Files
swift-mirror/stdlib/objc/Darwin/tgmath.swift.gyb
Doug Gregor 9e2b68c4f9 Introduce CGFloat as a distinct struct type.
CGFloat is 32-bit on 32-bit architectures and 64-bit on 64-bit
architectures for historical reasons. Rather than having it alias
either Float (32-bit) or Double (64-bit), introduce a distinct struct
type for CGFloat. CGFloat provides a complete set of comparisons and
arithmetic operators (including tgmath functions), initializers allows
explicit conversion between it an Int, UInt, Float, and Double, as
well as conforming to all of the protocols that Float/Double do.

This formulation of CGFloat makes use of CGFloat
architecture-independent, although it still requires a number of casts.
Fixes <rdar://problem/17224725>

Swift SVN r19689
2014-07-08 19:00:18 +00:00

306 lines
8.1 KiB
Swift

//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
%{
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
# FIXME: need 80-bit (Float80/long double) versions when long double is imported
overlayFloatBits = [32] # 80
allFloatBits = [32, 64] # 80
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFloatName(bits):
if bits == 32:
return 'CFloat'
if bits == 64:
return 'CDouble'
if bits == 80:
return 'CLongDouble'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
# Each of the following lists is ordered to match math.h
# (T) -> T
# These functions do not have a corresponding LLVM intrinsic
UnaryFunctions = ['acos', 'asin', 'atan', 'tan',
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
'expm1',
'log1p', 'logb',
'cbrt', 'erf', 'erfc', 'tgamma',
]
# These functions have a corresponding LLVM intrinsic
# We call this intrinsic via the Builtin method so keep this list in
# sync with core/BuiltinMath.swift.gyb
UnaryIntrinsicFunctions = ['cos', 'sin',
'exp', 'exp2',
'log', 'log10', 'log2',
'fabs', 'sqrt',
'ceil', 'floor', 'nearbyint', 'rint', 'round', 'trunc',
]
# (T, T) -> T
BinaryFunctions = ['atan2', 'hypot', 'pow',
# FIXME: rdar://17275152 call to fmodf causes deserialization crash
# FIXME: When we fix this, also add fmod for CGFloat to CoreGraphics
# 'fmod',
'remainder', 'copysign', 'nextafter', 'fdim', 'fmax', 'fmin']
# These functions have special implementations.
OtherFunctions = ['fpclassify',
'isnormal', 'isfinite', 'isinf', 'isnan', 'signbit',
'modf', 'ldexp', 'frexp', 'ilogb', 'scalbn', 'lgamma',
'remquo', 'nan', 'fma',
'jn', 'yn']
# These functions are imported correctly as-is.
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
# These functions are not supported for various reasons.
UnhandledFunctions = ['math_errhandling', 'scalbln',
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
'islessgreater', 'isunordered', '__exp10',
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi']
def AllFloatTypes():
for bits in allFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def OverlayFloatTypes():
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def TypedUnaryFunctions():
for ufunc in UnaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
def TypedUnaryIntrinsicFunctions():
for ufunc in UnaryIntrinsicFunctions:
for bits in allFloatBits:
yield floatName(bits), ufunc
def TypedBinaryFunctions():
for bfunc in BinaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
}%
// Unary functions
// Note these do not have a corresponding LLVM intrinsic
% for T, CT, f, ufunc in TypedUnaryFunctions():
@transparent public
func ${ufunc}(x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% end
// Unary intrinsic functions
// Note these have a corresponding LLVM intrinsic
% for T, ufunc in TypedUnaryIntrinsicFunctions():
@transparent public
func ${ufunc}(x: ${T}) -> ${T} {
return _${ufunc}(x)
}
% end
// Binary functions
% for T, CT, f, bfunc in TypedBinaryFunctions():
@transparent public
func ${bfunc}(lhs: ${T}, rhs: ${T}) -> ${T} {
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
}
% end
// Other functions
% # These are AllFloatTypes not OverlayFloatTypes because of the Int return.
% for T, CT, f in AllFloatTypes():
% if f == '':
% f = 'd'
@transparent public
func fpclassify(x: ${T}) -> Int {
return Int(__fpclassify${f}(${CT}(x)))
}
% end
% # These are AllFloatTypes not OverlayFloatTypes because we need to cover
% # them all because C's declarations are compiler builtins.
% for T, CT, f in AllFloatTypes():
@transparent public
func isnormal(value: ${T}) -> Bool {
return value.isNormal
}
@transparent public
func isfinite(value: ${T}) -> Bool {
return value.isFinite
}
@transparent public
func isinf(value: ${T}) -> Bool {
return value.isInfinite
}
@transparent public
func isnan(value: ${T}) -> Bool {
return value.isNaN
}
@transparent public
func signbit(value: ${T}) -> Int {
return value.isSignMinus ? 1 : 0
}
% end
% # These are AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@transparent public
func modf(value: ${T}) -> (${T}, ${T}) {
var ipart = ${CT}(0)
let fpart = modf${f}(${CT}(value), &ipart)
return (${T}(ipart), ${T}(fpart))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@transparent public
func ldexp(x: ${T}, n: Int) -> ${T} {
return ${T}(ldexp${f}(${CT}(x), CInt(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@transparent public
func frexp(value: ${T}) -> (${T}, Int) {
var exp = CInt(0)
let frac = frexp${f}(${CT}(value), &exp)
return (${T}(frac), Int(exp))
}
% end
% # This would be AllFloatTypes not OverlayFloatTypes because of the Int return.
% # ... except we need an asmname to avoid an overload ambiguity.
% for T, CT, f in OverlayFloatTypes():
@transparent public
func ilogb(x: ${T}) -> Int {
return Int(ilogb${f}(${CT}(x)))
}
% end
@asmname("ilogb")
func _swift_Darwin_ilogb(value: CDouble) -> CInt
@transparent public
func ilogb(x: Double) -> Int {
return Int(_swift_Darwin_ilogb(CDouble(x)))
}
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@transparent public
func scalbn(x: ${T}, n: Int) -> ${T} {
return ${T}(scalbn${f}(${CT}(x), CInt(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
% # The real lgamma_r is not imported because it hides behind macro _REENTRANT.
@asmname("lgamma${f}_r")
func _swift_Darwin_lgamma${f}_r(${CT}, UnsafePointer<CInt>) -> ${CT}
@transparent public
func lgamma(x: ${T}) -> (${T}, Int) {
var sign = CInt(0)
let value = withUnsafePointer(&sign) {
(signp: UnsafePointer<CInt>) -> ${CT} in
return _swift_Darwin_lgamma${f}_r(${CT}(x), signp)
}
return (${T}(value), Int(sign))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@transparent public
func remquo(x: ${T}, y: ${T}) -> (${T}, Int) {
var quo = CInt(0)
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
return (${T}(rem), Int(quo))
}
% end
% for T, CT, f in OverlayFloatTypes():
@transparent public
func nan(tag: String) -> ${T} {
return ${T}(nan${f}(tag))
}
% end
% for T, CT, f in OverlayFloatTypes():
@transparent public
func fma(x: ${T}, y: ${T}, z: ${T}) -> ${T} {
return ${T}(fma${f}(${CT}(x), ${CT}(y), ${CT}(z)))
}
% end
% # These C functions only support double. The overlay fixes the Int parameter.
@transparent public
func jn(n: Int, x: Double) -> Double {
return jn(CInt(n), x)
}
@transparent public
func yn(n: Int, x: Double) -> Double {
return yn(CInt(n), x)
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: