor(locator))) {
auto *typeVar = cs.getType(elementLoc)->getAs<TypeVariableType>();
if (typeVar && typeVar->getImpl().getAtomicLiteralKind()) {
const auto *node =
cs.getRepresentative(typeVar)->getImpl().getGraphNode();
for (auto *typeVar : node->getEquivalenceClass()) {
auto *locator = typeVar->getImpl().getLocator();
if (auto *eltLoc = getAsExpr(simplifyLocatorToAnchor(locator)))
affected.push_back(eltLoc);
}
}
}
}
unsigned size = totalSizeToAlloc<Expr *>(affected.size());
void *mem = cs.getAllocator().Allocate(
size, alignof(CollectionElementContextualMismatch));
return new (mem) CollectionElementContextualMismatch(cs, affected, srcType,
dstType, locator);
}
bool DefaultGenericArgument::coalesceAndDiagnose(
const Solution &solution, ArrayRef<ConstraintFix *> fixes,
bool asNote) const {
llvm::SmallVector<GenericTypeParamType *, 4> missingParams{Param};
for (auto *otherFix : fixes) {
if (auto *fix = otherFix->getAs<DefaultGenericArgument>())
missingParams.push_back(fix->Param);
}
MissingGenericArgumentsFailure failure(solution, missingParams, getLocator());
return failure.diagnose(asNote);
}
bool DefaultGenericArgument::diagnose(const Solution &solution,
bool asNote) const {
return coalesceAndDiagnose(solution, {}, asNote);
}
DefaultGenericArgument *
DefaultGenericArgument::create(ConstraintSystem &cs, GenericTypeParamType *param,
ConstraintLocator *locator) {
return new (cs.getAllocator()) DefaultGenericArgument(cs, param, locator);
}
SkipUnhandledConstructInResultBuilder *
SkipUnhandledConstructInResultBuilder::create(ConstraintSystem &cs,
UnhandledNode unhandled,
NominalTypeDecl *builder,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SkipUnhandledConstructInResultBuilder(cs, unhandled, builder, locator);
}
bool SkipUnhandledConstructInResultBuilder::diagnose(const Solution &solution,
bool asNote) const {
SkipUnhandledConstructInResultBuilderFailure failure(solution, unhandled,
builder, getLocator());
return failure.diagnose(asNote);
}
bool AllowMutatingMemberOnRValueBase::diagnose(const Solution &solution,
bool asNote) const {
MutatingMemberRefOnImmutableBase failure(solution, getMember(), getLocator());
return failure.diagnose(asNote);
}
AllowMutatingMemberOnRValueBase *
AllowMutatingMemberOnRValueBase::create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowMutatingMemberOnRValueBase(cs, baseType, member, name, locator);
}
bool AllowTupleSplatForSingleParameter::diagnose(const Solution &solution,
bool asNote) const {
InvalidTupleSplatWithSingleParameterFailure failure(solution, ParamType,
getLocator());
return failure.diagnose(asNote);
}
bool AllowTupleSplatForSingleParameter::attempt(
ConstraintSystem &cs, SmallVectorImpl<Param> &args, ArrayRef<Param> params,
SmallVectorImpl<SmallVector<unsigned, 1>> &bindings,
ConstraintLocatorBuilder locator) {
if (params.size() != 1 || args.size() <= 1)
return true;
const auto &param = params.front();
if (param.isInOut() || param.isVariadic() || param.isAutoClosure())
return true;
auto paramTy = param.getOldType();
// Parameter type has to be either a tuple (with the same arity as
// argument list), or a type variable.
if (!(paramTy->is<TupleType>() &&
paramTy->castTo<TupleType>()->getNumElements() == args.size()))
return true;
SmallVector<TupleTypeElt, 4> argElts;
for (unsigned index : indices(args)) {
const auto &arg = args[index];
auto label = arg.getLabel();
auto flags = arg.getParameterFlags();
// In situations where there is a single labeled parameter
// we need to form a tuple which omits the label e.g.
//
// func foo<T>(x: (T, T)) {}
// foo(x: 0, 1)
//
// We'd want to suggest argument list to be `x: (0, 1)` instead
// of `(x: 0, 1)` which would be incorrect.
if (param.hasLabel() && label == param.getLabel()) {
if (index == 0) {
label = Identifier();
} else {
// If label match anything other than first argument,
// this can't be a tuple splat.
return true;
}
}
// Tuple can't have `inout` elements.
if (flags.isInOut())
return true;
argElts.push_back({arg.getPlainType(), label});
}
bindings[0].clear();
bindings[0].push_back(0);
auto newArgType = TupleType::get(argElts, cs.getASTContext());
args.clear();
args.push_back(AnyFunctionType::Param(newArgType, param.getLabel()));
auto *fix = new (cs.getAllocator()) AllowTupleSplatForSingleParameter(
cs, paramTy, cs.getConstraintLocator(locator));
return cs.recordFix(fix);
}
bool DropThrowsAttribute::diagnose(const Solution &solution,
bool asNote) const {
ThrowingFunctionConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
DropThrowsAttribute *DropThrowsAttribute::create(ConstraintSystem &cs,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
DropThrowsAttribute(cs, fromType, toType, locator);
}
bool IgnoreThrownErrorMismatch::diagnose(const Solution &solution,
bool asNote) const {
ThrownErrorTypeConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
IgnoreThrownErrorMismatch *IgnoreThrownErrorMismatch::create(ConstraintSystem &cs,
Type fromErrorType,
Type toErrorType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreThrownErrorMismatch(cs, fromErrorType, toErrorType, locator);
}
bool DropAsyncAttribute::diagnose(const Solution &solution,
bool asNote) const {
AsyncFunctionConversionFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
DropAsyncAttribute *DropAsyncAttribute::create(ConstraintSystem &cs,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
DropAsyncAttribute(cs, fromType, toType, locator);
}
bool IgnoreContextualType::diagnose(const Solution &solution,
bool asNote) const {
ContextualFailure failure(solution, getFromType(), getToType(), getLocator());
return failure.diagnose(asNote);
}
IgnoreContextualType *IgnoreContextualType::create(ConstraintSystem &cs,
Type resultTy,
Type specifiedTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreContextualType(cs, resultTy, specifiedTy, locator);
}
bool IgnoreAssignmentDestinationType::diagnose(const Solution &solution,
bool asNote) const {
auto &cs = getConstraintSystem();
auto *AE = getAsExpr<AssignExpr>(getAnchor());
assert(AE);
// Let's check whether this is a situation of chained assignment where
// one of the steps in the chain is an assignment to self e.g.
// `let _ = { $0 = $0 = 42 }`. Assignment chaining results in
// type mismatch between result of the previous assignment and the next.
{
llvm::SaveAndRestore<AssignExpr *> anchor(AE);
do {
if (TypeChecker::diagnoseSelfAssignment(AE))
return true;
} while ((AE = dyn_cast_or_null<AssignExpr>(cs.getParentExpr(AE))));
}
auto CTP = isa<SubscriptExpr>(AE->getDest()) ? CTP_SubscriptAssignSource
: CTP_AssignSource;
AssignmentTypeMismatchFailure failure(
solution, CTP, getFromType(), getToType(),
cs.getConstraintLocator(AE->getSrc(),
LocatorPathElt::ContextualType(CTP)));
return failure.diagnose(asNote);
}
bool IgnoreAssignmentDestinationType::diagnoseForAmbiguity(
CommonFixesArray commonFixes) const {
auto &cs = getConstraintSystem();
// If all of the types are the same let's try to diagnose
// this as if there is no ambiguity.
if (ContextualMismatch::diagnoseForAmbiguity(commonFixes))
return true;
auto *commonLocator = getLocator();
auto *assignment = castToExpr<AssignExpr>(commonLocator->getAnchor());
auto &solution = *commonFixes.front().first;
auto *calleeLocator = solution.getCalleeLocator(
solution.getConstraintLocator(assignment->getSrc()));
auto overload = solution.getOverloadChoiceIfAvailable(calleeLocator);
if (!overload)
return false;
auto memberName = overload->choice.getName().getBaseName();
auto destType = solution.getType(assignment->getDest());
auto &DE = cs.getASTContext().Diags;
// TODO(diagnostics): It might be good to add a tailored diagnostic
// for cases like this instead of using "contextual" one.
DE.diagnose(assignment->getSrc()->getLoc(),
diag::no_candidates_match_result_type,
memberName.userFacingName(),
solution.simplifyType(destType)->getRValueType());
for (auto &entry : commonFixes) {
entry.second->diagnose(*entry.first, /*asNote=*/true);
}
return true;
}
IgnoreAssignmentDestinationType *
IgnoreAssignmentDestinationType::create(ConstraintSystem &cs, Type sourceTy,
Type destTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreAssignmentDestinationType(cs, sourceTy, destTy, locator);
}
bool AllowInOutConversion::diagnose(const Solution &solution,
bool asNote) const {
InOutConversionFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowInOutConversion *AllowInOutConversion::create(ConstraintSystem &cs,
Type argType, Type paramType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInOutConversion(cs, argType, paramType, locator);
}
ExpandArrayIntoVarargs *
ExpandArrayIntoVarargs::attempt(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocatorBuilder builder) {
auto *locator = cs.getConstraintLocator(builder);
auto argLoc = locator->getLastElementAs<LocatorPathElt::ApplyArgToParam>();
if (!(argLoc && argLoc->getParameterFlags().isVariadic()))
return nullptr;
auto elementType = argType->isArrayType();
if (!elementType)
return nullptr;
ConstraintSystem::TypeMatchOptions options;
options |= ConstraintSystem::TypeMatchFlags::TMF_ApplyingFix;
options |= ConstraintSystem::TypeMatchFlags::TMF_GenerateConstraints;
auto result = cs.matchTypes(elementType, paramType, ConstraintKind::Subtype,
options, builder);
if (result.isFailure())
return nullptr;
return new (cs.getAllocator())
ExpandArrayIntoVarargs(cs, argType, paramType, locator);
}
bool ExpandArrayIntoVarargs::diagnose(const Solution &solution,
bool asNote) const {
ExpandArrayIntoVarargsFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
bool ExplicitlyConstructRawRepresentable::diagnose(const Solution &solution,
bool asNote) const {
MissingRawRepresentableInitFailure failure(solution, RawReprType,
ExpectedType, getLocator());
return failure.diagnose(asNote);
}
ExplicitlyConstructRawRepresentable *
ExplicitlyConstructRawRepresentable::create(ConstraintSystem &cs,
Type rawReprType, Type expectedType,
ConstraintLocator *locator) {
return new (cs.getAllocator()) ExplicitlyConstructRawRepresentable(
cs, rawReprType, expectedType, locator);
}
bool UseRawValue::diagnose(const Solution &solution, bool asNote) const {
MissingRawValueFailure failure(solution, RawReprType, ExpectedType,
getLocator());
return failure.diagnose(asNote);
}
UseRawValue *UseRawValue::create(ConstraintSystem &cs, Type rawReprType,
Type expectedType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
UseRawValue(cs, rawReprType, expectedType, locator);
}
unsigned AllowArgumentMismatch::getParamIdx() const {
const auto *locator = getLocator();
auto elt = locator->castLastElementTo<LocatorPathElt::ApplyArgToParam>();
return elt.getParamIdx();
}
bool AllowArgumentMismatch::diagnose(const Solution &solution,
bool asNote) const {
ArgumentMismatchFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowArgumentMismatch *
AllowArgumentMismatch::create(ConstraintSystem &cs, Type argType,
Type paramType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowArgumentMismatch(cs, argType, paramType, locator);
}
bool RemoveInvalidCall::diagnose(const Solution &solution, bool asNote) const {
ExtraneousCallFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
RemoveInvalidCall *RemoveInvalidCall::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) RemoveInvalidCall(cs, locator);
}
bool TreatEphemeralAsNonEphemeral::diagnose(const Solution &solution,
bool asNote) const {
NonEphemeralConversionFailure failure(solution, getLocator(), getFromType(),
getToType(), ConversionKind,
fixBehavior);
return failure.diagnose(asNote);
}
TreatEphemeralAsNonEphemeral *TreatEphemeralAsNonEphemeral::create(
ConstraintSystem &cs, ConstraintLocator *locator, Type srcType,
Type dstType, ConversionRestrictionKind conversionKind,
bool downgradeToWarning) {
return new (cs.getAllocator()) TreatEphemeralAsNonEphemeral(
cs, locator, srcType, dstType, conversionKind,
downgradeToWarning ? FixBehavior::DowngradeToWarning
: FixBehavior::Error);
}
std::string TreatEphemeralAsNonEphemeral::getName() const {
std::string name;
name += "treat ephemeral as non-ephemeral for ";
name += ::getName(ConversionKind);
return name;
}
bool AllowSendingMismatch::diagnose(const Solution &solution,
bool asNote) const {
SendingMismatchFailure failure(solution, getFromType(), getToType(),
getLocator(), fixBehavior);
return failure.diagnose(asNote);
}
AllowSendingMismatch *AllowSendingMismatch::create(ConstraintSystem &cs,
Type srcType, Type dstType,
ConstraintLocator *locator) {
auto fixBehavior = cs.getASTContext().LangOpts.isSwiftVersionAtLeast(6)
? FixBehavior::Error
: FixBehavior::DowngradeToWarning;
return new (cs.getAllocator())
AllowSendingMismatch(cs, srcType, dstType, locator, fixBehavior);
}
bool SpecifyBaseTypeForContextualMember::diagnose(const Solution &solution,
bool asNote) const {
MissingContextualBaseInMemberRefFailure failure(solution, MemberName,
getLocator());
return failure.diagnose(asNote);
}
SpecifyBaseTypeForContextualMember *SpecifyBaseTypeForContextualMember::create(
ConstraintSystem &cs, DeclNameRef member, ConstraintLocator *locator) {
return new (cs.getAllocator())
SpecifyBaseTypeForContextualMember(cs, member, locator);
}
std::string SpecifyClosureParameterType::getName() const {
std::string name;
llvm::raw_string_ostream OS(name);
auto *closure = castToExpr<ClosureExpr>(getAnchor());
auto paramLoc =
getLocator()->castLastElementTo<LocatorPathElt::TupleElement>();
auto *PD = closure->getParameters()->get(paramLoc.getIndex());
OS << "specify type for parameter ";
OS << "'" << PD->getParameterName() << "'";
return OS.str();
}
bool SpecifyClosureParameterType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferClosureParameterType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyClosureParameterType *
SpecifyClosureParameterType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyClosureParameterType(cs, locator);
}
bool SpecifyClosureReturnType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferClosureReturnType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyClosureReturnType *
SpecifyClosureReturnType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyClosureReturnType(cs, locator);
}
bool SpecifyObjectLiteralTypeImport::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferProtocolLiteralType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyObjectLiteralTypeImport *
SpecifyObjectLiteralTypeImport::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyObjectLiteralTypeImport(cs, locator);
}
AllowNonClassTypeToConvertToAnyObject::AllowNonClassTypeToConvertToAnyObject(
ConstraintSystem &cs, Type type, ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::AllowNonClassTypeToConvertToAnyObject,
type, cs.getASTContext().getAnyObjectType(), locator) {
}
bool AllowNonClassTypeToConvertToAnyObject::diagnose(const Solution &solution,
bool asNote) const {
auto *locator = getLocator();
NonClassTypeToAnyObjectConversionFailure failure(solution, getFromType(),
getToType(), locator);
return failure.diagnose(asNote);
}
AllowNonClassTypeToConvertToAnyObject *
AllowNonClassTypeToConvertToAnyObject::create(ConstraintSystem &cs, Type type,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowNonClassTypeToConvertToAnyObject(cs, type, locator);
}
bool SpecifyPackElementType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferGenericPackElementType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyPackElementType *
SpecifyPackElementType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyPackElementType(cs, locator);
}
bool AddQualifierToAccessTopLevelName::diagnose(const Solution &solution,
bool asNote) const {
MissingQualifierInMemberRefFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
AddQualifierToAccessTopLevelName *
AddQualifierToAccessTopLevelName::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AddQualifierToAccessTopLevelName(cs, locator);
}
bool AllowCoercionToForceCast::diagnose(const Solution &solution,
bool asNote) const {
CoercionAsForceCastFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowCoercionToForceCast *
AllowCoercionToForceCast::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowCoercionToForceCast(cs, fromType, toType, locator);
}
bool AllowKeyPathRootTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
KeyPathRootTypeMismatchFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
AllowKeyPathRootTypeMismatch *
AllowKeyPathRootTypeMismatch::create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowKeyPathRootTypeMismatch(cs, lhs, rhs, locator);
}
SpecifyKeyPathRootType *
SpecifyKeyPathRootType::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SpecifyKeyPathRootType(cs, locator);
}
bool SpecifyKeyPathRootType::diagnose(const Solution &solution,
bool asNote) const {
UnableToInferKeyPathRootFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
bool UnwrapOptionalBaseKeyPathApplication::diagnose(const Solution &solution,
bool asNote) const {
MissingOptionalUnwrapKeyPathFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
UnwrapOptionalBaseKeyPathApplication *
UnwrapOptionalBaseKeyPathApplication::attempt(ConstraintSystem &cs, Type baseTy,
Type rootTy,
ConstraintLocator *locator) {
if(baseTy->hasTypeVariable() || rootTy->hasTypeVariable())
return nullptr;
if (!isExpr<SubscriptExpr>(locator->getAnchor()))
return nullptr;
// Only diagnose this if base is an optional type and we only have a
// single level of optionality so we can safely suggest unwrapping.
auto nonOptionalTy = baseTy->getOptionalObjectType();
if (!nonOptionalTy || nonOptionalTy->getOptionalObjectType())
return nullptr;
auto result =
cs.matchTypes(nonOptionalTy, rootTy, ConstraintKind::Subtype,
ConstraintSystem::TypeMatchFlags::TMF_ApplyingFix, locator);
if (result.isFailure())
return nullptr;
return new (cs.getAllocator())
UnwrapOptionalBaseKeyPathApplication(cs, baseTy, rootTy, locator);
}
bool SpecifyLabelToAssociateTrailingClosure::diagnose(const Solution &solution,
bool asNote) const {
TrailingClosureRequiresExplicitLabel failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyLabelToAssociateTrailingClosure *
SpecifyLabelToAssociateTrailingClosure::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
SpecifyLabelToAssociateTrailingClosure(cs, locator);
}
bool AllowKeyPathWithoutComponents::diagnose(const Solution &solution,
bool asNote) const {
InvalidEmptyKeyPathFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowKeyPathWithoutComponents *
AllowKeyPathWithoutComponents::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowKeyPathWithoutComponents(cs, locator);
}
bool IgnoreInvalidResultBuilderBody::diagnose(const Solution &solution,
bool asNote) const {
return true; // Already diagnosed by `matchResultBuilder`.
}
IgnoreInvalidResultBuilderBody *
IgnoreInvalidResultBuilderBody::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreInvalidResultBuilderBody(cs, locator);
}
bool IgnoreInvalidASTNode::diagnose(const Solution &solution,
bool asNote) const {
return true; // Already diagnosed by the producer of ErrorExpr or ErrorType.
}
IgnoreInvalidASTNode *IgnoreInvalidASTNode::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreInvalidASTNode(cs, locator);
}
bool IgnoreInvalidPatternInExpr::diagnose(const Solution &solution,
bool asNote) const {
InvalidPatternInExprFailure failure(solution, P, getLocator());
return failure.diagnose(asNote);
}
IgnoreInvalidPatternInExpr *
IgnoreInvalidPatternInExpr::create(ConstraintSystem &cs, Pattern *pattern,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreInvalidPatternInExpr(cs, pattern, locator);
}
bool SpecifyContextualTypeForNil::diagnose(const Solution &solution,
bool asNote) const {
MissingContextualTypeForNil failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyContextualTypeForNil *
SpecifyContextualTypeForNil::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyContextualTypeForNil(cs, locator);
}
bool IgnoreInvalidPlaceholder::diagnose(const Solution &solution,
bool asNote) const {
InvalidPlaceholderFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
IgnoreInvalidPlaceholder *
IgnoreInvalidPlaceholder::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreInvalidPlaceholder(cs, locator);
}
bool SpecifyTypeForPlaceholder::diagnose(const Solution &solution,
bool asNote) const {
CouldNotInferPlaceholderType failure(solution, getLocator());
return failure.diagnose(asNote);
}
SpecifyTypeForPlaceholder *
SpecifyTypeForPlaceholder::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) SpecifyTypeForPlaceholder(cs, locator);
}
bool AllowRefToInvalidDecl::diagnose(const Solution &solution,
bool asNote) const {
ReferenceToInvalidDeclaration failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowRefToInvalidDecl *
AllowRefToInvalidDecl::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowRefToInvalidDecl(cs, locator);
}
bool IgnoreResultBuilderWithReturnStmts::diagnose(const Solution &solution,
bool asNote) const {
InvalidReturnInResultBuilderBody failure(solution, BuilderType, getLocator());
return failure.diagnose(asNote);
}
IgnoreResultBuilderWithReturnStmts *
IgnoreResultBuilderWithReturnStmts::create(ConstraintSystem &cs, Type builderTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreResultBuilderWithReturnStmts(cs, builderTy, locator);
}
bool IgnoreUnresolvedPatternVar::diagnose(const Solution &solution,
bool asNote) const {
// An unresolved AnyPatternDecl means there was some issue in the match
// that means we couldn't infer the pattern. We don't have a diagnostic to
// emit here, the failure should be diagnosed by the fix for expression.
return false;
}
IgnoreUnresolvedPatternVar *
IgnoreUnresolvedPatternVar::create(ConstraintSystem &cs, Pattern *pattern,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreUnresolvedPatternVar(cs, pattern, locator);
}
bool SpecifyBaseTypeForOptionalUnresolvedMember::diagnose(
const Solution &solution, bool asNote) const {
MemberMissingExplicitBaseTypeFailure failure(solution, MemberName,
getLocator());
return failure.diagnose(asNote);
}
SpecifyBaseTypeForOptionalUnresolvedMember *
SpecifyBaseTypeForOptionalUnresolvedMember::attempt(
ConstraintSystem &cs, ConstraintKind kind, Type baseTy,
DeclNameRef memberName, FunctionRefInfo functionRefInfo,
MemberLookupResult result, ConstraintLocator *locator) {
if (kind != ConstraintKind::UnresolvedValueMember)
return nullptr;
// Only diagnose for UnresolvedMemberExprs.
// TODO: We ought to support diagnosing EnumElementPatterns too.
if (!isExpr<UnresolvedMemberExpr>(locator->getAnchor()))
return nullptr;
// None or only one viable candidate, there is no ambiguity.
if (result.ViableCandidates.size() <= 1)
return nullptr;
// Only diagnose those situations for static members.
if (!baseTy->is<MetatypeType>())
return nullptr;
// Don't diagnose for function members e.g. Foo? = .none(0).
if (!functionRefInfo.isUnappliedBaseName())
return nullptr;
Type underlyingBaseType = baseTy->getMetatypeInstanceType();
if (!underlyingBaseType->getNominalOrBoundGenericNominal())
return nullptr;
if (!underlyingBaseType->getOptionalObjectType())
return nullptr;
auto unwrappedType = underlyingBaseType->lookThroughAllOptionalTypes();
bool allOptionalBaseCandidates = true;
auto filterViableCandidates =
[&](SmallVector<OverloadChoice, 4> &candidates,
SmallVector<OverloadChoice, 4> &viableCandidates,
bool &allOptionalBase) {
for (OverloadChoice choice : candidates) {
if (!choice.isDecl())
continue;
auto memberDecl = choice.getDecl();
if (isa<FuncDecl>(memberDecl))
continue;
if (memberDecl->isInstanceMember())
continue;
// Disable this warning for ambiguities related to a
// static member lookup in generic context because it's
// possible to declare a member with the same name on
// a concrete type and in an extension of a protocol
// that type conforms to e.g.:
//
// struct S : P { static var test: S { ... }
//
// extension P where Self == S { static var test: { ... } }
//
// And use that in an optional context e.g. passing `.test`
// to a parameter of expecting `S?`.
if (auto *extension =
dyn_cast<ExtensionDecl>(memberDecl->getDeclContext())) {
if (extension->getSelfProtocolDecl()) {
allOptionalBase = false;
break;
}
}
allOptionalBase &= bool(choice.getBaseType()
->getMetatypeInstanceType()
->getOptionalObjectType());
if (auto EED = dyn_cast<EnumElementDecl>(memberDecl)) {
if (!EED->hasAssociatedValues())
viableCandidates.push_back(choice);
} else if (auto VD = dyn_cast<VarDecl>(memberDecl)) {
if (unwrappedType->hasTypeVariable() ||
VD->getInterfaceType()->isEqual(unwrappedType))
viableCandidates.push_back(choice);
}
}
};
SmallVector<OverloadChoice, 4> viableCandidates;
filterViableCandidates(result.ViableCandidates, viableCandidates,
allOptionalBaseCandidates);
// Also none or only one viable candidate after filtering candidates, there is
// no ambiguity.
if (viableCandidates.size() <= 1)
return nullptr;
// Right now, name lookup only unwraps a single layer of optionality, which
// for cases where base type is a multi-optional type e.g. Foo?? it only
// finds optional base candidates. To produce the correct warning we perform
// an extra lookup on unwrapped type.
if (!allOptionalBaseCandidates)
return new (cs.getAllocator())
SpecifyBaseTypeForOptionalUnresolvedMember(cs, memberName, locator);
MemberLookupResult unwrappedResult =
cs.performMemberLookup(kind, memberName, MetatypeType::get(unwrappedType),
functionRefInfo, locator,
/*includeInaccessibleMembers*/ false);
SmallVector<OverloadChoice, 4> unwrappedViableCandidates;
filterViableCandidates(unwrappedResult.ViableCandidates,
unwrappedViableCandidates, allOptionalBaseCandidates);
if (unwrappedViableCandidates.empty())
return nullptr;
return new (cs.getAllocator())
SpecifyBaseTypeForOptionalUnresolvedMember(cs, memberName, locator);
}
AllowCheckedCastCoercibleOptionalType *
AllowCheckedCastCoercibleOptionalType::create(ConstraintSystem &cs,
Type fromType, Type toType,
CheckedCastKind kind,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowCheckedCastCoercibleOptionalType(
cs, fromType, toType, kind, locator);
}
bool AllowCheckedCastCoercibleOptionalType::diagnose(const Solution &solution,
bool asNote) const {
CoercibleOptionalCheckedCastFailure failure(
solution, getFromType(), getToType(), CastKind, getLocator());
return failure.diagnose(asNote);
}
AllowNoopCheckedCast *AllowNoopCheckedCast::create(ConstraintSystem &cs,
Type fromType, Type toType,
CheckedCastKind kind,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowNoopCheckedCast(cs, fromType, toType, kind, locator);
}
bool AllowNoopCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
NoopCheckedCast warning(solution, getFromType(), getToType(), CastKind,
getLocator());
return warning.diagnose(asNote);
}
AllowNoopExistentialToCFTypeCheckedCast *
AllowNoopExistentialToCFTypeCheckedCast::attempt(ConstraintSystem &cs,
Type fromType, Type toType,
CheckedCastKind kind,
ConstraintLocator *locator) {
if (!isExpr<IsExpr>(locator->getAnchor()))
return nullptr;
if (!fromType->isExistentialType())
return nullptr;
const auto *cls = toType->getAs<ClassType>();
if (!(cls && cls->getDecl()->getForeignClassKind() ==
ClassDecl::ForeignKind::CFType))
return nullptr;
return new (cs.getAllocator()) AllowNoopExistentialToCFTypeCheckedCast(
cs, fromType, toType, kind, locator);
}
bool AllowNoopExistentialToCFTypeCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
NoopExistentialToCFTypeCheckedCast warning(
solution, getFromType(), getToType(), CastKind, getLocator());
return warning.diagnose(asNote);
}
// Although function types maybe compile-time convertible because
// compiler can emit thunks at SIL to handle the conversion when
// required, only conversions that are supported by the runtime are
// when types are trivially equal or non-throwing from type is equal
// to throwing to type without throwing clause conversions are not
// possible at runtime.
bool AllowUnsupportedRuntimeCheckedCast::runtimeSupportedFunctionTypeCast(
FunctionType *fnFromType, FunctionType *fnToType) {
if (fnFromType->isEqual(fnToType)) {
return true;
} else if (!fnFromType->isThrowing() && fnToType->isThrowing()) {
return fnFromType->isEqual(
fnToType->getWithoutThrowing()->castTo<FunctionType>());
}
// Runtime cannot perform such conversion.
return false;
}
AllowUnsupportedRuntimeCheckedCast *
AllowUnsupportedRuntimeCheckedCast::attempt(ConstraintSystem &cs, Type fromType,
Type toType, CheckedCastKind kind,
ConstraintLocator *locator) {
auto fnFromType = fromType->getAs<FunctionType>();
auto fnToType = toType->getAs<FunctionType>();
if (!(fnFromType && fnToType))
return nullptr;
if (runtimeSupportedFunctionTypeCast(fnFromType, fnToType))
return nullptr;
return new (cs.getAllocator())
AllowUnsupportedRuntimeCheckedCast(cs, fromType, toType, kind, locator);
}
bool AllowUnsupportedRuntimeCheckedCast::diagnose(const Solution &solution,
bool asNote) const {
UnsupportedRuntimeCheckedCastFailure failure(
solution, getFromType(), getToType(), CastKind, getLocator());
return failure.diagnose(asNote);
}
AllowCheckedCastToUnrelated *
AllowCheckedCastToUnrelated::attempt(ConstraintSystem &cs, Type fromType,
Type toType, CheckedCastKind kind,
ConstraintLocator *locator) {
// Explicit optional-to-optional casts always succeed because a nil
// value of any optional type can be cast to any other optional type.
if (fromType->getOptionalObjectType() && toType->getOptionalObjectType()) {
return nullptr;
}
return new (cs.getAllocator())
AllowCheckedCastToUnrelated(cs, fromType, toType, kind, locator);
}
bool AllowCheckedCastToUnrelated::diagnose(const Solution &solution,
bool asNote) const {
CheckedCastToUnrelatedFailure warning(solution, getFromType(), getToType(),
CastKind, getLocator());
return warning.diagnose(asNote);
}
bool AllowInvalidStaticMemberRefOnProtocolMetatype::diagnose(
const Solution &solution, bool asNote) const {
InvalidMemberRefOnProtocolMetatype failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowInvalidStaticMemberRefOnProtocolMetatype *
AllowInvalidStaticMemberRefOnProtocolMetatype::create(
ConstraintSystem &cs, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidStaticMemberRefOnProtocolMetatype(cs, locator);
}
bool AllowNonOptionalWeak::diagnose(const Solution &solution,
bool asNote) const {
InvalidWeakAttributeUse failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowNonOptionalWeak *AllowNonOptionalWeak::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowNonOptionalWeak(cs, locator);
}
AllowTupleLabelMismatch *
AllowTupleLabelMismatch::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowTupleLabelMismatch(cs, fromType, toType, locator);
}
bool AllowTupleLabelMismatch::diagnose(const Solution &solution,
bool asNote) const {
TupleLabelMismatchWarning warning(solution, getFromType(), getToType(),
getLocator());
return warning.diagnose(asNote);
}
AllowAssociatedValueMismatch *
AllowAssociatedValueMismatch::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowAssociatedValueMismatch(cs, fromType, toType, locator);
}
bool AllowAssociatedValueMismatch::diagnose(const Solution &solution,
bool asNote) const {
AssociatedValueMismatchFailure failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
bool AllowSwiftToCPointerConversion::diagnose(const Solution &solution,
bool asNote) const {
SwiftToCPointerConversionInInvalidContext failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowSwiftToCPointerConversion *
AllowSwiftToCPointerConversion::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) AllowSwiftToCPointerConversion(cs, locator);
}
bool IgnoreDefaultExprTypeMismatch::diagnose(const Solution &solution,
bool asNote) const {
DefaultExprTypeMismatch failure(solution, getFromType(), getToType(),
getLocator());
return failure.diagnose(asNote);
}
IgnoreDefaultExprTypeMismatch *
IgnoreDefaultExprTypeMismatch::create(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreDefaultExprTypeMismatch(cs, argType, paramType, locator);
}
bool RenameConflictingPatternVariables::diagnose(const Solution &solution,
bool asNote) const {
ConflictingPatternVariables failure(solution, ExpectedType,
getConflictingVars(), getLocator());
return failure.diagnose(asNote);
}
RenameConflictingPatternVariables *
RenameConflictingPatternVariables::create(ConstraintSystem &cs, Type expectedTy,
ArrayRef<VarDecl *> conflicts,
ConstraintLocator *locator) {
unsigned size = totalSizeToAlloc<VarDecl *>(conflicts.size());
void *mem = cs.getAllocator().Allocate(
size, alignof(RenameConflictingPatternVariables));
return new (mem)
RenameConflictingPatternVariables(cs, expectedTy, conflicts, locator);
}
bool MacroMissingPound::diagnose(const Solution &solution,
bool asNote) const {
AddMissingMacroPound failure(solution, macro, getLocator());
return failure.diagnose(asNote);
}
MacroMissingPound *
MacroMissingPound::create(ConstraintSystem &cs, MacroDecl *macro,
ConstraintLocator *locator) {
return new (cs.getAllocator()) MacroMissingPound(cs, macro, locator);
}
bool AllowGlobalActorMismatch::diagnose(const Solution &solution,
bool asNote) const {
GlobalActorFunctionMismatchFailure failure(solution, getFromType(),
getToType(), getLocator());
return failure.diagnose(asNote);
}
AllowGlobalActorMismatch *
AllowGlobalActorMismatch::create(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowGlobalActorMismatch(cs, fromType, toType, locator);
}
bool DestructureTupleToMatchPackExpansionParameter::diagnose(
const Solution &solution, bool asNote) const {
DestructureTupleToUseWithPackExpansionParameter failure(solution, ParamShape,
getLocator());
return failure.diagnose(asNote);
}
DestructureTupleToMatchPackExpansionParameter *
DestructureTupleToMatchPackExpansionParameter::create(
ConstraintSystem &cs, PackType *paramShapeTy, ConstraintLocator *locator) {
return new (cs.getAllocator())
DestructureTupleToMatchPackExpansionParameter(cs, paramShapeTy, locator);
}
bool AllowValueExpansionWithoutPackReferences::diagnose(
const Solution &solution, bool asNote) const {
ValuePackExpansionWithoutPackReferences failure(solution, getLocator());
return failure.diagnose(asNote);
}
AllowValueExpansionWithoutPackReferences *
AllowValueExpansionWithoutPackReferences::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowValueExpansionWithoutPackReferences(cs, locator);
}
bool IgnoreMissingEachKeyword::diagnose(const Solution &solution,
bool asNote) const {
MissingEachForValuePackReference failure(solution, ValuePackType,
getLocator());
return failure.diagnose(asNote);
}
IgnoreMissingEachKeyword *
IgnoreMissingEachKeyword::create(ConstraintSystem &cs, Type valuePackTy,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreMissingEachKeyword(cs, valuePackTy, locator);
}
bool AllowInvalidMemberReferenceInInitAccessor::diagnose(
const Solution &solution, bool asNote) const {
InvalidMemberReferenceWithinInitAccessor failure(solution, MemberName,
getLocator());
return failure.diagnose(asNote);
}
AllowInvalidMemberReferenceInInitAccessor *
AllowInvalidMemberReferenceInInitAccessor::create(ConstraintSystem &cs,
DeclNameRef memberName,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInvalidMemberReferenceInInitAccessor(cs, memberName, locator);
}
bool AllowConcreteTypeSpecialization::diagnose(const Solution &solution,
bool asNote) const {
ConcreteTypeSpecialization failure(solution, ConcreteType, Decl, getLocator(),
fixBehavior);
return failure.diagnose(asNote);
}
AllowConcreteTypeSpecialization *AllowConcreteTypeSpecialization::create(
ConstraintSystem &cs, Type concreteTy, ValueDecl *decl,
ConstraintLocator *locator, FixBehavior fixBehavior) {
return new (cs.getAllocator()) AllowConcreteTypeSpecialization(
cs, concreteTy, decl, locator, fixBehavior);
}
bool AllowFunctionSpecialization::diagnose(const Solution &solution,
bool asNote) const {
InvalidFunctionSpecialization failure(solution, Decl, getLocator(),
fixBehavior);
return failure.diagnose(asNote);
}
AllowFunctionSpecialization *
AllowFunctionSpecialization::create(ConstraintSystem &cs, ValueDecl *decl,
ConstraintLocator *locator) {
auto fixBehavior = cs.getASTContext().isSwiftVersionAtLeast(6)
? FixBehavior::Error
: FixBehavior::DowngradeToWarning;
return new (cs.getAllocator())
AllowFunctionSpecialization(cs, decl, locator, fixBehavior);
}
bool IgnoreOutOfPlaceThenStmt::diagnose(const Solution &solution,
bool asNote) const {
OutOfPlaceThenStmtFailure failure(solution, getLocator());
return failure.diagnose(asNote);
}
IgnoreOutOfPlaceThenStmt *
IgnoreOutOfPlaceThenStmt::create(ConstraintSystem &cs,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreOutOfPlaceThenStmt(cs, locator);
}
bool IgnoreGenericSpecializationArityMismatch::diagnose(
const Solution &solution, bool asNote) const {
InvalidTypeSpecializationArity failure(solution, D, NumParams, NumArgs,
HasParameterPack, getLocator());
return failure.diagnose(asNote);
}
IgnoreGenericSpecializationArityMismatch *
IgnoreGenericSpecializationArityMismatch::create(ConstraintSystem &cs,
ValueDecl *decl,
unsigned numParams,
unsigned numArgs,
bool hasParameterPack,
ConstraintLocator *locator) {
return new (cs.getAllocator()) IgnoreGenericSpecializationArityMismatch(
cs, decl, numParams, numArgs, hasParameterPack, locator);
}
bool IgnoreKeyPathSubscriptIndexMismatch::diagnose(const Solution &solution,
bool asNote) const {
InvalidTypeAsKeyPathSubscriptIndex failure(solution, ArgType, getLocator());
return failure.diagnose(asNote);
}
IgnoreKeyPathSubscriptIndexMismatch *
IgnoreKeyPathSubscriptIndexMismatch::create(ConstraintSystem &cs, Type argType,
ConstraintLocator *locator) {
return new (cs.getAllocator())
IgnoreKeyPathSubscriptIndexMismatch(cs, argType, locator);
}
AllowInlineArrayLiteralCountMismatch *
AllowInlineArrayLiteralCountMismatch::create(ConstraintSystem &cs, Type lhsCount,
Type rhsCount,
ConstraintLocator *locator) {
return new (cs.getAllocator())
AllowInlineArrayLiteralCountMismatch(cs, lhsCount, rhsCount, locator);
}
bool AllowInlineArrayLiteralCountMismatch::diagnose(const Solution &solution,
bool asNote) const {
IncorrectInlineArrayLiteralCount failure(solution, lhsCount, rhsCount,
getLocator());
return failure.diagnose(asNote);
}
IgnoreIsolatedConformance *
IgnoreIsolatedConformance::create(ConstraintSystem &cs,
ConstraintLocator *locator,
ProtocolConformance *conformance) {
assert(conformance && "Must have an isolated conformance");
return new (cs.getAllocator())
IgnoreIsolatedConformance(cs, locator, conformance);
}
bool IgnoreIsolatedConformance::diagnose(const Solution &solution,
bool asNote) const {
DisallowedIsolatedConformance failure(solution, conformance, getLocator());
return failure.diagnose(asNote);
}