mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
The main changes are: *) Rewrite everything in swift. So far, parts of memory-behavior analysis were already implemented in swift. Now everything is done in swift and lives in `AliasAnalysis.swift`. This is a big code simplification. *) Support many more instructions in the memory-behavior analysis - especially OSSA instructions, like `begin_borrow`, `end_borrow`, `store_borrow`, `load_borrow`. The computation of end_borrow effects is now much more precise. Also, partial_apply is now handled more precisely. *) Simplify and reduce type-based alias analysis (TBAA). The complexity of the old TBAA comes from old days where the language and SIL didn't have strict aliasing and exclusivity rules (e.g. for inout arguments). Now TBAA is only needed for code using unsafe pointers. The new TBAA handles this - and not more. Note that TBAA for classes is already done in `AccessBase.isDistinct`. *) Handle aliasing in `begin_access [modify]` scopes. We already supported truly immutable scopes like `begin_access [read]` or `ref_element_addr [immutable]`. For `begin_access [modify]` we know that there are no other reads or writes to the access-address within the scope. *) Don't cache memory-behavior results. It turned out that the hit-miss rate was pretty bad (~ 1:7). The overhead of the cache lookup took as long as recomputing the memory behavior.
1049 lines
37 KiB
C++
1049 lines
37 KiB
C++
//===--- ARCAnalysis.cpp - SIL ARC Analysis -------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-arc-analysis"
|
|
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
using BasicBlockRetainValue = std::pair<SILBasicBlock *, SILValue>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool swift::isRetainInstruction(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::Name##RetainInst:
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
case SILInstructionKind::StrongRetainInst:
|
|
case SILInstructionKind::RetainValueInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool swift::isReleaseInstruction(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::Name##ReleaseInst:
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
case SILInstructionKind::StrongReleaseInst:
|
|
case SILInstructionKind::ReleaseValueInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Decrement Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool swift::mayDecrementRefCount(SILInstruction *User,
|
|
SILValue Ptr, AliasAnalysis *AA) {
|
|
// First do a basic check, mainly based on the type of instruction.
|
|
// Reading the RC is as "bad" as releasing.
|
|
if (!User->mayReleaseOrReadRefCount())
|
|
return false;
|
|
|
|
// Ok, this instruction may have ref counts. If it is an apply, attempt to
|
|
// prove that the callee is unable to affect Ptr.
|
|
if (auto *AI = dyn_cast<ApplyInst>(User))
|
|
return AA->canApplyDecrementRefCount(AI, Ptr);
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(User))
|
|
return AA->canApplyDecrementRefCount(TAI, Ptr);
|
|
if (auto *BI = dyn_cast<BuiltinInst>(User))
|
|
return AA->canBuiltinDecrementRefCount(BI, Ptr);
|
|
|
|
// We cannot conservatively prove that this instruction cannot decrement the
|
|
// ref count of Ptr. So assume that it does.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if a builtin apply can use reference counted values.
|
|
///
|
|
/// The main case that this handles here are builtins that via read none imply
|
|
/// that they cannot read globals and at the same time do not take any
|
|
/// non-trivial types via the arguments. The reason why we care about taking
|
|
/// non-trivial types as arguments is that we want to be careful in the face of
|
|
/// intrinsics that may be equivalent to bitcast and inttoptr operations.
|
|
static bool canApplyOfBuiltinUseNonTrivialValues(BuiltinInst *BInst) {
|
|
auto *F = BInst->getFunction();
|
|
|
|
auto &II = BInst->getIntrinsicInfo();
|
|
if (II.ID != llvm::Intrinsic::not_intrinsic) {
|
|
auto attrs = II.getOrCreateAttributes(F->getASTContext());
|
|
if (attrs.getMemoryEffects().doesNotAccessMemory()) {
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get()->getType().isTrivial(*F)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
auto &BI = BInst->getBuiltinInfo();
|
|
if (!BI.isReadNone())
|
|
return true;
|
|
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get()->getType().isTrivial(*F)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if \p Inst may access any indirect object either via an address
|
|
/// or reference.
|
|
///
|
|
/// If these instructions do have an address or reference type operand, then
|
|
/// they only operate on the value of the address itself, not the
|
|
/// memory. i.e. they don't dereference the address.
|
|
bool swift::canUseObject(SILInstruction *Inst) {
|
|
switch (Inst->getKind()) {
|
|
// These instructions do not use other values.
|
|
case SILInstructionKind::FunctionRefInst:
|
|
case SILInstructionKind::DynamicFunctionRefInst:
|
|
case SILInstructionKind::PreviousDynamicFunctionRefInst:
|
|
case SILInstructionKind::IntegerLiteralInst:
|
|
case SILInstructionKind::FloatLiteralInst:
|
|
case SILInstructionKind::StringLiteralInst:
|
|
case SILInstructionKind::AllocStackInst:
|
|
case SILInstructionKind::AllocRefInst:
|
|
case SILInstructionKind::AllocRefDynamicInst:
|
|
case SILInstructionKind::AllocBoxInst:
|
|
case SILInstructionKind::MetatypeInst:
|
|
case SILInstructionKind::WitnessMethodInst:
|
|
return false;
|
|
|
|
// DeallocStackInst do not use reference counted values.
|
|
case SILInstructionKind::DeallocStackInst:
|
|
return false;
|
|
|
|
// Debug values do not use referenced counted values in a manner we care
|
|
// about.
|
|
case SILInstructionKind::DebugValueInst:
|
|
return false;
|
|
|
|
// Casts do not use pointers in a manner that we care about since we strip
|
|
// them during our analysis. The reason for this is if the cast is not dead
|
|
// then there must be some other use after the cast that we will protect if a
|
|
// release is not in between the cast and the use.
|
|
//
|
|
// Note: UncheckedRefCastAddrInst moves a reference into a new object. While
|
|
// the net reference count should be zero, there's no guarantee it won't
|
|
// access the object.
|
|
case SILInstructionKind::UpcastInst:
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
case SILInstructionKind::PointerToAddressInst:
|
|
case SILInstructionKind::UncheckedRefCastInst:
|
|
case SILInstructionKind::UncheckedAddrCastInst:
|
|
case SILInstructionKind::RefToRawPointerInst:
|
|
case SILInstructionKind::RawPointerToRefInst:
|
|
case SILInstructionKind::UnconditionalCheckedCastInst:
|
|
case SILInstructionKind::UncheckedBitwiseCastInst:
|
|
case SILInstructionKind::EndInitLetRefInst:
|
|
case SILInstructionKind::BeginDeallocRefInst:
|
|
return false;
|
|
|
|
// If we have a trivial bit cast between trivial types, it is not something
|
|
// that can use ref count ops in a way we care about. We do need to be careful
|
|
// with uses with ref count inputs. In such a case, we assume conservatively
|
|
// that the bit cast could use it.
|
|
//
|
|
// The reason why this is different from the ref bitcast is b/c the use of a
|
|
// ref bit cast is still a ref typed value implying that our ARC dataflow will
|
|
// properly handle its users. A conversion of a reference count value to a
|
|
// trivial value though could be used as a trivial value in ways that ARC
|
|
// dataflow will not understand implying we need to treat it as a use to be
|
|
// safe.
|
|
case SILInstructionKind::UncheckedTrivialBitCastInst: {
|
|
SILValue Op = cast<UncheckedTrivialBitCastInst>(Inst)->getOperand();
|
|
return !Op->getType().isTrivial(*Inst->getFunction());
|
|
}
|
|
|
|
// Typed GEPs do not use pointers. The user of the typed GEP may but we will
|
|
// catch that via the dataflow.
|
|
case SILInstructionKind::StructExtractInst:
|
|
case SILInstructionKind::TupleExtractInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
|
|
case SILInstructionKind::RefElementAddrInst:
|
|
case SILInstructionKind::RefTailAddrInst:
|
|
case SILInstructionKind::UncheckedEnumDataInst:
|
|
case SILInstructionKind::IndexAddrInst:
|
|
case SILInstructionKind::IndexRawPointerInst:
|
|
return false;
|
|
|
|
// Aggregate formation by themselves do not create new uses since it is their
|
|
// users that would create the appropriate uses.
|
|
case SILInstructionKind::EnumInst:
|
|
case SILInstructionKind::StructInst:
|
|
case SILInstructionKind::TupleInst:
|
|
return false;
|
|
|
|
// Only uses non reference counted values.
|
|
case SILInstructionKind::CondFailInst:
|
|
return false;
|
|
|
|
case SILInstructionKind::BuiltinInst: {
|
|
auto *BI = cast<BuiltinInst>(Inst);
|
|
|
|
// Certain builtin function refs we know can never use non-trivial values.
|
|
return canApplyOfBuiltinUseNonTrivialValues(BI);
|
|
}
|
|
// We do not care about branch inst, since if the branch inst's argument is
|
|
// dead, LLVM will clean it up.
|
|
case SILInstructionKind::BranchInst:
|
|
case SILInstructionKind::CondBranchInst:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool doOperandsAlias(ArrayRef<Operand> Ops, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// If any are not no alias, we have a use.
|
|
return std::any_of(Ops.begin(), Ops.end(),
|
|
[&AA, &Ptr](const Operand &Op) -> bool {
|
|
return AA->mayAlias(Ptr, Op.get());
|
|
});
|
|
}
|
|
|
|
static bool canTerminatorUseValue(TermInst *TI, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
if (auto *BI = dyn_cast<BranchInst>(TI)) {
|
|
return doOperandsAlias(BI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(TI)) {
|
|
bool First = doOperandsAlias(CBI->getTrueOperands(), Ptr, AA);
|
|
bool Second = doOperandsAlias(CBI->getFalseOperands(), Ptr, AA);
|
|
return First || Second;
|
|
}
|
|
|
|
if (auto *SWEI = dyn_cast<SwitchEnumInst>(TI)) {
|
|
return doOperandsAlias(SWEI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
if (auto *SWVI = dyn_cast<SwitchValueInst>(TI)) {
|
|
return doOperandsAlias(SWVI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
auto *CCBI = dyn_cast<CheckedCastBranchInst>(TI);
|
|
// If we don't have this last case, be conservative and assume that we can use
|
|
// the value.
|
|
if (!CCBI)
|
|
return true;
|
|
|
|
// Otherwise, look at the operands.
|
|
return doOperandsAlias(CCBI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
|
|
bool swift::mayHaveSymmetricInterference(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
|
|
// If Inst is an instruction that we know can never use values with reference
|
|
// semantics, return true. Check this before AliasAnalysis because some memory
|
|
// operations, like dealloc_stack, don't use ref counted values.
|
|
if (!canUseObject(User))
|
|
return false;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(User)) {
|
|
return AA->isAddrVisibleFromObject(LI->getOperand(), Ptr);
|
|
}
|
|
if (auto *SI = dyn_cast<StoreInst>(User)) {
|
|
return AA->isAddrVisibleFromObject(SI->getDest(), Ptr);
|
|
}
|
|
if (User->mayReadOrWriteMemory())
|
|
return true;
|
|
|
|
// If we have a terminator instruction, see if it can use ptr. This currently
|
|
// means that we first show that TI cannot indirectly use Ptr and then use
|
|
// alias analysis on the arguments.
|
|
if (auto *TI = dyn_cast<TermInst>(User))
|
|
return canTerminatorUseValue(TI, Ptr, AA);
|
|
|
|
// TODO: If we add in alias analysis support here for apply inst, we will need
|
|
// to check that the pointer does not escape.
|
|
|
|
// Otherwise, assume that Inst can use Target.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Must Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if User must use Ptr.
|
|
///
|
|
/// In terms of ARC this means that if we do not remove User, all releases post
|
|
/// dominated by User are known safe.
|
|
bool swift::mustUseValue(SILInstruction *User, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Right now just pattern match applies.
|
|
auto *AI = dyn_cast<ApplyInst>(User);
|
|
if (!AI)
|
|
return false;
|
|
|
|
// If any of AI's arguments must alias Ptr, return true.
|
|
for (SILValue Arg : AI->getArguments())
|
|
if (Arg == Ptr)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if User must use Ptr in a guaranteed way.
|
|
///
|
|
/// This means that assuming that everything is conservative, we can ignore the
|
|
/// ref count effects of User on Ptr since we will only remove things over
|
|
/// guaranteed parameters if we are known safe in both directions.
|
|
bool swift::mustGuaranteedUseValue(SILInstruction *User, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Right now just pattern match applies.
|
|
auto *AI = dyn_cast<ApplyInst>(User);
|
|
if (!AI)
|
|
return false;
|
|
|
|
// For now just look for guaranteed self.
|
|
//
|
|
// TODO: Expand this to handle *any* guaranteed parameter.
|
|
if (!AI->hasGuaranteedSelfArgument())
|
|
return false;
|
|
|
|
// Return true if Ptr alias's self.
|
|
return AI->getSelfArgument() == Ptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Methods for determining use, decrement of values in a contiguous
|
|
// instruction range in one BB.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// If \p Op has arc uses in the instruction range [Start, End), return the
|
|
/// first such instruction. Otherwise return None. We assume that
|
|
/// Start and End are both in the same basic block.
|
|
std::optional<SILBasicBlock::iterator> swift::valueHasARCUsesInInstructionRange(
|
|
SILValue Op, SILBasicBlock::iterator Start, SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return false.
|
|
if (Start == End)
|
|
return std::nullopt;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can use Op in an ARC relevant way. If so, return true.
|
|
if (mayHaveSymmetricInterference(&*Start, Op, AA))
|
|
return Start;
|
|
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions cannot use Op, return false.
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// If \p Op has arc uses in the instruction range (Start, End], return the
|
|
/// first such instruction. Otherwise return None. We assume that Start and End
|
|
/// are both in the same basic block.
|
|
std::optional<SILBasicBlock::iterator>
|
|
swift::valueHasARCUsesInReverseInstructionRange(SILValue Op,
|
|
SILBasicBlock::iterator Start,
|
|
SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
assert(End != End->getParent()->end() &&
|
|
"End should be mapped to an actual instruction");
|
|
|
|
// If Start == End, then we have an empty range, return false.
|
|
if (Start == End)
|
|
return std::nullopt;
|
|
|
|
// Otherwise, until End == Start.
|
|
while (Start != End) {
|
|
// Check if Start can use Op in an ARC relevant way. If so, return true.
|
|
if (mayHaveSymmetricInterference(&*End, Op, AA))
|
|
return End;
|
|
|
|
// Otherwise, decrement our iterator.
|
|
--End;
|
|
}
|
|
|
|
// If all such instructions cannot use Op, return false.
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// If \p Op has instructions in the instruction range (Start, End] which may
|
|
/// decrement it, return the first such instruction. Returns None
|
|
/// if no such instruction exists. We assume that Start and End are both in the
|
|
/// same basic block.
|
|
std::optional<SILBasicBlock::iterator>
|
|
swift::valueHasARCDecrementOrCheckInInstructionRange(
|
|
SILValue Op, SILBasicBlock::iterator Start, SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return nothing.
|
|
if (Start == End)
|
|
return std::nullopt;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can decrement or check Op's ref count. If so, return
|
|
// Start. Ref count checks do not have side effects, but are barriers for
|
|
// retains.
|
|
if (mayDecrementRefCount(&*Start, Op, AA) || mayCheckRefCount(&*Start))
|
|
return Start;
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions cannot decrement Op, return nothing.
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool
|
|
swift::
|
|
mayGuaranteedUseValue(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
|
|
// Instructions that check the ref count are modeled as both a potential
|
|
// decrement and a use.
|
|
if (mayCheckRefCount(User)) {
|
|
switch (User->getKind()) {
|
|
case SILInstructionKind::IsUniqueInst:
|
|
// This instruction takes the address of its referent, so there's no way
|
|
// for the optimizer to reuse the reference across it (it appears to
|
|
// mutate the reference itself). In fact it's operand's RC root would be
|
|
// the parent object. This means we can ignore it as a direct RC user.
|
|
return false;
|
|
case SILInstructionKind::IsEscapingClosureInst:
|
|
// FIXME: this is overly conservative. It should return true only of the
|
|
// RC identity of the single operand matches Ptr.
|
|
return true;
|
|
case SILInstructionKind::BeginCOWMutationInst:
|
|
// begin_cow_mutation takes the argument as owned and produces a new
|
|
// owned result.
|
|
return false;
|
|
default:
|
|
llvm_unreachable("Unexpected check-ref-count instruction.");
|
|
}
|
|
}
|
|
|
|
// Only full apply sites can require a guaranteed lifetime. If we don't have
|
|
// one, bail.
|
|
if (!isa<FullApplySite>(User))
|
|
return false;
|
|
|
|
FullApplySite FAS(User);
|
|
|
|
// Ok, we have a full apply site. Check if the callee is callee_guaranteed. In
|
|
// such a case, if we can not prove no alias, we need to be conservative and
|
|
// return true.
|
|
CanSILFunctionType FType = FAS.getSubstCalleeType();
|
|
if (FType->isCalleeGuaranteed() && AA->mayAlias(FAS.getCallee(), Ptr)) {
|
|
return true;
|
|
}
|
|
|
|
// Ok, we have a full apply site and our callee is a normal use. Thus if the
|
|
// apply does not have any normal arguments, we don't need to worry about any
|
|
// guaranteed parameters and return early.
|
|
if (!FAS.getNumArguments())
|
|
return false;
|
|
|
|
// Ok, we have an apply site with arguments. Look at the function type and
|
|
// iterate through the function parameters. If any of the parameters are
|
|
// guaranteed, attempt to prove that the passed in parameter cannot alias
|
|
// Ptr. If we fail, return true.
|
|
auto Params = FType->getParameters();
|
|
for (unsigned i : indices(Params)) {
|
|
if (!Params[i].isGuaranteedInCaller())
|
|
continue;
|
|
SILValue Op = FAS.getArgumentsWithoutIndirectResults()[i];
|
|
if (AA->mayAlias(Op, Ptr))
|
|
return true;
|
|
}
|
|
|
|
// Ok, we were able to prove that all arguments to the apply that were
|
|
// guaranteed do not alias Ptr. Return false.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Owned Result Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
ConsumedResultToEpilogueRetainMatcher(RCIdentityFunctionInfo *RCFI,
|
|
AliasAnalysis *AA,
|
|
SILFunction *F)
|
|
: F(F), RCFI(RCFI), AA(AA) {
|
|
recompute();
|
|
}
|
|
|
|
void ConsumedResultToEpilogueRetainMatcher::recompute() {
|
|
EpilogueRetainInsts.clear();
|
|
|
|
// Find the return BB of F. If we fail, then bail.
|
|
SILFunction::iterator BB = F->findReturnBB();
|
|
if (BB == F->end())
|
|
return;
|
|
findMatchingRetains(&*BB);
|
|
}
|
|
|
|
bool ConsumedResultToEpilogueRetainMatcher::isTransitiveSuccessorsRetainFree(
|
|
const llvm::DenseSet<SILBasicBlock *> &BBs) {
|
|
// For every block with retain, we need to check the transitive
|
|
// closure of its successors are retain-free.
|
|
for (auto &I : EpilogueRetainInsts) {
|
|
for (auto &Succ : I->getParent()->getSuccessors()) {
|
|
if (BBs.count(Succ))
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// FIXME: We are iterating over a DenseSet. That can lead to non-determinism
|
|
// and is in general pretty inefficient since we are iterating over a hash
|
|
// table.
|
|
for (auto CBB : BBs) {
|
|
for (auto &Succ : CBB->getSuccessors()) {
|
|
if (BBs.count(Succ))
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ConsumedResultToEpilogueRetainMatcher::RetainKindValue
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
findMatchingRetainsInBasicBlock(SILBasicBlock *BB, SILValue V) {
|
|
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
// Handle self-recursion.
|
|
if (auto *AI = dyn_cast<ApplyInst>(&*II))
|
|
if (AI->getCalleeFunction() == BB->getParent())
|
|
return std::make_pair(FindRetainKind::Recursion, AI);
|
|
|
|
// If we do not have a retain_value or strong_retain...
|
|
if (!isa<RetainValueInst>(*II) && !isa<StrongRetainInst>(*II)) {
|
|
// we can ignore it if it can not decrement the reference count of the
|
|
// return value.
|
|
if (!mayDecrementRefCount(&*II, V, AA))
|
|
continue;
|
|
|
|
// Otherwise, we need to stop computing since we do not want to create
|
|
// lifetime gap.
|
|
return std::make_pair(FindRetainKind::Blocked, nullptr);
|
|
}
|
|
|
|
// Ok, we have a retain_value or strong_retain. Grab Target and find the
|
|
// RC identity root of its operand.
|
|
SILInstruction *Target = &*II;
|
|
SILValue RetainValue = RCFI->getRCIdentityRoot(Target->getOperand(0));
|
|
SILValue ReturnValue = RCFI->getRCIdentityRoot(V);
|
|
|
|
// Is this the epilogue retain we are looking for ?.
|
|
// We break here as we do not know whether this is a part of the epilogue
|
|
// retain for the @own return value.
|
|
if (RetainValue != ReturnValue)
|
|
break;
|
|
|
|
return std::make_pair(FindRetainKind::Found, &*II);
|
|
}
|
|
|
|
// Did not find retain in this block.
|
|
return std::make_pair(FindRetainKind::None, nullptr);
|
|
}
|
|
|
|
void
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
findMatchingRetains(SILBasicBlock *BB) {
|
|
// Iterate over the instructions post-order and find retains associated with
|
|
// return value.
|
|
SILValue RV = SILValue();
|
|
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
if (auto *RI = dyn_cast<ReturnInst>(&*II)) {
|
|
RV = RI->getOperand();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Somehow, we managed not to find a return value.
|
|
if (!RV)
|
|
return;
|
|
|
|
// OK. we've found the return value, now iterate on the CFG to find all the
|
|
// post-dominating retains.
|
|
//
|
|
// The ConsumedResultToEpilogueRetainMatcher finds the final releases
|
|
// in the following way.
|
|
//
|
|
// 1. If an instruction, which is not releaseinst nor releasevalue, that
|
|
// could decrement reference count is found. bail out.
|
|
//
|
|
// 2. If a release is found and the release that can not be mapped to any
|
|
// @owned argument. bail as this release may well be the final release of
|
|
// an @owned argument, but somehow rc-identity fails to prove that.
|
|
//
|
|
// 3. A release that is mapped to an argument which already has a release
|
|
// that overlaps with this release. This release for sure is not the final
|
|
// release.
|
|
constexpr unsigned WorkListMaxSize = 4;
|
|
|
|
llvm::DenseSet<SILBasicBlock *> RetainFrees;
|
|
llvm::SmallVector<BasicBlockRetainValue, 4> WorkList;
|
|
llvm::DenseSet<SILBasicBlock *> HandledBBs;
|
|
WorkList.push_back(std::make_pair(BB, RV));
|
|
HandledBBs.insert(BB);
|
|
while (!WorkList.empty()) {
|
|
// Too many blocks ?.
|
|
if (WorkList.size() > WorkListMaxSize) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// Try to find a retain %value in this basic block.
|
|
auto R = WorkList.pop_back_val();
|
|
RetainKindValue Kind = findMatchingRetainsInBasicBlock(R.first, R.second);
|
|
|
|
// We've found a retain on this path.
|
|
if (Kind.first == FindRetainKind::Found) {
|
|
EpilogueRetainInsts.push_back(Kind.second);
|
|
continue;
|
|
}
|
|
|
|
// There is a MayDecrement instruction.
|
|
if (Kind.first == FindRetainKind::Blocked) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// There is a self-recursion. Use the apply instruction as the retain.
|
|
if (Kind.first == FindRetainKind::Recursion) {
|
|
EpilogueRetainInsts.push_back(Kind.second);
|
|
continue;
|
|
}
|
|
|
|
// Did not find a retain in this block, try to go to its predecessors.
|
|
if (Kind.first == FindRetainKind::None) {
|
|
// We can not find a retain in a block with no predecessors.
|
|
if (R.first->getPredecessorBlocks().begin() ==
|
|
R.first->getPredecessorBlocks().end()) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// This block does not have a retain.
|
|
RetainFrees.insert(R.first);
|
|
|
|
// If this is a SILArgument of current basic block, we can split it up to
|
|
// values in the predecessors.
|
|
auto *SA = dyn_cast<SILPhiArgument>(R.second);
|
|
if (SA && SA->getParent() != R.first)
|
|
SA = nullptr;
|
|
|
|
for (auto X : R.first->getPredecessorBlocks()) {
|
|
if (HandledBBs.contains(X))
|
|
continue;
|
|
// Try to use the predecessor edge-value.
|
|
if (SA && SA->getIncomingPhiValue(X)) {
|
|
WorkList.push_back(std::make_pair(X, SA->getIncomingPhiValue(X)));
|
|
} else
|
|
WorkList.push_back(std::make_pair(X, R.second));
|
|
|
|
HandledBBs.insert(X);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Lastly, check whether all the successor blocks are retain-free.
|
|
if (!isTransitiveSuccessorsRetainFree(RetainFrees))
|
|
EpilogueRetainInsts.clear();
|
|
|
|
// At this point, we've either failed to find any epilogue retains or
|
|
// all the post-dominating epilogue retains.
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Owned Argument Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConsumedArgToEpilogueReleaseMatcher::ConsumedArgToEpilogueReleaseMatcher(
|
|
RCIdentityFunctionInfo *RCFI,
|
|
SILFunction *F,
|
|
ArrayRef<SILArgumentConvention> ArgumentConventions,
|
|
ExitKind Kind)
|
|
: F(F), RCFI(RCFI), Kind(Kind), ArgumentConventions(ArgumentConventions),
|
|
ProcessedBlock(nullptr) {
|
|
recompute();
|
|
}
|
|
|
|
void ConsumedArgToEpilogueReleaseMatcher::recompute() {
|
|
ArgInstMap.clear();
|
|
|
|
// Find the return BB of F. If we fail, then bail.
|
|
SILFunction::iterator BB;
|
|
switch (Kind) {
|
|
case ExitKind::Return:
|
|
BB = F->findReturnBB();
|
|
break;
|
|
case ExitKind::Throw:
|
|
BB = F->findThrowBB();
|
|
break;
|
|
}
|
|
|
|
if (BB == F->end()) {
|
|
ProcessedBlock = nullptr;
|
|
return;
|
|
}
|
|
ProcessedBlock = &*BB;
|
|
findMatchingReleases(&*BB);
|
|
}
|
|
|
|
bool ConsumedArgToEpilogueReleaseMatcher::isRedundantRelease(
|
|
ArrayRef<SILInstruction *> Insts, SILValue Base, SILValue Derived) {
|
|
// We use projection path to analyze the relation.
|
|
auto POp = ProjectionPath::getProjectionPath(Base, Derived);
|
|
// We can not build a projection path from the base to the derived, bail out.
|
|
// and return true so that we can stop the epilogue walking sequence.
|
|
if (!POp.has_value())
|
|
return true;
|
|
|
|
for (auto &R : Insts) {
|
|
SILValue ROp = R->getOperand(0);
|
|
auto PROp = ProjectionPath::getProjectionPath(Base, ROp);
|
|
if (!PROp.has_value())
|
|
return true;
|
|
// If Op is a part of ROp or Rop is a part of Op. then we have seen
|
|
// a redundant release.
|
|
if (!PROp.value().hasNonEmptySymmetricDifference(POp.value()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ConsumedArgToEpilogueReleaseMatcher::releaseArgument(
|
|
ArrayRef<SILInstruction *> Insts, SILValue Arg) {
|
|
// Reason about whether all parts are released.
|
|
auto *F = (*Insts.begin())->getFunction();
|
|
|
|
// These are the list of SILValues that are actually released.
|
|
ProjectionPathSet Paths;
|
|
for (auto &I : Insts) {
|
|
auto PP = ProjectionPath::getProjectionPath(Arg, I->getOperand(0));
|
|
if (!PP)
|
|
return false;
|
|
Paths.insert(PP.value());
|
|
}
|
|
|
|
// Is there an uncovered non-trivial type.
|
|
return !ProjectionPath::hasUncoveredNonTrivials(Arg->getType(), *F, Paths);
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
processMatchingReleases() {
|
|
// If we can not find a release for all parts with reference semantics
|
|
// that means we did not find all releases for the base.
|
|
for (auto &pair : ArgInstMap) {
|
|
// We do not know if we have a fully post dominating release set
|
|
// so all release sets should be considered partially post
|
|
// dominated.
|
|
auto releaseSet = pair.second.getPartiallyPostDomReleases();
|
|
if (!releaseSet)
|
|
continue;
|
|
|
|
// If an argument has a single release and it is rc-identical to the
|
|
// SILArgument. Then we do not need to use projection to check for whether
|
|
// all non-trivial fields are covered.
|
|
if (releaseSet->size() == 1) {
|
|
SILInstruction *inst = *releaseSet->begin();
|
|
SILValue rv = inst->getOperand(0);
|
|
if (pair.first == RCFI->getRCIdentityRoot(rv)) {
|
|
pair.second.setHasJointPostDominatingReleaseSet();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// OK. we have multiple epilogue releases for this argument, check whether
|
|
// it has covered all fields with reference semantic in the argument.
|
|
if (!releaseArgument(*releaseSet, pair.first))
|
|
continue;
|
|
|
|
// OK. At this point we know that we found a joint post dominating
|
|
// set of releases. Mark our argument as such.
|
|
pair.second.setHasJointPostDominatingReleaseSet();
|
|
}
|
|
}
|
|
|
|
/// Check if a given argument convention is in the list
|
|
/// of possible argument conventions.
|
|
static bool
|
|
isOneOfConventions(SILArgumentConvention Convention,
|
|
ArrayRef<SILArgumentConvention> ArgumentConventions) {
|
|
for (auto ArgumentConvention : ArgumentConventions) {
|
|
if (Convention == ArgumentConvention)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ConsumedArgToEpilogueReleaseMatcher::collectMatchingDestroyAddresses(
|
|
SILBasicBlock *block) {
|
|
// Check if we can find destroy_addr for each @in argument.
|
|
SILFunction::iterator anotherEpilogueBB =
|
|
(Kind == ExitKind::Return) ? F->findThrowBB() : F->findReturnBB();
|
|
|
|
for (auto *arg : F->begin()->getSILFunctionArguments()) {
|
|
if (arg->isIndirectResult())
|
|
continue;
|
|
if (arg->getArgumentConvention() != SILArgumentConvention::Indirect_In)
|
|
continue;
|
|
bool hasDestroyAddrOutsideEpilogueBB = false;
|
|
// This is an @in argument. Check if there are any destroy_addr
|
|
// instructions for it.
|
|
for (Operand *op : getNonDebugUses(arg)) {
|
|
auto *user = op->getUser();
|
|
if (!isa<DestroyAddrInst>(user))
|
|
continue;
|
|
// Do not take into account any uses in the other
|
|
// epilogue BB.
|
|
if (anotherEpilogueBB != F->end() &&
|
|
user->getParent() == &*anotherEpilogueBB)
|
|
continue;
|
|
if (user->getParent() != block)
|
|
hasDestroyAddrOutsideEpilogueBB = true;
|
|
|
|
// Since ArgumentState uses a TinyPtrVector, creating
|
|
// temporaries containing one element is cheap.
|
|
auto iter = ArgInstMap.insert({arg, ArgumentState(user)});
|
|
// We inserted the value.
|
|
if (iter.second)
|
|
continue;
|
|
// Otherwise, add this release to the set.
|
|
iter.first->second.addRelease(user);
|
|
}
|
|
|
|
// Don't know how to handle destroy_addr outside of the epilogue.
|
|
if (hasDestroyAddrOutsideEpilogueBB)
|
|
ArgInstMap.erase(arg);
|
|
}
|
|
}
|
|
|
|
void ConsumedArgToEpilogueReleaseMatcher::collectMatchingReleases(
|
|
SILBasicBlock *block) {
|
|
// Iterate over the instructions post-order and find final releases
|
|
// associated with each arguments.
|
|
//
|
|
// The ConsumedArgToEpilogueReleaseMatcher finds the final releases
|
|
// in the following way.
|
|
//
|
|
// 1. If an instruction, which is not releaseinst nor releasevalue, that
|
|
// could decrement reference count is found. bail out.
|
|
//
|
|
// 2. If a release is found and the release that can not be mapped to any
|
|
// @owned argument. bail as this release may well be the final release of
|
|
// an @owned argument, but somehow rc-identity fails to prove that.
|
|
//
|
|
// 3. A release that is mapped to an argument which already has a release
|
|
// that overlaps with this release. This release for sure is not the final
|
|
// release.
|
|
bool isTrackingInArgs = isOneOfConventions(SILArgumentConvention::Indirect_In,
|
|
ArgumentConventions);
|
|
for (auto &inst : llvm::reverse(*block)) {
|
|
if (isTrackingInArgs && isa<DestroyAddrInst>(inst)) {
|
|
// It is probably a destroy addr for an @in argument.
|
|
continue;
|
|
}
|
|
// If we do not have a release_value or strong_release. We can continue
|
|
if (!isa<ReleaseValueInst>(inst) && !isa<StrongReleaseInst>(inst)) {
|
|
// We cannot match a final release if it is followed by a dealloc_ref.
|
|
if (isa<DeallocRefInst>(inst) || isa<DeallocPartialRefInst>(inst))
|
|
break;
|
|
|
|
// We do not know what this instruction is, do a simple check to make sure
|
|
// that it does not decrement the reference count of any of its operand.
|
|
//
|
|
// TODO: we could make the logic here more complicated to handle each type
|
|
// of instructions in a more precise manner.
|
|
if (!inst.mayRelease())
|
|
continue;
|
|
// This instruction may release something, bail out conservatively.
|
|
break;
|
|
}
|
|
|
|
// Ok, we have a release_value or strong_release. Grab Target and find the
|
|
// RC identity root of its operand.
|
|
SILValue origOp = inst.getOperand(0);
|
|
SILValue op = RCFI->getRCIdentityRoot(origOp);
|
|
|
|
// Check whether this is a SILArgument or a part of a SILArgument. This is
|
|
// possible after we expand release instructions in SILLowerAgg pass.
|
|
auto *arg = dyn_cast<SILFunctionArgument>(stripValueProjections(op));
|
|
if (!arg)
|
|
break;
|
|
|
|
// If Op is not a consumed argument, we must break since this is not an Op
|
|
// that is a part of a return sequence. We are being conservative here since
|
|
// we could make this more general by allowing for intervening non-arg
|
|
// releases in the sense that we do not allow for race conditions in between
|
|
// destructors.
|
|
if (!isOneOfConventions(arg->getArgumentConvention(), ArgumentConventions))
|
|
break;
|
|
|
|
// Ok, we have a release on a SILArgument that has a consuming convention.
|
|
// Attempt to put it into our arc opts map. If we already have it, we have
|
|
// exited the return value sequence so break. Otherwise, continue looking
|
|
// for more arc operations.
|
|
auto iter = ArgInstMap.find(arg);
|
|
if (iter == ArgInstMap.end()) {
|
|
ArgInstMap.insert({arg, {&inst}});
|
|
continue;
|
|
}
|
|
|
|
// We've already seen at least part of this base. Check to see whether we
|
|
// are seeing a redundant release.
|
|
//
|
|
// If we are seeing a redundant release we have exited the return value
|
|
// sequence, so break.
|
|
if (!isa<DestroyAddrInst>(inst)) {
|
|
// We do not know if we have a fully post dominating release
|
|
// set, so we use the partial post dom entry point.
|
|
if (auto partialReleases = iter->second.getPartiallyPostDomReleases()) {
|
|
if (isRedundantRelease(*partialReleases, arg, origOp)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've seen part of this base, but this is a part we've have not seen.
|
|
// Record it.
|
|
iter->second.addRelease(&inst);
|
|
}
|
|
|
|
if (isTrackingInArgs) {
|
|
// Find destroy_addr for each @in argument.
|
|
collectMatchingDestroyAddresses(block);
|
|
}
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
findMatchingReleases(SILBasicBlock *BB) {
|
|
// Walk the given basic block to find all the epilogue releases.
|
|
collectMatchingReleases(BB);
|
|
// We've exited the epilogue sequence, try to find out which parameter we
|
|
// have all the epilogue releases for and which one we did not.
|
|
processMatchingReleases();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Leaking BB Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool ignorableApplyInstInUnreachableBlock(const ApplyInst *AI) {
|
|
auto applySite = FullApplySite(const_cast<ApplyInst *>(AI));
|
|
return applySite.isCalleeKnownProgramTerminationPoint();
|
|
}
|
|
|
|
static bool ignorableBuiltinInstInUnreachableBlock(const BuiltinInst *BI) {
|
|
const BuiltinInfo &BInfo = BI->getBuiltinInfo();
|
|
if (BInfo.ID == BuiltinValueKind::CondUnreachable)
|
|
return true;
|
|
|
|
const IntrinsicInfo &IInfo = BI->getIntrinsicInfo();
|
|
if (IInfo.ID == llvm::Intrinsic::trap)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Match a call to a trap BB with no ARC relevant side effects.
|
|
bool swift::isARCInertTrapBB(const SILBasicBlock *BB) {
|
|
// Do a quick check at the beginning to make sure that our terminator is
|
|
// actually an unreachable. This ensures that in many cases this function will
|
|
// exit early and quickly.
|
|
auto II = BB->rbegin();
|
|
if (!isa<UnreachableInst>(*II))
|
|
return false;
|
|
|
|
auto IE = BB->rend();
|
|
while (II != IE) {
|
|
// Ignore any instructions without side effects.
|
|
if (!II->mayHaveSideEffects()) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Ignore cond fail.
|
|
if (isa<CondFailInst>(*II)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Check for apply insts that we can ignore.
|
|
if (auto *AI = dyn_cast<ApplyInst>(&*II)) {
|
|
if (ignorableApplyInstInUnreachableBlock(AI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check for builtins that we can ignore.
|
|
if (auto *BI = dyn_cast<BuiltinInst>(&*II)) {
|
|
if (ignorableBuiltinInstInUnreachableBlock(BI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we can't ignore the instruction, return false.
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we have an unreachable and every instruction is inert from an
|
|
// ARC perspective in an unreachable BB.
|
|
return true;
|
|
}
|