mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Since the primary purpose here is to go from a mangled name to a decl, and discriminators are only valid in the context of a particular module, it makes sense to make this an API on Module. Eventually this will also support lookup into a type or its extensions, limited by module and discriminator. Swift SVN r21754
1506 lines
52 KiB
C++
1506 lines
52 KiB
C++
//===--- Module.cpp - Swift Language Module Implementation ----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Module class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTPrinter.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/DiagnosticsSema.h"
|
|
#include "swift/AST/LazyResolver.h"
|
|
#include "swift/AST/LinkLibrary.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ModuleLoader.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/PrintOptions.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Builtin Module Name lookup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class BuiltinUnit::LookupCache {
|
|
/// The cache of identifiers we've already looked up. We use a
|
|
/// single hashtable for both types and values as a minor
|
|
/// optimization; this prevents us from having both a builtin type
|
|
/// and a builtin value with the same name, but that's okay.
|
|
llvm::DenseMap<Identifier, ValueDecl*> Cache;
|
|
|
|
public:
|
|
void lookupValue(Identifier Name, NLKind LookupKind, const BuiltinUnit &M,
|
|
SmallVectorImpl<ValueDecl*> &Result);
|
|
};
|
|
|
|
BuiltinUnit::LookupCache &BuiltinUnit::getCache() const {
|
|
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
|
|
// the DenseMap will leak.
|
|
if (!Cache)
|
|
const_cast<BuiltinUnit *>(this)->Cache.reset(new LookupCache());
|
|
return *Cache;
|
|
}
|
|
|
|
void BuiltinUnit::LookupCache::lookupValue(Identifier Name, NLKind LookupKind,
|
|
const BuiltinUnit &M,
|
|
SmallVectorImpl<ValueDecl*> &Result) {
|
|
// Only qualified lookup ever finds anything in the builtin module.
|
|
if (LookupKind != NLKind::QualifiedLookup) return;
|
|
|
|
ValueDecl *&Entry = Cache[Name];
|
|
ASTContext &Ctx = M.getParentModule()->Ctx;
|
|
if (Entry == 0) {
|
|
if (Type Ty = getBuiltinType(Ctx, Name.str())) {
|
|
Entry = new (Ctx) TypeAliasDecl(SourceLoc(), Name, SourceLoc(),
|
|
TypeLoc::withoutLoc(Ty),
|
|
const_cast<BuiltinUnit*>(&M));
|
|
Entry->setAccessibility(Accessibility::Public);
|
|
}
|
|
}
|
|
|
|
if (Entry == 0)
|
|
Entry = getBuiltinValueDecl(Ctx, Name);
|
|
|
|
if (Entry)
|
|
Result.push_back(Entry);
|
|
}
|
|
|
|
// Out-of-line because std::unique_ptr wants LookupCache to be complete.
|
|
BuiltinUnit::BuiltinUnit(Module &M)
|
|
: FileUnit(FileUnitKind::Builtin, M) {
|
|
M.Ctx.addDestructorCleanup(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Normal Module Name Lookup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A lookup map for value decls. When declarations are added they are added
|
|
/// under all variants of the name they can be found under.
|
|
class DeclMap {
|
|
llvm::DenseMap<DeclName, TinyPtrVector<ValueDecl*>> Members;
|
|
|
|
public:
|
|
void add(ValueDecl *VD) {
|
|
if (!VD->hasName()) return;
|
|
VD->getFullName().addToLookupTable(Members, VD);
|
|
}
|
|
|
|
decltype(Members)::const_iterator begin() const { return Members.begin(); }
|
|
decltype(Members)::const_iterator end() const { return Members.end(); }
|
|
decltype(Members)::const_iterator find(DeclName Name) const {
|
|
return Members.find(Name);
|
|
}
|
|
};
|
|
|
|
class SourceFile::LookupCache {
|
|
DeclMap TopLevelValues;
|
|
DeclMap ClassMembers;
|
|
bool MemberCachePopulated = false;
|
|
template<typename Range>
|
|
void doPopulateCache(Range decls, bool onlyOperators);
|
|
void addToMemberCache(DeclRange decls);
|
|
void populateMemberCache(const SourceFile &SF);
|
|
public:
|
|
typedef Module::AccessPathTy AccessPathTy;
|
|
|
|
LookupCache(const SourceFile &SF);
|
|
|
|
void lookupValue(AccessPathTy AccessPath, DeclName Name,
|
|
NLKind LookupKind, SmallVectorImpl<ValueDecl*> &Result);
|
|
|
|
void lookupVisibleDecls(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &Consumer,
|
|
NLKind LookupKind);
|
|
|
|
void lookupClassMembers(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &consumer,
|
|
const SourceFile &SF);
|
|
|
|
void lookupClassMember(AccessPathTy accessPath,
|
|
DeclName name,
|
|
SmallVectorImpl<ValueDecl*> &results,
|
|
const SourceFile &SF);
|
|
|
|
SmallVector<ValueDecl *, 0> AllVisibleValues;
|
|
};
|
|
using SourceLookupCache = SourceFile::LookupCache;
|
|
|
|
SourceLookupCache &SourceFile::getCache() const {
|
|
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
|
|
// the DenseMap will leak.
|
|
if (!Cache)
|
|
const_cast<SourceFile *>(this)->Cache.reset(new SourceLookupCache(*this));
|
|
return *Cache;
|
|
}
|
|
|
|
template<typename Range>
|
|
void SourceLookupCache::doPopulateCache(Range decls,
|
|
bool onlyOperators) {
|
|
for (Decl *D : decls) {
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
|
|
if (onlyOperators ? VD->getName().isOperator() : VD->hasName()) {
|
|
// Cache the value under both its compound name and its full name.
|
|
TopLevelValues.add(VD);
|
|
}
|
|
if (NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D))
|
|
doPopulateCache(NTD->getMembers(), true);
|
|
if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D))
|
|
doPopulateCache(ED->getMembers(), true);
|
|
}
|
|
}
|
|
|
|
void SourceLookupCache::populateMemberCache(const SourceFile &SF) {
|
|
for (const Decl *D : SF.Decls) {
|
|
if (const NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D)) {
|
|
addToMemberCache(NTD->getMembers());
|
|
} else if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D)) {
|
|
addToMemberCache(ED->getMembers());
|
|
}
|
|
}
|
|
}
|
|
|
|
void SourceLookupCache::addToMemberCache(DeclRange decls) {
|
|
for (Decl *D : decls) {
|
|
auto VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD)
|
|
continue;
|
|
|
|
if (auto NTD = dyn_cast<NominalTypeDecl>(VD)) {
|
|
assert(!VD->canBeAccessedByDynamicLookup() &&
|
|
"inner types cannot be accessed by dynamic lookup");
|
|
addToMemberCache(NTD->getMembers());
|
|
} else if (VD->canBeAccessedByDynamicLookup()) {
|
|
ClassMembers.add(VD);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Populate our cache on the first name lookup.
|
|
SourceLookupCache::LookupCache(const SourceFile &SF) {
|
|
doPopulateCache(llvm::makeArrayRef(SF.Decls), false);
|
|
}
|
|
|
|
void SourceLookupCache::lookupValue(AccessPathTy AccessPath, DeclName Name,
|
|
NLKind LookupKind,
|
|
SmallVectorImpl<ValueDecl*> &Result) {
|
|
// If this import is specific to some named type or decl ("import Swift.int")
|
|
// then filter out any lookups that don't match.
|
|
if (!Module::matchesAccessPath(AccessPath, Name))
|
|
return;
|
|
|
|
auto I = TopLevelValues.find(Name);
|
|
if (I == TopLevelValues.end()) return;
|
|
|
|
Result.reserve(I->second.size());
|
|
for (ValueDecl *Elt : I->second)
|
|
Result.push_back(Elt);
|
|
}
|
|
|
|
void SourceLookupCache::lookupVisibleDecls(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &Consumer,
|
|
NLKind LookupKind) {
|
|
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
if (!AccessPath.empty()) {
|
|
auto I = TopLevelValues.find(AccessPath.front().first);
|
|
if (I == TopLevelValues.end()) return;
|
|
|
|
for (auto vd : I->second)
|
|
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
|
|
return;
|
|
}
|
|
|
|
for (auto &tlv : TopLevelValues) {
|
|
for (ValueDecl *vd : tlv.second) {
|
|
// Declarations are added under their full and simple names. Skip the
|
|
// entry for the simple name so that we report each declaration once.
|
|
if (tlv.first.isSimpleName() && !vd->getFullName().isSimpleName())
|
|
continue;
|
|
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SourceLookupCache::lookupClassMembers(AccessPathTy accessPath,
|
|
VisibleDeclConsumer &consumer,
|
|
const SourceFile &SF) {
|
|
if (!MemberCachePopulated)
|
|
populateMemberCache(SF);
|
|
|
|
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
if (!accessPath.empty()) {
|
|
for (auto &member : ClassMembers) {
|
|
for (ValueDecl *vd : member.second) {
|
|
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
|
|
if (auto nominal = ty->getAnyNominal())
|
|
if (nominal->getName() == accessPath.front().first)
|
|
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (auto &member : ClassMembers) {
|
|
for (ValueDecl *vd : member.second)
|
|
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
|
|
}
|
|
}
|
|
|
|
void SourceLookupCache::lookupClassMember(AccessPathTy accessPath,
|
|
DeclName name,
|
|
SmallVectorImpl<ValueDecl*> &results,
|
|
const SourceFile &SF) {
|
|
if (!MemberCachePopulated)
|
|
populateMemberCache(SF);
|
|
|
|
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
auto iter = ClassMembers.find(name);
|
|
if (iter == ClassMembers.end())
|
|
return;
|
|
|
|
if (!accessPath.empty()) {
|
|
for (ValueDecl *vd : iter->second) {
|
|
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
|
|
if (auto nominal = ty->getAnyNominal())
|
|
if (nominal->getName() == accessPath.front().first)
|
|
results.push_back(vd);
|
|
}
|
|
return;
|
|
}
|
|
|
|
results.append(iter->second.begin(), iter->second.end());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Module Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Module::Module(Identifier name, ASTContext &ctx)
|
|
: DeclContext(DeclContextKind::Module, nullptr), Ctx(ctx), Name(name),
|
|
DiagnosedMultipleMainClasses(false),
|
|
DiagnosedMainClassWithScript(false)
|
|
{
|
|
ctx.addDestructorCleanup(*this);
|
|
}
|
|
|
|
|
|
void Module::addFile(FileUnit &newFile) {
|
|
assert(!isa<DerivedFileUnit>(newFile) &&
|
|
"DerivedFileUnits are added automatically");
|
|
|
|
// Require Main and REPL files to be the first file added.
|
|
assert(Files.empty() ||
|
|
!isa<SourceFile>(newFile) ||
|
|
cast<SourceFile>(newFile).Kind == SourceFileKind::Library ||
|
|
cast<SourceFile>(newFile).Kind == SourceFileKind::SIL);
|
|
Files.push_back(&newFile);
|
|
|
|
switch (newFile.getKind()) {
|
|
case FileUnitKind::Source:
|
|
case FileUnitKind::ClangModule: {
|
|
for (auto File : Files) {
|
|
if (isa<DerivedFileUnit>(File))
|
|
return;
|
|
}
|
|
auto DFU = new (Ctx) DerivedFileUnit(*this);
|
|
Files.push_back(DFU);
|
|
break;
|
|
}
|
|
|
|
case FileUnitKind::Builtin:
|
|
case FileUnitKind::SerializedAST:
|
|
break;
|
|
|
|
case FileUnitKind::Derived:
|
|
llvm_unreachable("DerivedFileUnits are added automatically");
|
|
}
|
|
}
|
|
|
|
void Module::removeFile(FileUnit &existingFile) {
|
|
// Do a reverse search; usually the file to be deleted will be at the end.
|
|
std::reverse_iterator<decltype(Files)::iterator> I(Files.end()),
|
|
E(Files.begin());
|
|
I = std::find(I, E, &existingFile);
|
|
assert(I != E);
|
|
|
|
// Adjust for the std::reverse_iterator offset.
|
|
++I;
|
|
Files.erase(I.base());
|
|
}
|
|
|
|
DerivedFileUnit &Module::getDerivedFileUnit() const {
|
|
for (auto File : Files) {
|
|
if (auto DFU = dyn_cast<DerivedFileUnit>(File))
|
|
return *DFU;
|
|
}
|
|
llvm_unreachable("the client should not be calling this function if "
|
|
"there is no DerivedFileUnit");
|
|
}
|
|
|
|
VarDecl *Module::getDSOHandle() {
|
|
if (DSOHandle)
|
|
return DSOHandle;
|
|
|
|
auto unsafeMutablePtr = Ctx.getUnsafeMutablePointerDecl();
|
|
if (!unsafeMutablePtr)
|
|
return nullptr;
|
|
|
|
Type arg;
|
|
if (auto voidDecl = Ctx.getVoidDecl()) {
|
|
arg = voidDecl->getDeclaredInterfaceType();
|
|
} else {
|
|
arg = TupleType::getEmpty(Ctx);
|
|
}
|
|
|
|
Type type = BoundGenericType::get(unsafeMutablePtr, Type(), { arg });
|
|
DSOHandle = new (Ctx) VarDecl(/*IsStatic=*/false, /*IsLet=*/false,
|
|
SourceLoc(),
|
|
Ctx.getIdentifier("__dso_handle"),
|
|
type, Files[0]);
|
|
DSOHandle->setImplicit(true);
|
|
DSOHandle->getAttrs().add(
|
|
new (Ctx) AsmnameAttr("__dso_handle", /*Implicit=*/true));
|
|
return DSOHandle;
|
|
}
|
|
|
|
#define FORWARD(name, args) \
|
|
for (const FileUnit *file : getFiles()) \
|
|
file->name args;
|
|
|
|
void Module::lookupValue(AccessPathTy AccessPath, DeclName Name,
|
|
NLKind LookupKind,
|
|
SmallVectorImpl<ValueDecl*> &Result) const {
|
|
FORWARD(lookupValue, (AccessPath, Name, LookupKind, Result));
|
|
}
|
|
|
|
void Module::lookupMember(SmallVectorImpl<ValueDecl*> &results,
|
|
const DeclContext *DC, LookupName name,
|
|
bool lookIntoExtensions) const {
|
|
switch (DC->getContextKind()) {
|
|
case DeclContextKind::AbstractClosureExpr:
|
|
case DeclContextKind::Initializer:
|
|
case DeclContextKind::TopLevelCodeDecl:
|
|
case DeclContextKind::AbstractFunctionDecl:
|
|
llvm_unreachable("This context does not support lookup.");
|
|
|
|
case DeclContextKind::FileUnit:
|
|
llvm_unreachable("Use FileUnit::lookupValue instead.");
|
|
|
|
case DeclContextKind::ExtensionDecl:
|
|
llvm_unreachable("Use ExtensionDecl::lookupDirect instead.");
|
|
|
|
case DeclContextKind::Module: {
|
|
assert(DC == this);
|
|
size_t oldSize = results.size();
|
|
lookupValue({}, name.Name, NLKind::QualifiedLookup, results);
|
|
|
|
if (name.PrivateDiscriminator.empty()) {
|
|
auto newEnd = std::remove_if(results.begin()+oldSize, results.end(),
|
|
[=](ValueDecl *VD) -> bool {
|
|
return VD->getAccessibility() <= Accessibility::Private;
|
|
});
|
|
results.erase(newEnd, results.end());
|
|
} else {
|
|
auto newEnd = std::remove_if(results.begin()+oldSize, results.end(),
|
|
[=](const ValueDecl *VD) -> bool {
|
|
if (VD->getAccessibility() > Accessibility::Private)
|
|
return true;
|
|
auto enclosingFile =
|
|
cast<FileUnit>(VD->getDeclContext()->getModuleScopeContext());
|
|
auto discriminator = enclosingFile->getDiscriminatorForPrivateValue(VD);
|
|
return discriminator != name.PrivateDiscriminator;
|
|
});
|
|
results.erase(newEnd, results.end());
|
|
}
|
|
return;
|
|
}
|
|
|
|
case DeclContextKind::NominalTypeDecl:
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
}
|
|
|
|
void BuiltinUnit::lookupValue(Module::AccessPathTy accessPath, DeclName name,
|
|
NLKind lookupKind,
|
|
SmallVectorImpl<ValueDecl*> &result) const {
|
|
getCache().lookupValue(name.getBaseName(), lookupKind, *this, result);
|
|
}
|
|
|
|
DerivedFileUnit::DerivedFileUnit(Module &M)
|
|
: FileUnit(FileUnitKind::Derived, M) {
|
|
M.Ctx.addDestructorCleanup(*this);
|
|
}
|
|
|
|
void DerivedFileUnit::lookupValue(Module::AccessPathTy accessPath,
|
|
DeclName name,
|
|
NLKind lookupKind,
|
|
SmallVectorImpl<ValueDecl*> &result) const {
|
|
// If this import is specific to some named type or decl ("import Swift.int")
|
|
// then filter out any lookups that don't match.
|
|
if (!Module::matchesAccessPath(accessPath, name))
|
|
return;
|
|
|
|
for (auto D : DerivedDecls) {
|
|
if (D->getFullName().matchesRef(name))
|
|
result.push_back(D);
|
|
}
|
|
}
|
|
|
|
void DerivedFileUnit::lookupVisibleDecls(Module::AccessPathTy accessPath,
|
|
VisibleDeclConsumer &consumer,
|
|
NLKind lookupKind) const {
|
|
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
|
|
|
|
Identifier Id;
|
|
if (!accessPath.empty()) {
|
|
Id = accessPath.front().first;
|
|
}
|
|
|
|
for (auto D : DerivedDecls) {
|
|
if (Id.empty() || D->getName() == Id)
|
|
consumer.foundDecl(D, DeclVisibilityKind::VisibleAtTopLevel);
|
|
}
|
|
}
|
|
|
|
void DerivedFileUnit::getTopLevelDecls(SmallVectorImpl<swift::Decl *> &results)
|
|
const {
|
|
results.append(DerivedDecls.begin(), DerivedDecls.end());
|
|
}
|
|
|
|
void SourceFile::lookupValue(Module::AccessPathTy accessPath, DeclName name,
|
|
NLKind lookupKind,
|
|
SmallVectorImpl<ValueDecl*> &result) const {
|
|
getCache().lookupValue(accessPath, name, lookupKind, result);
|
|
}
|
|
|
|
void Module::lookupVisibleDecls(AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &Consumer,
|
|
NLKind LookupKind) const {
|
|
FORWARD(lookupVisibleDecls, (AccessPath, Consumer, LookupKind));
|
|
}
|
|
|
|
void SourceFile::lookupVisibleDecls(Module::AccessPathTy AccessPath,
|
|
VisibleDeclConsumer &Consumer,
|
|
NLKind LookupKind) const {
|
|
getCache().lookupVisibleDecls(AccessPath, Consumer, LookupKind);
|
|
}
|
|
|
|
void Module::lookupClassMembers(AccessPathTy accessPath,
|
|
VisibleDeclConsumer &consumer) const {
|
|
FORWARD(lookupClassMembers, (accessPath, consumer));
|
|
}
|
|
|
|
void SourceFile::lookupClassMembers(Module::AccessPathTy accessPath,
|
|
VisibleDeclConsumer &consumer) const {
|
|
getCache().lookupClassMembers(accessPath, consumer, *this);
|
|
}
|
|
|
|
void Module::lookupClassMember(AccessPathTy accessPath,
|
|
DeclName name,
|
|
SmallVectorImpl<ValueDecl*> &results) const {
|
|
FORWARD(lookupClassMember, (accessPath, name, results));
|
|
}
|
|
|
|
void SourceFile::lookupClassMember(Module::AccessPathTy accessPath,
|
|
DeclName name,
|
|
SmallVectorImpl<ValueDecl*> &results) const {
|
|
getCache().lookupClassMember(accessPath, name, results, *this);
|
|
}
|
|
|
|
void Module::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) const {
|
|
FORWARD(getTopLevelDecls, (Results));
|
|
}
|
|
|
|
void SourceFile::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) const {
|
|
Results.append(Decls.begin(), Decls.end());
|
|
}
|
|
|
|
void Module::getDisplayDecls(SmallVectorImpl<Decl*> &Results) const {
|
|
// FIXME: Should this do extra access control filtering?
|
|
FORWARD(getDisplayDecls, (Results));
|
|
}
|
|
|
|
ArrayRef<Substitution> BoundGenericType::getSubstitutions(
|
|
Module *module,
|
|
LazyResolver *resolver) {
|
|
// FIXME: If there is no module, infer one. This is a hack for callers that
|
|
// don't have access to the module. It will have to go away once we're
|
|
// properly differentiating bound generic types based on the protocol
|
|
// conformances visible from a given module.
|
|
if (!module) {
|
|
module = getDecl()->getParentModule();
|
|
}
|
|
|
|
// If we already have a cached copy of the substitutions, return them.
|
|
auto *canon = getCanonicalType()->castTo<BoundGenericType>();
|
|
const ASTContext &ctx = canon->getASTContext();
|
|
if (auto known = ctx.getSubstitutions(canon))
|
|
return *known;
|
|
|
|
// Compute the set of substitutions.
|
|
llvm::SmallPtrSet<ArchetypeType *, 8> knownArchetypes;
|
|
SmallVector<ArchetypeType *, 8> archetypeStack;
|
|
TypeSubstitutionMap substitutions;
|
|
auto genericParams = canon->getDecl()->getGenericParams();
|
|
unsigned index = 0;
|
|
for (Type arg : canon->getGenericArgs()) {
|
|
auto gp = genericParams->getParams()[index++];
|
|
auto archetype = gp->getArchetype();
|
|
substitutions[archetype] = arg;
|
|
}
|
|
|
|
// Collect all of the archetypes.
|
|
SmallVector<ArchetypeType *, 2> allArchetypesList;
|
|
ArrayRef<ArchetypeType *> allArchetypes = genericParams->getAllArchetypes();
|
|
if (genericParams->getOuterParameters()) {
|
|
SmallVector<const GenericParamList *, 2> allGenericParams;
|
|
unsigned numArchetypes = 0;
|
|
for (; genericParams; genericParams = genericParams->getOuterParameters()) {
|
|
allGenericParams.push_back(genericParams);
|
|
numArchetypes += genericParams->getAllArchetypes().size();
|
|
}
|
|
allArchetypesList.reserve(numArchetypes);
|
|
for (auto gp = allGenericParams.rbegin(), gpEnd = allGenericParams.rend();
|
|
gp != gpEnd; ++gp) {
|
|
allArchetypesList.append((*gp)->getAllArchetypes().begin(),
|
|
(*gp)->getAllArchetypes().end());
|
|
}
|
|
allArchetypes = allArchetypesList;
|
|
}
|
|
|
|
// For each of the archetypes, compute the substitution.
|
|
bool hasTypeVariables = canon->hasTypeVariable();
|
|
SmallVector<Substitution, 4> resultSubstitutions;
|
|
resultSubstitutions.resize(allArchetypes.size());
|
|
index = 0;
|
|
for (auto archetype : allArchetypes) {
|
|
// Substitute into the type.
|
|
auto type = Type(archetype).subst(module, substitutions,
|
|
/*ignoreMissing=*/hasTypeVariables,
|
|
resolver);
|
|
assert(type && "Unable to perform type substitution");
|
|
|
|
SmallVector<ProtocolConformance *, 4> conformances;
|
|
if (type->is<TypeVariableType>() || type->isDependentType()) {
|
|
// If the type is a type variable or is dependent, just fill in null
|
|
// conformances. FIXME: It seems like we should record these as
|
|
// requirements (?).
|
|
conformances.assign(archetype->getConformsTo().size(), nullptr);
|
|
} else {
|
|
// Find the conformances.
|
|
for (auto proto : archetype->getConformsTo()) {
|
|
auto conforms = module->lookupConformance(type, proto, resolver);
|
|
switch (conforms.getInt()) {
|
|
case ConformanceKind::Conforms:
|
|
conformances.push_back(conforms.getPointer());
|
|
break;
|
|
|
|
case ConformanceKind::DoesNotConform:
|
|
case ConformanceKind::UncheckedConforms:
|
|
llvm_unreachable("Couldn't find conformance");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Record this substitution.
|
|
resultSubstitutions[index] = {archetype, type,
|
|
ctx.AllocateCopy(conformances)};
|
|
++index;
|
|
}
|
|
|
|
// Copy and record the substitutions.
|
|
auto permanentSubs = ctx.AllocateCopy(resultSubstitutions,
|
|
hasTypeVariables
|
|
? AllocationArena::ConstraintSolver
|
|
: AllocationArena::Permanent);
|
|
ctx.setSubstitutions(canon, permanentSubs);
|
|
return permanentSubs;
|
|
}
|
|
|
|
/// Retrieve the explicit conformance of the given nominal type declaration
|
|
/// to the given protocol.
|
|
static std::tuple<NominalTypeDecl *, Decl *, ProtocolConformance *>
|
|
findExplicitConformance(NominalTypeDecl *nominal, ProtocolDecl *protocol,
|
|
LazyResolver *resolver) {
|
|
// FIXME: Introduce a cache/lazy lookup structure to make this more efficient?
|
|
|
|
using NominalOrConformance =
|
|
llvm::PointerUnion<NominalTypeDecl *, ProtocolConformance *>;
|
|
|
|
if (!nominal->hasType())
|
|
resolver->resolveDeclSignature(nominal);
|
|
|
|
// Walk the nominal type, its extensions, superclasses, and so on.
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> visitedProtocols;
|
|
SmallVector<std::pair<NominalOrConformance, Decl *>, 4> stack;
|
|
Decl *declaresConformance = nullptr;
|
|
ProtocolConformance *foundConformance = nullptr;
|
|
|
|
// Local function that checks for our protocol in the given array of
|
|
// protocols.
|
|
auto isProtocolInList
|
|
= [&](Decl *currentOwner,
|
|
ArrayRef<ProtocolDecl *> protocols,
|
|
ArrayRef<ProtocolConformance *> nominalConformances) -> bool {
|
|
for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
|
|
auto testProto = protocols[i];
|
|
if (testProto == protocol) {
|
|
declaresConformance = currentOwner;
|
|
if (i < nominalConformances.size())
|
|
foundConformance = nominalConformances[i];
|
|
return true;
|
|
}
|
|
|
|
if (visitedProtocols.insert(testProto)) {
|
|
NominalOrConformance next = {};
|
|
if (i < nominalConformances.size())
|
|
next = nominalConformances[i];
|
|
if (next.isNull())
|
|
next = testProto;
|
|
stack.push_back({next, currentOwner});
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Walk the stack of types to find a conformance.
|
|
stack.push_back({nominal, nominal});
|
|
while (!stack.empty()) {
|
|
NominalOrConformance current;
|
|
Decl *currentOwner;
|
|
std::tie(current, currentOwner) = stack.pop_back_val();
|
|
assert(!current.isNull());
|
|
|
|
if (auto currentNominal = current.dyn_cast<NominalTypeDecl *>()) {
|
|
// Visit the superclass of a class.
|
|
if (auto classDecl = dyn_cast<ClassDecl>(currentNominal)) {
|
|
if (auto superclassTy = classDecl->getSuperclass()) {
|
|
auto super = superclassTy->getAnyNominal();
|
|
stack.push_back({super, super});
|
|
}
|
|
}
|
|
|
|
// Visit the protocols this type conforms to directly.
|
|
if (isProtocolInList(currentOwner,
|
|
currentNominal->getProtocols(),
|
|
currentNominal->getConformances()))
|
|
break;
|
|
|
|
// Visit the extensions of this type.
|
|
for (auto ext : currentNominal->getExtensions()) {
|
|
if (resolver)
|
|
resolver->resolveExtension(ext);
|
|
|
|
if (isProtocolInList(ext, ext->getProtocols(), ext->getConformances())) {
|
|
// Break outer loop as well.
|
|
stack.clear();
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
auto currentConformance = current.get<ProtocolConformance *>();
|
|
for (auto inherited : currentConformance->getInheritedConformances()) {
|
|
if (inherited.first == protocol) {
|
|
declaresConformance = currentOwner;
|
|
foundConformance = inherited.second;
|
|
// Break outer loop as well.
|
|
stack.clear();
|
|
break;
|
|
}
|
|
|
|
if (visitedProtocols.insert(inherited.first))
|
|
stack.push_back({inherited.second, currentOwner});
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't find the protocol, we don't conform. Cache the negative result
|
|
// and return.
|
|
if (!declaresConformance)
|
|
return std::make_tuple(nullptr, nullptr, nullptr);
|
|
|
|
NominalTypeDecl *owningNominal;
|
|
if (auto ext = dyn_cast<ExtensionDecl>(declaresConformance))
|
|
owningNominal = ext->getExtendedType()->getAnyNominal();
|
|
else
|
|
owningNominal = cast<NominalTypeDecl>(declaresConformance);
|
|
assert(owningNominal);
|
|
|
|
// If we don't have a nominal conformance, but we do have a resolver, try
|
|
// to resolve the nominal conformance now.
|
|
if (!foundConformance && resolver) {
|
|
foundConformance = resolver->resolveConformance(
|
|
owningNominal,
|
|
protocol,
|
|
dyn_cast<ExtensionDecl>(declaresConformance));
|
|
}
|
|
|
|
// If we have a nominal conformance, we're done.
|
|
if (foundConformance) {
|
|
return std::make_tuple(owningNominal, declaresConformance,
|
|
foundConformance);
|
|
}
|
|
|
|
return std::make_tuple(nullptr, nullptr, nullptr);
|
|
}
|
|
|
|
LookupConformanceResult Module::lookupConformance(Type type,
|
|
ProtocolDecl *protocol,
|
|
LazyResolver *resolver) {
|
|
ASTContext &ctx = getASTContext();
|
|
|
|
// An archetype conforms to a protocol if the protocol is listed in the
|
|
// archetype's list of conformances.
|
|
if (auto archetype = type->getAs<ArchetypeType>()) {
|
|
if (protocol->isSpecificProtocol(KnownProtocolKind::AnyObject)) {
|
|
if (archetype->requiresClass())
|
|
return { nullptr, ConformanceKind::Conforms };
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
for (auto ap : archetype->getConformsTo()) {
|
|
if (ap == protocol || ap->inheritsFrom(protocol))
|
|
return { nullptr, ConformanceKind::Conforms };
|
|
}
|
|
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// An existential conforms to a protocol if the protocol is listed in the
|
|
// existential's list of conformances and the existential conforms to
|
|
// itself.
|
|
if (type->isExistentialType()) {
|
|
// If the protocol doesn't conform to itself, there's no point in looking
|
|
// further.
|
|
auto known = protocol->existentialConformsToSelf();
|
|
if (!known && resolver) {
|
|
resolver->resolveExistentialConformsToItself(protocol);
|
|
known = protocol->existentialConformsToSelf();
|
|
}
|
|
|
|
// If we know that protocol doesn't conform to itself, we're done.
|
|
if (known && !*known)
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
|
|
// Special-case AnyObject, which may not be in the list of conformances.
|
|
if (protocol->isSpecificProtocol(KnownProtocolKind::AnyObject)) {
|
|
if (type->isClassExistentialType()) {
|
|
return { nullptr, known ? ConformanceKind::Conforms
|
|
: ConformanceKind::UncheckedConforms };
|
|
}
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// Look for this protocol within the existential's list of conformances.
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
type->getAnyExistentialTypeProtocols(protocols);
|
|
for (auto ap : protocols) {
|
|
if (ap == protocol || ap->inheritsFrom(protocol)) {
|
|
return { nullptr,
|
|
known? ConformanceKind::Conforms
|
|
: ConformanceKind::UncheckedConforms };
|
|
}
|
|
}
|
|
|
|
// We didn't find our protocol in the existential's list; it doesn't
|
|
// conform.
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// Check whether we have already cached an answer to this query.
|
|
CanType canType = type->getCanonicalType();
|
|
if (auto entry = ctx.getConformsTo(canType, protocol)) {
|
|
// If we conform, return the conformance.
|
|
if (entry->getInt()) {
|
|
return { entry->getPointer(), ConformanceKind::Conforms };
|
|
}
|
|
|
|
// We don't conform.
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
auto nominal = type->getAnyNominal();
|
|
|
|
// If we don't have a nominal type, there are no conformances.
|
|
// FIXME: We may have implicit conformances for some cases. Handle those
|
|
// here.
|
|
if (!nominal) {
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// Find the explicit conformance.
|
|
NominalTypeDecl *owningNominal = nullptr;
|
|
Decl *declaresConformance = nullptr;
|
|
ProtocolConformance *nominalConformance = nullptr;
|
|
std::tie(owningNominal, declaresConformance, nominalConformance)
|
|
= findExplicitConformance(nominal, protocol, resolver);
|
|
|
|
// If we didn't find an owning nominal, we don't conform. Cache the negative
|
|
// result and return.
|
|
if (!owningNominal) {
|
|
ctx.setConformsTo(canType, protocol, ConformanceEntry(nullptr, false));
|
|
return { nullptr, ConformanceKind::DoesNotConform };
|
|
}
|
|
|
|
// If we found an owning nominal but didn't have a conformance, this is
|
|
// an unchecked conformance.
|
|
if (!nominalConformance) {
|
|
return { nullptr, ConformanceKind::UncheckedConforms };
|
|
}
|
|
|
|
// If the nominal type in which we found the conformance is not the same
|
|
// as the type we asked for, it's an inherited type.
|
|
if (owningNominal != nominal) {
|
|
// Find the superclass type
|
|
Type superclassTy = type->getSuperclass(resolver);
|
|
while (superclassTy->getAnyNominal() != owningNominal)
|
|
superclassTy = superclassTy->getSuperclass(resolver);
|
|
|
|
// Compute the conformance for the inherited type.
|
|
auto inheritedConformance = lookupConformance(superclassTy, protocol,
|
|
resolver);
|
|
switch (inheritedConformance.getInt()) {
|
|
case ConformanceKind::DoesNotConform:
|
|
llvm_unreachable("We already found the inherited conformance");
|
|
|
|
case ConformanceKind::UncheckedConforms:
|
|
return inheritedConformance;
|
|
|
|
case ConformanceKind::Conforms:
|
|
// Create inherited conformance below.
|
|
break;
|
|
}
|
|
|
|
// Create the inherited conformance entry.
|
|
auto result
|
|
= ctx.getInheritedConformance(type, inheritedConformance.getPointer());
|
|
ctx.setConformsTo(canType, protocol, ConformanceEntry(result, true));
|
|
return { result, ConformanceKind::Conforms };
|
|
}
|
|
|
|
// If the type is specialized, find the conformance for the generic type.
|
|
if (type->isSpecialized()) {
|
|
// Figure out the type that's explicitly conforming to this protocol.
|
|
Type explicitConformanceType;
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(declaresConformance)) {
|
|
explicitConformanceType = nominal->getDeclaredTypeInContext();
|
|
} else {
|
|
explicitConformanceType = cast<ExtensionDecl>(declaresConformance)
|
|
->getExtendedType()->getAnyNominal()->getDeclaredTypeInContext();
|
|
}
|
|
|
|
// If the explicit conformance is associated with a type that is different
|
|
// from the type we're checking, retrieve generic conformance.
|
|
if (!explicitConformanceType->isEqual(type)) {
|
|
// Gather the substitutions we need to map the generic conformance to
|
|
// the specialized conformance.
|
|
SmallVector<Substitution, 4> substitutionsVec;
|
|
auto substitutions = type->gatherAllSubstitutions(this, substitutionsVec,
|
|
resolver);
|
|
|
|
// Create the specialized conformance entry.
|
|
ctx.setConformsTo(canType, protocol, ConformanceEntry(nullptr, false));
|
|
auto result = ctx.getSpecializedConformance(type, nominalConformance,
|
|
substitutions);
|
|
ctx.setConformsTo(canType, protocol, ConformanceEntry(result, true));
|
|
return { result, ConformanceKind::Conforms };
|
|
}
|
|
}
|
|
|
|
// Record and return the simple conformance.
|
|
ctx.setConformsTo(canType, protocol,
|
|
ConformanceEntry(nominalConformance, true));
|
|
return { nominalConformance, ConformanceKind::Conforms };
|
|
}
|
|
|
|
namespace {
|
|
template <typename T>
|
|
using OperatorMap = SourceFile::OperatorMap<T>;
|
|
|
|
template <typename T>
|
|
struct OperatorKind {
|
|
static_assert(static_cast<T*>(nullptr), "Only usable with operators");
|
|
};
|
|
|
|
template <>
|
|
struct OperatorKind<PrefixOperatorDecl> {
|
|
static const auto value = DeclKind::PrefixOperator;
|
|
};
|
|
|
|
template <>
|
|
struct OperatorKind<InfixOperatorDecl> {
|
|
static const auto value = DeclKind::InfixOperator;
|
|
};
|
|
|
|
template <>
|
|
struct OperatorKind<PostfixOperatorDecl> {
|
|
static const auto value = DeclKind::PostfixOperator;
|
|
};
|
|
}
|
|
|
|
template <typename Op, typename T>
|
|
static Op *lookupOperator(T &container, Identifier name) {
|
|
return cast_or_null<Op>(container.lookupOperator(name,
|
|
OperatorKind<Op>::value));
|
|
}
|
|
|
|
template<typename OP_DECL>
|
|
static Optional<OP_DECL *>
|
|
lookupOperatorDeclForName(Module *M, SourceLoc Loc, Identifier Name,
|
|
OperatorMap<OP_DECL *> SourceFile::*OP_MAP);
|
|
|
|
// Returns Nothing on error, Optional(nullptr) if no operator decl found, or
|
|
// Optional(decl) if decl was found.
|
|
template<typename OP_DECL>
|
|
static Optional<OP_DECL *>
|
|
lookupOperatorDeclForName(const FileUnit &File, SourceLoc Loc, Identifier Name,
|
|
bool includePrivate,
|
|
OperatorMap<OP_DECL *> SourceFile::*OP_MAP)
|
|
{
|
|
switch (File.getKind()) {
|
|
case FileUnitKind::Builtin:
|
|
case FileUnitKind::Derived:
|
|
// The Builtin module declares no operators, nor do derived units.
|
|
return nullptr;
|
|
case FileUnitKind::Source:
|
|
break;
|
|
case FileUnitKind::SerializedAST:
|
|
case FileUnitKind::ClangModule:
|
|
return lookupOperator<OP_DECL>(cast<LoadedFile>(File), Name);
|
|
}
|
|
|
|
auto &SF = cast<SourceFile>(File);
|
|
assert(SF.ASTStage >= SourceFile::NameBound);
|
|
|
|
// Look for an operator declaration in the current module.
|
|
auto found = (SF.*OP_MAP).find(Name);
|
|
if (found != (SF.*OP_MAP).end() && (includePrivate || found->second.getInt()))
|
|
return found->second.getPointer();
|
|
|
|
// Look for imported operator decls.
|
|
// Record whether they come from re-exported modules.
|
|
// FIXME: We ought to prefer operators elsewhere in this module before we
|
|
// check imports.
|
|
llvm::SmallDenseMap<OP_DECL*, bool, 16> importedOperators;
|
|
for (auto &imported : SF.getImports()) {
|
|
if (!includePrivate && !imported.second)
|
|
continue;
|
|
|
|
Optional<OP_DECL *> maybeOp
|
|
= lookupOperatorDeclForName(imported.first.second, Loc, Name, OP_MAP);
|
|
if (!maybeOp)
|
|
return Nothing;
|
|
|
|
if (OP_DECL *op = *maybeOp)
|
|
importedOperators[op] |= imported.second;
|
|
}
|
|
|
|
typename OperatorMap<OP_DECL *>::mapped_type result = { nullptr, true };
|
|
|
|
if (!importedOperators.empty()) {
|
|
// Check for conflicts.
|
|
auto i = importedOperators.begin(), end = importedOperators.end();
|
|
auto start = i;
|
|
for (++i; i != end; ++i) {
|
|
if (i->first->conflictsWith(start->first)) {
|
|
if (Loc.isValid()) {
|
|
ASTContext &C = SF.getASTContext();
|
|
C.Diags.diagnose(Loc, diag::ambiguous_operator_decls);
|
|
C.Diags.diagnose(start->first->getLoc(),
|
|
diag::found_this_operator_decl);
|
|
C.Diags.diagnose(i->first->getLoc(), diag::found_this_operator_decl);
|
|
}
|
|
return Nothing;
|
|
}
|
|
}
|
|
result = { start->first, start->second };
|
|
}
|
|
|
|
if (includePrivate) {
|
|
// Cache the mapping so we don't need to troll imports next time.
|
|
// It's not safe to cache the non-private results because we didn't search
|
|
// private imports there, but in most non-private cases the result will
|
|
// be cached in the final lookup.
|
|
auto &mutableOpMap = const_cast<OperatorMap<OP_DECL *> &>(SF.*OP_MAP);
|
|
mutableOpMap[Name] = result;
|
|
}
|
|
|
|
if (includePrivate || result.getInt())
|
|
return result.getPointer();
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename OP_DECL>
|
|
static Optional<OP_DECL *>
|
|
lookupOperatorDeclForName(Module *M, SourceLoc Loc, Identifier Name,
|
|
OperatorMap<OP_DECL *> SourceFile::*OP_MAP)
|
|
{
|
|
OP_DECL *result = nullptr;
|
|
for (const FileUnit *File : M->getFiles()) {
|
|
auto next = lookupOperatorDeclForName(*File, Loc, Name, false, OP_MAP);
|
|
if (!next.hasValue())
|
|
return next;
|
|
|
|
// FIXME: Diagnose ambiguity.
|
|
if (*next && result)
|
|
return Nothing;
|
|
if (*next)
|
|
result = *next;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#define LOOKUP_OPERATOR(Kind) \
|
|
Kind##OperatorDecl * \
|
|
Module::lookup##Kind##Operator(Identifier name, SourceLoc loc) { \
|
|
auto result = lookupOperatorDeclForName(this, loc, name, \
|
|
&SourceFile::Kind##Operators); \
|
|
return result ? *result : nullptr; \
|
|
} \
|
|
Kind##OperatorDecl * \
|
|
SourceFile::lookup##Kind##Operator(Identifier name, SourceLoc loc) { \
|
|
auto result = lookupOperatorDeclForName(*this, loc, name, true, \
|
|
&SourceFile::Kind##Operators); \
|
|
if (result.hasValue() && !result.getValue()) \
|
|
result = lookupOperatorDeclForName(getParentModule(), loc, name, \
|
|
&SourceFile::Kind##Operators); \
|
|
return result ? *result : nullptr; \
|
|
}
|
|
|
|
LOOKUP_OPERATOR(Prefix)
|
|
LOOKUP_OPERATOR(Infix)
|
|
LOOKUP_OPERATOR(Postfix)
|
|
#undef LOOKUP_OPERATOR
|
|
|
|
void Module::getImportedModules(SmallVectorImpl<ImportedModule> &modules,
|
|
Module::ImportFilter filter) const {
|
|
// FIXME: Audit uses of this function and make sure they make sense in a
|
|
// multi-file world.
|
|
FORWARD(getImportedModules, (modules, filter));
|
|
}
|
|
|
|
void
|
|
SourceFile::getImportedModules(SmallVectorImpl<Module::ImportedModule> &modules,
|
|
Module::ImportFilter filter) const {
|
|
for (auto importPair : getImports())
|
|
if (filter == Module::ImportFilter::All ||
|
|
(filter == Module::ImportFilter::Private) ^ importPair.second)
|
|
modules.push_back(importPair.first);
|
|
}
|
|
|
|
bool Module::isSameAccessPath(AccessPathTy lhs, AccessPathTy rhs) {
|
|
using AccessPathElem = std::pair<Identifier, SourceLoc>;
|
|
if (lhs.size() != rhs.size())
|
|
return false;
|
|
return std::equal(lhs.begin(), lhs.end(), rhs.begin(),
|
|
[](const AccessPathElem &lElem,
|
|
const AccessPathElem &rElem) {
|
|
return lElem.first == rElem.first;
|
|
});
|
|
}
|
|
|
|
StringRef Module::getModuleFilename() const {
|
|
// FIXME: Audit uses of this function and figure out how to migrate them to
|
|
// per-file names. Modules can consist of more than one file.
|
|
StringRef Result;
|
|
for (auto F : getFiles()) {
|
|
if (auto SF = dyn_cast<SourceFile>(F)) {
|
|
if (!Result.empty())
|
|
return StringRef();
|
|
Result = SF->getFilename();
|
|
continue;
|
|
}
|
|
if (auto LF = dyn_cast<LoadedFile>(F)) {
|
|
if (!Result.empty())
|
|
return StringRef();
|
|
Result = LF->getFilename();
|
|
continue;
|
|
}
|
|
if (isa<DerivedFileUnit>(F))
|
|
continue;
|
|
return StringRef();
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
bool Module::isStdlibModule() const {
|
|
return !getParent() && Name == Ctx.StdlibModuleName;
|
|
}
|
|
|
|
bool Module::isBuiltinModule() const {
|
|
return this == Ctx.TheBuiltinModule;
|
|
}
|
|
|
|
bool Module::registerMainClass(ClassDecl *mainClass, SourceLoc diagLoc) {
|
|
// %select indices for UI/NSApplication-related diagnostics.
|
|
enum : unsigned {
|
|
UIApplicationMainClass = 0,
|
|
NSApplicationMainClass = 1,
|
|
};
|
|
|
|
unsigned mainClassDiagKind;
|
|
if (mainClass->getAttrs().hasAttribute<UIApplicationMainAttr>())
|
|
mainClassDiagKind = UIApplicationMainClass;
|
|
else if (mainClass->getAttrs().hasAttribute<NSApplicationMainAttr>())
|
|
mainClassDiagKind = NSApplicationMainClass;
|
|
else
|
|
llvm_unreachable("main class has no @ApplicationMain attribute?!");
|
|
|
|
if (mainClass == MainClass)
|
|
return false;
|
|
|
|
if (MainClass) {
|
|
// If we already have a main class, and we haven't diagnosed it, do so now.
|
|
if (!DiagnosedMultipleMainClasses) {
|
|
getASTContext().Diags.diagnose(MainClassDiagLoc,
|
|
diag::attr_ApplicationMain_multiple,
|
|
mainClassDiagKind);
|
|
DiagnosedMultipleMainClasses = true;
|
|
}
|
|
getASTContext().Diags.diagnose(diagLoc,
|
|
diag::attr_ApplicationMain_multiple,
|
|
mainClassDiagKind);
|
|
return true;
|
|
}
|
|
|
|
// Complain if there is also a script file in this module.
|
|
if (!DiagnosedMainClassWithScript) {
|
|
DiagnosedMainClassWithScript = true;
|
|
for (auto file : getFiles()) {
|
|
auto sf = dyn_cast<SourceFile>(file);
|
|
if (!sf)
|
|
continue;
|
|
if (sf->isScriptMode()) {
|
|
getASTContext().Diags.diagnose(diagLoc,
|
|
diag::attr_ApplicationMain_with_script,
|
|
mainClassDiagKind);
|
|
// Note the source file we're reading top-level code from.
|
|
if (auto bufID = sf->getBufferID()) {
|
|
auto fileLoc = getASTContext().SourceMgr.getLocForBufferStart(*bufID);
|
|
getASTContext().Diags.diagnose(fileLoc,
|
|
diag::attr_ApplicationMain_script_here,
|
|
mainClassDiagKind);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MainClass = mainClass;
|
|
MainClassDiagLoc = diagLoc;
|
|
return false;
|
|
}
|
|
|
|
bool Module::isSystemModule() const {
|
|
if (isStdlibModule())
|
|
return true;
|
|
for (auto F : getFiles()) {
|
|
if (auto LF = dyn_cast<LoadedFile>(F))
|
|
return LF->isSystemModule();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<bool respectVisibility, typename Callback>
|
|
static bool forAllImportedModules(Module *topLevel,
|
|
Module::AccessPathTy thisPath,
|
|
bool includePrivateTopLevelImports,
|
|
const Callback &fn) {
|
|
using ImportedModule = Module::ImportedModule;
|
|
using AccessPathTy = Module::AccessPathTy;
|
|
|
|
llvm::SmallSet<ImportedModule, 32, Module::OrderImportedModules> visited;
|
|
SmallVector<ImportedModule, 32> stack;
|
|
|
|
// Even if we're processing the top-level module like any other, we may
|
|
// still want to include non-exported modules.
|
|
Module::ImportFilter filter = respectVisibility ? Module::ImportFilter::Public
|
|
: Module::ImportFilter::All;
|
|
Module::ImportFilter topLevelFilter =
|
|
includePrivateTopLevelImports ? Module::ImportFilter::All : filter;
|
|
topLevel->getImportedModules(stack, topLevelFilter);
|
|
|
|
// Make sure the top-level module is first; we want pre-order-ish traversal.
|
|
AccessPathTy overridingPath;
|
|
if (respectVisibility)
|
|
overridingPath = thisPath;
|
|
stack.push_back(ImportedModule(overridingPath, topLevel));
|
|
|
|
while (!stack.empty()) {
|
|
auto next = stack.pop_back_val();
|
|
|
|
// Filter any whole-module imports, and skip specific-decl imports if the
|
|
// import path doesn't match exactly.
|
|
if (next.first.empty() || !respectVisibility)
|
|
next.first = overridingPath;
|
|
else if (!overridingPath.empty() &&
|
|
!Module::isSameAccessPath(next.first, overridingPath)) {
|
|
// If we ever allow importing non-top-level decls, it's possible the rule
|
|
// above isn't what we want.
|
|
assert(next.first.size() == 1 && "import of non-top-level decl");
|
|
continue;
|
|
}
|
|
|
|
if (!visited.insert(next))
|
|
continue;
|
|
|
|
if (!fn(next))
|
|
return false;
|
|
next.second->getImportedModules(stack, filter);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Module::forAllVisibleModules(AccessPathTy thisPath,
|
|
bool includePrivateTopLevelImports,
|
|
std::function<bool(ImportedModule)> fn) {
|
|
return forAllImportedModules<true>(this, thisPath,
|
|
includePrivateTopLevelImports, fn);
|
|
}
|
|
|
|
bool
|
|
FileUnit::forAllVisibleModules(std::function<bool(Module::ImportedModule)> fn) {
|
|
if (!getParentModule()->forAllVisibleModules(Module::AccessPathTy(), fn))
|
|
return false;
|
|
|
|
if (auto SF = dyn_cast<SourceFile>(this)) {
|
|
// Handle privately visible modules as well.
|
|
for (auto importPair : SF->getImports()) {
|
|
if (importPair.second)
|
|
continue;
|
|
Module *M = importPair.first.second;
|
|
if (!M->forAllVisibleModules(importPair.first.first, fn))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Module::collectLinkLibraries(LinkLibraryCallback callback) {
|
|
// FIXME: The proper way to do this depends on the decls used.
|
|
FORWARD(collectLinkLibraries, (callback));
|
|
}
|
|
|
|
void
|
|
SourceFile::collectLinkLibraries(Module::LinkLibraryCallback callback) const {
|
|
for (auto importPair : Imports)
|
|
importPair.first.second->collectLinkLibraries(callback);
|
|
}
|
|
|
|
bool Module::walk(ASTWalker &Walker) {
|
|
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(Walker.Parent, this);
|
|
for (auto SF : getFiles())
|
|
if (SF->walk(Walker))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SourceFile Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SourceFile::print(raw_ostream &OS, const PrintOptions &PO) {
|
|
StreamPrinter Printer(OS);
|
|
print(Printer, PO);
|
|
}
|
|
|
|
void SourceFile::print(ASTPrinter &Printer, const PrintOptions &PO) {
|
|
for (auto decl : Decls) {
|
|
if (!decl->shouldPrintInContext(PO))
|
|
continue;
|
|
|
|
decl->print(Printer, PO);
|
|
Printer << "\n";
|
|
}
|
|
}
|
|
|
|
void SourceFile::clearLookupCache() {
|
|
Cache.reset();
|
|
}
|
|
|
|
void
|
|
SourceFile::cacheVisibleDecls(SmallVectorImpl<ValueDecl*> &&globals) const {
|
|
SmallVectorImpl<ValueDecl*> &cached = getCache().AllVisibleValues;
|
|
cached = std::move(globals);
|
|
}
|
|
|
|
const SmallVectorImpl<ValueDecl *> &
|
|
SourceFile::getCachedVisibleDecls() const {
|
|
return getCache().AllVisibleValues;
|
|
}
|
|
|
|
static void performAutoImport(SourceFile &SF,
|
|
SourceFile::ImplicitModuleImportKind modImpKind) {
|
|
if (SF.Kind == SourceFileKind::SIL)
|
|
assert(modImpKind == SourceFile::ImplicitModuleImportKind::None);
|
|
|
|
ASTContext &Ctx = SF.getASTContext();
|
|
Module *M = nullptr;
|
|
|
|
switch (modImpKind) {
|
|
case SourceFile::ImplicitModuleImportKind::None:
|
|
return;
|
|
case SourceFile::ImplicitModuleImportKind::Builtin:
|
|
M = Ctx.TheBuiltinModule;
|
|
break;
|
|
case SourceFile::ImplicitModuleImportKind::Stdlib:
|
|
M = Ctx.getStdlibModule(true);
|
|
break;
|
|
}
|
|
|
|
assert(M && "unable to auto-import module");
|
|
|
|
// FIXME: These will be the same for most source files, but we copy them
|
|
// over and over again.
|
|
std::pair<Module::ImportedModule, bool> Imports[] = {
|
|
std::make_pair(Module::ImportedModule({}, M), false)
|
|
};
|
|
SF.setImports(Ctx.AllocateCopy(Imports));
|
|
}
|
|
|
|
SourceFile::SourceFile(Module &M, SourceFileKind K,
|
|
Optional<unsigned> bufferID,
|
|
ImplicitModuleImportKind ModImpKind)
|
|
: FileUnit(FileUnitKind::Source, M),
|
|
BufferID(bufferID ? *bufferID : -1), Kind(K) {
|
|
M.Ctx.addDestructorCleanup(*this);
|
|
performAutoImport(*this, ModImpKind);
|
|
}
|
|
|
|
SourceFile::~SourceFile() {}
|
|
|
|
bool FileUnit::walk(ASTWalker &walker) {
|
|
SmallVector<Decl *, 64> Decls;
|
|
getTopLevelDecls(Decls);
|
|
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent,
|
|
getParentModule());
|
|
for (Decl *D : Decls) {
|
|
if (D->walk(walker))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SourceFile::walk(ASTWalker &walker) {
|
|
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent,
|
|
getParentModule());
|
|
for (Decl *D : Decls) {
|
|
if (D->walk(walker))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
StringRef SourceFile::getFilename() const {
|
|
if (BufferID == -1)
|
|
return "";
|
|
SourceManager &SM = getASTContext().SourceMgr;
|
|
return SM.getIdentifierForBuffer(BufferID);
|
|
}
|
|
|
|
bool SourceFile::hasMainClass() const {
|
|
auto mainClass = getParentModule()->getMainClass();
|
|
if (!mainClass) return false;
|
|
return mainClass->getParentSourceFile() == this;
|
|
}
|
|
|
|
ArtificialMainKind SourceFile::getArtificialMainKind() const {
|
|
if (hasMainClass()) {
|
|
auto &attrs = getParentModule()->getMainClass()->getAttrs();
|
|
if (attrs.hasAttribute<UIApplicationMainAttr>())
|
|
return ArtificialMainKind::UIApplicationMain;
|
|
if (attrs.hasAttribute<NSApplicationMainAttr>())
|
|
return ArtificialMainKind::NSApplicationMain;
|
|
llvm_unreachable("main class has no @ApplicationMain attr?!");
|
|
}
|
|
return ArtificialMainKind::None;
|
|
}
|
|
|
|
Identifier
|
|
SourceFile::getDiscriminatorForPrivateValue(const ValueDecl *D) const {
|
|
assert(D->getDeclContext()->getModuleScopeContext() == this);
|
|
|
|
if (!PrivateDiscriminator.empty())
|
|
return PrivateDiscriminator;
|
|
|
|
StringRef name = getFilename();
|
|
if (name.empty()) {
|
|
assert(1 == std::count_if(getParentModule()->getFiles().begin(),
|
|
getParentModule()->getFiles().end(),
|
|
[](const FileUnit *FU) -> bool {
|
|
return isa<SourceFile>(FU) && cast<SourceFile>(FU)->getFilename().empty();
|
|
}) && "can't promise uniqueness if multiple source files are nameless");
|
|
|
|
// We still need a discriminator.
|
|
PrivateDiscriminator = getASTContext().Id_Underscore;
|
|
return PrivateDiscriminator;
|
|
}
|
|
|
|
// Use a hash of the basename of the source file as our discriminator.
|
|
// This keeps us from leaking information about the original filename
|
|
// while still providing uniqueness. Using the basename makes the
|
|
// discriminator invariant across source checkout locations.
|
|
// FIXME: Use a faster hash here? We don't need security, just uniqueness.
|
|
llvm::MD5 hash;
|
|
hash.update(llvm::sys::path::filename(name));
|
|
llvm::MD5::MD5Result result;
|
|
hash.final(result);
|
|
|
|
// Make sure the whole thing is a valid identifier.
|
|
SmallString<33> buffer{"_"};
|
|
|
|
// Write the hash as a hex string.
|
|
// FIXME: This should go into llvm/ADT/StringExtras.h.
|
|
// FIXME: And there are more compact ways to encode a 16-byte value.
|
|
buffer.reserve(buffer.size() + 2*llvm::array_lengthof(result));
|
|
for (uint8_t byte : result) {
|
|
buffer.push_back(llvm::hexdigit(byte >> 4, /*lowercase=*/false));
|
|
buffer.push_back(llvm::hexdigit(byte & 0xF, /*lowercase=*/false));
|
|
}
|
|
|
|
PrivateDiscriminator = getASTContext().getIdentifier(buffer);
|
|
return PrivateDiscriminator;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Miscellaneous
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void FileUnit::anchor() {}
|
|
void *FileUnit::operator new(size_t Bytes, ASTContext &C, unsigned Alignment) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
|
|
StringRef LoadedFile::getFilename() const {
|
|
return "";
|
|
}
|