mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Previously only the GenericSignatureBuilder would call this; to ensure we get the same test coverage when the Requirement Machine is 'on' as 'verify', also call this from the Requirement Machine. For now, we can't call this from RequirementSignatureRequestRQM due to circularity issues; that will have to wait until this request is folded into RequirementSignatureRequest.
681 lines
24 KiB
C++
681 lines
24 KiB
C++
//===--- RequirementMachineRequests.cpp -----------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the main entry points for computing minimized generic
|
|
// signatures using the requirement machine via the request evaluator.
|
|
//
|
|
// The actual logic for finding a minimal set of rewrite rules is implemented in
|
|
// HomotopyReduction.cpp and MinimalConformances.cpp.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RequirementMachine.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/DiagnosticsSema.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/LazyResolver.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include "swift/AST/RequirementSignature.h"
|
|
#include "swift/AST/TypeCheckRequests.h"
|
|
#include "swift/AST/TypeRepr.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "RequirementLowering.h"
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
namespace {
|
|
|
|
/// Represents a set of types related by same-type requirements, and an
|
|
/// optional concrete type requirement.
|
|
struct ConnectedComponent {
|
|
llvm::SmallVector<Type, 2> Members;
|
|
Type ConcreteType;
|
|
|
|
void buildRequirements(Type subjectType, std::vector<Requirement> &reqs);
|
|
};
|
|
|
|
/// Case 1: A set of rewrite rules of the form:
|
|
///
|
|
/// B => A
|
|
/// C => A
|
|
/// D => A
|
|
///
|
|
/// Become a series of same-type requirements
|
|
///
|
|
/// A == B, B == C, C == D
|
|
///
|
|
/// Case 2: A set of rewrite rules of the form:
|
|
///
|
|
/// A.[concrete: X] => A
|
|
/// B => A
|
|
/// C => A
|
|
/// D => A
|
|
///
|
|
/// Become a series of same-type requirements
|
|
///
|
|
/// A == X, B == X, C == X, D == X
|
|
void ConnectedComponent::buildRequirements(Type subjectType,
|
|
std::vector<Requirement> &reqs) {
|
|
std::sort(Members.begin(), Members.end(),
|
|
[](Type first, Type second) -> bool {
|
|
return compareDependentTypes(first, second) < 0;
|
|
});
|
|
|
|
if (!ConcreteType) {
|
|
for (auto constraintType : Members) {
|
|
reqs.emplace_back(RequirementKind::SameType,
|
|
subjectType, constraintType);
|
|
subjectType = constraintType;
|
|
}
|
|
} else if (!ConcreteType->hasError()) {
|
|
// For compatibility with the old GenericSignatureBuilder, drop requirements
|
|
// containing ErrorTypes.
|
|
reqs.emplace_back(RequirementKind::SameType,
|
|
subjectType, ConcreteType);
|
|
|
|
for (auto constraintType : Members) {
|
|
reqs.emplace_back(RequirementKind::SameType,
|
|
constraintType, ConcreteType);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // end namespace
|
|
|
|
/// Convert a list of non-permanent, non-redundant rewrite rules into a list of
|
|
/// requirements sorted in canonical order. The \p genericParams are used to
|
|
/// produce sugared types.
|
|
std::vector<Requirement>
|
|
RequirementMachine::buildRequirementsFromRules(
|
|
ArrayRef<unsigned> rules,
|
|
TypeArrayView<GenericTypeParamType> genericParams) const {
|
|
std::vector<Requirement> reqs;
|
|
llvm::SmallDenseMap<TypeBase *, ConnectedComponent> sameTypeReqs;
|
|
|
|
// Convert a rewrite rule into a requirement.
|
|
auto createRequirementFromRule = [&](const Rule &rule) {
|
|
if (auto prop = rule.isPropertyRule()) {
|
|
auto subjectType = Map.getTypeForTerm(rule.getRHS(), genericParams);
|
|
|
|
switch (prop->getKind()) {
|
|
case Symbol::Kind::Protocol:
|
|
reqs.emplace_back(RequirementKind::Conformance,
|
|
subjectType,
|
|
prop->getProtocol()->getDeclaredInterfaceType());
|
|
return;
|
|
|
|
case Symbol::Kind::Layout:
|
|
reqs.emplace_back(RequirementKind::Layout,
|
|
subjectType,
|
|
prop->getLayoutConstraint());
|
|
return;
|
|
|
|
case Symbol::Kind::Superclass: {
|
|
// Requirements containing unresolved name symbols originate from
|
|
// invalid code and should not appear in the generic signature.
|
|
for (auto term : prop->getSubstitutions()) {
|
|
if (term.containsUnresolvedSymbols())
|
|
return;
|
|
}
|
|
|
|
// Requirements containing error types originate from invalid code
|
|
// and should not appear in the generic signature.
|
|
if (prop->getConcreteType()->hasError())
|
|
return;
|
|
|
|
auto superclassType = Map.getTypeFromSubstitutionSchema(
|
|
prop->getConcreteType(),
|
|
prop->getSubstitutions(),
|
|
genericParams, MutableTerm());
|
|
|
|
reqs.emplace_back(RequirementKind::Superclass,
|
|
subjectType, superclassType);
|
|
return;
|
|
}
|
|
|
|
case Symbol::Kind::ConcreteType: {
|
|
// Requirements containing unresolved name symbols originate from
|
|
// invalid code and should not appear in the generic signature.
|
|
for (auto term : prop->getSubstitutions()) {
|
|
if (term.containsUnresolvedSymbols())
|
|
return;
|
|
}
|
|
|
|
// Requirements containing error types originate from invalid code
|
|
// and should not appear in the generic signature.
|
|
if (prop->getConcreteType()->hasError())
|
|
return;
|
|
|
|
auto concreteType = Map.getTypeFromSubstitutionSchema(
|
|
prop->getConcreteType(),
|
|
prop->getSubstitutions(),
|
|
genericParams, MutableTerm());
|
|
|
|
auto &component = sameTypeReqs[subjectType.getPointer()];
|
|
assert(!component.ConcreteType);
|
|
component.ConcreteType = concreteType;
|
|
return;
|
|
}
|
|
|
|
case Symbol::Kind::ConcreteConformance:
|
|
// "Concrete conformance requirements" are not recorded in the generic
|
|
// signature.
|
|
return;
|
|
|
|
case Symbol::Kind::Name:
|
|
case Symbol::Kind::AssociatedType:
|
|
case Symbol::Kind::GenericParam:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("Invalid symbol kind");
|
|
}
|
|
|
|
assert(rule.getLHS().back().getKind() != Symbol::Kind::Protocol);
|
|
auto constraintType = Map.getTypeForTerm(rule.getLHS(), genericParams);
|
|
auto subjectType = Map.getTypeForTerm(rule.getRHS(), genericParams);
|
|
|
|
sameTypeReqs[subjectType.getPointer()].Members.push_back(constraintType);
|
|
};
|
|
|
|
if (getDebugOptions().contains(DebugFlags::Minimization)) {
|
|
llvm::dbgs() << "\nMinimized rules:\n";
|
|
}
|
|
|
|
// Build the list of requirements, storing same-type requirements off
|
|
// to the side.
|
|
for (unsigned ruleID : rules) {
|
|
const auto &rule = System.getRule(ruleID);
|
|
|
|
if (getDebugOptions().contains(DebugFlags::Minimization)) {
|
|
llvm::dbgs() << "- " << rule << "\n";
|
|
}
|
|
|
|
createRequirementFromRule(rule);
|
|
}
|
|
|
|
// Now, convert each connected component into a series of same-type
|
|
// requirements.
|
|
for (auto &pair : sameTypeReqs) {
|
|
pair.second.buildRequirements(pair.first, reqs);
|
|
}
|
|
|
|
if (getDebugOptions().contains(DebugFlags::Minimization)) {
|
|
llvm::dbgs() << "Requirements:\n";
|
|
for (const auto &req : reqs) {
|
|
req.dump(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
}
|
|
|
|
// Finally, sort the requirements in canonical order.
|
|
llvm::array_pod_sort(reqs.begin(), reqs.end(),
|
|
[](const Requirement *lhs, const Requirement *rhs) -> int {
|
|
return lhs->compare(*rhs);
|
|
});
|
|
|
|
return reqs;
|
|
}
|
|
|
|
/// Convert a list of protocol typealias rules to a list of name/underlying type
|
|
/// pairs.
|
|
std::vector<ProtocolTypeAlias>
|
|
RequirementMachine::buildProtocolTypeAliasesFromRules(
|
|
ArrayRef<unsigned> rules,
|
|
TypeArrayView<GenericTypeParamType> genericParams) const {
|
|
std::vector<ProtocolTypeAlias> aliases;
|
|
|
|
if (getDebugOptions().contains(DebugFlags::Minimization)) {
|
|
llvm::dbgs() << "\nMinimized type aliases:\n";
|
|
}
|
|
|
|
for (unsigned ruleID : rules) {
|
|
const auto &rule = System.getRule(ruleID);
|
|
auto name = *rule.isProtocolTypeAliasRule();
|
|
Type underlyingType;
|
|
|
|
if (auto prop = rule.isPropertyRule()) {
|
|
assert(prop->getKind() == Symbol::Kind::ConcreteType);
|
|
|
|
// Requirements containing unresolved name symbols originate from
|
|
// invalid code and should not appear in the generic signature.
|
|
for (auto term : prop->getSubstitutions()) {
|
|
if (term.containsUnresolvedSymbols())
|
|
continue;
|
|
}
|
|
|
|
// Requirements containing error types originate from invalid code
|
|
// and should not appear in the generic signature.
|
|
if (prop->getConcreteType()->hasError())
|
|
continue;
|
|
|
|
underlyingType = Map.getTypeFromSubstitutionSchema(
|
|
prop->getConcreteType(),
|
|
prop->getSubstitutions(),
|
|
genericParams, MutableTerm());
|
|
} else {
|
|
underlyingType = Map.getTypeForTerm(rule.getRHS(), genericParams);
|
|
}
|
|
|
|
aliases.emplace_back(name, underlyingType);
|
|
|
|
if (getDebugOptions().contains(DebugFlags::Minimization)) {
|
|
PrintOptions opts;
|
|
opts.ProtocolQualifiedDependentMemberTypes = true;
|
|
|
|
llvm::dbgs() << "- " << name << " == ";
|
|
underlyingType.print(llvm::dbgs(), opts);
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
}
|
|
|
|
// Finally, sort the aliases in canonical order.
|
|
llvm::array_pod_sort(aliases.begin(), aliases.end(),
|
|
[](const ProtocolTypeAlias *lhs,
|
|
const ProtocolTypeAlias *rhs) -> int {
|
|
return lhs->getName().compare(rhs->getName());
|
|
});
|
|
|
|
return aliases;
|
|
}
|
|
|
|
/// Builds the requirement signatures for each protocol in this strongly
|
|
/// connected component.
|
|
llvm::DenseMap<const ProtocolDecl *, RequirementSignature>
|
|
RequirementMachine::computeMinimalProtocolRequirements() {
|
|
auto protos = System.getProtocols();
|
|
|
|
assert(protos.size() > 0 &&
|
|
"Not a protocol connected component rewrite system");
|
|
assert(Params.empty() &&
|
|
"Not a protocol connected component rewrite system");
|
|
|
|
System.minimizeRewriteSystem();
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Minimized rewrite system:\n";
|
|
dump(llvm::dbgs());
|
|
}
|
|
|
|
auto rules = System.getMinimizedProtocolRules();
|
|
|
|
auto &ctx = Context.getASTContext();
|
|
|
|
// Note that we build 'result' by iterating over 'protos' rather than
|
|
// 'rules'; this is intentional, so that even if a protocol has no
|
|
// rules, we still end up creating an entry for it in 'result'.
|
|
llvm::DenseMap<const ProtocolDecl *, RequirementSignature> result;
|
|
for (const auto *proto : protos) {
|
|
auto genericParams = proto->getGenericSignature().getGenericParams();
|
|
|
|
const auto &entry = rules[proto];
|
|
auto reqs = ctx.AllocateCopy(
|
|
buildRequirementsFromRules(entry.Requirements,
|
|
genericParams));
|
|
auto aliases = ctx.AllocateCopy(
|
|
buildProtocolTypeAliasesFromRules(entry.TypeAliases,
|
|
genericParams));
|
|
|
|
result[proto] = RequirementSignature(reqs, aliases);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
RequirementSignature
|
|
RequirementSignatureRequestRQM::evaluate(Evaluator &evaluator,
|
|
ProtocolDecl *proto) const {
|
|
ASTContext &ctx = proto->getASTContext();
|
|
|
|
// First check if we have a deserializable requirement signature.
|
|
assert(!proto->hasLazyRequirementSignature() &&
|
|
"Should be handled in RequirementSignatureRequest");
|
|
|
|
// We build requirement signatures for all protocols in a strongly connected
|
|
// component at the same time.
|
|
auto component = ctx.getRewriteContext().getProtocolComponent(proto);
|
|
|
|
// Heap-allocate the requirement machine to save stack space.
|
|
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
|
|
ctx.getRewriteContext()));
|
|
|
|
auto status = machine->initWithProtocols(component);
|
|
if (status.first != CompletionResult::Success) {
|
|
// All we can do at this point is diagnose and give each protocol an empty
|
|
// requirement signature.
|
|
for (const auto *otherProto : component) {
|
|
ctx.Diags.diagnose(otherProto->getLoc(),
|
|
diag::requirement_machine_completion_failed,
|
|
/*protocol=*/1,
|
|
unsigned(status.first));
|
|
|
|
auto rule = machine->getRuleAsStringForDiagnostics(status.second);
|
|
ctx.Diags.diagnose(otherProto->getLoc(),
|
|
diag::requirement_machine_completion_rule,
|
|
rule);
|
|
|
|
if (otherProto != proto) {
|
|
ctx.evaluator.cacheOutput(
|
|
RequirementSignatureRequestRQM{const_cast<ProtocolDecl *>(otherProto)},
|
|
RequirementSignature());
|
|
}
|
|
}
|
|
|
|
return RequirementSignature();
|
|
}
|
|
|
|
auto minimalRequirements = machine->computeMinimalProtocolRequirements();
|
|
|
|
bool debug = machine->getDebugOptions().contains(DebugFlags::Minimization);
|
|
|
|
// The requirement signature for the actual protocol that the result
|
|
// was kicked off with.
|
|
Optional<RequirementSignature> result;
|
|
|
|
if (debug) {
|
|
llvm::dbgs() << "\nRequirement signatures:\n";
|
|
}
|
|
|
|
for (const auto &pair : minimalRequirements) {
|
|
auto *otherProto = pair.first;
|
|
const auto &reqs = pair.second;
|
|
|
|
// Dump the result if requested.
|
|
if (debug) {
|
|
llvm::dbgs() << "- Protocol " << otherProto->getName() << ": ";
|
|
|
|
auto sig = GenericSignature::get(
|
|
otherProto->getGenericSignature().getGenericParams(),
|
|
reqs.getRequirements());
|
|
|
|
PrintOptions opts;
|
|
opts.ProtocolQualifiedDependentMemberTypes = true;
|
|
sig.print(llvm::dbgs(), opts);
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
// Don't call setRequirementSignature() on the original proto; the
|
|
// request evaluator will do it for us.
|
|
if (otherProto == proto)
|
|
result = reqs;
|
|
else {
|
|
auto temp = reqs;
|
|
ctx.evaluator.cacheOutput(
|
|
RequirementSignatureRequestRQM{const_cast<ProtocolDecl *>(otherProto)},
|
|
std::move(temp));
|
|
}
|
|
}
|
|
|
|
// Return the result for the specific protocol this request was kicked off on.
|
|
return *result;
|
|
}
|
|
|
|
/// Builds the top-level generic signature requirements for this rewrite system.
|
|
std::vector<Requirement>
|
|
RequirementMachine::computeMinimalGenericSignatureRequirements() {
|
|
assert(System.getProtocols().empty() &&
|
|
"Not a top-level generic signature rewrite system");
|
|
assert(!Params.empty() &&
|
|
"Not a from-source top-level generic signature rewrite system");
|
|
|
|
System.minimizeRewriteSystem();
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Minimized rewrite system:\n";
|
|
dump(llvm::dbgs());
|
|
}
|
|
|
|
auto rules = System.getMinimizedGenericSignatureRules();
|
|
return buildRequirementsFromRules(rules, getGenericParams());
|
|
}
|
|
|
|
GenericSignatureWithError
|
|
AbstractGenericSignatureRequestRQM::evaluate(
|
|
Evaluator &evaluator,
|
|
const GenericSignatureImpl *baseSignatureImpl,
|
|
SmallVector<GenericTypeParamType *, 2> addedParameters,
|
|
SmallVector<Requirement, 2> addedRequirements) const {
|
|
GenericSignature baseSignature = GenericSignature{baseSignatureImpl};
|
|
// If nothing is added to the base signature, just return the base
|
|
// signature.
|
|
if (addedParameters.empty() && addedRequirements.empty())
|
|
return GenericSignatureWithError(baseSignature, /*hadError=*/false);
|
|
|
|
ASTContext &ctx = addedParameters.empty()
|
|
? addedRequirements.front().getFirstType()->getASTContext()
|
|
: addedParameters.front()->getASTContext();
|
|
|
|
SmallVector<GenericTypeParamType *, 4> genericParams(
|
|
baseSignature.getGenericParams().begin(),
|
|
baseSignature.getGenericParams().end());
|
|
genericParams.append(
|
|
addedParameters.begin(),
|
|
addedParameters.end());
|
|
|
|
// If there are no added requirements, we can form the signature directly
|
|
// with the added parameters.
|
|
if (addedRequirements.empty()) {
|
|
auto result = GenericSignature::get(genericParams,
|
|
baseSignature.getRequirements());
|
|
return GenericSignatureWithError(result, /*hadError=*/false);
|
|
}
|
|
|
|
SmallVector<StructuralRequirement, 4> requirements;
|
|
for (auto req : baseSignature.getRequirements())
|
|
requirements.push_back({req, SourceLoc(), /*wasInferred=*/false});
|
|
|
|
// We need to create this errors vector to pass to
|
|
// desugarRequirement, but this request should never
|
|
// diagnose errors.
|
|
SmallVector<RequirementError, 4> errors;
|
|
|
|
// The requirements passed to this request may have been substituted,
|
|
// meaning the subject type might be a concrete type and not a type
|
|
// parameter.
|
|
//
|
|
// Also, the right hand side of conformance requirements here might be
|
|
// a protocol composition.
|
|
//
|
|
// Desugaring converts these kinds of requirements into "proper"
|
|
// requirements where the subject type is always a type parameter,
|
|
// which is what the RuleBuilder expects.
|
|
for (auto req : addedRequirements) {
|
|
SmallVector<Requirement, 2> reqs;
|
|
desugarRequirement(req, reqs, errors);
|
|
for (auto req : reqs)
|
|
requirements.push_back({req, SourceLoc(), /*wasInferred=*/false});
|
|
}
|
|
|
|
// Preprocess requirements to eliminate conformances on generic parameters
|
|
// which are made concrete.
|
|
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
|
|
SmallVector<StructuralRequirement, 4> contractedRequirements;
|
|
if (performConcreteContraction(requirements, contractedRequirements,
|
|
ctx.getRewriteContext().getDebugOptions()
|
|
.contains(DebugFlags::ConcreteContraction))) {
|
|
std::swap(contractedRequirements, requirements);
|
|
}
|
|
}
|
|
|
|
// Heap-allocate the requirement machine to save stack space.
|
|
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
|
|
ctx.getRewriteContext()));
|
|
|
|
auto status =
|
|
machine->initWithWrittenRequirements(genericParams, requirements);
|
|
machine->checkCompletionResult(status.first);
|
|
|
|
auto minimalRequirements =
|
|
machine->computeMinimalGenericSignatureRequirements();
|
|
|
|
auto result = GenericSignature::get(genericParams, minimalRequirements);
|
|
bool hadError = machine->hadError();
|
|
|
|
if (!hadError)
|
|
result.verify();
|
|
|
|
return GenericSignatureWithError(result, hadError);
|
|
}
|
|
|
|
GenericSignatureWithError
|
|
InferredGenericSignatureRequestRQM::evaluate(
|
|
Evaluator &evaluator,
|
|
ModuleDecl *parentModule,
|
|
const GenericSignatureImpl *parentSigImpl,
|
|
GenericParamList *genericParamList,
|
|
WhereClauseOwner whereClause,
|
|
SmallVector<Requirement, 2> addedRequirements,
|
|
SmallVector<TypeLoc, 2> inferenceSources,
|
|
bool allowConcreteGenericParams) const {
|
|
GenericSignature parentSig(parentSigImpl);
|
|
|
|
auto &ctx = parentModule->getASTContext();
|
|
|
|
SmallVector<GenericTypeParamType *, 4> genericParams(
|
|
parentSig.getGenericParams().begin(),
|
|
parentSig.getGenericParams().end());
|
|
|
|
SmallVector<StructuralRequirement, 4> requirements;
|
|
SmallVector<RequirementError, 4> errors;
|
|
for (const auto &req : parentSig.getRequirements())
|
|
requirements.push_back({req, SourceLoc(), /*wasInferred=*/false});
|
|
|
|
const auto visitRequirement = [&](const Requirement &req,
|
|
RequirementRepr *reqRepr) {
|
|
realizeRequirement(req, reqRepr, parentModule, requirements, errors);
|
|
return false;
|
|
};
|
|
|
|
SourceLoc loc;
|
|
if (genericParamList) {
|
|
loc = genericParamList->getLAngleLoc();
|
|
|
|
// Extensions never have a parent signature.
|
|
assert(genericParamList->getOuterParameters() == nullptr || !parentSig);
|
|
|
|
// Collect all outer generic parameter lists.
|
|
SmallVector<GenericParamList *, 2> gpLists;
|
|
for (auto *outerParamList = genericParamList;
|
|
outerParamList != nullptr;
|
|
outerParamList = outerParamList->getOuterParameters()) {
|
|
gpLists.push_back(outerParamList);
|
|
}
|
|
|
|
// The generic parameter lists must appear from innermost to outermost.
|
|
// We walk them backwards to order outer parameters before inner
|
|
// parameters.
|
|
for (auto *gpList : llvm::reverse(gpLists)) {
|
|
assert(gpList->size() > 0 &&
|
|
"Parsed an empty generic parameter list?");
|
|
|
|
for (auto *gpDecl : *gpList) {
|
|
auto *gpType = gpDecl->getDeclaredInterfaceType()
|
|
->castTo<GenericTypeParamType>();
|
|
genericParams.push_back(gpType);
|
|
|
|
realizeInheritedRequirements(gpDecl, gpType, parentModule,
|
|
requirements, errors);
|
|
}
|
|
|
|
auto *lookupDC = (*gpList->begin())->getDeclContext();
|
|
|
|
// Add the generic parameter list's 'where' clause to the builder.
|
|
//
|
|
// The only time generic parameter lists have a 'where' clause is
|
|
// in SIL mode; all other generic declarations have a free-standing
|
|
// 'where' clause, which will be visited below.
|
|
WhereClauseOwner(lookupDC, gpList)
|
|
.visitRequirements(TypeResolutionStage::Structural,
|
|
visitRequirement);
|
|
}
|
|
}
|
|
|
|
if (whereClause) {
|
|
if (loc.isInvalid())
|
|
loc = whereClause.getLoc();
|
|
|
|
std::move(whereClause).visitRequirements(
|
|
TypeResolutionStage::Structural,
|
|
visitRequirement);
|
|
}
|
|
|
|
// Perform requirement inference from function parameter and result
|
|
// types and such.
|
|
for (auto sourcePair : inferenceSources) {
|
|
auto *typeRepr = sourcePair.getTypeRepr();
|
|
auto loc = typeRepr ? typeRepr->getStartLoc() : SourceLoc();
|
|
|
|
inferRequirements(sourcePair.getType(), loc, parentModule, requirements);
|
|
}
|
|
|
|
// Finish by adding any remaining requirements. This is used to introduce
|
|
// inferred same-type requirements when building the generic signature of
|
|
// an extension whose extended type is a generic typealias.
|
|
for (const auto &req : addedRequirements)
|
|
requirements.push_back({req, SourceLoc(), /*wasInferred=*/true});
|
|
|
|
// Preprocess requirements to eliminate conformances on generic parameters
|
|
// which are made concrete.
|
|
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
|
|
SmallVector<StructuralRequirement, 4> contractedRequirements;
|
|
if (performConcreteContraction(requirements, contractedRequirements,
|
|
ctx.getRewriteContext().getDebugOptions()
|
|
.contains(DebugFlags::ConcreteContraction))) {
|
|
std::swap(contractedRequirements, requirements);
|
|
}
|
|
}
|
|
|
|
// Heap-allocate the requirement machine to save stack space.
|
|
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
|
|
ctx.getRewriteContext()));
|
|
|
|
auto status =
|
|
machine->initWithWrittenRequirements(genericParams, requirements);
|
|
if (status.first != CompletionResult::Success) {
|
|
ctx.Diags.diagnose(loc,
|
|
diag::requirement_machine_completion_failed,
|
|
/*protocol=*/0,
|
|
unsigned(status.first));
|
|
|
|
auto rule = machine->getRuleAsStringForDiagnostics(status.second);
|
|
ctx.Diags.diagnose(loc,
|
|
diag::requirement_machine_completion_rule,
|
|
rule);
|
|
|
|
auto result = GenericSignature::get(genericParams, {});
|
|
return GenericSignatureWithError(result, /*hadError=*/true);
|
|
}
|
|
|
|
auto minimalRequirements =
|
|
machine->computeMinimalGenericSignatureRequirements();
|
|
|
|
auto result = GenericSignature::get(genericParams, minimalRequirements);
|
|
bool hadError = machine->hadError();
|
|
|
|
if (ctx.LangOpts.RequirementMachineInferredSignatures ==
|
|
RequirementMachineMode::Enabled) {
|
|
hadError |= diagnoseRequirementErrors(ctx, errors, allowConcreteGenericParams);
|
|
}
|
|
|
|
// FIXME: Handle allowConcreteGenericParams
|
|
|
|
// Check invariants.
|
|
if (!hadError)
|
|
result.verify();
|
|
|
|
return GenericSignatureWithError(result, hadError);
|
|
}
|