mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
When defaulting to main-actor isolation, types that have synthesized conformances (e.g., for Equatable, Hashable, Codable) were getting nonisolated members by default. That would cause compiler errors because the conformances themselves defaulted to main-actor isolation when their types were. Be careful to only mark these members as 'nonisolated' when it makes sense, and leave them to get the isolation of their enclosing type when the conformance might have isolation. This ensures that one can use synthesis of these protocols along with default main-actor mode. There is a one-off trick here to force the synthesized CodingKeys to be nonisolated, because the CodingKey protocol requires Sendable. We'll separately consider whether to generalize this rule. More of rdar://150691429.
1796 lines
67 KiB
C++
1796 lines
67 KiB
C++
//===--- CodeSynthesis.cpp - Type Checking for Declarations ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2025 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeSynthesis.h"
|
|
|
|
#include "DerivedConformance/DerivedConformance.h"
|
|
#include "TypeCheckDecl.h"
|
|
#include "TypeCheckDistributed.h"
|
|
#include "TypeCheckObjC.h"
|
|
#include "TypeCheckType.h"
|
|
#include "TypeChecker.h"
|
|
#include "swift/AST/ASTMangler.h"
|
|
#include "swift/AST/ASTPrinter.h"
|
|
#include "swift/AST/AvailabilityInference.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/DistributedDecl.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/Initializer.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/SourceFile.h"
|
|
#include "swift/AST/TypeCheckRequests.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/Sema/ConstraintSystem.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
using namespace swift;
|
|
|
|
const bool IsImplicit = true;
|
|
|
|
Expr *swift::buildSelfReference(VarDecl *selfDecl,
|
|
SelfAccessorKind selfAccessorKind,
|
|
bool isLValue, Type convertTy) {
|
|
auto &ctx = selfDecl->getASTContext();
|
|
auto selfTy = selfDecl->getTypeInContext();
|
|
|
|
switch (selfAccessorKind) {
|
|
case SelfAccessorKind::Peer:
|
|
assert(!convertTy || convertTy->isEqual(selfTy));
|
|
return new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(), IsImplicit,
|
|
AccessSemantics::Ordinary,
|
|
isLValue ? LValueType::get(selfTy) : selfTy);
|
|
|
|
case SelfAccessorKind::Super: {
|
|
assert(!isLValue);
|
|
|
|
// Get the superclass type of self, looking through a metatype if needed.
|
|
auto isMetatype = false;
|
|
if (auto *metaTy = selfTy->getAs<MetatypeType>()) {
|
|
isMetatype = true;
|
|
selfTy = metaTy->getInstanceType();
|
|
}
|
|
selfTy = selfTy->getSuperclass();
|
|
if (!selfTy) {
|
|
// Error recovery path. We end up here if getSuperclassDecl() succeeds
|
|
// but getSuperclass() fails (because, for instance, a generic parameter
|
|
// of a generic nominal type cannot be resolved).
|
|
selfTy = ErrorType::get(ctx);
|
|
}
|
|
if (isMetatype)
|
|
selfTy = MetatypeType::get(selfTy);
|
|
|
|
auto *superRef =
|
|
new (ctx) SuperRefExpr(selfDecl, SourceLoc(), IsImplicit, selfTy);
|
|
|
|
// If no conversion type was specified, or we're already at that type, we're
|
|
// done.
|
|
if (!convertTy || convertTy->isEqual(selfTy) || selfTy->is<ErrorType>())
|
|
return superRef;
|
|
|
|
// Insert the appropriate expr to handle the upcast.
|
|
if (isMetatype) {
|
|
assert(convertTy->castTo<MetatypeType>()
|
|
->getInstanceType()
|
|
->isExactSuperclassOf(selfTy->getMetatypeInstanceType()));
|
|
return new (ctx) MetatypeConversionExpr(superRef, convertTy);
|
|
} else {
|
|
assert(convertTy->isExactSuperclassOf(selfTy));
|
|
return new (ctx) DerivedToBaseExpr(superRef, convertTy);
|
|
}
|
|
}
|
|
}
|
|
llvm_unreachable("bad self access kind");
|
|
}
|
|
|
|
Argument swift::buildSelfArgument(VarDecl *selfDecl,
|
|
SelfAccessorKind selfAccessorKind,
|
|
bool isMutable) {
|
|
auto &ctx = selfDecl->getASTContext();
|
|
auto *selfRef = buildSelfReference(selfDecl, selfAccessorKind, isMutable);
|
|
return isMutable ? Argument::implicitInOut(ctx, selfRef)
|
|
: Argument::unlabeled(selfRef);
|
|
}
|
|
|
|
/// Build an argument list that forwards references to the specified parameter
|
|
/// list.
|
|
ArgumentList *swift::buildForwardingArgumentList(ArrayRef<ParamDecl *> params,
|
|
ASTContext &ctx) {
|
|
SmallVector<Argument, 4> args;
|
|
for (auto *param : params) {
|
|
auto type = param->getTypeInContext();
|
|
|
|
Expr *ref = new (ctx) DeclRefExpr(param, DeclNameLoc(), /*implicit*/ true);
|
|
ref->setType(param->isInOut() ? LValueType::get(type) : type);
|
|
|
|
if (param->isInOut()) {
|
|
ref = new (ctx) InOutExpr(SourceLoc(), ref, type, /*isImplicit=*/true);
|
|
} else if (param->isVariadic()) {
|
|
assert(ref->getType()->isEqual(type));
|
|
ref = VarargExpansionExpr::createParamExpansion(ctx, ref);
|
|
}
|
|
args.emplace_back(SourceLoc(), param->getArgumentName(), ref);
|
|
}
|
|
return ArgumentList::createImplicit(ctx, args);
|
|
}
|
|
|
|
static void maybeAddMemberwiseDefaultArg(ParamDecl *arg, VarDecl *var,
|
|
ASTContext &ctx) {
|
|
// First and foremost, if this is a constant don't bother.
|
|
if (var->isLet())
|
|
return;
|
|
|
|
// If there's no parent pattern there's not enough structure to even perform
|
|
// this analysis. Just bail.
|
|
if (!var->getParentPattern())
|
|
return;
|
|
|
|
// We can only provide default values for patterns binding a single variable.
|
|
// i.e. var (a, b) = getSomeTuple() is not allowed.
|
|
if (!var->getParentPattern()->getSingleVar())
|
|
return;
|
|
|
|
// Whether we have explicit initialization.
|
|
bool isExplicitlyInitialized = false;
|
|
if (auto pbd = var->getParentPatternBinding()) {
|
|
const auto i = pbd->getPatternEntryIndexForVarDecl(var);
|
|
isExplicitlyInitialized = pbd->isExplicitlyInitialized(i);
|
|
}
|
|
|
|
// Whether we can default-initialize this property.
|
|
auto binding = var->getParentPatternBinding();
|
|
bool isDefaultInitializable =
|
|
var->getAttrs().hasAttribute<LazyAttr>() ||
|
|
(binding && binding->isDefaultInitializable());
|
|
|
|
// If this is neither explicitly initialized nor
|
|
// default-initializable, don't add anything.
|
|
if (!isExplicitlyInitialized && !isDefaultInitializable)
|
|
return;
|
|
|
|
// We can add a default value now.
|
|
|
|
// If the variable has a type T? and no initial value, return a nil literal
|
|
// default arg. All lazy variables return a nil literal as well. *Note* that
|
|
// the type will always be a sugared T? because we don't default init an
|
|
// explicit Optional<T>.
|
|
bool isNilInitialized =
|
|
var->getAttrs().hasAttribute<LazyAttr>() ||
|
|
(!isExplicitlyInitialized && isDefaultInitializable &&
|
|
var->getValueInterfaceType()->isOptional() &&
|
|
(var->getAttachedPropertyWrappers().empty() ||
|
|
var->isPropertyMemberwiseInitializedWithWrappedType()));
|
|
if (isNilInitialized) {
|
|
arg->setDefaultArgumentKind(DefaultArgumentKind::NilLiteral);
|
|
return;
|
|
}
|
|
|
|
// If there's a backing storage property, the memberwise initializer
|
|
// will be in terms of that.
|
|
VarDecl *backingStorageVar = var->getPropertyWrapperBackingProperty();
|
|
|
|
// Set the default value to the variable. When we emit this in silgen
|
|
// we're going to call the variable's initializer expression.
|
|
arg->setStoredProperty(backingStorageVar ? backingStorageVar : var);
|
|
arg->setDefaultArgumentKind(DefaultArgumentKind::StoredProperty);
|
|
}
|
|
|
|
/// Describes the kind of implicit constructor that will be
|
|
/// generated.
|
|
enum class ImplicitConstructorKind {
|
|
/// The default constructor, which default-initializes each
|
|
/// of the instance variables.
|
|
Default,
|
|
/// The default constructor of a distributed actor.
|
|
/// Similarly to a Default one it initializes each of the instance variables,
|
|
/// however it also implicitly gains an DistributedActorSystem parameter.
|
|
DefaultDistributedActor,
|
|
/// The memberwise constructor, which initializes each of
|
|
/// the instance variables from a parameter of the same type and
|
|
/// name.
|
|
Memberwise,
|
|
};
|
|
|
|
static ParamDecl *createMemberwiseInitParameter(DeclContext *DC,
|
|
SourceLoc paramLoc,
|
|
VarDecl *var) {
|
|
auto &ctx = var->getASTContext();
|
|
auto varInterfaceType = var->getValueInterfaceType();
|
|
bool isAutoClosure = false;
|
|
|
|
if (var->getAttrs().hasAttribute<LazyAttr>()) {
|
|
// If var is a lazy property, its value is provided for the underlying
|
|
// storage. We thus take an optional of the property's type. We only
|
|
// need to do this because the implicit initializer is added before all
|
|
// the properties are type checked. Perhaps init() synth should be
|
|
// moved later.
|
|
varInterfaceType = OptionalType::get(varInterfaceType);
|
|
} else if (Type backingPropertyType =
|
|
var->getPropertyWrapperBackingPropertyType()) {
|
|
// For a property that has a wrapper, writing the initializer
|
|
// with an '=' implies that the memberwise initializer should also
|
|
// accept a value of the original property type. Otherwise, the
|
|
// memberwise initializer will be in terms of the backing storage
|
|
// type.
|
|
if (var->isPropertyMemberwiseInitializedWithWrappedType()) {
|
|
varInterfaceType = var->getPropertyWrapperInitValueInterfaceType();
|
|
|
|
auto initInfo = var->getPropertyWrapperInitializerInfo();
|
|
isAutoClosure = initInfo.getWrappedValuePlaceholder()->isAutoClosure();
|
|
} else {
|
|
varInterfaceType = backingPropertyType;
|
|
}
|
|
}
|
|
|
|
Type resultBuilderType = var->getResultBuilderType();
|
|
if (resultBuilderType) {
|
|
// If the variable's type is structurally a function type, use that
|
|
// type. Otherwise, form a non-escaping function type for the function
|
|
// parameter.
|
|
bool isStructuralFunctionType =
|
|
varInterfaceType->lookThroughAllOptionalTypes()->is<AnyFunctionType>();
|
|
if (!isStructuralFunctionType) {
|
|
auto extInfo = ASTExtInfoBuilder().withNoEscape().build();
|
|
varInterfaceType = FunctionType::get({}, varInterfaceType, extInfo);
|
|
}
|
|
}
|
|
|
|
// Create the parameter.
|
|
auto *arg = new (ctx) ParamDecl(SourceLoc(), paramLoc, var->getName(),
|
|
paramLoc, var->getName(), DC);
|
|
arg->setSpecifier(ParamSpecifier::Default);
|
|
arg->setInterfaceType(varInterfaceType);
|
|
arg->setImplicit();
|
|
arg->setAutoClosure(isAutoClosure);
|
|
|
|
// Don't allow the parameter to accept temporary pointer conversions.
|
|
arg->setNonEphemeralIfPossible();
|
|
|
|
// Attach a result builder attribute if needed.
|
|
if (resultBuilderType) {
|
|
auto typeExpr = TypeExpr::createImplicit(resultBuilderType, ctx);
|
|
auto attr =
|
|
CustomAttr::create(ctx, SourceLoc(), typeExpr, /*implicit=*/true);
|
|
arg->getAttrs().add(attr);
|
|
}
|
|
|
|
maybeAddMemberwiseDefaultArg(arg, var, ctx);
|
|
|
|
return arg;
|
|
}
|
|
|
|
/// Create an implicit struct or class constructor.
|
|
///
|
|
/// \param decl The struct or class for which a constructor will be created.
|
|
/// \param ICK The kind of implicit constructor to create.
|
|
///
|
|
/// \returns The newly-created constructor, which has already been type-checked
|
|
/// (but has not been added to the containing struct or class).
|
|
static ConstructorDecl *createImplicitConstructor(NominalTypeDecl *decl,
|
|
ImplicitConstructorKind ICK,
|
|
ASTContext &ctx) {
|
|
assert(!decl->hasClangNode());
|
|
|
|
SourceLoc Loc = decl->getLoc();
|
|
auto accessLevel = AccessLevel::Internal;
|
|
|
|
// Determine the parameter type of the implicit constructor.
|
|
SmallVector<ParamDecl*, 8> params;
|
|
SmallVector<DefaultArgumentInitializer *, 8> defaultInits;
|
|
if (ICK == ImplicitConstructorKind::Memberwise) {
|
|
assert(isa<StructDecl>(decl) && "Only struct have memberwise constructor");
|
|
|
|
for (auto var : decl->getMemberwiseInitProperties()) {
|
|
accessLevel = std::min(accessLevel, var->getFormalAccess());
|
|
params.push_back(createMemberwiseInitParameter(decl, Loc, var));
|
|
}
|
|
} else if (ICK == ImplicitConstructorKind::DefaultDistributedActor) {
|
|
auto classDecl = dyn_cast<ClassDecl>(decl);
|
|
assert(classDecl && decl->isDistributedActor() &&
|
|
"Only 'distributed actor' type can gain implicit distributed actor init");
|
|
|
|
/// Add 'system' parameter to default init of distributed actors.
|
|
if (swift::ensureDistributedModuleLoaded(decl)) {
|
|
// copy access level of distributed actor init from the nominal decl
|
|
accessLevel = decl->getEffectiveAccess();
|
|
auto systemTy = getDistributedActorSystemType(classDecl);
|
|
|
|
// Create the parameter. API name is actorSystem, local name is system
|
|
auto *arg = new (ctx) ParamDecl(SourceLoc(), Loc, ctx.Id_actorSystem, Loc,
|
|
ctx.Id_system, decl);
|
|
arg->setSpecifier(ParamSpecifier::Default);
|
|
arg->setInterfaceType(systemTy);
|
|
arg->setImplicit();
|
|
|
|
params.push_back(arg);
|
|
}
|
|
}
|
|
|
|
auto paramList = ParameterList::create(ctx, params);
|
|
|
|
// Create the constructor.
|
|
DeclName name(ctx, DeclBaseName::createConstructor(), paramList);
|
|
auto *ctor = new (ctx) ConstructorDecl(
|
|
name, Loc,
|
|
/*Failable=*/false, /*FailabilityLoc=*/SourceLoc(),
|
|
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
|
|
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
|
|
/*ThrownType=*/TypeLoc(), paramList, /*GenericParams=*/nullptr, decl);
|
|
|
|
// Mark implicit.
|
|
ctor->setImplicit();
|
|
ctor->setSynthesized();
|
|
ctor->setAccess(accessLevel);
|
|
|
|
if (ctx.LangOpts.hasFeature(Feature::IsolatedDefaultValues) &&
|
|
!decl->isActor()) {
|
|
// If any of the type's actor-isolated properties:
|
|
// 1. Have non-Sendable type, or
|
|
// 2. Have an isolated initial value
|
|
// then the initializer must also be actor-isolated. If all
|
|
// isolated properties have Sendable type and a nonisolated
|
|
// default value, then the initializer can be nonisolated.
|
|
//
|
|
// These rules only apply for global actor isolation, because actor
|
|
// initializers apply Sendable checking to arguments at the call-site,
|
|
// and actor initializers do not run on the actor, so initial values
|
|
// cannot be actor-instance-isolated.
|
|
ActorIsolation existingIsolation = getActorIsolation(decl);
|
|
VarDecl *previousVar = nullptr;
|
|
bool hasError = false;
|
|
|
|
// FIXME: Calling `getAllMembers` here causes issues for conformance
|
|
// synthesis to RawRepresentable and friends. Instead, iterate over
|
|
// both the stored properties and the init accessor properties, as
|
|
// those can participate in implicit initializers.
|
|
|
|
auto stored = decl->getStoredProperties();
|
|
auto initAccessor = decl->getInitAccessorProperties();
|
|
|
|
auto shouldAddNonisolated = [&](ArrayRef<VarDecl *> properties) {
|
|
if (hasError)
|
|
return false;
|
|
|
|
bool addNonisolated = true;
|
|
for (auto *var : properties) {
|
|
auto *pbd = var->getParentPatternBinding();
|
|
if (!pbd)
|
|
continue;
|
|
|
|
auto i = pbd->getPatternEntryIndexForVarDecl(var);
|
|
if (pbd->isInitializerSubsumed(i))
|
|
continue;
|
|
|
|
ActorIsolation initIsolation;
|
|
if (var->hasInitAccessor()) {
|
|
// Init accessors share the actor isolation of the property;
|
|
// the accessor body can call anything in that isolation domain,
|
|
// and we don't attempt to infer when the isolation isn't
|
|
// necessary.
|
|
initIsolation = getActorIsolation(var);
|
|
} else {
|
|
initIsolation = var->getInitializerIsolation();
|
|
}
|
|
|
|
auto type = var->getTypeInContext();
|
|
auto isolation = getActorIsolation(var);
|
|
if (isolation.isGlobalActor()) {
|
|
if (!type->isSendableType() ||
|
|
initIsolation.isGlobalActor()) {
|
|
// If different isolated stored properties require different
|
|
// global actors, it is impossible to initialize this type.
|
|
if (existingIsolation != isolation) {
|
|
ctx.Diags.diagnose(decl->getLoc(),
|
|
diag::conflicting_stored_property_isolation,
|
|
ICK == ImplicitConstructorKind::Memberwise,
|
|
decl->getDeclaredType(), existingIsolation, isolation)
|
|
.warnUntilSwiftVersion(6);
|
|
if (previousVar) {
|
|
previousVar->diagnose(diag::property_requires_actor,
|
|
previousVar, existingIsolation);
|
|
}
|
|
var->diagnose(diag::property_requires_actor, var, isolation);
|
|
hasError = true;
|
|
return false;
|
|
}
|
|
|
|
existingIsolation = isolation;
|
|
previousVar = var;
|
|
addNonisolated = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return addNonisolated;
|
|
};
|
|
|
|
if (shouldAddNonisolated(stored) &&
|
|
shouldAddNonisolated(initAccessor)) {
|
|
addNonIsolatedToSynthesized(decl, ctor);
|
|
}
|
|
}
|
|
|
|
if (ICK == ImplicitConstructorKind::Memberwise) {
|
|
ctor->setIsMemberwiseInitializer();
|
|
|
|
if (!ctx.LangOpts.hasFeature(Feature::IsolatedDefaultValues)) {
|
|
addNonIsolatedToSynthesized(decl, ctor);
|
|
}
|
|
}
|
|
|
|
// If we are defining a default initializer for a class that has a superclass,
|
|
// it overrides the default initializer of its superclass. Add an implicit
|
|
// 'override' attribute.
|
|
if (auto classDecl = dyn_cast<ClassDecl>(decl)) {
|
|
if (classDecl->getSuperclass())
|
|
ctor->getAttrs().add(new (ctx) OverrideAttr(/*IsImplicit=*/true));
|
|
}
|
|
|
|
return ctor;
|
|
}
|
|
|
|
/// Create a stub body that emits a fatal error message.
|
|
static std::pair<BraceStmt *, bool>
|
|
synthesizeStubBody(AbstractFunctionDecl *fn, void *) {
|
|
auto *ctor = cast<ConstructorDecl>(fn);
|
|
auto &ctx = ctor->getASTContext();
|
|
|
|
auto unimplementedInitDecl = ctx.getUnimplementedInitializer();
|
|
auto classDecl = ctor->getDeclContext()->getSelfClassDecl();
|
|
if (!unimplementedInitDecl) {
|
|
ctx.Diags.diagnose(classDecl->getLoc(),
|
|
diag::missing_unimplemented_init_runtime);
|
|
return { nullptr, true };
|
|
}
|
|
|
|
auto *staticStringDecl = ctx.getStaticStringDecl();
|
|
auto staticStringType = staticStringDecl->getDeclaredInterfaceType();
|
|
auto staticStringInit = ctx.getStringBuiltinInitDecl(staticStringDecl);
|
|
|
|
auto *uintDecl = ctx.getUIntDecl();
|
|
auto uintType = uintDecl->getDeclaredInterfaceType();
|
|
auto uintInit = ctx.getIntBuiltinInitDecl(uintDecl);
|
|
|
|
// Create a call to Swift._unimplementedInitializer
|
|
auto loc = classDecl->getLoc();
|
|
Expr *ref = new (ctx) DeclRefExpr(unimplementedInitDecl,
|
|
DeclNameLoc(loc),
|
|
/*Implicit=*/true);
|
|
ref->setType(unimplementedInitDecl->getInterfaceType()
|
|
->removeArgumentLabels(1));
|
|
|
|
llvm::SmallString<64> buffer;
|
|
StringRef fullClassName = ctx.AllocateCopy(
|
|
(classDecl->getModuleContext()->getName().str() +
|
|
"." +
|
|
classDecl->getName().str()).toStringRef(buffer));
|
|
|
|
auto *className = new (ctx) StringLiteralExpr(fullClassName, loc,
|
|
/*Implicit=*/true);
|
|
className->setBuiltinInitializer(staticStringInit);
|
|
assert(isa<ConstructorDecl>(className->getBuiltinInitializer().getDecl()));
|
|
className->setType(staticStringType);
|
|
|
|
auto *initName = new (ctx) MagicIdentifierLiteralExpr(
|
|
MagicIdentifierLiteralExpr::Function, loc, /*Implicit=*/true);
|
|
initName->setType(staticStringType);
|
|
initName->setBuiltinInitializer(staticStringInit);
|
|
|
|
auto *file = new (ctx) MagicIdentifierLiteralExpr(
|
|
MagicIdentifierLiteralExpr::FileID, loc, /*Implicit=*/true);
|
|
file->setType(staticStringType);
|
|
file->setBuiltinInitializer(staticStringInit);
|
|
|
|
auto *line = new (ctx) MagicIdentifierLiteralExpr(
|
|
MagicIdentifierLiteralExpr::Line, loc, /*Implicit=*/true);
|
|
line->setType(uintType);
|
|
line->setBuiltinInitializer(uintInit);
|
|
|
|
auto *column = new (ctx) MagicIdentifierLiteralExpr(
|
|
MagicIdentifierLiteralExpr::Column, loc, /*Implicit=*/true);
|
|
column->setType(uintType);
|
|
column->setBuiltinInitializer(uintInit);
|
|
|
|
auto *argList = ArgumentList::forImplicitUnlabeled(
|
|
ctx, {className, initName, file, line, column});
|
|
auto *call = CallExpr::createImplicit(ctx, ref, argList);
|
|
call->setType(ctx.getNeverType());
|
|
call->setThrows(nullptr);
|
|
|
|
SmallVector<ASTNode, 2> stmts;
|
|
stmts.push_back(call);
|
|
stmts.push_back(ReturnStmt::createImplicit(ctx, /*Result=*/nullptr));
|
|
return { BraceStmt::create(ctx, SourceLoc(), stmts, SourceLoc(),
|
|
/*implicit=*/true),
|
|
/*isTypeChecked=*/true };
|
|
}
|
|
|
|
/// Clone the base class initializer's generic parameter list, but change the
|
|
/// depth of the generic parameters to be one greater than the depth of the
|
|
/// subclass.
|
|
static GenericParamList *
|
|
createDesignatedInitOverrideGenericParams(ASTContext &ctx,
|
|
ClassDecl *classDecl,
|
|
ConstructorDecl *superclassCtor) {
|
|
auto *genericParams = superclassCtor->getGenericParams();
|
|
|
|
// If genericParams is non-null, the base class initializer has its own
|
|
// generic parameters. Otherwise, it is non-generic with a contextual
|
|
// 'where' clause.
|
|
if (genericParams == nullptr)
|
|
return nullptr;
|
|
|
|
unsigned depth = classDecl->getGenericSignature().getNextDepth();
|
|
|
|
SmallVector<GenericTypeParamDecl *, 4> newParams;
|
|
for (auto *param : genericParams->getParams()) {
|
|
auto *newParam = GenericTypeParamDecl::createImplicit(
|
|
classDecl, param->getName(), depth, param->getIndex(),
|
|
param->getParamKind());
|
|
newParams.push_back(newParam);
|
|
}
|
|
|
|
return GenericParamList::create(ctx, SourceLoc(),
|
|
newParams, SourceLoc(),
|
|
ArrayRef<RequirementRepr>(), SourceLoc());
|
|
}
|
|
|
|
/// True if the type has an opaque clang implementation, meaning it is imported
|
|
/// and doesn't have an \c \@objcImplementation extension.
|
|
static bool hasClangImplementation(const NominalTypeDecl *decl) {
|
|
return decl->hasClangNode() && !decl->getObjCImplementationDecl();
|
|
}
|
|
|
|
/// True if \p member is in the main body of \p ty, where the "main body" is
|
|
/// either the type itself (the usual case) or its \c \@objcImplementation
|
|
/// extension (if one is present).
|
|
static bool isInMainBody(ValueDecl *member, NominalTypeDecl *ty) {
|
|
return member->getDeclContext() ==
|
|
ty->getImplementationContext()->getAsGenericContext();
|
|
}
|
|
|
|
static void
|
|
configureInheritedDesignatedInitAttributes(ClassDecl *classDecl,
|
|
ConstructorDecl *ctor,
|
|
ConstructorDecl *superclassCtor,
|
|
ASTContext &ctx) {
|
|
assert(isInMainBody(ctor, classDecl));
|
|
|
|
AccessLevel access = classDecl->getFormalAccess();
|
|
access = std::max(access, AccessLevel::Internal);
|
|
access = std::min(access, superclassCtor->getFormalAccess());
|
|
|
|
ctor->setAccess(access);
|
|
|
|
AccessScope superclassInliningAccessScope =
|
|
superclassCtor->getFormalAccessScope(/*useDC*/nullptr,
|
|
/*usableFromInlineAsPublic=*/true);
|
|
|
|
if (superclassInliningAccessScope.isPublic()) {
|
|
if (superclassCtor->getAttrs().hasAttribute<InlinableAttr>()) {
|
|
// Inherit the @inlinable attribute.
|
|
auto *clonedAttr = new (ctx) InlinableAttr(/*implicit=*/true);
|
|
ctor->getAttrs().add(clonedAttr);
|
|
|
|
} else if (access == AccessLevel::Internal && !superclassCtor->isDynamic()){
|
|
// Inherit the @usableFromInline attribute.
|
|
auto *clonedAttr = new (ctx) UsableFromInlineAttr(/*implicit=*/true);
|
|
ctor->getAttrs().add(clonedAttr);
|
|
}
|
|
}
|
|
|
|
// Inherit the @discardableResult attribute.
|
|
if (superclassCtor->getAttrs().hasAttribute<DiscardableResultAttr>()) {
|
|
auto *clonedAttr = new (ctx) DiscardableResultAttr(/*implicit=*/true);
|
|
ctor->getAttrs().add(clonedAttr);
|
|
}
|
|
|
|
// Inherit the rethrows attribute.
|
|
if (superclassCtor->getAttrs().hasAttribute<RethrowsAttr>()) {
|
|
auto *clonedAttr = new (ctx) RethrowsAttr(/*implicit=*/true);
|
|
ctor->getAttrs().add(clonedAttr);
|
|
}
|
|
|
|
// If the superclass has its own availability, make sure the synthesized
|
|
// constructor is only as available as its superclass's constructor.
|
|
if (superclassCtor->getAttrs().hasAttribute<AvailableAttr>()) {
|
|
SmallVector<const Decl *, 2> asAvailableAs;
|
|
|
|
// We don't have to look at enclosing contexts of the superclass constructor,
|
|
// because designated initializers must always be defined in the superclass
|
|
// body, and we already enforce that a superclass is at least as available as
|
|
// a subclass.
|
|
asAvailableAs.push_back(superclassCtor);
|
|
if (auto *parentDecl = classDecl->getInnermostDeclWithAvailability()) {
|
|
asAvailableAs.push_back(parentDecl);
|
|
}
|
|
AvailabilityInference::applyInferredAvailableAttrs(ctor, asAvailableAs);
|
|
}
|
|
|
|
// Wire up the overrides.
|
|
ctor->setOverriddenDecl(superclassCtor);
|
|
|
|
if (superclassCtor->isRequired())
|
|
ctor->getAttrs().add(new (ctx) RequiredAttr(/*IsImplicit=*/false));
|
|
else
|
|
ctor->getAttrs().add(new (ctx) OverrideAttr(/*IsImplicit=*/false));
|
|
|
|
// If the superclass constructor is @objc but the subclass constructor is
|
|
// not representable in Objective-C, add @nonobjc implicitly.
|
|
std::optional<ForeignAsyncConvention> asyncConvention;
|
|
std::optional<ForeignErrorConvention> errorConvention;
|
|
if (superclassCtor->isObjC() &&
|
|
!isRepresentableInLanguage(ctor, ObjCReason::MemberOfObjCSubclass,
|
|
asyncConvention, errorConvention))
|
|
ctor->getAttrs().add(new (ctx) NonObjCAttr(/*isImplicit=*/true));
|
|
}
|
|
|
|
static std::pair<BraceStmt *, bool>
|
|
synthesizeDesignatedInitOverride(AbstractFunctionDecl *fn, void *context) {
|
|
auto *ctor = cast<ConstructorDecl>(fn);
|
|
auto &ctx = ctor->getASTContext();
|
|
|
|
auto *superclassCtor = (ConstructorDecl *) context;
|
|
|
|
// Reference to super.init.
|
|
auto *selfDecl = ctor->getImplicitSelfDecl();
|
|
auto superArg = buildSelfArgument(selfDecl, SelfAccessorKind::Super,
|
|
/*isMutable*/ false);
|
|
|
|
SubstitutionMap subs;
|
|
if (auto *genericEnv = fn->getGenericEnvironment())
|
|
subs = genericEnv->getForwardingSubstitutionMap();
|
|
subs = SubstitutionMap::getOverrideSubstitutions(superclassCtor, fn)
|
|
.subst(subs);
|
|
ConcreteDeclRef ctorRef(superclassCtor, subs);
|
|
|
|
auto type = superclassCtor->getInitializerInterfaceType();
|
|
if (auto *genericFnType = type->getAs<GenericFunctionType>())
|
|
type = genericFnType->substGenericArgs(subs);
|
|
auto *ctorRefExpr =
|
|
new (ctx) OtherConstructorDeclRefExpr(ctorRef, DeclNameLoc(),
|
|
IsImplicit, type);
|
|
|
|
if (auto *funcTy = type->getAs<FunctionType>())
|
|
type = funcTy->getResult();
|
|
auto *superclassCtorRefExpr =
|
|
DotSyntaxCallExpr::create(ctx, ctorRefExpr, SourceLoc(), superArg, type);
|
|
superclassCtorRefExpr->setThrows(nullptr);
|
|
|
|
auto *bodyParams = ctor->getParameters();
|
|
auto *ctorArgs = buildForwardingArgumentList(bodyParams->getArray(), ctx);
|
|
auto *superclassCallExpr =
|
|
CallExpr::createImplicit(ctx, superclassCtorRefExpr, ctorArgs);
|
|
|
|
if (auto *funcTy = type->getAs<FunctionType>())
|
|
type = funcTy->getResult();
|
|
superclassCallExpr->setType(type);
|
|
if (auto thrownInterfaceType = ctor->getEffectiveThrownErrorType()) {
|
|
Type superThrownType = ctor->mapTypeIntoContext(*thrownInterfaceType);
|
|
superclassCallExpr->setThrows(
|
|
ThrownErrorDestination::forMatchingContextType(superThrownType));
|
|
} else {
|
|
superclassCallExpr->setThrows(nullptr);
|
|
}
|
|
|
|
Expr *expr = superclassCallExpr;
|
|
|
|
if (superclassCtor->hasAsync()) {
|
|
expr = new (ctx) AwaitExpr(SourceLoc(), expr, type, /*implicit=*/true);
|
|
}
|
|
if (superclassCtor->hasThrows()) {
|
|
expr = new (ctx) TryExpr(SourceLoc(), expr, type, /*implicit=*/true);
|
|
}
|
|
|
|
auto *rebindSelfExpr =
|
|
new (ctx) RebindSelfInConstructorExpr(expr, selfDecl);
|
|
|
|
SmallVector<ASTNode, 2> stmts;
|
|
stmts.push_back(rebindSelfExpr);
|
|
stmts.push_back(ReturnStmt::createImplicit(ctx, /*Result=*/nullptr));
|
|
return { BraceStmt::create(ctx, SourceLoc(), stmts, SourceLoc(),
|
|
/*implicit=*/true),
|
|
/*isTypeChecked=*/true };
|
|
}
|
|
|
|
/// The kind of designated initializer to synthesize.
|
|
enum class DesignatedInitKind {
|
|
/// A stub initializer, which is not visible to name lookup and
|
|
/// merely aborts at runtime.
|
|
Stub,
|
|
|
|
/// An initializer that simply chains to the corresponding
|
|
/// superclass initializer.
|
|
Chaining
|
|
};
|
|
|
|
/// Create a new initializer that overrides the given designated
|
|
/// initializer.
|
|
///
|
|
/// \param classDecl The subclass in which the new initializer will
|
|
/// be declared.
|
|
///
|
|
/// \param superclassCtor The superclass initializer for which this
|
|
/// routine will create an override.
|
|
///
|
|
/// \param kind The kind of initializer to synthesize.
|
|
///
|
|
/// \returns the newly-created initializer that overrides \p
|
|
/// superclassCtor.
|
|
static ConstructorDecl *
|
|
createDesignatedInitOverride(ClassDecl *classDecl,
|
|
ConstructorDecl *superclassCtor,
|
|
DesignatedInitKind kind,
|
|
ASTContext &ctx) {
|
|
// Lookup will sometimes give us initializers that are from the ancestors of
|
|
// our immediate superclass. So, from the superclass constructor, we look
|
|
// one level up to the enclosing type context which will either be a class
|
|
// or an extension. We can use the type declared in that context to check
|
|
// if it's our immediate superclass and give up if we didn't.
|
|
//
|
|
// FIXME: Remove this when lookup of initializers becomes restricted to our
|
|
// immediate superclass.
|
|
auto *superclassDecl = superclassCtor->getDeclContext()->getSelfClassDecl();
|
|
if (classDecl->getSuperclassDecl() != superclassDecl)
|
|
return nullptr;
|
|
|
|
auto *genericParams = createDesignatedInitOverrideGenericParams(
|
|
ctx, classDecl, superclassCtor);
|
|
|
|
auto superclassCtorSig = superclassCtor->getGenericSignature();
|
|
|
|
// Compute a generic signature for the initializer, and a substitution map
|
|
// from the superclass initializer signature to the initializer generic
|
|
// signature.
|
|
auto subMap = SubstitutionMap::getOverrideSubstitutions(
|
|
superclassDecl, classDecl, superclassCtorSig, genericParams);
|
|
auto genericSig = ctx.getOverrideGenericSignature(
|
|
superclassDecl, classDecl, superclassCtorSig, genericParams);
|
|
|
|
assert(!subMap.getRecursiveProperties().hasArchetype());
|
|
|
|
if (superclassCtorSig) {
|
|
auto *genericEnv = genericSig.getGenericEnvironment();
|
|
|
|
// If the base class initializer has a 'where' clause, it might impose
|
|
// requirements on the base class's own generic parameters that are not
|
|
// satisfied by the derived class. In this case, we don't want to inherit
|
|
// this initializer; there's no way to call it on the derived class.
|
|
auto checkResult = checkRequirements(
|
|
superclassCtorSig.getRequirements(),
|
|
[&](Type type) -> Type {
|
|
auto substType = type.subst(subMap);
|
|
return GenericEnvironment::mapTypeIntoContext(genericEnv, substType);
|
|
});
|
|
if (checkResult != CheckRequirementsResult::Success)
|
|
return nullptr;
|
|
}
|
|
|
|
// Create the initializer parameter list by cloning the superclass initializer
|
|
// parameter list and applying the substitution map.
|
|
OptionSet<ParameterList::CloneFlags> options
|
|
= (ParameterList::Implicit |
|
|
ParameterList::Inherited |
|
|
ParameterList::NamedArguments);
|
|
auto *superclassParams = superclassCtor->getParameters();
|
|
auto *bodyParams = superclassParams->clone(ctx, options);
|
|
|
|
// If the superclass is generic, we need to map the superclass constructor's
|
|
// parameter types into the generic context of our class.
|
|
//
|
|
// We might have to apply substitutions, if for example we have a declaration
|
|
// like 'class A : B<Int>'.
|
|
for (unsigned idx : range(superclassParams->size())) {
|
|
auto *superclassParam = superclassParams->get(idx);
|
|
auto *bodyParam = bodyParams->get(idx);
|
|
|
|
auto paramTy = superclassParam->getInterfaceType();
|
|
auto substTy = paramTy.subst(subMap);
|
|
|
|
bodyParam->setInterfaceType(substTy);
|
|
}
|
|
|
|
Type thrownType;
|
|
if (auto superThrownType = superclassCtor->getThrownInterfaceType()) {
|
|
thrownType = superThrownType.subst(subMap);
|
|
}
|
|
|
|
// Create the initializer declaration, inheriting the name,
|
|
// failability, and throws from the superclass initializer.
|
|
auto implCtx = classDecl->getImplementationContext();
|
|
auto ctor = new (ctx) ConstructorDecl(
|
|
superclassCtor->getName(), implCtx->getBraces().Start,
|
|
superclassCtor->isFailable(),
|
|
/*FailabilityLoc=*/SourceLoc(),
|
|
/*Async=*/superclassCtor->hasAsync(),
|
|
/*AsyncLoc=*/SourceLoc(),
|
|
/*Throws=*/superclassCtor->hasThrows(),
|
|
/*ThrowsLoc=*/SourceLoc(), TypeLoc::withoutLoc(thrownType), bodyParams,
|
|
genericParams, implCtx->getAsGenericContext());
|
|
|
|
ctor->setImplicit();
|
|
|
|
// Set the interface type of the initializer.
|
|
ctor->setGenericSignature(genericSig);
|
|
|
|
ctor->setImplicitlyUnwrappedOptional(
|
|
superclassCtor->isImplicitlyUnwrappedOptional());
|
|
|
|
configureInheritedDesignatedInitAttributes(classDecl, ctor,
|
|
superclassCtor, ctx);
|
|
|
|
if (kind == DesignatedInitKind::Stub) {
|
|
// Make this a stub implementation.
|
|
ctor->setBodySynthesizer(synthesizeStubBody);
|
|
|
|
// Note that this is a stub implementation.
|
|
ctor->setStubImplementation(true);
|
|
|
|
return ctor;
|
|
}
|
|
|
|
// Form the body of a chaining designated initializer.
|
|
assert(kind == DesignatedInitKind::Chaining);
|
|
ctor->setBodySynthesizer(synthesizeDesignatedInitOverride, superclassCtor);
|
|
|
|
return ctor;
|
|
}
|
|
|
|
/// Diagnose a missing required initializer.
|
|
static void diagnoseMissingRequiredInitializer(
|
|
ClassDecl *classDecl,
|
|
ConstructorDecl *superInitializer,
|
|
bool downgradeToWarning,
|
|
ASTContext &ctx) {
|
|
// Find the location at which we should insert the new initializer.
|
|
SourceLoc insertionLoc;
|
|
SourceLoc indentationLoc;
|
|
for (auto member : classDecl->getMembers()) {
|
|
// If we don't have an indentation location yet, grab one from this
|
|
// member.
|
|
if (indentationLoc.isInvalid()) {
|
|
indentationLoc = member->getLoc();
|
|
}
|
|
|
|
// We only want to look at explicit constructors.
|
|
auto ctor = dyn_cast<ConstructorDecl>(member);
|
|
if (!ctor)
|
|
continue;
|
|
|
|
if (ctor->isImplicit())
|
|
continue;
|
|
|
|
insertionLoc = ctor->getEndLoc();
|
|
indentationLoc = ctor->getLoc();
|
|
}
|
|
|
|
// If no initializers were listed, start at the opening '{' for the class.
|
|
if (insertionLoc.isInvalid()) {
|
|
insertionLoc = classDecl->getBraces().Start;
|
|
}
|
|
if (indentationLoc.isInvalid()) {
|
|
indentationLoc = classDecl->getBraces().End;
|
|
}
|
|
|
|
// Adjust the insertion location to point at the end of this line (i.e.,
|
|
// the start of the next line).
|
|
insertionLoc = Lexer::getLocForEndOfLine(ctx.SourceMgr,
|
|
insertionLoc);
|
|
|
|
// Find the indentation used on the indentation line.
|
|
StringRef extraIndentation;
|
|
StringRef indentation = Lexer::getIndentationForLine(
|
|
ctx.SourceMgr, indentationLoc, &extraIndentation);
|
|
|
|
// Pretty-print the superclass initializer into a string.
|
|
// FIXME: Form a new initializer by performing the appropriate
|
|
// substitutions of subclass types into the superclass types, so that
|
|
// we get the right generic parameters.
|
|
std::string initializerText;
|
|
{
|
|
PrintOptions options;
|
|
options.PrintImplicitAttrs = false;
|
|
|
|
// Render the text.
|
|
llvm::raw_string_ostream out(initializerText);
|
|
{
|
|
ExtraIndentStreamPrinter printer(out, indentation);
|
|
printer.printNewline();
|
|
|
|
// If there is no explicit 'required', print one.
|
|
bool hasExplicitRequiredAttr = false;
|
|
if (auto requiredAttr
|
|
= superInitializer->getAttrs().getAttribute<RequiredAttr>())
|
|
hasExplicitRequiredAttr = !requiredAttr->isImplicit();
|
|
|
|
if (!hasExplicitRequiredAttr)
|
|
printer << "required ";
|
|
|
|
superInitializer->print(printer, options);
|
|
}
|
|
|
|
// Add a dummy body.
|
|
out << " {\n";
|
|
out << indentation << extraIndentation << "fatalError(\"";
|
|
superInitializer->getName().printPretty(out);
|
|
out << " has not been implemented\")\n";
|
|
out << indentation << "}\n";
|
|
}
|
|
|
|
// Complain.
|
|
ctx.Diags.diagnose(insertionLoc, diag::required_initializer_missing,
|
|
superInitializer->getName(),
|
|
superInitializer->getDeclContext()->getDeclaredInterfaceType())
|
|
.warnUntilSwiftVersionIf(downgradeToWarning, 6)
|
|
.fixItInsert(insertionLoc, initializerText);
|
|
|
|
ctx.Diags.diagnose(findNonImplicitRequiredInit(superInitializer),
|
|
diag::required_initializer_here);
|
|
}
|
|
|
|
/// FIXME: This is temporary until we come up with a way to overcome circularity
|
|
/// issues.
|
|
///
|
|
/// This method is intended to be used only in places that expect
|
|
/// lazy and property wrapper backing storage synthesis has happened
|
|
/// or can tolerate absence of such properties.
|
|
///
|
|
/// \param typeDecl The nominal type to enumerate current properties and their
|
|
/// auxiliary vars for.
|
|
///
|
|
/// \param callback The callback to be called for each property and auxiliary
|
|
/// var associated with the given type. The callback should return `true` to
|
|
/// indicate that enumeration should continue and `false` otherwise.
|
|
///
|
|
/// \returns true which indicates "failure" if callback returns `false`
|
|
/// at least once.
|
|
static bool enumerateCurrentPropertiesAndAuxiliaryVars(
|
|
NominalTypeDecl *typeDecl, llvm::function_ref<bool(VarDecl *)> callback) {
|
|
for (auto *member :
|
|
typeDecl->getImplementationContext()->getCurrentMembers()) {
|
|
if (auto *var = dyn_cast<VarDecl>(member)) {
|
|
if (!callback(var))
|
|
return true;
|
|
}
|
|
|
|
bool hadErrors = false;
|
|
member->visitAuxiliaryDecls([&](Decl *auxDecl) {
|
|
if (auto *auxVar = dyn_cast<VarDecl>(auxDecl)) {
|
|
hadErrors |= !callback(auxVar);
|
|
}
|
|
});
|
|
|
|
if (hadErrors)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AreAllStoredPropertiesDefaultInitableRequest::evaluate(
|
|
Evaluator &evaluator, NominalTypeDecl *decl) const {
|
|
assert(!hasClangImplementation(decl));
|
|
|
|
std::multimap<VarDecl *, VarDecl *> initializedViaInitAccessor;
|
|
decl->collectPropertiesInitializableByInitAccessors(
|
|
initializedViaInitAccessor);
|
|
|
|
llvm::SmallPtrSet<PatternBindingDecl *, 4> checked;
|
|
return !enumerateCurrentPropertiesAndAuxiliaryVars(
|
|
decl, [&](VarDecl *property) {
|
|
auto *pbd = property->getParentPatternBinding();
|
|
if (!pbd || !checked.insert(pbd).second)
|
|
return true;
|
|
|
|
// If a stored property lacks an initial value and if there is no way to
|
|
// synthesize an initial value (e.g. for an optional) then we suppress
|
|
// generation of the default initializer.
|
|
|
|
// Static variables are irrelevant.
|
|
if (pbd->isStatic())
|
|
return true;
|
|
|
|
for (auto idx : range(pbd->getNumPatternEntries())) {
|
|
bool HasStorage = false;
|
|
bool CheckDefaultInitializer = true;
|
|
pbd->getPattern(idx)->forEachVariable([&HasStorage,
|
|
&CheckDefaultInitializer,
|
|
&initializedViaInitAccessor](
|
|
VarDecl *VD) {
|
|
// If one of the bound variables is @NSManaged, go ahead no matter
|
|
// what.
|
|
if (VD->getAttrs().hasAttribute<NSManagedAttr>())
|
|
CheckDefaultInitializer = false;
|
|
|
|
// If this property is covered by one or more init accessor(s)
|
|
// check whether at least one of them is initializable.
|
|
auto initAccessorProperties =
|
|
llvm::make_range(initializedViaInitAccessor.equal_range(VD));
|
|
if (llvm::any_of(initAccessorProperties, [&](const auto &entry) {
|
|
auto *property = entry.second->getParentPatternBinding();
|
|
return property->isInitialized(0) ||
|
|
property->isDefaultInitializable();
|
|
}))
|
|
return;
|
|
|
|
if (VD->hasStorageOrWrapsStorage())
|
|
HasStorage = true;
|
|
|
|
// Treat an init accessor property that doesn't initialize other
|
|
// properties as stored for initialization purposes.
|
|
if (auto *initAccessor = VD->getAccessor(AccessorKind::Init)) {
|
|
HasStorage |= initAccessor->getInitializedProperties().empty();
|
|
}
|
|
});
|
|
|
|
if (!HasStorage)
|
|
return true;
|
|
|
|
if (pbd->isInitialized(idx))
|
|
return true;
|
|
|
|
// If we cannot default initialize the property, we cannot
|
|
// synthesize a default initializer for the class.
|
|
if (CheckDefaultInitializer && !pbd->isDefaultInitializable()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
static bool areAllStoredPropertiesDefaultInitializable(Evaluator &eval,
|
|
NominalTypeDecl *decl) {
|
|
if (hasClangImplementation(decl))
|
|
return true;
|
|
|
|
return evaluateOrDefault(
|
|
eval, AreAllStoredPropertiesDefaultInitableRequest{decl}, false);
|
|
}
|
|
|
|
bool
|
|
HasUserDefinedDesignatedInitRequest::evaluate(Evaluator &evaluator,
|
|
NominalTypeDecl *decl) const {
|
|
assert(!hasClangImplementation(decl));
|
|
|
|
auto results = decl->lookupDirect(DeclBaseName::createConstructor());
|
|
for (auto *member : results) {
|
|
if (!isInMainBody(member, decl))
|
|
continue;
|
|
|
|
auto *ctor = cast<ConstructorDecl>(member);
|
|
if (ctor->isDesignatedInit() && !ctor->isSynthesized())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool hasUserDefinedDesignatedInit(Evaluator &eval,
|
|
NominalTypeDecl *decl) {
|
|
// Imported decls don't have a designated initializer defined by the user.
|
|
if (hasClangImplementation(decl))
|
|
return false;
|
|
|
|
return evaluateOrDefault(eval, HasUserDefinedDesignatedInitRequest{decl},
|
|
false);
|
|
}
|
|
|
|
static bool canInheritDesignatedInits(Evaluator &eval, ClassDecl *decl) {
|
|
// We can only inherit designated initializers if the user hasn't defined
|
|
// a designated init of their own, and all the stored properties have initial
|
|
// values.
|
|
return !hasUserDefinedDesignatedInit(eval, decl) &&
|
|
areAllStoredPropertiesDefaultInitializable(eval, decl);
|
|
}
|
|
|
|
static ValueDecl *findImplementedObjCDecl(ValueDecl *VD) {
|
|
// If VD has an ObjC name...
|
|
if (auto vdSelector = VD->getObjCRuntimeName()) {
|
|
// and it's in an extension...
|
|
if (auto implED = dyn_cast<ExtensionDecl>(VD->getDeclContext())) {
|
|
// and that extension is the @objcImplementation of a class's main body...
|
|
if (auto interfaceCD =
|
|
dyn_cast_or_null<ClassDecl>(implED->getImplementedObjCDecl())) {
|
|
// Find the initializer in the class's main body that matches VD.
|
|
for (auto interfaceVD : interfaceCD->getAllMembers()) {
|
|
if (auto interfaceCtor = dyn_cast<ConstructorDecl>(interfaceVD)) {
|
|
if (vdSelector == interfaceCtor->getObjCRuntimeName()) {
|
|
return interfaceCtor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return VD;
|
|
}
|
|
|
|
static void collectNonOveriddenSuperclassInits(
|
|
ClassDecl *subclass, SmallVectorImpl<ConstructorDecl *> &results) {
|
|
auto *superclassDecl = subclass->getSuperclassDecl();
|
|
assert(superclassDecl);
|
|
|
|
// Record all of the initializers the subclass has overridden, excluding stub
|
|
// overrides, which we don't want to consider as viable delegates for
|
|
// convenience inits.
|
|
llvm::SmallPtrSet<ConstructorDecl *, 4> overriddenInits;
|
|
|
|
auto ctors = subclass->lookupDirect(DeclBaseName::createConstructor());
|
|
for (auto *member : ctors) {
|
|
if (!isInMainBody(member, subclass))
|
|
continue;
|
|
|
|
auto *ctor = cast<ConstructorDecl>(member);
|
|
if (!ctor->hasStubImplementation())
|
|
if (auto overridden = ctor->getOverriddenDecl())
|
|
overriddenInits.insert(overridden);
|
|
}
|
|
|
|
superclassDecl->synthesizeSemanticMembersIfNeeded(
|
|
DeclBaseName::createConstructor());
|
|
|
|
NLOptions subOptions =
|
|
(NL_QualifiedDefault | NL_IgnoreAccessControl | NL_IgnoreMissingImports);
|
|
SmallVector<ValueDecl *, 4> lookupResults;
|
|
subclass->lookupQualified(
|
|
superclassDecl, DeclNameRef::createConstructor(),
|
|
subclass->getStartLoc(),
|
|
subOptions, lookupResults);
|
|
|
|
for (auto decl : lookupResults) {
|
|
// HACK: If an @objcImplementation extension declares an initializer, its
|
|
// interface usually also has a declaration. We need the interface decl for
|
|
// access control computations, but the name lookup returns the
|
|
// implementation decl because it's in the Swift module. Go find the
|
|
// matching interface decl.
|
|
// (Note that this is necessary for both newly-declared inits and overrides,
|
|
// even implicit ones.)
|
|
decl = findImplementedObjCDecl(decl);
|
|
|
|
auto superclassCtor = cast<ConstructorDecl>(decl);
|
|
|
|
// Skip invalid superclass initializers.
|
|
if (superclassCtor->isInvalid())
|
|
continue;
|
|
|
|
// Skip unavailable superclass initializers.
|
|
if (superclassCtor->isUnavailable())
|
|
continue;
|
|
|
|
if (!overriddenInits.count(superclassCtor))
|
|
results.push_back(superclassCtor);
|
|
}
|
|
}
|
|
|
|
/// For a class with a superclass, automatically define overrides
|
|
/// for all of the superclass's designated initializers.
|
|
static void addImplicitInheritedConstructorsToClass(ClassDecl *decl) {
|
|
// Bail out if we're validating one of our constructors already;
|
|
// we'll revisit the issue later.
|
|
auto results = decl->lookupDirect(DeclBaseName::createConstructor());
|
|
for (auto *member : results) {
|
|
if (isa<ExtensionDecl>(member->getDeclContext()))
|
|
continue;
|
|
|
|
if (member->isRecursiveValidation())
|
|
return;
|
|
}
|
|
|
|
// We can only inherit initializers if we have a superclass.
|
|
if (!decl->getSuperclassDecl() || !decl->getSuperclass())
|
|
return;
|
|
|
|
// Check whether the user has defined a designated initializer for this class,
|
|
// and whether all of its stored properties have initial values.
|
|
auto &ctx = decl->getASTContext();
|
|
bool foundDesignatedInit = hasUserDefinedDesignatedInit(ctx.evaluator, decl);
|
|
bool defaultInitable =
|
|
areAllStoredPropertiesDefaultInitializable(ctx.evaluator, decl);
|
|
|
|
// In cases where we can't define any overrides, we used to suppress
|
|
// diagnostics about missing required initializers. Now we emit diagnostics,
|
|
// but downgrade them to warnings prior to Swift 6.
|
|
bool downgradeRequiredInitsToWarning =
|
|
!defaultInitable && !foundDesignatedInit;
|
|
|
|
SmallVector<ConstructorDecl *, 4> nonOverriddenSuperclassCtors;
|
|
collectNonOveriddenSuperclassInits(decl, nonOverriddenSuperclassCtors);
|
|
|
|
bool inheritDesignatedInits = canInheritDesignatedInits(ctx.evaluator, decl);
|
|
for (auto *superclassCtor : nonOverriddenSuperclassCtors) {
|
|
// We only care about required or designated initializers.
|
|
if (!superclassCtor->isDesignatedInit()) {
|
|
if (superclassCtor->isRequired()) {
|
|
assert(superclassCtor->isInheritable() &&
|
|
"factory initializers cannot be 'required'");
|
|
if (!decl->inheritsSuperclassInitializers()) {
|
|
diagnoseMissingRequiredInitializer(
|
|
decl, superclassCtor, downgradeRequiredInitsToWarning, ctx);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If the superclass initializer is not accessible from the derived
|
|
// class, don't synthesize an override, since we cannot reference the
|
|
// superclass initializer's method descriptor at all.
|
|
//
|
|
// FIXME: This should be checked earlier as part of calculating
|
|
// canInheritInitializers.
|
|
if (!superclassCtor->isAccessibleFrom(decl))
|
|
continue;
|
|
|
|
// Diagnose a missing override of a required initializer.
|
|
if (superclassCtor->isRequired() && !inheritDesignatedInits) {
|
|
diagnoseMissingRequiredInitializer(
|
|
decl, superclassCtor, downgradeRequiredInitsToWarning, ctx);
|
|
continue;
|
|
}
|
|
|
|
// A designated or required initializer has not been overridden.
|
|
|
|
// We can't define any overrides if we have any uninitialized
|
|
// stored properties.
|
|
if (!defaultInitable && !foundDesignatedInit)
|
|
continue;
|
|
|
|
bool alreadyDeclared = false;
|
|
|
|
auto results = decl->lookupDirect(DeclBaseName::createConstructor());
|
|
for (auto *member : results) {
|
|
if (!isInMainBody(member, decl))
|
|
continue;
|
|
|
|
auto *ctor = cast<ConstructorDecl>(member);
|
|
|
|
// Skip any invalid constructors.
|
|
if (ctor->isInvalid())
|
|
continue;
|
|
|
|
auto type = swift::getMemberTypeForComparison(ctor, nullptr);
|
|
if (isOverrideBasedOnType(ctor, type, superclassCtor)) {
|
|
alreadyDeclared = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we have already introduced an initializer with this parameter type,
|
|
// don't add one now.
|
|
if (alreadyDeclared)
|
|
continue;
|
|
|
|
// If we're inheriting initializers, create an override delegating
|
|
// to 'super.init'. Otherwise, create a stub which traps at runtime.
|
|
auto kind = inheritDesignatedInits ? DesignatedInitKind::Chaining
|
|
: DesignatedInitKind::Stub;
|
|
|
|
if (auto ctor = createDesignatedInitOverride(
|
|
decl, superclassCtor, kind, ctx)) {
|
|
decl->getImplementationContext()->addMember(ctor);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
InheritsSuperclassInitializersRequest::evaluate(Evaluator &eval,
|
|
ClassDecl *decl) const {
|
|
// Check if we parsed the @_inheritsConvenienceInitializers attribute.
|
|
if (decl->getAttrs().hasAttribute<InheritsConvenienceInitializersAttr>())
|
|
return true;
|
|
|
|
auto superclassDecl = decl->getSuperclassDecl();
|
|
assert(superclassDecl);
|
|
|
|
// If the superclass has known-missing designated initializers, inheriting
|
|
// is unsafe.
|
|
if ((superclassDecl->hasClangNode() ||
|
|
superclassDecl->getModuleContext() != decl->getParentModule()) &&
|
|
superclassDecl->hasMissingDesignatedInitializers())
|
|
return false;
|
|
|
|
// If we're allowed to inherit designated initializers, then we can inherit
|
|
// convenience inits too.
|
|
if (canInheritDesignatedInits(eval, decl))
|
|
return true;
|
|
|
|
// Otherwise we need to check whether the user has overridden all of the
|
|
// superclass' designed inits.
|
|
SmallVector<ConstructorDecl *, 4> nonOverriddenSuperclassCtors;
|
|
collectNonOveriddenSuperclassInits(decl, nonOverriddenSuperclassCtors);
|
|
|
|
auto allDesignatedInitsOverridden =
|
|
llvm::none_of(nonOverriddenSuperclassCtors, [](ConstructorDecl *ctor) {
|
|
return ctor->isDesignatedInit();
|
|
});
|
|
return allDesignatedInitsOverridden;
|
|
}
|
|
|
|
static bool shouldAttemptInitializerSynthesis(const NominalTypeDecl *decl) {
|
|
// Don't synthesize initializers for imported decls.
|
|
if (hasClangImplementation(decl))
|
|
return false;
|
|
|
|
// Don't add implicit constructors in module interfaces.
|
|
if (decl->getDeclContext()->isInSwiftinterface())
|
|
return false;
|
|
|
|
// Don't attempt if we know the decl is invalid.
|
|
if (decl->isInvalid())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void TypeChecker::addImplicitConstructors(NominalTypeDecl *decl) {
|
|
// If we already added implicit initializers, we're done.
|
|
if (decl->addedImplicitInitializers())
|
|
return;
|
|
|
|
decl->setAddedImplicitInitializers();
|
|
|
|
if (!shouldAttemptInitializerSynthesis(decl))
|
|
return;
|
|
|
|
if (auto *classDecl = dyn_cast<ClassDecl>(decl)) {
|
|
addImplicitInheritedConstructorsToClass(classDecl);
|
|
}
|
|
|
|
// Force the memberwise and default initializers if the type has them.
|
|
// FIXME: We need to be more lazy about synthesizing constructors.
|
|
(void)decl->getMemberwiseInitializer();
|
|
(void)decl->getDefaultInitializer();
|
|
}
|
|
|
|
evaluator::SideEffect
|
|
ResolveImplicitMemberRequest::evaluate(Evaluator &evaluator,
|
|
NominalTypeDecl *target,
|
|
ImplicitMemberAction action) const {
|
|
// FIXME: This entire request is a layering violation made of smaller,
|
|
// finickier layering violations. See rdar://56844567
|
|
|
|
// Checks whether the target conforms to the given protocol. If the
|
|
// conformance is incomplete, force the conformance.
|
|
//
|
|
// Returns whether the target conforms to the protocol.
|
|
auto evaluateTargetConformanceTo = [&](ProtocolDecl *protocol) {
|
|
if (!protocol)
|
|
return false;
|
|
|
|
auto targetType = target->getDeclaredInterfaceType();
|
|
auto ref = lookupConformance(targetType, protocol);
|
|
if (ref.isInvalid()) {
|
|
return false;
|
|
}
|
|
|
|
if (auto *conformance = dyn_cast<NormalProtocolConformance>(
|
|
ref.getConcrete()->getRootConformance())) {
|
|
// Complete evaluate the conformance.
|
|
evaluateOrDefault(evaluator,
|
|
ResolveTypeWitnessesRequest{conformance},
|
|
evaluator::SideEffect());
|
|
|
|
// FIXME: This should be more fine-grained to avoid having to check
|
|
// for a cycle here.
|
|
if (!evaluator.hasActiveRequest(ResolveValueWitnessesRequest{conformance})) {
|
|
conformance->resolveValueWitnesses();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
auto &Context = target->getASTContext();
|
|
switch (action) {
|
|
case ImplicitMemberAction::ResolveImplicitInit:
|
|
TypeChecker::addImplicitConstructors(target);
|
|
break;
|
|
case ImplicitMemberAction::ResolveCodingKeys: {
|
|
// CodingKeys is a special type which may be synthesized as part of
|
|
// Encodable/Decodable conformance. If the target conforms to either
|
|
// protocol and would derive conformance to either, the type may be
|
|
// synthesized.
|
|
// If the target conforms to either and the conformance has not yet been
|
|
// evaluated, then we should do that here.
|
|
//
|
|
// Try to synthesize Decodable first. If that fails, try to synthesize
|
|
// Encodable. If either succeeds and CodingKeys should have been
|
|
// synthesized, it will be synthesized.
|
|
auto *decodableProto = Context.getProtocol(KnownProtocolKind::Decodable);
|
|
auto *encodableProto = Context.getProtocol(KnownProtocolKind::Encodable);
|
|
if (!evaluateTargetConformanceTo(decodableProto)) {
|
|
(void)evaluateTargetConformanceTo(encodableProto);
|
|
}
|
|
}
|
|
break;
|
|
case ImplicitMemberAction::ResolveEncodable: {
|
|
// encode(to:) may be synthesized as part of derived conformance to the
|
|
// Encodable protocol.
|
|
// If the target should conform to the Encodable protocol, check the
|
|
// conformance here to attempt synthesis.
|
|
auto *encodableProto = Context.getProtocol(KnownProtocolKind::Encodable);
|
|
(void)evaluateTargetConformanceTo(encodableProto);
|
|
}
|
|
break;
|
|
case ImplicitMemberAction::ResolveDecodable: {
|
|
// init(from:) may be synthesized as part of derived conformance to the
|
|
// Decodable protocol.
|
|
// If the target should conform to the Decodable protocol, check the
|
|
// conformance here to attempt synthesis.
|
|
TypeChecker::addImplicitConstructors(target);
|
|
auto *decodableProto = Context.getProtocol(KnownProtocolKind::Decodable);
|
|
(void)evaluateTargetConformanceTo(decodableProto);
|
|
}
|
|
break;
|
|
case ImplicitMemberAction::ResolveDistributedActor:
|
|
case ImplicitMemberAction::ResolveDistributedActorSystem:
|
|
case ImplicitMemberAction::ResolveDistributedActorID: {
|
|
// init(transport:) and init(resolve:using:) may be synthesized as part of
|
|
// derived conformance to the DistributedActor protocol.
|
|
// If the target should conform to the DistributedActor protocol, check the
|
|
// conformance here to attempt synthesis.
|
|
// FIXME(distributed): invoke the requirement adding explicitly here
|
|
TypeChecker::addImplicitConstructors(target);
|
|
auto *distributedActorProto =
|
|
Context.getProtocol(KnownProtocolKind::DistributedActor);
|
|
(void)evaluateTargetConformanceTo(distributedActorProto);
|
|
break;
|
|
}
|
|
}
|
|
return std::make_tuple<>();
|
|
}
|
|
|
|
bool
|
|
HasMemberwiseInitRequest::evaluate(Evaluator &evaluator,
|
|
StructDecl *decl) const {
|
|
if (!shouldAttemptInitializerSynthesis(decl))
|
|
return false;
|
|
|
|
// If the user has already defined a designated initializer, then don't
|
|
// synthesize a memberwise init.
|
|
if (hasUserDefinedDesignatedInit(evaluator, decl))
|
|
return false;
|
|
|
|
std::multimap<VarDecl *, VarDecl *> initializedViaAccessor;
|
|
decl->collectPropertiesInitializableByInitAccessors(initializedViaAccessor);
|
|
|
|
llvm::SmallPtrSet<VarDecl *, 4> initializedProperties;
|
|
llvm::SmallVector<std::pair<VarDecl *, Identifier>> invalidOrderings;
|
|
|
|
if (enumerateCurrentPropertiesAndAuxiliaryVars(decl, [&](VarDecl *var) {
|
|
if (var->isStatic())
|
|
return true;
|
|
|
|
if (var->getOriginalWrappedProperty())
|
|
return true;
|
|
|
|
if (!var->isMemberwiseInitialized(/*preferDeclaredProperties=*/true))
|
|
return true;
|
|
|
|
// Check whether use of init accessors results in access to
|
|
// uninitialized properties.
|
|
if (auto *initAccessor = var->getAccessor(AccessorKind::Init)) {
|
|
// Make sure that all properties accessed by init accessor
|
|
// are previously initialized.
|
|
for (auto *property : initAccessor->getAccessedProperties()) {
|
|
if (!initializedProperties.count(property))
|
|
invalidOrderings.push_back({var, property->getName()});
|
|
}
|
|
|
|
// Record all of the properties initialized by calling init accessor.
|
|
auto properties = initAccessor->getInitializedProperties();
|
|
initializedProperties.insert(var);
|
|
initializedProperties.insert(properties.begin(), properties.end());
|
|
return true;
|
|
}
|
|
|
|
switch (initializedViaAccessor.count(var)) {
|
|
// Not covered by an init accessor.
|
|
case 0:
|
|
initializedProperties.insert(var);
|
|
return true;
|
|
|
|
// Covered by a single init accessor, we'll handle that
|
|
// once we get to the property with init accessor.
|
|
case 1:
|
|
return true;
|
|
|
|
// Covered by more than one init accessor which means that we
|
|
// cannot synthesize memberwise initializer due to intersecting
|
|
// initializations.
|
|
default:
|
|
return false;
|
|
}
|
|
}))
|
|
return false;
|
|
|
|
if (invalidOrderings.empty())
|
|
return !initializedProperties.empty();
|
|
|
|
{
|
|
auto &diags = decl->getASTContext().Diags;
|
|
|
|
diags.diagnose(
|
|
decl, diag::cannot_synthesize_memberwise_due_to_property_init_order);
|
|
|
|
for (const auto &invalid : invalidOrderings) {
|
|
auto *accessor = invalid.first->getAccessor(AccessorKind::Init);
|
|
diags.diagnose(accessor->getLoc(),
|
|
diag::out_of_order_access_in_init_accessor,
|
|
invalid.first->getName(), invalid.second);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ConstructorDecl *
|
|
SynthesizeMemberwiseInitRequest::evaluate(Evaluator &evaluator,
|
|
NominalTypeDecl *decl) const {
|
|
// Create the implicit memberwise constructor.
|
|
auto &ctx = decl->getASTContext();
|
|
auto ctor =
|
|
createImplicitConstructor(decl, ImplicitConstructorKind::Memberwise, ctx);
|
|
decl->addMember(ctor);
|
|
return ctor;
|
|
}
|
|
|
|
ConstructorDecl *
|
|
ResolveEffectiveMemberwiseInitRequest::evaluate(Evaluator &evaluator,
|
|
NominalTypeDecl *decl) const {
|
|
// Compute the access level for the memberwise initializer. The minimum of:
|
|
// - Public, by default. This enables public nominal types to have public
|
|
// memberwise initializers.
|
|
// - The `public` default is important for synthesized member types, e.g.
|
|
// `TangentVector` structs synthesized during `Differentiable` derived
|
|
// conformances. Manually extending these types to define a public
|
|
// memberwise initializer causes a redeclaration error.
|
|
// - The minimum access level of memberwise-initialized properties in the
|
|
// nominal type declaration.
|
|
auto accessLevel = AccessLevel::Public;
|
|
for (auto *member : decl->getMembers()) {
|
|
auto *var = dyn_cast<VarDecl>(member);
|
|
if (!var || !var->isMemberwiseInitialized(/*preferDeclaredProperties=*/true))
|
|
continue;
|
|
accessLevel = std::min(accessLevel, var->getFormalAccess());
|
|
}
|
|
auto &ctx = decl->getASTContext();
|
|
|
|
// If a memberwise initializer exists, set its access level and return it.
|
|
if (auto *initDecl = decl->getMemberwiseInitializer()) {
|
|
initDecl->overwriteAccess(accessLevel);
|
|
return initDecl;
|
|
}
|
|
|
|
auto isEffectiveMemberwiseInitializer = [&](ConstructorDecl *initDecl) {
|
|
// Check for `nullptr`.
|
|
if (!initDecl)
|
|
return false;
|
|
// Get all stored properties, excluding `let` properties with initial
|
|
// values.
|
|
SmallVector<VarDecl *, 8> storedProperties;
|
|
for (auto *vd : decl->getStoredProperties()) {
|
|
if (vd->isLet() && vd->hasInitialValue())
|
|
continue;
|
|
storedProperties.push_back(vd);
|
|
}
|
|
auto initDeclType =
|
|
initDecl->getMethodInterfaceType()->getAs<AnyFunctionType>();
|
|
// Return false if initializer does not have a valid interface type.
|
|
if (!initDeclType)
|
|
return false;
|
|
// Return false if stored property count does not have parameter count.
|
|
if (storedProperties.size() != initDeclType->getNumParams())
|
|
return false;
|
|
// Return true if all stored property types/names match initializer
|
|
// parameter types/labels.
|
|
return llvm::all_of(
|
|
llvm::zip(storedProperties, initDeclType->getParams()),
|
|
[&](std::tuple<VarDecl *, AnyFunctionType::Param> pair) {
|
|
auto *storedProp = std::get<0>(pair);
|
|
auto param = std::get<1>(pair);
|
|
return storedProp->getInterfaceType()->isEqual(
|
|
param.getPlainType()) &&
|
|
storedProp->getName() == param.getLabel();
|
|
});
|
|
};
|
|
|
|
// Otherwise, look for a user-defined effective memberwise initializer.
|
|
ConstructorDecl *memberwiseInitDecl = nullptr;
|
|
auto initDecls = decl->lookupDirect(DeclBaseName::createConstructor());
|
|
for (auto *decl : initDecls) {
|
|
auto *initDecl = dyn_cast<ConstructorDecl>(decl);
|
|
if (!isEffectiveMemberwiseInitializer(initDecl))
|
|
continue;
|
|
assert(!memberwiseInitDecl && "Memberwise initializer already found");
|
|
memberwiseInitDecl = initDecl;
|
|
}
|
|
|
|
// Otherwise, create a memberwise initializer, set its access level, and
|
|
// return it.
|
|
if (!memberwiseInitDecl) {
|
|
memberwiseInitDecl = createImplicitConstructor(
|
|
decl, ImplicitConstructorKind::Memberwise, ctx);
|
|
memberwiseInitDecl->overwriteAccess(accessLevel);
|
|
decl->addMember(memberwiseInitDecl);
|
|
}
|
|
return memberwiseInitDecl;
|
|
}
|
|
|
|
bool
|
|
HasDefaultInitRequest::evaluate(Evaluator &evaluator,
|
|
NominalTypeDecl *decl) const {
|
|
assert(isa<StructDecl>(decl) || isa<ClassDecl>(decl));
|
|
|
|
if (!shouldAttemptInitializerSynthesis(decl))
|
|
return false;
|
|
|
|
if (auto *sd = dyn_cast<StructDecl>(decl)) {
|
|
assert(!sd->hasUnreferenceableStorage() &&
|
|
"User-defined structs cannot have unreferenceable storage");
|
|
(void)sd;
|
|
}
|
|
|
|
// Don't synthesize a default for a subclass, it will attempt to inherit its
|
|
// initializers from its superclass.
|
|
if (auto *cd = dyn_cast<ClassDecl>(decl))
|
|
if (cd->getSuperclassDecl())
|
|
return false;
|
|
|
|
// If the user has already defined a designated initializer, then don't
|
|
// synthesize a default init.
|
|
if (hasUserDefinedDesignatedInit(evaluator, decl))
|
|
return false;
|
|
|
|
// Regardless of whether all of the properties are initialized or
|
|
// not distributed actors always get a special "default" init based
|
|
// on `id` and `actorSystem` synthesized properties.
|
|
if (decl->isDistributedActor())
|
|
return true;
|
|
|
|
// We can only synthesize a default init if all the stored properties have an
|
|
// initial value.
|
|
return areAllStoredPropertiesDefaultInitializable(evaluator, decl);
|
|
}
|
|
|
|
/// Synthesizer callback for a function body consisting of "return".
|
|
static std::pair<BraceStmt *, bool>
|
|
synthesizeSingleReturnFunctionBody(AbstractFunctionDecl *afd, void *) {
|
|
ASTContext &ctx = afd->getASTContext();
|
|
SmallVector<ASTNode, 1> stmts;
|
|
stmts.push_back(
|
|
ReturnStmt::createImplicit(ctx, afd->getLoc(), /*result*/ nullptr));
|
|
return { BraceStmt::create(ctx, afd->getLoc(), stmts, afd->getLoc(), true),
|
|
/*isTypeChecked=*/true };
|
|
}
|
|
|
|
ConstructorDecl *
|
|
SynthesizeDefaultInitRequest::evaluate(Evaluator &evaluator,
|
|
NominalTypeDecl *decl) const {
|
|
auto &ctx = decl->getASTContext();
|
|
|
|
// Create the default constructor.
|
|
auto ctorKind = decl->isDistributedActor() ?
|
|
ImplicitConstructorKind::DefaultDistributedActor :
|
|
ImplicitConstructorKind::Default;
|
|
if (auto ctor = createImplicitConstructor(decl, ctorKind, ctx)) {
|
|
// Add the constructor.
|
|
decl->addMember(ctor);
|
|
|
|
// Lazily synthesize an empty body for the default constructor.
|
|
ctor->setBodySynthesizer(synthesizeSingleReturnFunctionBody);
|
|
return ctor;
|
|
}
|
|
|
|
// no default init was synthesized
|
|
return nullptr;
|
|
}
|
|
|
|
ValueDecl *swift::getProtocolRequirement(ProtocolDecl *protocol,
|
|
Identifier name) {
|
|
auto lookup = protocol->lookupDirect(name);
|
|
// Erase declarations that are not protocol requirements.
|
|
// This is important for removing default implementations of the same name.
|
|
llvm::erase_if(lookup, [](ValueDecl *v) {
|
|
return !isa<ProtocolDecl>(v->getDeclContext()) ||
|
|
!v->isProtocolRequirement();
|
|
});
|
|
assert(lookup.size() == 1 && "Ambiguous protocol requirement");
|
|
return lookup.front();
|
|
}
|
|
|
|
bool swift::hasLetStoredPropertyWithInitialValue(NominalTypeDecl *nominal) {
|
|
return llvm::any_of(nominal->getStoredProperties(), [&](VarDecl *v) {
|
|
return v->isLet() && v->hasInitialValue();
|
|
});
|
|
}
|
|
|
|
/// Determine whether a synth
|
|
static bool synthesizedRequirementIsNonIsolated(
|
|
const NormalProtocolConformance *conformance) {
|
|
// @preconcurrency suppresses this.
|
|
if (conformance->isPreconcurrency())
|
|
return false;
|
|
|
|
// Explicit global actor isolation suppresses this.
|
|
if (conformance->hasExplicitGlobalActorIsolation())
|
|
return false;
|
|
|
|
// Explicit nonisolated forces this.
|
|
if (conformance->getOptions()
|
|
.contains(ProtocolConformanceFlags::Nonisolated))
|
|
return true;
|
|
|
|
// When we are inferring conformance isolation, only add nonisolated if
|
|
// either
|
|
// (1) the protocol inherits from SendableMetatype, or
|
|
// (2) the conforming type is nonisolated.
|
|
ASTContext &ctx = conformance->getDeclContext()->getASTContext();
|
|
if (!ctx.LangOpts.hasFeature(Feature::InferIsolatedConformances))
|
|
return true;
|
|
|
|
// Check inheritance from SendableMetatype, which implies that the conformance
|
|
// will be nonisolated.
|
|
auto sendableMetatypeProto =
|
|
ctx.getProtocol(KnownProtocolKind::SendableMetatype);
|
|
if (sendableMetatypeProto &&
|
|
conformance->getProtocol()->inheritsFrom(sendableMetatypeProto))
|
|
return true;
|
|
|
|
auto nominalType = conformance->getType()->getAnyNominal();
|
|
if (!nominalType)
|
|
return true;
|
|
|
|
return !getActorIsolation(nominalType).isMainActor();
|
|
}
|
|
|
|
bool swift::addNonIsolatedToSynthesized(DerivedConformance &derived,
|
|
ValueDecl *value) {
|
|
if (auto *conformance = derived.Conformance) {
|
|
if (!synthesizedRequirementIsNonIsolated(conformance))
|
|
return false;
|
|
}
|
|
|
|
return addNonIsolatedToSynthesized(derived.Nominal, value);
|
|
}
|
|
|
|
bool swift::addNonIsolatedToSynthesized(NominalTypeDecl *nominal,
|
|
ValueDecl *value) {
|
|
if (!getActorIsolation(nominal).isActorIsolated())
|
|
return false;
|
|
|
|
ASTContext &ctx = nominal->getASTContext();
|
|
value->getAttrs().add(NonisolatedAttr::createImplicit(ctx));
|
|
return true;
|
|
}
|
|
|
|
void swift::applyInferredSPIAccessControlAttr(Decl *decl,
|
|
const Decl *inferredFromDecl,
|
|
ASTContext &ctx) {
|
|
auto spiGroups = inferredFromDecl->getSPIGroups();
|
|
if (spiGroups.empty())
|
|
return;
|
|
|
|
auto spiAttr =
|
|
SPIAccessControlAttr::create(ctx, SourceLoc(), SourceRange(), spiGroups);
|
|
decl->getAttrs().add(spiAttr);
|
|
}
|