Files
swift-mirror/SwiftCompilerSources/Sources/Optimizer/Analysis/AliasAnalysis.swift
Erik Eckstein f9b524b1cb AliasAnalysis: a complete overhaul of alias- and memory-behavior analysis
The main changes are:

*) Rewrite everything in swift. So far, parts of memory-behavior analysis were already implemented in swift. Now everything is done in swift and lives in `AliasAnalysis.swift`. This is a big code simplification.

*) Support many more instructions in the memory-behavior analysis - especially OSSA instructions, like `begin_borrow`, `end_borrow`, `store_borrow`, `load_borrow`. The computation of end_borrow effects is now much more precise. Also, partial_apply is now handled more precisely.

*) Simplify and reduce type-based alias analysis (TBAA). The complexity of the old TBAA comes from old days where the language and SIL didn't have strict aliasing and exclusivity rules (e.g. for inout arguments). Now TBAA is only needed for code using unsafe pointers. The new TBAA handles this - and not more. Note that TBAA for classes is already done in `AccessBase.isDistinct`.

*) Handle aliasing in `begin_access [modify]` scopes. We already supported truly immutable scopes like `begin_access [read]` or `ref_element_addr [immutable]`. For `begin_access [modify]` we know that there are no other reads or writes to the access-address within the scope.

*) Don't cache memory-behavior results. It turned out that the hit-miss rate was pretty bad (~ 1:7). The overhead of the cache lookup took as long as recomputing the memory behavior.
2024-07-29 17:33:46 +02:00

912 lines
34 KiB
Swift

//===--- AliasAnalysis.swift - the alias analysis -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import OptimizerBridging
import SIL
extension FunctionPassContext {
var aliasAnalysis: AliasAnalysis {
let bridgedAA = _bridged.getAliasAnalysis()
return AliasAnalysis(bridged: bridgedAA, context: self)
}
}
extension Instruction {
func mayRead(fromAddress: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
aliasAnalysis.getMemoryEffect(of: self, on: fromAddress).read
}
func mayWrite(toAddress: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
if toAddress.isImmutableAddress {
// Take a shortcut for indirect-in arguments.
return false
}
return aliasAnalysis.getMemoryEffect(of: self, on: toAddress).write
}
func mayReadOrWrite(address: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
let effect = aliasAnalysis.getMemoryEffect(of: self, on: address)
if address.isImmutableAddress {
return effect.read
}
return effect.read || effect.write
}
}
/// Alias analysis.
///
/// It's mainly used to check if an instruction may read or write from/to a specific address.
///
struct AliasAnalysis {
fileprivate let bridged: BridgedAliasAnalysis
fileprivate let context: FunctionPassContext
//===--------------------------------------------------------------------===//
// Public interface
//===--------------------------------------------------------------------===//
/// Returns the effects of `inst`'s memory behavior on the memory pointed to by the `address`.
func getMemoryEffect(of inst: Instruction, on address: Value) -> SideEffects.Memory {
precondition(address.type.isAddress, "getMemoryEffects requires address value")
var result = computeMemoryEffect(of: inst, on: MemoryLocation.memoryAddress(address))
if result.write && isImmutable(instruction: inst, inScopeOf: address) {
result.write = false
}
// In the past we cached the result per instruction-address pair. But it turned out that the hit-miss rate was
// pretty high (~ 1:7) and the cache lookup took as long as recomputing.
return result
}
/// Returns true if `v1` and `v2` do or may alias.
///
/// Usually `v1` and `v2` are addresses and in this case the return value is true if both addresses
/// do or may point to the same memory location.
///
/// If `v1` or `v2` is not an address, the function checks if any "interior" pointer of the value may alias
/// with the other value or address.
/// If a value is a class, "interior" pointer means: an address of any stored property of the class instance.
/// If a value is a struct or another value type, "interior" pointers refer to any stored propery addresses of any
/// class references in the struct or value type. For example:
///
/// class C { var x: Int; var y: Int }
/// struct S { var c1: C; var c2: C }
///
/// `mayAlias(s, someAddress)` checks if someAddress aliases with `s.c1.x`, `s.c1.y`, `s.c2.x` or `s.c2.y`
///
func mayAlias(_ v1: Value, _ v2: Value) -> Bool {
if v1.type.isAddress && v2.type.isAddress {
// The projection-path based check and TBAA can only be done if both values are really addresses.
// This is the common case.
let accessPath1 = v1.accessPath
let accessPath2 = v2.accessPath
if accessPath1.isDistinct(from: accessPath2) {
return false
}
// Type-based alias analysis is only of minor importance. It's only needed if unsafe pointers are in play.
// There are some critical functions in the stdlib which use unsafe pointers. Therefore we cannot omit TBAA.
if isTypeDistinct(v1, v2, accessPath1.base, accessPath2.base) {
return false
}
}
// Finaly use escape info to check if one address "escapes" to the other address.
return v1.allContainedAddresss.canAddressAlias(with: v2.allContainedAddresss, context)
}
static func register() {
BridgedAliasAnalysis.registerAnalysis(
// initFn
{ (bridgedAliasAnalysis: BridgedAliasAnalysis, size: Int) in
assert(MemoryLayout<Cache>.size <= size, "wrong AliasAnalysis.cache size")
bridgedAliasAnalysis.mutableCachePointer.initializeMemory(as: Cache.self, repeating: Cache(), count: 1)
},
// destroyFn
{ (bridgedAliasAnalysis: BridgedAliasAnalysis) in
bridgedAliasAnalysis.mutableCachePointer.assumingMemoryBound(to: Cache.self).deinitialize(count: 1)
},
// getMemEffectsFn
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedAddr: BridgedValue,
bridgedInst: BridgedInstruction) -> BridgedMemoryBehavior in
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: FunctionPassContext(_bridged: bridgedCtxt))
return aa.getMemoryEffect(of: bridgedInst.instruction, on: bridgedAddr.value).bridged
},
// isObjReleasedFn
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedObj: BridgedValue,
bridgedInst: BridgedInstruction) -> Bool in
let context = FunctionPassContext(_bridged: bridgedCtxt)
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: context)
let inst = bridgedInst.instruction
let obj = bridgedObj.value
let path = SmallProjectionPath(.anyValueFields)
let budget = aa.getComplexityBudget(for: inst.parentFunction)
if let apply = inst as? FullApplySite {
// Workaround for quadratic complexity in ARCSequenceOpts.
// We need to use an ever lower budget to not get into noticeable compile time troubles.
let effect = aa.getOwnershipEffect(of: apply, for: obj, path: path)
return effect.destroy
}
return obj.at(path).isEscaping(using: EscapesToInstructionVisitor(target: inst, isAddress: false),
complexityBudget: budget, context)
},
// isAddrVisibleFromObj
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedAddr: BridgedValue,
bridgedObj: BridgedValue) -> Bool in
let context = FunctionPassContext(_bridged: bridgedCtxt)
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: context)
let addr = bridgedAddr.value.allContainedAddresss
// This is similar to `canReferenceSameFieldFn`, except that all addresses of all objects are
// considered which are transitively visible from `bridgedObj`.
let anythingReachableFromObj = bridgedObj.value.at(SmallProjectionPath(.anything))
return addr.canAddressAlias(with: anythingReachableFromObj,
complexityBudget: aa.getComplexityBudget(for: bridgedObj.value.parentFunction),
context)
},
// mayAliasFn
{ (bridgedCtxt: BridgedPassContext,
bridgedAliasAnalysis: BridgedAliasAnalysis,
bridgedLhs: BridgedValue,
bridgedRhs: BridgedValue) -> Bool in
let context = FunctionPassContext(_bridged: bridgedCtxt)
let aa = AliasAnalysis(bridged: bridgedAliasAnalysis, context: context)
return aa.mayAlias(bridgedLhs.value, bridgedRhs.value)
}
)
}
//===--------------------------------------------------------------------===//
// Internals
//===--------------------------------------------------------------------===//
private var cache: Cache {
unsafeAddress {
bridged.cachePointer.assumingMemoryBound(to: Cache.self)
}
nonmutating unsafeMutableAddress {
bridged.mutableCachePointer.assumingMemoryBound(to: Cache.self)
}
}
// The actual logic to compute the memory effect of an instruction.
private func computeMemoryEffect(of inst: Instruction, on memLoc: MemoryLocation) -> SideEffects.Memory {
switch inst {
case let beginAccess as BeginAccessInst:
// begin_access does not physically read or write memory. But we model it as a memory read and/or write
// to prevent optimizations to move other aliased loads/stores across begin_access into the access scope.
return getAccessScopeEffect(of: beginAccess, on: memLoc)
case let endAccess as EndAccessInst:
// Similar to begin_access, we model it as a memory read and/or write to prevent optimizations to move
// other aliased loads/stores into the access scope.
return getAccessScopeEffect(of: endAccess.beginAccess, on: memLoc)
case is InjectEnumAddrInst,
is UncheckedTakeEnumDataAddrInst,
is InitExistentialAddrInst,
is DeinitExistentialAddrInst,
is FixLifetimeInst,
is ClassifyBridgeObjectInst,
is ValueToBridgeObjectInst,
is DeallocStackInst:
if memLoc.mayAlias(with: (inst as! UnaryInstruction).operand.value, self) {
return inst.memoryEffects
}
return .noEffects
case is CondFailInst,
is StrongRetainInst,
is UnownedRetainInst,
is StrongRetainUnownedInst,
is RetainValueInst,
is UnmanagedRetainValueInst,
is CopyValueInst,
is StrongCopyUnownedValueInst,
is StrongCopyUnmanagedValueInst,
is StrongCopyWeakValueInst,
is BeginBorrowInst,
is BeginCOWMutationInst:
return .noEffects
case let load as LoadInst:
if memLoc.mayAlias(with: load.address, self) {
switch load.loadOwnership {
case .unqualified, .copy, .trivial:
return .init(read: true)
case .take:
// "take" is conceptually a write to the memory location.
return .worstEffects
}
} else {
return .noEffects
}
case let store as StoreInst:
if memLoc.isLetValue && store.destination.accessBase != memLoc.address.accessBase {
return .noEffects
}
if memLoc.mayAlias(with: store.destination, self) {
return inst.memoryEffects
} else {
switch store.storeOwnership {
case .unqualified, .initialize, .trivial:
return .noEffects
case .assign:
// Consider side effects of the destructor
return defaultEffects(of: store, on: memLoc)
}
}
case let storeBorrow as StoreBorrowInst:
return memLoc.mayAlias(with: storeBorrow.destination, self) ? .init(write: true) : .noEffects
case let copy as SourceDestAddrInstruction:
let mayRead = memLoc.mayAlias(with: copy.source, self)
let mayWrite = memLoc.mayAlias(with: copy.destination, self)
var effects = SideEffects.Memory(read: mayRead, write: mayWrite || (mayRead && copy.isTakeOfSrc))
if !copy.isInitializationOfDest {
effects.merge(with: defaultEffects(of: copy, on: memLoc))
}
return effects
case let apply as FullApplySite:
return getApplyEffect(of: apply, on: memLoc)
case let partialApply as PartialApplyInst:
return getPartialApplyEffect(of: partialApply, on: memLoc)
case let endApply as EndApplyInst:
return getApplyEffect(of: endApply.beginApply, on: memLoc)
case let abortApply as AbortApplyInst:
return getApplyEffect(of: abortApply.beginApply, on: memLoc)
case let builtin as BuiltinInst:
return getBuiltinEffect(of: builtin, on: memLoc)
case let endBorrow as EndBorrowInst:
switch endBorrow.borrow {
case let storeBorrow as StoreBorrowInst:
precondition(endBorrow.borrow.type.isAddress)
return memLoc.mayAlias(with: storeBorrow, self) ? .worstEffects : .noEffects
case let beginBorrow as BeginBorrowInst where !beginBorrow.hasPointerEscape:
return getBorrowEffects(of: endBorrow, on: memLoc)
case let loadBorrow as LoadBorrowInst:
let borrowEffects = getBorrowEffects(of: endBorrow, on: memLoc)
// In addition to the "regular" borrow effects, a load_borrow also has effects on the memory location
// from where it loads the value. This includes "write" to prevent any optimization to change the
// memory location after the load_borrow.
if borrowEffects != .worstEffects && memLoc.mayAlias(with: loadBorrow.address, self) {
return .worstEffects
}
return borrowEffects
default:
break
}
return defaultEffects(of: endBorrow, on: memLoc)
case let debugValue as DebugValueInst:
if debugValue.operand.value.type.isAddress && memLoc.mayAlias(with: debugValue.operand.value, self) {
return .init(read: true)
} else {
return .noEffects
}
case let destroy as DestroyValueInst:
if destroy.destroyedValue.type.isNoEscapeFunction {
return .noEffects
}
return defaultEffects(of: destroy, on: memLoc)
default:
let effects = inst.memoryEffects
if effects == .noEffects {
return effects
}
return defaultEffects(of: inst, on: memLoc)
}
}
/// Returns the memory effects which protect the interior pointers of a borrowed value.
/// For example, an `end_borrow` of a class reference must alias with all field addresses (= the interior
/// pointers) of the class instance.
private func getBorrowEffects(of endBorrow: EndBorrowInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
let accessPath = memLoc.address.accessPath
switch accessPath.base {
case .stack, .global, .argument, .storeBorrow:
// Those access bases cannot be interior pointers of a borrowed value
return .noEffects
case .pointer, .unidentified, .yield:
// We don't know anything about this address -> get the conservative effects
return defaultEffects(of: endBorrow, on: memLoc)
case .box, .class, .tail:
// Check if the memLoc is "derived" from the begin_borrow, i.e. is an interior pointer.
var walker = FindBeginBorrowWalker(beginBorrow: endBorrow.borrow as! BorrowIntroducingInstruction)
return walker.visitAccessStorageRoots(of: accessPath) ? .noEffects : .worstEffects
}
}
private func getAccessScopeEffect(of beginAccess: BeginAccessInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
if !memLoc.mayAlias(with: beginAccess.address, self) {
return .noEffects
}
switch beginAccess.accessKind {
case .`init`:
return .init(read: false, write: true)
case .read:
return .init(read: true, write: false)
case .modify:
return memLoc.isLetValue ? .noEffects : .worstEffects
case .deinit:
// For the same reason we treat a `load [take]` or a `destroy_addr`
// as a memory write, we do that for a `begin_access [deinit]` as well.
return .worstEffects
}
}
private func getApplyEffect(of apply: FullApplySite, on memLoc: MemoryLocation) -> SideEffects.Memory {
let calleeAnalysis = context.calleeAnalysis
let visitor = FullApplyEffectsVisitor(apply: apply, calleeAnalysis: calleeAnalysis, isAddress: true)
let memoryEffects: SideEffects.Memory
// First try to figure out to which argument(s) the address "escapes" to.
if let result = memLoc.addressWithPath.visit(using: visitor,
initialWalkingDirection: memLoc.walkingDirection,
context)
{
// The resulting effects are the argument effects to which `address` escapes to.
memoryEffects = result.memory
} else {
// The address has unknown escapes. So we have to take the global effects of the called function(s).
memoryEffects = calleeAnalysis.getSideEffects(ofApply: apply).memory
}
// Do some magic for `let` variables. Function calls cannot modify let variables.
// The only exception is that the let variable is directly passed to an indirect out of the apply.
// TODO: make this a more formal and verified approach.
if memoryEffects.write {
let accessBase = memLoc.address.accessBase
if accessBase.isLet && !accessBase.isIndirectResult(of: apply) {
return SideEffects.Memory(read: memoryEffects.read, write: false)
}
}
return memoryEffects
}
private func getPartialApplyEffect(of partialApply: PartialApplyInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
let visitor = PartialApplyEffectsVisitor(partialApply: partialApply)
// Figure out to which argument(s) the address "escapes" to.
if let result = memLoc.addressWithPath.visit(using: visitor,
initialWalkingDirection: memLoc.walkingDirection,
context)
{
// The resulting effects are the argument effects to which the address escapes to.
return result
}
return .worstEffects
}
private func getBuiltinEffect(of builtin: BuiltinInst, on memLoc: MemoryLocation) -> SideEffects.Memory {
switch builtin.id {
case .Once, .OnceWithContext:
if !memLoc.addressWithPath.isEscaping(using: AddressVisibleByBuiltinOnceVisitor(),
initialWalkingDirection: memLoc.walkingDirection,
context)
{
return .noEffects
}
let callee = builtin.operands[1].value
return context.calleeAnalysis.getSideEffects(ofCallee: callee).memory
default:
return defaultEffects(of: builtin, on: memLoc)
}
}
private func getOwnershipEffect(of apply: FullApplySite, for value: Value,
path: SmallProjectionPath) -> SideEffects.Ownership {
let visitor = FullApplyEffectsVisitor(apply: apply, calleeAnalysis: context.calleeAnalysis, isAddress: false)
let budget = getComplexityBudget(for: apply.parentFunction)
if let result = value.at(path).visit(using: visitor, complexityBudget: budget, context) {
// The resulting effects are the argument effects to which `value` escapes to.
return result.ownership
} else {
// `value` has unknown escapes. So we have to take the global effects of the called function(s).
return visitor.calleeAnalysis.getSideEffects(ofApply: apply).ownership
}
}
/// Gets the default effects of an instruction.
/// It just checks if `memLoc` can somehow be visible by `inst` at all.
private func defaultEffects(of inst: Instruction, on memLoc: MemoryLocation) -> SideEffects.Memory {
if memLoc.addressWithPath.isEscaping(using: EscapesToInstructionVisitor(target: inst, isAddress: true),
initialWalkingDirection: memLoc.walkingDirection,
complexityBudget: getComplexityBudget(for: inst.parentFunction), context)
{
var effects = inst.memoryEffects
if memLoc.isLetValue {
effects.write = false
}
return effects
}
return .noEffects
}
// To avoid quadratic complexity for large functions, we limit the amount of work that the EscapeUtils are
// allowed to to. This keeps the complexity linear.
//
// This arbitrary limit is good enough for almost all functions. It lets
// the EscapeUtils do several hundred up/down walks which is much more than needed in most cases.
private func getComplexityBudget(for function: Function) -> Int {
if cache.estimatedFunctionSize == nil {
var numInsts = 0
for _ in function.instructions { numInsts += 1 }
cache.estimatedFunctionSize = numInsts
}
return 1000000 / cache.estimatedFunctionSize!
}
/// Returns true if the `instruction` (which in general writes to memory) is immutable in a certain scope,
/// defined by `address`.
///
/// That means that even if we don't know anything about `instruction`, we can be sure
/// that `instruction` cannot write to `address`, if it's inside the addresse's scope.
/// An immutable scope is for example a read-only `begin_access`/`end_access` scope.
/// Another example is a borrow scope of an immutable copy-on-write buffer.
private func isImmutable(instruction: Instruction, inScopeOf address: Value) -> Bool {
guard let immutableScope = ImmutableScope(for: address, context) else {
return false
}
if case .wholeFunction = immutableScope {
// No need to check if the instruction is inside the scope if the scope is the whole function.
return true
}
if !isImmutableCacheComputed(for: immutableScope) {
computeImmutableCache(for: immutableScope)
}
let key = Cache.ScopeKey(beginScope: immutableScope.beginScopeInstruction, instInScope: instruction)
return cache.immutableInstructionsInScopes.contains(key)
}
private func isImmutableCacheComputed(for immutableScope: ImmutableScope) -> Bool {
let beginScopeInst = immutableScope.beginScopeInstruction
// The special key of (beginScopeInst, beginScopeInst) is used as a marker to check if the immutable scope
// is already computed at all.
let key = Cache.ScopeKey(beginScope: beginScopeInst, instInScope: beginScopeInst)
return !cache.immutableInstructionsInScopes.insert(key).inserted
}
private func computeImmutableCache(for immutableScope: ImmutableScope) {
let beginScopeInst = immutableScope.beginScopeInstruction
var worklist = InstructionWorklist(context)
defer { worklist.deinitialize() }
immutableScope.pushEndScopeInstructions(to: &worklist)
while let inst = worklist.pop() {
if inst.mayWriteToMemory {
if case .modifyAccess(let beginAccessInst) = immutableScope,
computeMemoryEffect(of: inst, on: .modifyAccessScope(beginAccessInst)).write
{
} else {
cache.immutableInstructionsInScopes.insert(Cache.ScopeKey(beginScope: beginScopeInst, instInScope: inst))
}
}
worklist.pushPredecessors(of: inst, ignoring: beginScopeInst)
}
}
}
//===--------------------------------------------------------------------===//
// Internal data structures
//===--------------------------------------------------------------------===//
private struct Cache {
struct ScopeKey: Hashable {
let beginScope: Instruction
let instInScope: Instruction
}
// Caches immutable instructions inside specific scopes.
var immutableInstructionsInScopes = Set<ScopeKey>()
// Used to limit complexity. The size is computed lazily.
var estimatedFunctionSize: Int? = nil
}
// A simple abstraction for the kind of address the memory effect is computed.
private enum MemoryLocation {
// The usual case: an arbitrary address
case memoryAddress(Value)
// The address of an modify-access, within the access scope.
// The difference to an arbitrary address is that we know that there are no other reads or writes to the
// access-address within the access scope.
// This is used when computing the immutable-scope of a `begin_access [modify]`
case modifyAccessScope(BeginAccessInst)
var addressWithPath: ProjectedValue {
let addrValue = self.address
return addrValue.at(SmallProjectionPath(.anyValueFields))
}
var address: Value {
switch self {
case .memoryAddress(let value):
precondition(value.type.isAddress, "expected address value")
return value
case .modifyAccessScope(let beginAccess):
return beginAccess
}
}
var walkingDirection: EscapeUtilityTypes.WalkingDirection {
switch self {
case .memoryAddress:
// We need to consider where the address comes from
return .up
case .modifyAccessScope:
// We don't care where the access-address comes from because we know that all accesses to the address
// (in the access scope) must be derived from the `begin_access`.
return .down
}
}
var isLetValue: Bool {
switch self {
case .memoryAddress(let addr):
switch addr.accessBase {
case .global(let global): return global.isLet
case .class(let rea): return rea.fieldIsLet
default: return false
}
case .modifyAccessScope:
return false
}
}
func mayAlias(with otherAddr: Value, _ aliasAnalysis: AliasAnalysis) -> Bool {
return aliasAnalysis.mayAlias(address, otherAddr)
}
}
/// A scope in which certain instructions can be assumed to be immutable,
/// i.e. don't write to the scope's based address.
private enum ImmutableScope {
// If the based address is or is derived from an indirect-in or guaranteed function argument.
// The scope spans over the whole function and we don't need to do any scope computation.
case wholeFunction
// If the based address is or is derived from a begin_access with access kind "read".
case readAccess(BeginAccessInst)
// If the based address is or is derived from a begin_access with access kind "modify".
case modifyAccess(BeginAccessInst)
// If the based address is an interior pointer (e.g. the address of a class field) of a borrowed object.
case borrow(BeginBorrowValue)
init?(for basedAddress: Value, _ context: FunctionPassContext) {
switch basedAddress.enclosingAccessScope {
case .scope(let beginAccess):
if beginAccess.isUnsafe {
return nil
}
switch beginAccess.accessKind {
case .read:
self = .readAccess(beginAccess)
case .modify:
self = .modifyAccess(beginAccess)
case .`init`, .deinit:
return nil
}
case .base(let accessBase):
let object: Value
switch accessBase {
case .class(let elementAddr):
if !elementAddr.isImmutable {
return nil
}
object = elementAddr.instance
case .tail(let tailAddr):
if !tailAddr.isImmutable {
return nil
}
object = tailAddr.instance
default:
return nil
}
if !object.parentFunction.hasOwnership {
// Special handling for non-OSSA: we can only reason about guaranteed function arguments.
var walker = IsGuaranteedFunctionArgumentWalker()
if walker.walkUp(value: object, path: SmallProjectionPath()) != .continueWalk {
return nil
}
self = .wholeFunction
} else {
guard let singleBorrowIntroducer = object.getBorrowIntroducers(context).singleElement else {
return nil
}
switch singleBorrowIntroducer {
case .beginBorrow, .loadBorrow, .reborrow:
self = .borrow(singleBorrowIntroducer)
case .functionArgument:
self = .wholeFunction
case .beginApply:
return nil
}
}
}
}
var beginScopeInstruction: SingleValueInstruction {
switch self {
case .wholeFunction:
fatalError("should not request the beginScopeInstruction of a whole function")
case .readAccess(let beginAccess), .modifyAccess(let beginAccess):
return beginAccess
case .borrow(let beginBorrowValue):
switch beginBorrowValue {
case .beginBorrow(let bbi): return bbi
case .loadBorrow(let lbi): return lbi
case .reborrow(let phi): return phi.borrowedFrom!
default: fatalError("unsupported BeginBorrowValue")
}
}
}
func pushEndScopeInstructions(to worklist: inout InstructionWorklist) {
switch self {
case .wholeFunction:
fatalError("should not pushEndScopeInstructions of a whole function")
case .readAccess(let beginAccess), .modifyAccess(let beginAccess):
for endAccess in beginAccess.endAccessInstructions {
worklist.pushPredecessors(of: endAccess, ignoring: beginAccess)
}
case .borrow(let beginBorrowValue):
let beginScopeInst = beginScopeInstruction
for endBorrowOp in beginBorrowValue.scopeEndingOperands {
worklist.pushPredecessors(of: endBorrowOp.instruction, ignoring: beginScopeInst)
}
}
}
}
private struct FindBeginBorrowWalker : ValueUseDefWalker {
let beginBorrow: BorrowIntroducingInstruction
var walkUpCache = WalkerCache<Path>()
public mutating func walkUp(value: Value, path: SmallProjectionPath) -> WalkResult {
if value == beginBorrow {
return .abortWalk
}
return walkUpDefault(value: value, path: path)
}
mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
return .continueWalk
}
}
private struct IsGuaranteedFunctionArgumentWalker : ValueUseDefWalker {
var walkUpCache = WalkerCache<Path>()
mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
if let funcArg = value as? FunctionArgument, funcArg.convention.isGuaranteed {
return .continueWalk
}
return .abortWalk
}
}
// Computes the effects which a called function (potentially) has on an address.
private struct FullApplyEffectsVisitor : EscapeVisitorWithResult {
let apply: FullApplySite
let calleeAnalysis: CalleeAnalysis
let isAddress: Bool
var result = SideEffects.GlobalEffects()
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
if user is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
if user == apply {
let e = calleeAnalysis.getSideEffects(of: apply, operand: operand, path: path.projectionPath)
result.merge(with: e)
}
return .continueWalk
}
var followTrivialTypes: Bool { isAddress }
var followLoads: Bool { !isAddress }
}
// In contrast to a full apply, the effects of a partial_apply don't depend on the callee
// (a partial_apply doesn't call anything, it just creates a thick function pointer).
// The only effects come from capturing the arguments (either consuming or guaranteeed).
private struct PartialApplyEffectsVisitor : EscapeVisitorWithResult {
let partialApply: PartialApplyInst
var result = SideEffects.Memory.noEffects
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
if user is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
if user == partialApply,
let convention = partialApply.convention(of: operand)
{
switch convention {
case .indirectIn, .indirectInGuaranteed:
result.read = true
if !partialApply.isOnStack {
result.write = true
}
case .indirectInout, .indirectInoutAliasable, .packInout:
break
case .directOwned, .directUnowned, .directGuaranteed, .packOwned, .packGuaranteed:
break
case .indirectOut, .packOut, .indirectInCXX:
fatalError("invalid convention for partial_apply")
}
}
return .continueWalk
}
var followTrivialTypes: Bool { true }
var followLoads: Bool { false }
}
private struct AddressVisibleByBuiltinOnceVisitor : EscapeVisitor {
var followTrivialTypes: Bool { true }
var followLoads: Bool { false }
}
/// Checks if a value is "escaping" to the `target` instruction.
private struct EscapesToInstructionVisitor : EscapeVisitor {
let target: Instruction
let isAddress: Bool
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
if user == target {
return .abort
}
if user is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
return .continueWalk
}
var followTrivialTypes: Bool { isAddress }
var followLoads: Bool { !isAddress }
}
private extension Value {
var isImmutableAddress: Bool {
switch accessBase {
case .argument(let arg):
return arg.convention == .indirectInGuaranteed
default:
return false
}
}
}
//===--------------------------------------------------------------------===//
// Type-based alias analysis (TBAA)
//===--------------------------------------------------------------------===//
/// Perform type-based alias analysis (TBAA).
private func isTypeDistinct(_ address1: Value, _ address2: Value,
_ accessBase1: AccessBase, _ accessBase2: AccessBase
) -> Bool {
let type1 = address1.type
let type2 = address2.type
if type1 == type2 {
return false
}
if !accessBase1.isEligibleForTBAA || !accessBase2.isEligibleForTBAA {
return false
}
if !type1.isEligibleForTBAA || !type2.isEligibleForTBAA {
return false
}
let function = address1.parentFunction
// Even if the types are different, one type can contain the other type, e.g.
//
// struct S { var i: Int }
// isTypeDistinct(addressOfS, addressOfInt) -> false
//
if type1.aggregateIsOrContains(type2, in: function) || type2.aggregateIsOrContains(type1, in: function) {
return false
}
if type1.isClass && type2.isClass {
return false
}
return true
}
private extension AccessBase {
func isIndirectResult(of apply: FullApplySite) -> Bool {
return apply.indirectResultOperands.contains { $0.value.accessBase == self }
}
var isEligibleForTBAA: Bool {
// Only access bases which cannot be the result of an not-strict pointer conversion are eligible.
switch self {
case .box, .class, .tail, .global:
return true
case .pointer(let pointerToAddress):
return pointerToAddress.isStrict
default:
return false
}
}
}
private extension Type {
var isEligibleForTBAA: Bool {
if hasArchetype {
// Two distinct types which contain archetypes can be actually the same, e.g.:
// SomeGenericStruct<T> // T is a type parameter, which can potentially also be Int
// SomeGenericStruct<Int>
return false
}
if isClass || isStruct || isEnum || isTuple {
return true
}
// Only support the most important builtin types to be on the safe side.
// Historically we assumed that Builtin.RawPointer can alias everything (but why?).
if isBuiltinInteger || isBuiltinFloat {
return true
}
return false
}
}
//===--------------------------------------------------------------------===//
// Bridging
//===--------------------------------------------------------------------===//
private extension SideEffects.Memory {
var bridged: BridgedMemoryBehavior {
switch (read, write) {
case (false, false): return .None
case (true, false): return .MayRead
case (false, true): return .MayWrite
case (true, true): return .MayReadWrite
}
}
}
private extension BridgedAliasAnalysis {
var cachePointer: UnsafeRawPointer {
UnsafeRawPointer(aa)
}
var mutableCachePointer: UnsafeMutableRawPointer {
UnsafeMutableRawPointer(aa)
}
}