Files
swift-mirror/lib/Sema/CSGen.cpp
Joe Groff 9a190ea59e AST: Remove unneeded expression nodes for __inout_conversion and __writeback_conversion.
We no longer need this language feature. The Sema support is still skeletally kept in place because removing it seems to totally break pointer conversions; I need to work with Joe and Doug to figure out why that's the case.

Swift SVN r19289
2014-06-27 04:23:35 +00:00

1576 lines
64 KiB
C++

//===--- CSGen.cpp - Constraint Generator ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements constraint generation for the type checker.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintSystem.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Expr.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/APInt.h"
using namespace swift;
using namespace swift::constraints;
/// \brief Skip any implicit conversions applied to this expression.
static Expr *skipImplicitConversions(Expr *expr) {
while (auto ice = dyn_cast<ImplicitConversionExpr>(expr))
expr = ice->getSubExpr();
return expr;
}
/// \brief Find the declaration directly referenced by this expression.
static ValueDecl *findReferencedDecl(Expr *expr, SourceLoc &loc) {
do {
expr = expr->getSemanticsProvidingExpr();
if (auto ice = dyn_cast<ImplicitConversionExpr>(expr)) {
expr = ice->getSubExpr();
continue;
}
if (auto dre = dyn_cast<DeclRefExpr>(expr)) {
loc = dre->getLoc();
return dre->getDecl();
}
return nullptr;
} while (true);
}
/// \brief Return 'true' if the decl in question refers to an operator that
/// could be added to the global scope via a delayed protcol conformance.
/// Currently, this is only true for '==', which is added via an Equatable
/// conformance.
static bool isDelayedOperatorDecl(ValueDecl *vd) {
return vd && (vd->getName().str() == "==");
}
namespace {
class ConstraintGenerator : public ExprVisitor<ConstraintGenerator, Type> {
ConstraintSystem &CS;
/// \brief Add constraints for a reference to a named member of the given
/// base type, and return the type of such a reference.
Type addMemberRefConstraints(Expr *expr, Expr *base, DeclName name) {
// The base must have a member of the given name, such that accessing
// that member through the base returns a value convertible to the type
// of this expression.
auto baseTy = base->getType();
auto tv = CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::Member),
TVO_CanBindToLValue);
// FIXME: Constraint below should be a ::Member constraint?
CS.addValueMemberConstraint(baseTy, name, tv,
CS.getConstraintLocator(expr, ConstraintLocator::MemberRefBase));
return tv;
}
/// \brief Add constraints for a reference to a specific member of the given
/// base type, and return the type of such a reference.
Type addMemberRefConstraints(Expr *expr, Expr *base, ValueDecl *decl) {
// If we're referring to an invalid declaration, fail.
if (!decl)
return nullptr;
CS.getTypeChecker().validateDecl(decl, true);
if (decl->isInvalid())
return nullptr;
auto memberLocator =
CS.getConstraintLocator(expr, ConstraintLocator::Member);
auto tv = CS.createTypeVariable(memberLocator, TVO_CanBindToLValue);
OverloadChoice choice(base->getType(), decl, /*isSpecialized=*/false);
auto locator = CS.getConstraintLocator(expr, ConstraintLocator::Member);
CS.addBindOverloadConstraint(tv, choice, locator);
return tv;
}
/// \brief Add constraints for a subscript operation.
Type addSubscriptConstraints(Expr *expr, Expr *base, Expr *index) {
ASTContext &Context = CS.getASTContext();
// Locators used in this expression.
auto indexLocator
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptIndex);
auto resultLocator
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptResult);
// The base type must have a subscript declaration with type
// I -> inout? O, where I and O are fresh type variables. The index
// expression must be convertible to I and the subscript expression
// itself has type inout? O, where O may or may not be an lvalue.
auto inputTv = CS.createTypeVariable(indexLocator, /*options=*/0);
auto outputTv = CS.createTypeVariable(resultLocator,
TVO_CanBindToLValue);
auto subscriptMemberLocator
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptMember);
// Add the member constraint for a subscript declaration.
// FIXME: lame name!
auto baseTy = base->getType();
auto fnTy = FunctionType::get(inputTv, outputTv);
CS.addValueMemberConstraint(baseTy, Context.Id_subscript,
fnTy, subscriptMemberLocator);
// Add the constraint that the index expression's type be convertible
// to the input type of the subscript operator.
CS.addConstraint(ConstraintKind::ArgumentTupleConversion,
index->getType(), inputTv, indexLocator);
return outputTv;
}
public:
ConstraintGenerator(ConstraintSystem &CS) : CS(CS) { }
ConstraintSystem &getConstraintSystem() const { return CS; }
Type visitErrorExpr(ErrorExpr *E) {
// FIXME: Can we do anything with error expressions at this point?
return nullptr;
}
Type visitLiteralExpr(LiteralExpr *expr) {
auto protocol = CS.getTypeChecker().getLiteralProtocol(expr);
if (!protocol) {
return nullptr;
}
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
CS.addConstraint(ConstraintKind::ConformsTo, tv,
protocol->getDeclaredType(),
CS.getConstraintLocator(CS.rootExpr));
return tv;
}
Type
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *expr) {
// Dig out the StringInterpolationConvertible protocol.
auto &tc = CS.getTypeChecker();
auto &C = CS.getASTContext();
auto interpolationProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::StringInterpolationConvertible);
if (!interpolationProto) {
tc.diagnose(expr->getStartLoc(), diag::interpolation_missing_proto);
return nullptr;
}
// The type of the expression must conform to the
// StringInterpolationConvertible protocol.
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
CS.addConstraint(ConstraintKind::ConformsTo, tv,
interpolationProto->getDeclaredType(),
CS.getConstraintLocator(CS.rootExpr));
// Each of the segments is passed as an argument to
// convertFromStringInterpolationSegment().
unsigned index = 0;
auto tvMeta = MetatypeType::get(tv);
for (auto segment : expr->getSegments()) {
auto locator = CS.getConstraintLocator(
expr,
LocatorPathElt::getInterpolationArgument(index++));
auto segmentTyV = CS.createTypeVariable(locator, /*options=*/0);
auto returnTyV = CS.createTypeVariable(locator, /*options=*/0);
auto methodTy = FunctionType::get(segmentTyV, returnTyV);
CS.addConstraint(Constraint::create(CS, ConstraintKind::Conversion,
segment->getType(),
segmentTyV,
Identifier(),
locator));
CS.addConstraint(Constraint::create(CS, ConstraintKind::ValueMember,
tvMeta,
methodTy,
C.Id_ConvertFromStringInterpolationSegment,
locator));
}
return tv;
}
Type visitDeclRefExpr(DeclRefExpr *E) {
// If we're referring to an invalid declaration, don't type-check.
//
// FIXME: If the decl is in error, we get no information from this.
// We may, alternatively, want to use a type variable in that case,
// and possibly infer the type of the variable that way.
CS.getTypeChecker().validateDecl(E->getDecl(), true);
if (E->getDecl()->isInvalid())
return nullptr;
auto locator = CS.getConstraintLocator(E);
// Create an overload choice referencing this declaration and immediately
// resolve it. This records the overload for use later.
auto tv = CS.createTypeVariable(locator, TVO_CanBindToLValue);
CS.resolveOverload(locator, tv,
OverloadChoice(Type(), E->getDecl(),
E->isSpecialized()));
return tv;
}
Type visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E) {
return E->getType();
}
Type visitSuperRefExpr(SuperRefExpr *E) {
if (E->getType())
return E->getType();
// Resolve the super type of 'self'.
return getSuperType(E->getSelf(), E->getLoc(),
diag::super_not_in_class_method,
diag::super_with_no_base_class);
}
Type visitTypeExpr(TypeExpr *E) {
Type type;
// If this is an implicit TypeExpr, don't validate its contents.
if (auto *rep = E->getTypeRepr())
type = CS.TC.resolveType(rep, CS.DC, TR_AllowUnboundGenerics);
else
type = E->getTypeLoc().getType();
if (!type) return Type();
type = CS.openType(type);
E->getTypeLoc().setType(type, /*validated=*/true);
return MetatypeType::get(CS.openType(type));
}
Type visitUnresolvedConstructorExpr(UnresolvedConstructorExpr *expr) {
ASTContext &C = CS.getASTContext();
// Open a member constraint for constructors on the subexpr type.
// FIXME: the getRValueInstanceType() here is a hack to make the
// T.init withFoo(foo)
// syntax type-check. We shouldn't rely on any kinds of adjustments to
// the subexpression's type here, but dealing with this requires us to
// clarify when we can refer to constructors with ".init".
auto baseTy = expr->getSubExpr()->getType()
->getLValueOrInOutObjectType()->getRValueInstanceType();
auto argsTy = CS.createTypeVariable(
CS.getConstraintLocator(expr),
TVO_CanBindToLValue|TVO_PrefersSubtypeBinding);
auto methodTy = FunctionType::get(argsTy, baseTy);
CS.addValueMemberConstraint(baseTy,
C.Id_init,
methodTy,
CS.getConstraintLocator(expr, ConstraintLocator::ConstructorMember));
// The result of the expression is the partial application of the
// constructor to the subexpression.
return methodTy;
}
Type visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *expr) {
// For a reference to an overloaded declaration, we create a type variable
// that will be equal to different types depending on which overload
// is selected.
auto locator = CS.getConstraintLocator(expr);
auto tv = CS.createTypeVariable(locator, TVO_CanBindToLValue);
ArrayRef<ValueDecl*> decls = expr->getDecls();
SmallVector<OverloadChoice, 4> choices;
if (decls.size()) {
if (isDelayedOperatorDecl(decls[0])) {
expr->setIsPotentiallyDelayedGlobalOperator();
}
}
for (unsigned i = 0, n = decls.size(); i != n; ++i) {
// If the result is invalid, skip it.
// FIXME: Note this as invalid, in case we don't find a solution,
// so we don't let errors cascade further.
CS.getTypeChecker().validateDecl(decls[i], true);
if (decls[i]->isInvalid())
continue;
choices.push_back(OverloadChoice(Type(), decls[i],
expr->isSpecialized()));
}
// If there are no valid overloads, give up.
if (choices.empty())
return nullptr;
// Record this overload set.
CS.addOverloadSet(tv, choices, locator);
return tv;
}
Type visitOverloadedMemberRefExpr(OverloadedMemberRefExpr *expr) {
// For a reference to an overloaded declaration, we create a type variable
// that will be bound to different types depending on which overload
// is selected.
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToLValue);
ArrayRef<ValueDecl*> decls = expr->getDecls();
SmallVector<OverloadChoice, 4> choices;
auto baseTy = expr->getBase()->getType();
for (unsigned i = 0, n = decls.size(); i != n; ++i) {
// If the result is invalid, skip it.
// FIXME: Note this as invalid, in case we don't find a solution,
// so we don't let errors cascade further.
CS.getTypeChecker().validateDecl(decls[i], true);
if (decls[i]->isInvalid())
continue;
choices.push_back(OverloadChoice(baseTy, decls[i],
/*isSpecialized=*/false));
}
// If there are no valid overloads, give up.
if (choices.empty())
return nullptr;
// Record this overload set.
auto locator = CS.getConstraintLocator(expr, ConstraintLocator::Member);
CS.addOverloadSet(tv, choices, locator);
return tv;
}
Type visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *expr) {
// This is an error case, where we're trying to use type inference
// to help us determine which declaration the user meant to refer to.
// FIXME: Do we need to note that we're doing some kind of recovery?
return CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToLValue);
}
Type visitMemberRefExpr(MemberRefExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(),
expr->getMember().getDecl());
}
Type visitDynamicMemberRefExpr(DynamicMemberRefExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(),
expr->getMember().getDecl());
}
Type visitUnresolvedMemberExpr(UnresolvedMemberExpr *expr) {
auto baseLocator = CS.getConstraintLocator(
expr,
ConstraintLocator::MemberRefBase);
auto memberLocator
= CS.getConstraintLocator(expr, ConstraintLocator::UnresolvedMember);
auto baseTy = CS.createTypeVariable(baseLocator, /*options=*/0);
auto memberTy = CS.createTypeVariable(memberLocator, TVO_CanBindToLValue);
// An unresolved member expression '.member' is modeled as a value member
// constraint
//
// T0.Type[.member] == T1
//
// for fresh type variables T0 and T1, which pulls out a static
// member, i.e., an enum case or a static variable.
auto baseMetaTy = MetatypeType::get(baseTy);
CS.addValueMemberConstraint(baseMetaTy, expr->getName(), memberTy,
memberLocator);
// If there is an argument, apply it.
if (auto arg = expr->getArgument()) {
// The result type of the function must be convertible to the base type.
// TODO: we definitely want this to include ImplicitlyUnwrappedOptional; does it
// need to include everything else in the world?
auto outputTy
= CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction),
/*options=*/0);
CS.addConstraint(ConstraintKind::Conversion, outputTy, baseTy,
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
// The function/enum case must be callable with the given argument.
auto funcTy = FunctionType::get(arg->getType(), outputTy);
CS.addConstraint(ConstraintKind::ApplicableFunction, funcTy,
memberTy,
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
return baseTy;
}
// Otherwise, the member needs to be convertible to the base type.
CS.addConstraint(ConstraintKind::Conversion, memberTy, baseTy,
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
return memberTy;
}
Type visitUnresolvedDotExpr(UnresolvedDotExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(), expr->getName());
}
Type visitUnresolvedSelectorExpr(UnresolvedSelectorExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(), expr->getName());
}
Type visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *expr) {
auto baseTy = expr->getSubExpr()->getType();
// We currently only support explicit specialization of generic types.
// FIXME: We could support explicit function specialization.
auto &tc = CS.getTypeChecker();
if (baseTy->is<AnyFunctionType>()) {
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::cannot_explicitly_specialize_generic_function);
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
if (AnyMetatypeType *meta = baseTy->getAs<AnyMetatypeType>()) {
if (BoundGenericType *bgt
= meta->getInstanceType()->getAs<BoundGenericType>()) {
ArrayRef<Type> typeVars = bgt->getGenericArgs();
ArrayRef<TypeLoc> specializations = expr->getUnresolvedParams();
// If we have too many generic arguments, complain.
if (specializations.size() > typeVars.size()) {
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::type_parameter_count_mismatch,
bgt->getDecl()->getName(),
typeVars.size(), specializations.size(),
false)
.highlight(SourceRange(expr->getLAngleLoc(),
expr->getRAngleLoc()));
tc.diagnose(bgt->getDecl(), diag::generic_type_declared_here,
bgt->getDecl()->getName());
return Type();
}
// Bind the specified generic arguments to the type variables in the
// open type.
for (size_t i = 0, size = specializations.size(); i < size; ++i) {
CS.addConstraint(ConstraintKind::Equal,
typeVars[i], specializations[i].getType(),
CS.getConstraintLocator(CS.rootExpr));
}
return baseTy;
} else {
tc.diagnose(expr->getSubExpr()->getLoc(), diag::not_a_generic_type,
meta->getInstanceType());
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
}
// FIXME: If the base type is a type variable, constrain it to a metatype
// of a bound generic type.
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::not_a_generic_definition);
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
Type visitSequenceExpr(SequenceExpr *expr) {
llvm_unreachable("Didn't even parse?");
}
Type visitIdentityExpr(IdentityExpr *expr) {
expr->setType(expr->getSubExpr()->getType());
return expr->getType();
}
Type visitParenExpr(ParenExpr *expr) {
auto &ctx = CS.getASTContext();
if (ctx.LangOpts.StrictKeywordArguments) {
expr->setType(ParenType::get(ctx, expr->getSubExpr()->getType()));
} else {
expr->setType(expr->getSubExpr()->getType());
}
return expr->getType();
}
Type visitTupleExpr(TupleExpr *expr) {
// The type of a tuple expression is simply a tuple of the types of
// its subexpressions.
SmallVector<TupleTypeElt, 4> elements;
elements.reserve(expr->getNumElements());
for (unsigned i = 0, n = expr->getNumElements(); i != n; ++i) {
elements.push_back(TupleTypeElt(expr->getElement(i)->getType(),
expr->getElementName(i)));
}
return TupleType::get(elements, CS.getASTContext());
}
Type visitSubscriptExpr(SubscriptExpr *expr) {
return addSubscriptConstraints(expr, expr->getBase(), expr->getIndex());
}
Type visitArrayExpr(ArrayExpr *expr) {
ASTContext &C = CS.getASTContext();
// An array expression can be of a type T that conforms to the
// ArrayLiteralConvertible protocol.
auto &tc = CS.getTypeChecker();
ProtocolDecl *arrayProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ArrayLiteralConvertible);
if (!arrayProto) {
return Type();
}
// FIXME: Protect against broken standard library.
auto elementAssocTy = cast<AssociatedTypeDecl>(
arrayProto->lookupDirect(
C.getIdentifier("Element")).front());
auto locator = CS.getConstraintLocator(expr);
auto contextualType = CS.getContextualType(expr);
Type *contextualArrayType = nullptr;
Type contextualArrayElementType = nullptr;
// If a contextual type exists for this expression, apply it directly.
if (contextualType && CS.isArrayType(*contextualType)) {
// Is the array type a contextual type
contextualArrayType = contextualType;
contextualArrayElementType =
CS.getBaseTypeForArrayType(contextualType->getPointer());
CS.addConstraint(ConstraintKind::ConformsTo, *contextualType,
arrayProto->getDeclaredType(),
locator);
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
element->getType(),
contextualArrayElementType,
CS.getConstraintLocator(expr,
LocatorPathElt::
getTupleElement(index++)));
}
return *contextualArrayType;
}
auto arrayTy = CS.createTypeVariable(locator, TVO_PrefersSubtypeBinding);
// The array must be an array literal type.
CS.addConstraint(ConstraintKind::ConformsTo, arrayTy,
arrayProto->getDeclaredType(),
locator);
// Its subexpression should be convertible to a tuple (T.Element...).
// FIXME: We should really go through the conformance above to extract
// the element type, rather than just looking for the element type.
// FIXME: Member constraint is still weird here.
ConstraintLocatorBuilder builder(locator);
auto arrayElementTy = CS.getMemberType(arrayTy, elementAssocTy,
builder.withPathElement(
ConstraintLocator::Member),
/*options=*/0);
// Introduce conversions from each element to the element type of the
// array.
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
element->getType(),
arrayElementTy,
CS.getConstraintLocator(
expr,
LocatorPathElt::getTupleElement(index++)));
}
return arrayTy;
}
Type visitDictionaryExpr(DictionaryExpr *expr) {
ASTContext &C = CS.getASTContext();
// A dictionary expression can be of a type T that conforms to the
// DictionaryLiteralConvertible protocol.
// FIXME: This isn't actually used for anything at the moment.
auto &tc = CS.getTypeChecker();
ProtocolDecl *dictionaryProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::DictionaryLiteralConvertible);
if (!dictionaryProto) {
return Type();
}
// FIXME: Protect against broken standard library.
auto keyAssocTy = cast<AssociatedTypeDecl>(
dictionaryProto->lookupDirect(
C.getIdentifier("Key")).front());
auto valueAssocTy = cast<AssociatedTypeDecl>(
dictionaryProto->lookupDirect(
C.getIdentifier("Value")).front());
auto locator = CS.getConstraintLocator(expr);
auto dictionaryTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding);
// The array must be a dictionary literal type.
CS.addConstraint(ConstraintKind::ConformsTo, dictionaryTy,
dictionaryProto->getDeclaredType(),
locator);
// Its subexpression should be convertible to a tuple ((T.Key,T.Value)...).
ConstraintLocatorBuilder locatorBuilder(locator);
auto dictionaryKeyTy = CS.getMemberType(dictionaryTy,
keyAssocTy,
locatorBuilder.withPathElement(
ConstraintLocator::Member),
/*options=*/0);
auto dictionaryValueTy = CS.getMemberType(dictionaryTy,
valueAssocTy,
locatorBuilder.withPathElement(
ConstraintLocator::Member),
/*options=*/0);
TupleTypeElt tupleElts[2] = { TupleTypeElt(dictionaryKeyTy),
TupleTypeElt(dictionaryValueTy) };
Type elementTy = TupleType::get(tupleElts, C);
// Introduce conversions from each element to the element type of the
// dictionary.
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
element->getType(),
elementTy,
CS.getConstraintLocator(
expr,
LocatorPathElt::getTupleElement(index++)));
}
return dictionaryTy;
}
Type visitDynamicSubscriptExpr(DynamicSubscriptExpr *expr) {
return addSubscriptConstraints(expr, expr->getBase(), expr->getIndex());
}
Type visitTupleElementExpr(TupleElementExpr *expr) {
ASTContext &context = CS.getASTContext();
Identifier name
= context.getIdentifier(llvm::utostr(expr->getFieldNumber()));
return addMemberRefConstraints(expr, expr->getBase(), name);
}
/// \brief Produces a type for the given pattern, filling in any missing
/// type information with fresh type variables.
///
/// \param pattern The pattern.
Type getTypeForPattern(Pattern *pattern, bool forFunctionParam,
ConstraintLocatorBuilder locator) {
switch (pattern->getKind()) {
case PatternKind::Paren:
// Parentheses don't affect the type.
return getTypeForPattern(cast<ParenPattern>(pattern)->getSubPattern(),
forFunctionParam, locator);
case PatternKind::Var:
// Var doesn't affect the type.
return getTypeForPattern(cast<VarPattern>(pattern)->getSubPattern(),
forFunctionParam, locator);
case PatternKind::Any:
// For a pattern of unknown type, create a new type variable.
return CS.createTypeVariable(CS.getConstraintLocator(locator),
forFunctionParam? TVO_CanBindToLValue : 0);
case PatternKind::Named: {
auto var = cast<NamedPattern>(pattern)->getDecl();
// For a named pattern without a type, create a new type variable
// and use it as the type of the variable.
Type ty = CS.createTypeVariable(CS.getConstraintLocator(locator),
forFunctionParam? TVO_CanBindToLValue
: 0);
// For weak variables, use Optional<T>.
if (!forFunctionParam && var->getAttrs().isWeak()) {
ty = CS.getTypeChecker().getOptionalType(var->getLoc(), ty);
if (!ty) return Type();
} else if (var->getAttrs().hasAttribute<IBOutletAttr>()) {
// For @IBOutlet variables, use an optional type T!.
ty = CS.getTypeChecker().
getImplicitlyUnwrappedOptionalType(var->getLoc(), ty);
if (!ty) return Type();
}
// We want to set the variable's type here when type-checking
// a function's parameter clauses because we're going to
// type-check the entire function body within the context of
// the constraint system. In contrast, when type-checking a
// variable binding, we really don't want to set the
// variable's type because it can easily escape the constraint
// system and become a dangling type reference.
if (forFunctionParam)
var->setType(ty);
return ty;
}
case PatternKind::Typed: {
auto typedPattern = cast<TypedPattern>(pattern);
Type openedType = CS.openType(typedPattern->getType());
if (auto weakTy = openedType->getAs<WeakStorageType>())
openedType = weakTy->getReferentType();
// For a typed pattern, simply return the opened type of the pattern.
// FIXME: Error recovery if the type is an error type?
return openedType;
}
case PatternKind::Tuple: {
auto tuplePat = cast<TuplePattern>(pattern);
SmallVector<TupleTypeElt, 4> tupleTypeElts;
tupleTypeElts.reserve(tuplePat->getNumFields());
for (unsigned i = 0, e = tuplePat->getFields().size(); i != e; ++i) {
auto tupleElt = tuplePat->getFields()[i];
bool isVararg = tuplePat->hasVararg() && i == e-1;
Type eltTy = getTypeForPattern(tupleElt.getPattern(),forFunctionParam,
locator.withPathElement(
LocatorPathElt::getTupleElement(i)));
Type varArgBaseTy;
tupleTypeElts.push_back(TupleTypeElt(eltTy, Identifier(),
tupleElt.getDefaultArgKind(),
isVararg));
}
return TupleType::get(tupleTypeElts, CS.getASTContext());
}
// TODO
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) case PatternKind::Id:
#include "swift/AST/PatternNodes.def"
llvm_unreachable("not implemented");
}
llvm_unreachable("Unhandled pattern kind");
}
Type visitClosureExpr(ClosureExpr *expr) {
// Closure expressions always have function type. In cases where a
// parameter or return type is omitted, a fresh type variable is used to
// stand in for that parameter or return type, allowing it to be inferred
// from context.
Type funcTy;
if (expr->hasExplicitResultType()) {
funcTy = expr->getExplicitResultTypeLoc().getType();
} else {
// If no return type was specified, create a fresh type
// variable for it.
funcTy = CS.createTypeVariable(
CS.getConstraintLocator(expr,
ConstraintLocator::ClosureResult),
/*options=*/0);
}
// Walk through the patterns in the func expression, backwards,
// computing the type of each pattern (which may involve fresh type
// variables where parameter types where no provided) and building the
// eventual function type.
auto paramTy = getTypeForPattern(
expr->getParams(), /*forFunctionParam*/ true,
CS.getConstraintLocator(
expr,
LocatorPathElt::getTupleElement(0)));
// FIXME: If we want keyword arguments for closures, add them here.
funcTy = FunctionType::get(paramTy, funcTy);
return funcTy;
}
Type visitAutoClosureExpr(AutoClosureExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitModuleExpr(ModuleExpr *expr) {
// Module expressions always have a fixed type.
return expr->getType();
}
Type visitInOutExpr(InOutExpr *expr) {
// The address-of operator produces an explicit inout T from an lvalue T.
// We model this with the constraint
//
// S < lvalue T
//
// where T is a fresh type variable.
auto lvalue = CS.createTypeVariable(CS.getConstraintLocator(expr),
/*options=*/0);
auto bound = LValueType::get(lvalue);
auto locator = CS.getConstraintLocator(expr,
ConstraintLocator::AddressOf);
// Don't track failures on the conversion constraints, so that we don't
// spend energy trying to diagnose them. Inout conversions should be
// rare.
auto addrConversionLocator = CS.getConstraintLocator(expr,
ConstraintLocator::InOutConversion);
addrConversionLocator->setDiscardFailures(true);
auto writebackConversionLocator = CS.getConstraintLocator(expr,
ConstraintLocator::WritebackConversion);
writebackConversionLocator->setDiscardFailures(true);
// Create a type variable for the writeback type of writeback conversions.
auto writebackTy
= CS.createTypeVariable(writebackConversionLocator, /*options=*/0);
// The solver doesn't like unbound type variables so create a useless
// binding of writebackTy to Void for disjunction choices that don't need
// the variable.
auto voidWriteback = Constraint::create(CS, ConstraintKind::Bind,
writebackTy,
TupleType::getEmpty(CS.getASTContext()),
DeclName(),
writebackConversionLocator);
// Create a type variable to represent the argument type to the writeback
// setter, which may be a labeled tuple and thus needs to be convertible
// from the writeback type.
auto lvalueArgTy
= CS.createTypeVariable(writebackConversionLocator, /*options=*/0);
CS.addConstraint(Constraint::create(CS, ConstraintKind::Conversion,
lvalue, lvalueArgTy,
DeclName(),
writebackConversionLocator));
auto writebackArgTy
= CS.createTypeVariable(writebackConversionLocator, /*options=*/0);
CS.addConstraint(Constraint::create(CS, ConstraintKind::Conversion,
writebackTy, writebackArgTy,
DeclName(),
writebackConversionLocator));
auto writebackInout = InOutType::get(writebackTy);
auto writebackInoutArg = CS.createTypeVariable(writebackConversionLocator,
/*options=*/0);
CS.addConstraint(Constraint::create(CS, ConstraintKind::Conversion,
writebackInout, writebackInoutArg,
DeclName(),
writebackConversionLocator));
CS.addConstraint(ConstraintKind::Subtype,
expr->getSubExpr()->getType(), bound,
locator);
// The result can either directly be the 'inout T' type or be the result
// of an inout conversion.
auto result = CS.createTypeVariable(addrConversionLocator, /*options=*/0);
//
// Form the constraints for the inout nonconversion case.
// The result will be bound to the inout T type of the lvalue.
auto inout = InOutType::get(lvalue);
auto inoutArg = CS.createTypeVariable(addrConversionLocator,
/*options=*/0);
CS.addConstraint(Constraint::create(CS, ConstraintKind::Conversion,
inout, inoutArg,
DeclName(),
writebackConversionLocator));
SmallVector<Constraint*, 3> disjunctions;
Constraint *inoutConstraints[] = {
Constraint::create(CS, ConstraintKind::Bind,
inout, result, DeclName(),
addrConversionLocator),
voidWriteback,
};
disjunctions.push_back(Constraint::createConjunction(CS, inoutConstraints,
addrConversionLocator));
//
// Form the constraints for the address conversion case.
// The result will be of some type that has a static __inout_conversion
// method taking the metatype and a RawPointer as a parameter:
//
// static func __inout_conversion(
// Builtin.RawPointer,
// $LValue.Type
// ) -> $Result
//
auto &C = CS.getASTContext();
auto resultMeta = MetatypeType::get(result);
/// Create a member method constraint with the given argument and
/// result types.
auto createMethodConstraint = [&](std::initializer_list<TupleTypeElt> argTys,
Type resultTy,
StringRef name,
ConstraintLocator *locator) -> Constraint* {
auto argTuple = TupleType::get(llvm::makeArrayRef(argTys.begin(),
argTys.end()), C);
auto methodTy = FunctionType::get(argTuple, resultTy);
return Constraint::create(CS, ConstraintKind::ValueMember,
resultMeta, methodTy, C.getIdentifier(name),
locator);
};
Constraint *addrConversionConstraints[] = {
createMethodConstraint({inoutArg}, result,
"__inout_conversion", addrConversionLocator),
voidWriteback,
};
disjunctions.push_back(
Constraint::createConjunction(CS, addrConversionConstraints,
addrConversionLocator));
//
// Form the constraints for the writeback conversion case.
// The result will be of some type that has the following static methods:
//
// static func __writeback_conversion(inout $LValue) -> $Result
// static func __writeback_conversion_get($LValue) -> $Writeback
// static func __writeback_conversion_set($Writeback) -> $LValue
auto getLocator = CS.getConstraintLocator(expr,
ConstraintLocator::WritebackConversionGet);
auto setLocator = CS.getConstraintLocator(expr,
ConstraintLocator::WritebackConversionSet);
getLocator->setDiscardFailures(true);
setLocator->setDiscardFailures(true);
Constraint *writebackConversionRequirements[] = {
createMethodConstraint({writebackInoutArg}, result,
"__writeback_conversion",
writebackConversionLocator),
createMethodConstraint({lvalueArgTy}, writebackTy,
"__writeback_conversion_get", getLocator),
createMethodConstraint({writebackArgTy}, lvalue,
"__writeback_conversion_set", setLocator),
};
disjunctions.push_back(Constraint::createConjunction(CS,
writebackConversionRequirements, writebackConversionLocator));
//
// Build the final disjunction constraint.
CS.addConstraint(Constraint::createDisjunction(CS, disjunctions,
addrConversionLocator, RememberChoice));
return result;
}
Type visitNewArrayExpr(NewArrayExpr *expr) {
// Validate the element type.
auto &tc = CS.getTypeChecker();
if (tc.validateType(expr->getElementTypeLoc(), CS.DC,
TR_AllowUnboundGenerics))
return nullptr;
// Open up the element type.
auto elementTy = CS.openType(expr->getElementTypeLoc().getType());
auto resultTy = elementTy;
for (unsigned i = expr->getBounds().size(); i != 1; --i) {
// FIXME: To support multidimensional arrays, we'll need to look at
// the expressions in here.
auto &bound = expr->getBounds()[i-1];
resultTy = tc.getArraySliceType(bound.Brackets.Start, resultTy);
}
// The outer bound must be an ArrayBound.
auto &outerBound = expr->getBounds()[0];
auto arrayBoundProto = tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ArrayBound);
if (!arrayBoundProto)
return nullptr;
CS.addConstraint(ConstraintKind::ConformsTo, outerBound.Value->getType(),
arrayBoundProto->getDeclaredType(),
CS.getConstraintLocator(outerBound.Value));
// If we have an explicit constructor, make sure we can call it.
// Either we have an explicit constructor closure or else ElementType must
// be default constructible.
if (expr->hasConstructionFunction()) {
// FIXME: Assume the index type is DefaultIntegerLiteralType for now.
auto intProto = tc.getProtocol(
expr->getConstructionFunction()->getLoc(),
KnownProtocolKind::IntegerLiteralConvertible);
Type intTy = tc.getDefaultType(intProto, CS.DC);
assert(intTy && "No default integer type?");
Expr *constructionFn = expr->getConstructionFunction();
Type constructionTy = FunctionType::get(intTy, elementTy);
CS.addConstraint(ConstraintKind::Conversion, constructionFn->getType(),
constructionTy,
CS.getConstraintLocator(
expr, ConstraintLocator::NewArrayConstructor));
} else {
// Otherwise, ElementType must be default constructible.
Type defaultCtorTy = FunctionType::get(TupleType::getEmpty(tc.Context),
elementTy);
CS.addValueMemberConstraint(elementTy,
tc.Context.Id_init,
defaultCtorTy,
CS.getConstraintLocator(expr, ConstraintLocator::NewArrayElement));
}
return tc.getArraySliceType(outerBound.Brackets.Start, resultTy);
}
Type visitDynamicTypeExpr(DynamicTypeExpr *expr) {
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
/*options=*/0);
CS.addConstraint(ConstraintKind::DynamicTypeOf, tv,
expr->getBase()->getType(),
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
return tv;
}
Type visitOpaqueValueExpr(OpaqueValueExpr *expr) {
return expr->getType();
}
Type visitDefaultValueExpr(DefaultValueExpr *expr) {
expr->setType(expr->getSubExpr()->getType());
return expr->getType();
}
Type visitApplyExpr(ApplyExpr *expr) {
// The function subexpression has some rvalue type T1 -> T2 for fresh
// variables T1 and T2.
auto outputTy
= CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction),
/*options=*/0);
auto funcTy = FunctionType::get(expr->getArg()->getType(), outputTy);
// Check to see if the type checker has any newly created functions with
// this name - if it does, they were created before the list of overloads
// was created, so we'll need to add a new disjunction constraint for the
// new set of overloads.
if (expr->IsGlobalDelayedOperatorApply) {
if (CS.TC.HasForcedExternalDecl &&
CS.TC.implicitlyDefinedFunctions.size()) {
// This will only occur if the new bindings were added while solving
// the system, so disable the flag to prevent further unnecessary
// checks.
CS.TC.HasForcedExternalDecl = false;
auto declRef = dyn_cast<OverloadedDeclRefExpr>(expr->getFn());
auto declName = declRef->getDecls()[0]->getName();
SmallVector<OverloadChoice, 4> choices;
for (auto implicitFn : CS.TC.implicitlyDefinedFunctions) {
if (implicitFn->getName() == declName) {
CS.TC.validateDecl(implicitFn, true);
choices.push_back(OverloadChoice(Type(),
implicitFn,
declRef->isSpecialized()));
}
}
if (!choices.empty()) {
SmallVector<Constraint *, 4> constraints;
auto fnType = expr->getFn()->getType().getPointer();
auto tyvarType = cast<TypeVariableType>(fnType);
auto &CG = CS.getConstraintGraph();
// This type variable is only currently associated with the function
// being applied, and the only constraint attached to it should
// be the disjunction constraint for the overload group.
CG.gatherConstraints(tyvarType, constraints);
if (constraints.size()) {
for (auto constraint : constraints) {
if (constraint->getKind() == ConstraintKind::Disjunction) {
SmallVector<Constraint *, 4> newConstraints;
auto oldConstraints = constraint->getNestedConstraints();
auto csLoc = CS.getConstraintLocator(expr->getFn());
// Only replace the disjunctive overload constraint.
if (oldConstraints[0]->getKind() !=
ConstraintKind::BindOverload) {
continue;
}
// Copy over the existing bindings.
for (auto oldConstraint : oldConstraints) {
newConstraints.push_back(oldConstraint);
}
// Now add the new bindings as overloads.
for (auto choice : choices) {
auto overload = Constraint::createBindOverload(CS,
tyvarType,
choice,
csLoc);
newConstraints.push_back(overload);
}
// Remove the original constraint from the inactive constraint
// list and add the new one.
CS.removeInactiveConstraint(constraint);
CS.addConstraint(Constraint::createDisjunction(CS,
newConstraints,
csLoc));
break;
}
}
}
}
}
}
CS.addConstraint(ConstraintKind::ApplicableFunction, funcTy,
expr->getFn()->getType(),
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
return outputTy;
}
Type getSuperType(ValueDecl *selfDecl,
SourceLoc diagLoc,
Diag<> diag_not_in_class,
Diag<> diag_no_base_class) {
DeclContext *typeContext = selfDecl->getDeclContext()->getParent();
assert(typeContext && "constructor without parent context?!");
auto &tc = CS.getTypeChecker();
ClassDecl *classDecl = typeContext->getDeclaredTypeInContext()
->getClassOrBoundGenericClass();
if (!classDecl) {
tc.diagnose(diagLoc, diag_not_in_class);
return Type();
}
if (!classDecl->hasSuperclass()) {
tc.diagnose(diagLoc, diag_no_base_class);
return Type();
}
Type superclassTy = typeContext->getDeclaredTypeInContext()
->getSuperclass(&tc);
if (selfDecl->getType()->is<AnyMetatypeType>())
superclassTy = MetatypeType::get(superclassTy);
return superclassTy;
}
Type visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *expr) {
// The result is void.
return TupleType::getEmpty(CS.getASTContext());
}
Type visitIfExpr(IfExpr *expr) {
// The conditional expression must conform to LogicValue.
Expr *condExpr = expr->getCondExpr();
auto logicValue
= CS.getTypeChecker().getProtocol(expr->getQuestionLoc(),
KnownProtocolKind::LogicValue);
if (!logicValue)
return Type();
CS.addConstraint(ConstraintKind::ConformsTo, condExpr->getType(),
logicValue->getDeclaredType(),
CS.getConstraintLocator(expr));
// The branches must be convertible to a common type.
auto resultTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
CS.addConstraint(ConstraintKind::Conversion,
expr->getThenExpr()->getType(), resultTy,
CS.getConstraintLocator(expr,
ConstraintLocator::IfThen));
CS.addConstraint(ConstraintKind::Conversion,
expr->getElseExpr()->getType(), resultTy,
CS.getConstraintLocator(expr,
ConstraintLocator::IfElse));
return resultTy;
}
Type visitImplicitConversionExpr(ImplicitConversionExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitUnresolvedCheckedCastExpr(UnresolvedCheckedCastExpr *expr) {
auto &tc = CS.getTypeChecker();
// Validate the resulting type.
if (tc.validateType(expr->getCastTypeLoc(), CS.DC,
TR_AllowUnboundGenerics))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openType(expr->getCastTypeLoc().getType());
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
auto locator = CS.getConstraintLocator(expr,
ConstraintLocator::CheckedCastOperand);
// Form the disjunction of the two possible type checks.
auto fromType = expr->getSubExpr()->getType();
Constraint *constraints[2] = {
// The source type can be coerced to the destination type.
Constraint::create(CS, ConstraintKind::Conversion, fromType, toType,
Identifier(), locator),
// The source type can be downcast to the destination type.
Constraint::create(CS, ConstraintKind::CheckedCast, fromType, toType,
Identifier(), locator),
};
CS.addConstraint(Constraint::createDisjunction(CS, constraints, locator,
RememberChoice));
return toType;
}
Type visitForcedCheckedCastExpr(ForcedCheckedCastExpr *expr) {
llvm_unreachable("Already type checked");
}
Type visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *expr) {
auto &tc = CS.getTypeChecker();
// Validate the resulting type.
if (tc.validateType(expr->getCastTypeLoc(), CS.DC,
TR_AllowUnboundGenerics))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openType(expr->getCastTypeLoc().getType());
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
auto fromType = expr->getSubExpr()->getType();
auto locator = CS.getConstraintLocator(
expr, ConstraintLocator::CheckedCastOperand);
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType, locator);
return OptionalType::get(toType);
}
Type visitIsaExpr(IsaExpr *expr) {
// Validate the type.
auto &tc = CS.getTypeChecker();
if (tc.validateType(expr->getCastTypeLoc(), CS.DC,
TR_AllowUnboundGenerics))
return nullptr;
// Open up the type we're checking.
auto toType = CS.openType(expr->getCastTypeLoc().getType());
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
// Add a checked cast constraint.
auto fromType = expr->getSubExpr()->getType();
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType,
CS.getConstraintLocator(expr));
// The result is Bool.
return CS.getTypeChecker().lookupBoolType(CS.DC);
}
Type visitCoerceExpr(CoerceExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitDiscardAssignmentExpr(DiscardAssignmentExpr *expr) {
// '_' is only allowed in assignments, so give it an AssignDest locator.
auto locator = CS.getConstraintLocator(expr,
ConstraintLocator::AssignDest);
auto typeVar = CS.createTypeVariable(locator, /*options=*/0);
return LValueType::get(typeVar);
}
Type visitAssignExpr(AssignExpr *expr) {
// Compute the type to which the source must be converted to allow
// assignment to the destination.
auto destTy = CS.computeAssignDestType(expr->getDest(), expr->getLoc());
if (!destTy)
return Type();
// The source must be convertible to the destination.
auto assignLocator = CS.getConstraintLocator(expr,
ConstraintLocator::AssignSource);
CS.addConstraint(ConstraintKind::Conversion,
expr->getSrc()->getType(), destTy,
assignLocator);
expr->setType(TupleType::getEmpty(CS.getASTContext()));
return expr->getType();
}
Type visitUnresolvedPatternExpr(UnresolvedPatternExpr *expr) {
// If there are UnresolvedPatterns floating around after name binding,
// they are pattern productions in invalid positions.
CS.TC.diagnose(expr->getLoc(), diag::pattern_in_expr,
expr->getSubPattern()->getKind());
return Type();
}
/// Get the type T?
///
/// This is not the ideal source location, but it's only used for
/// diagnosing ill-formed standard libraries, so it really isn't
/// worth QoI efforts.
Type getOptionalType(SourceLoc optLoc, Type valueTy) {
auto optTy = CS.getTypeChecker().getOptionalType(optLoc, valueTy);
if (!optTy || CS.getTypeChecker().requireOptionalIntrinsics(optLoc))
return Type();
return optTy;
}
Type visitBindOptionalExpr(BindOptionalExpr *expr) {
// The operand must be coercible to T?, and we will have type T.
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
/*options*/ 0);
Type optTy = getOptionalType(expr->getQuestionLoc(), valueTy);
if (!optTy)
return Type();
CS.addConstraint(ConstraintKind::Conversion,
expr->getSubExpr()->getType(), optTy,
CS.getConstraintLocator(expr));
return valueTy;
}
Type visitOptionalEvaluationExpr(OptionalEvaluationExpr *expr) {
// The operand must be coercible to T? for some type T. We'd
// like this to be the smallest possible nesting level of
// optional types, e.g. T? over T??; otherwise we don't really
// have a preference.
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
if (!optTy)
return Type();
CS.addConstraint(ConstraintKind::Conversion,
expr->getSubExpr()->getType(), optTy,
CS.getConstraintLocator(expr));
return optTy;
}
Type visitForceValueExpr(ForceValueExpr *expr) {
// Force-unwrap an optional of type T? to produce a T.
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
if (!optTy)
return Type();
auto locator = CS.getConstraintLocator(expr);
// The subexpression is convertible to T?.
CS.addConstraint(ConstraintKind::Conversion,
expr->getSubExpr()->getType(), optTy,
locator);
// The result is of type T.
return valueTy;
}
Type visitOpenExistentialExpr(OpenExistentialExpr *expr) {
llvm_unreachable("Already type-checked");
}
};
/// \brief AST walker that "sanitizes" an expression for the
/// constraint-based type checker.
///
/// This is only necessary because Sema fills in too much type information
/// before the type-checker runs, causing redundant work.
class SanitizeExpr : public ASTWalker {
TypeChecker &TC;
public:
SanitizeExpr(TypeChecker &tc) : TC(tc) { }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// Don't recurse into default-value expressions.
return { !isa<DefaultValueExpr>(expr), expr };
}
Expr *walkToExprPost(Expr *expr) override {
if (auto implicit = dyn_cast<ImplicitConversionExpr>(expr)) {
// Skip implicit conversions completely.
return implicit->getSubExpr();
}
if (auto dotCall = dyn_cast<DotSyntaxCallExpr>(expr)) {
// A DotSyntaxCallExpr is a member reference that has already been
// type-checked down to a call; turn it back into an overloaded
// member reference expression.
SourceLoc memberLoc;
if (auto member = findReferencedDecl(dotCall->getFn(), memberLoc)) {
auto base = skipImplicitConversions(dotCall->getArg());
auto members
= TC.Context.AllocateCopy(ArrayRef<ValueDecl *>(&member, 1));
return new (TC.Context) OverloadedMemberRefExpr(base,
dotCall->getDotLoc(), members, memberLoc,
expr->isImplicit());
}
}
if (auto dotIgnored = dyn_cast<DotSyntaxBaseIgnoredExpr>(expr)) {
// A DotSyntaxBaseIgnoredExpr is a static member reference that has
// already been type-checked down to a call where the argument doesn't
// actually matter; turn it back into an overloaded member reference
// expression.
SourceLoc memberLoc;
if (auto member = findReferencedDecl(dotIgnored->getRHS(), memberLoc)) {
auto base = skipImplicitConversions(dotIgnored->getLHS());
auto members
= TC.Context.AllocateCopy(ArrayRef<ValueDecl *>(&member, 1));
return new (TC.Context) OverloadedMemberRefExpr(base,
dotIgnored->getDotLoc(), members,
memberLoc, expr->isImplicit());
}
}
if (auto forced = dyn_cast<ForcedCheckedCastExpr>(expr)) {
expr = new (TC.Context) UnresolvedCheckedCastExpr(
forced->getSubExpr(),
forced->getLoc(),
forced->getCastTypeLoc());
if (forced->isImplicit())
expr->setImplicit();
return expr;
}
return expr;
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
class ConstraintWalker : public ASTWalker {
ConstraintGenerator &CG;
public:
ConstraintWalker(ConstraintGenerator &CG) : CG(CG) { }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// For closures containing only a single expression, the body participates
// in type checking.
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
if (closure->hasSingleExpressionBody()) {
// Visit the closure itself, which produces a function type.
auto funcTy = CG.visit(expr)->castTo<FunctionType>();
expr->setType(funcTy);
}
return { true, expr };
}
// We don't visit default value expressions; they've already been
// type-checked.
if (isa<DefaultValueExpr>(expr)) {
return { false, expr };
}
// FIXME: This is a bit of a hack, recording the CallExpr that consumes
// an UnresolvedDotExpr so that we can do dynamic lookups more
// efficiently. Really we should just have the arguments be part of the
// UnresolvedDotExpr from the start.
if (auto call = dyn_cast<CallExpr>(expr)) {
if (Expr *fn = call->getFn()) {
if (auto optionalWrapper = dyn_cast<BindOptionalExpr>(fn))
fn = optionalWrapper->getSubExpr();
else if (auto forceWrapper = dyn_cast<ForceValueExpr>(fn))
fn = forceWrapper->getSubExpr();
if (auto UDE = dyn_cast<UnresolvedDotExpr>(fn))
CG.getConstraintSystem().recordPossibleDynamicCall(UDE, call);
}
}
return { true, expr };
}
/// \brief Once we've visited the children of the given expression,
/// generate constraints from the expression.
Expr *walkToExprPost(Expr *expr) override {
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
if (closure->hasSingleExpressionBody()) {
// Visit the body. It's type needs to be convertible to the function's
// return type.
auto resultTy = closure->getResultType();
auto bodyTy = closure->getSingleExpressionBody()->getType();
CG.getConstraintSystem()
.addConstraint(ConstraintKind::Conversion, bodyTy,
resultTy,
CG.getConstraintSystem()
.getConstraintLocator(
expr,
ConstraintLocator::ClosureResult));
return expr;
}
}
if (auto type = CG.visit(expr)) {
expr->setType(CG.getConstraintSystem().simplifyType(type));
return expr;
}
return nullptr;
}
/// \brief Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
} // end anonymous namespace
Expr *ConstraintSystem::generateConstraints(Expr *expr) {
// Remove implicit conversions from the expression.
expr = expr->walk(SanitizeExpr(getTypeChecker()));
// Walk the expression, generating constraints.
ConstraintGenerator cg(*this);
ConstraintWalker cw(cg);
return expr->walk(cw);
}
Expr *ConstraintSystem::generateConstraintsShallow(Expr *expr) {
// Sanitize the expression.
expr = SanitizeExpr(getTypeChecker()).walkToExprPost(expr);
// Visit the top-level expression generating constraints.
ConstraintGenerator cg(*this);
auto type = cg.visit(expr);
if (!type)
return nullptr;
expr->setType(type);
return expr;
}
Type ConstraintSystem::generateConstraints(Pattern *pattern,
ConstraintLocatorBuilder locator) {
ConstraintGenerator cg(*this);
return cg.getTypeForPattern(pattern, /*forFunctionParam*/ false, locator);
}