Files
swift-mirror/lib/Parse/ParseDecl.cpp
2013-01-21 22:43:19 +00:00

1832 lines
55 KiB
C++

//===--- ParseDecl.cpp - Swift Language Parser for Declarations -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Declaration Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Lexer.h"
#include "Parser.h"
#include "swift/Subsystems.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Diagnostics.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PathV2.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
/// parseTranslationUnit - Main entrypoint for the parser.
/// translation-unit:
/// stmt-brace-item*
void Parser::parseTranslationUnit(TranslationUnit *TU) {
if (TU->ASTStage == TranslationUnit::Parsed) {
// FIXME: This is a bit messy; need to figure out a better way to deal
// with memory allocation for TranslationUnit.
UnresolvedIdentifierTypes.insert(UnresolvedIdentifierTypes.end(),
TU->getUnresolvedIdentifierTypes().begin(),
TU->getUnresolvedIdentifierTypes().end());
}
TU->ASTStage = TranslationUnit::Parsing;
// Prime the lexer.
consumeToken();
CurDeclContext = TU;
// Parse the body of the file.
SmallVector<ExprStmtOrDecl, 128> Items;
if (Tok.is(tok::r_brace)) {
diagnose(Tok.getLoc(), diag::extra_rbrace);
consumeToken();
}
parseBraceItemList(Items, true);
for (auto Item : Items)
TU->Decls.push_back(Item.get<Decl*>());
TU->setUnresolvedIdentifierTypes(
Context.AllocateCopy(llvm::makeArrayRef(UnresolvedIdentifierTypes)));
TU->setTypesWithDefaultValues(
Context.AllocateCopy(llvm::makeArrayRef(TypesWithDefaultValues)));
UnresolvedIdentifierTypes.clear();
TypesWithDefaultValues.clear();
// Note that the translation unit is fully parsed and verify it.
TU->ASTStage = TranslationUnit::Parsed;
verify(TU);
}
namespace {
#define MAKE_ENUMERATOR(id) id,
enum class AttrName {
none,
#define ATTR(X) X,
#include "swift/AST/Attr.def"
};
}
static AttrName getAttrName(StringRef text) {
return llvm::StringSwitch<AttrName>(text)
#define ATTR(X) .Case(#X, AttrName::X)
#include "swift/AST/Attr.def"
.Default(AttrName::none);
}
static Associativity getAssociativity(AttrName attr) {
switch (attr) {
case AttrName::infix: return Associativity::None;
case AttrName::infix_left: return Associativity::Left;
case AttrName::infix_right: return Associativity::Right;
default: llvm_unreachable("bad associativity");
}
}
static Resilience getResilience(AttrName attr) {
switch (attr) {
case AttrName::resilient: return Resilience::Resilient;
case AttrName::fragile: return Resilience::Fragile;
case AttrName::born_fragile: return Resilience::InherentlyFragile;
default: llvm_unreachable("bad resilience");
}
}
/// parseAttribute
/// attribute:
/// 'asmname' '=' identifier (FIXME: This is a temporary hack until we
/// can import C modules.)
/// 'infix' '=' numeric_constant
/// 'infix_left' '=' numeric_constant
/// 'infix_right' '=' numeric_constant
/// 'unary'
bool Parser::parseAttribute(DeclAttributes &Attributes) {
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::expected_attribute_name);
skipUntil(tok::r_square);
return true;
}
switch (AttrName attr = getAttrName(Tok.getText())) {
case AttrName::none:
diagnose(Tok, diag::unknown_attribute, Tok.getText());
skipUntil(tok::r_square);
return true;
// Infix attributes.
case AttrName::infix:
case AttrName::infix_left:
case AttrName::infix_right: {
if (Attributes.isInfix())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Associativity Assoc = getAssociativity(attr);
// The default precedence is 100.
Attributes.Infix = InfixData(100, Assoc);
if (consumeIf(tok::equal)) {
SourceLoc PrecLoc = Tok.getLoc();
StringRef Text = Tok.getText();
if (!parseToken(tok::integer_literal, diag::expected_precedence_value)){
long long Value;
if (Text.getAsInteger(10, Value) || Value > 255 || Value < 0)
diagnose(PrecLoc, diag::invalid_precedence, Text);
else
Attributes.Infix = InfixData(Value, Assoc);
} else {
// FIXME: I'd far rather that we describe this in terms of some
// list structure in the caller. This feels too ad hoc.
skipUntil(tok::r_square, tok::comma);
}
}
return false;
}
// Resilience attributes.
case AttrName::resilient:
case AttrName::fragile:
case AttrName::born_fragile: {
if (Attributes.Resilience.isValid())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Resilience resil = getResilience(attr);
// TODO: 'fragile' should allow deployment versioning.
Attributes.Resilience = ResilienceData(resil);
return false;
}
// 'byref' attribute.
// FIXME: only permit this in specific contexts.
case AttrName::byref: {
SourceLoc TokLoc = Tok.getLoc();
if (Attributes.Byref)
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Attributes.Byref = true;
Attributes.ByrefHeap = false;
// Permit "qualifiers" on the byref.
SourceLoc beginLoc = Tok.getLoc();
if (Tok.isAnyLParen()) {
consumeToken();
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::byref_attribute_expected_identifier);
skipUntil(tok::r_paren);
} else if (Tok.getText() == "heap") {
Attributes.ByrefHeap = true;
consumeToken(tok::identifier);
} else {
diagnose(Tok, diag::byref_attribute_unknown_qualifier);
consumeToken(tok::identifier);
}
SourceLoc endLoc;
parseMatchingToken(tok::r_paren, endLoc,
diag::byref_attribute_expected_rparen,
beginLoc,
diag::opening_paren);
}
// Verify that we're not combining this attribute incorrectly. Cannot be
// both byref and auto_closure.
if (Attributes.isAutoClosure()) {
diagnose(TokLoc, diag::cannot_combine_attribute, "auto_closure");
Attributes.AutoClosure = false;
}
return false;
}
// FIXME: Only valid on var and tuple elements, not on func's, typealias, etc.
case AttrName::auto_closure: {
SourceLoc TokLoc = Tok.getLoc();
if (Attributes.isAutoClosure())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
// Verify that we're not combining this attribute incorrectly. Cannot be
// both byref and auto_closure.
if (Attributes.isByref()) {
diagnose(TokLoc, diag::cannot_combine_attribute, "byref");
return false;
}
Attributes.AutoClosure = true;
return false;
}
case AttrName::assignment: {
if (Attributes.isAssignment())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Attributes.Assignment = true;
return false;
}
case AttrName::postfix: {
if (Attributes.isPostfix())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Attributes.Postfix = true;
return false;
}
case AttrName::conversion: {
if (Attributes.isConversion())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Attributes.Conversion = true;
return false;
}
case AttrName::iboutlet: {
if (Attributes.isIBOutlet())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Attributes.IBOutlet = true;
return false;
}
case AttrName::ibaction: {
if (Attributes.isIBAction())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Attributes.IBAction = true;
return false;
}
case AttrName::objc: {
if (Attributes.isObjC())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
Attributes.ObjC = true;
return false;
}
/// FIXME: This is a temporary hack until we can import C modules.
case AttrName::asmname: {
SourceLoc TokLoc = Tok.getLoc();
if (!Attributes.AsmName.empty())
diagnose(Tok, diag::duplicate_attribute, Tok.getText());
consumeToken(tok::identifier);
if (!consumeIf(tok::equal)) {
diagnose(TokLoc, diag::asmname_expected_equals);
return false;
}
if (!Tok.is(tok::string_literal)) {
diagnose(TokLoc, diag::asmname_expected_string_literal);
return false;
}
llvm::SmallVector<Lexer::StringSegment, 1> Segments;
L->getEncodedStringLiteral(Tok, Context, Segments);
if (Segments.size() != 1 ||
Segments.front().Kind == Lexer::StringSegment::Expr) {
diagnose(TokLoc, diag::asmname_interpolated_string);
} else {
Attributes.AsmName = Segments.front().Data;
}
consumeToken(tok::string_literal);
return false;
}
}
llvm_unreachable("bad attribute kind");
}
/// parsePresentAttributeList - This is the internal implementation of
/// parseAttributeList, which we expect to be inlined to handle the common case
/// of an absent attribute list.
/// attribute-list:
/// /*empty*/
/// '[' ']'
/// '[' attribute (',' attribute)* ']'
bool Parser::parseAttributeListPresent(DeclAttributes &Attributes) {
assert(Tok.isAnyLSquare());
Attributes.LSquareLoc = consumeToken();
// If this is an empty attribute list, consume it and return.
if (Tok.is(tok::r_square)) {
Attributes.RSquareLoc = consumeToken(tok::r_square);
return false;
}
bool HadError = false;
do {
HadError |= parseAttribute(Attributes);
} while (consumeIf(tok::comma));
if (parseMatchingToken(tok::r_square, Attributes.RSquareLoc,
diag::expected_in_attribute_list,
Attributes.LSquareLoc, diag::opening_bracket)) {
skipUntil(tok::r_square);
consumeIf(tok::r_square);
return true;
}
return HadError;
}
/// parseDecl - Parse a single syntactic declaration and return a list of decl
/// ASTs. This can return multiple results for var decls that bind to multiple
/// values, structs that define a struct decl and a constructor, etc.
///
/// This method returns true on a parser error that requires recovery.
///
/// decl:
/// decl-typealias
/// decl-extension
/// decl-var
/// decl-func
/// decl-oneof
/// decl-struct
/// decl-import
///
bool Parser::parseDecl(SmallVectorImpl<Decl*> &Entries, unsigned Flags) {
bool HadParseError = false;
switch (Tok.getKind()) {
default:
ParseError:
diagnose(Tok, diag::expected_decl);
HadParseError = true;
break;
case tok::semi:
// FIXME: Add a fixit to remove the semicolon.
diagnose(Tok, diag::disallowed_semi);
// Don't set HadParseError; just eat the semicolon and continue.
consumeToken(tok::semi);
break;
case tok::kw_import:
Entries.push_back(parseDeclImport(Flags));
break;
case tok::kw_extension:
Entries.push_back(parseDeclExtension(Flags));
break;
case tok::kw_var:
HadParseError = parseDeclVar(Flags, Entries);
break;
case tok::kw_typealias:
Entries.push_back(parseDeclTypeAlias(!(Flags & PD_DisallowTypeAliasDef)));
break;
case tok::kw_oneof:
HadParseError = parseDeclOneOf(Flags, Entries);
break;
case tok::kw_struct:
HadParseError = parseDeclStruct(Flags, Entries);
break;
case tok::kw_class:
HadParseError = parseDeclClass(Flags, Entries);
break;
case tok::kw_constructor:
Entries.push_back(parseDeclConstructor(Flags & PD_HasContainerType));
break;
case tok::kw_destructor:
Entries.push_back(parseDeclDestructor(Flags));
break;
case tok::kw_protocol:
Entries.push_back(parseDeclProtocol(Flags));
break;
case tok::kw_static:
if (peekToken().isNot(tok::kw_func))
goto ParseError;
// FALL THROUGH.
case tok::kw_func:
Entries.push_back(parseDeclFunc(Flags));
break;
case tok::kw_subscript:
HadParseError = parseDeclSubscript(Flags & PD_HasContainerType,
!(Flags & PD_DisallowFuncDef),
Entries);
break;
}
// In containers, statements are not allowed, and at top level in a library
// module, a statement will raise an error, so in these cases, a trailing
// semicolon can't be parsed as a SemiStmt. Just consume it here.
if ((Flags & (PD_HasContainerType | PD_AllowTopLevel)) &&
Tok.is(tok::semi)) {
consumeToken(tok::semi);
// FIXME: Should we preserve the location of the semicolon for
// diagnostic/rewriting purposes?
}
// If we got back a null pointer, then a parse error happened.
if (Entries.empty())
HadParseError = true;
else if (Entries.back() == 0) {
Entries.pop_back();
HadParseError = true;
}
return HadParseError;
}
/// parseDeclImport - Parse an 'import' declaration, returning null (and doing
/// no token skipping) on error.
///
/// decl-import:
/// 'import' attribute-list any-identifier ('.' any-identifier)*
///
Decl *Parser::parseDeclImport(unsigned Flags) {
SourceLoc ImportLoc = consumeToken(tok::kw_import);
DeclAttributes Attributes;
parseAttributeList(Attributes);
SmallVector<std::pair<Identifier, SourceLoc>, 8> ImportPath(1);
ImportPath.back().second = Tok.getLoc();
if (parseAnyIdentifier(ImportPath.back().first,
diag::decl_expected_module_name))
return 0;
while (consumeIf(tok::period)) {
ImportPath.push_back(std::make_pair(Identifier(), Tok.getLoc()));
if (parseAnyIdentifier(ImportPath.back().first,
diag::expected_identifier_in_decl, "import"))
return 0;
}
if (!Attributes.empty())
diagnose(Attributes.LSquareLoc, diag::import_attributes);
if (!(Flags & PD_AllowTopLevel)) {
diagnose(ImportLoc, diag::decl_inner_scope);
return 0;
}
return ImportDecl::create(Context, CurDeclContext, ImportLoc, ImportPath);
}
/// parseInheritance - Parse an inheritance clause.
///
/// inheritance:
/// ':' type-identifier (',' type-identifier)*
bool Parser::parseInheritance(SmallVectorImpl<TypeLoc> &Inherited) {
consumeToken(tok::colon);
do {
// Parse the inherited type (which must be a protocol).
TypeLoc Loc;
if (parseTypeIdentifier(Loc))
return true;
// Record the type.
Inherited.push_back(Loc);
// Check for a ',', which indicates that there are more protocols coming.
} while (consumeIf(tok::comma));
return false;
}
/// parseDeclExtension - Parse an 'extension' declaration.
/// extension:
/// 'extension' type-identifier inheritance? '{' decl* '}'
///
Decl *Parser::parseDeclExtension(unsigned Flags) {
SourceLoc ExtensionLoc = consumeToken(tok::kw_extension);
TypeLoc Loc;
SourceLoc LBLoc, RBLoc;
if (parseTypeIdentifier(Loc))
return nullptr;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (Tok.is(tok::colon))
parseInheritance(Inherited);
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_extension))
return nullptr;
ExtensionDecl *ED
= new (Context) ExtensionDecl(ExtensionLoc, Loc,
Context.AllocateCopy(Inherited),
CurDeclContext);
ContextChange CC(*this, ED);
Scope ExtensionScope(this, /*AllowLookup=*/false);
SmallVector<Decl*, 8> MemberDecls;
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
if (parseDecl(MemberDecls,
PD_HasContainerType|PD_DisallowVar))
skipUntilDeclRBrace();
}
parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_extension,
LBLoc, diag::opening_brace);
ED->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
if (!(Flags & PD_AllowTopLevel)) {
diagnose(ExtensionLoc, diag::decl_inner_scope);
return nullptr;
}
return ED;
}
/// parseDeclTypeAlias
/// decl-typealias:
/// 'typealias' identifier inheritance? '=' type
///
TypeAliasDecl *Parser::parseDeclTypeAlias(bool WantDefinition) {
SourceLoc TypeAliasLoc = consumeToken(tok::kw_typealias);
Identifier Id;
TypeLoc UnderlyingLoc;
SourceLoc IdLoc = Tok.getLoc();
if (parseIdentifier(Id, diag::expected_identifier_in_decl, "typealias"))
return nullptr;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (Tok.is(tok::colon))
parseInheritance(Inherited);
if (WantDefinition || Tok.is(tok::equal)) {
if (parseToken(tok::equal, diag::expected_equal_in_typealias) ||
parseType(UnderlyingLoc, diag::expected_type_in_typealias))
return nullptr;
if (!WantDefinition) {
diagnose(IdLoc, diag::associated_type_def, Id);
UnderlyingLoc = TypeLoc();
}
}
TypeAliasDecl *TAD =
new (Context) TypeAliasDecl(TypeAliasLoc, Id, IdLoc, UnderlyingLoc,
CurDeclContext,
Context.AllocateCopy(Inherited));
ScopeInfo.addToScope(TAD);
return TAD;
}
void Parser::addVarsToScope(Pattern *Pat,
SmallVectorImpl<Decl*> &Decls,
DeclAttributes &Attributes) {
switch (Pat->getKind()) {
// Recurse into patterns.
case PatternKind::Tuple:
for (auto &field : cast<TuplePattern>(Pat)->getFields())
addVarsToScope(field.getPattern(), Decls, Attributes);
return;
case PatternKind::Paren:
return addVarsToScope(cast<ParenPattern>(Pat)->getSubPattern(), Decls,
Attributes);
case PatternKind::Typed:
return addVarsToScope(cast<TypedPattern>(Pat)->getSubPattern(), Decls,
Attributes);
// Handle vars.
case PatternKind::Named: {
VarDecl *VD = cast<NamedPattern>(Pat)->getDecl();
VD->setDeclContext(CurDeclContext);
if (!VD->hasType())
VD->setType(UnstructuredUnresolvedType::get(Context));
if (Attributes.isValid())
VD->getMutableAttrs() = Attributes;
if (VD->isProperty()) {
// FIXME: Order of get/set not preserved.
if (FuncDecl *Get = VD->getGetter()) {
Get->setDeclContext(CurDeclContext);
Decls.push_back(Get);
}
if (FuncDecl *Set = VD->getSetter()) {
Set->setDeclContext(CurDeclContext);
Decls.push_back(Set);
}
}
Decls.push_back(VD);
ScopeInfo.addToScope(VD);
return;
}
// Handle non-vars.
case PatternKind::Any:
return;
}
llvm_unreachable("bad pattern kind!");
}
/// parseSetGet - Parse a get-set clause, containing a getter and (optionally)
/// a setter.
///
/// get-set:
/// get var-set?
/// set var-get
///
/// get:
/// 'get:' stmt-brace-item*
///
/// set:
/// 'set' set-name? ':' stmt-brace-item*
///
/// set-name:
/// '(' identifier ')'
bool Parser::parseGetSet(bool HasContainerType, Pattern *Indices,
Type ElementTy, FuncDecl *&Get, FuncDecl *&Set,
SourceLoc &LastValidLoc) {
if (GetIdent.empty()) {
GetIdent = Context.getIdentifier("get");
SetIdent = Context.getIdentifier("set");
}
bool Invalid = false;
Get = 0;
Set = 0;
while (Tok.isNot(tok::r_brace)) {
if (Tok.is(tok::eof)) {
Invalid = true;
break;
}
Identifier Id = Context.getIdentifier(Tok.getText());
if (Id == GetIdent || Id != SetIdent) {
// get ::= 'get' stmt-brace
// Have we already parsed a get clause?
if (Get) {
diagnose(Tok.getLoc(), diag::duplicate_getset, false);
diagnose(Get->getLoc(), diag::previous_getset, false);
// Forget the previous version.
Get = 0;
}
SourceLoc GetLoc = Tok.getLoc(), ColonLoc = Tok.getLoc();
if (Id == GetIdent) {
GetLoc = consumeToken();
if (Tok.isNot(tok::colon)) {
diagnose(Tok.getLoc(), diag::expected_colon_get);
Invalid = true;
break;
}
ColonLoc = consumeToken(tok::colon);
}
// Set up a function declaration for the getter and parse its body.
// Create the parameter list(s) for the getter.
llvm::SmallVector<Pattern *, 3> Params;
// Add the implicit 'this' to Params, if needed.
if (HasContainerType)
Params.push_back(buildImplicitThisParameter());
// Add the index clause if necessary.
if (Indices) {
Params.push_back(Indices->clone(Context));
}
// Add a no-parameters clause.
Params.push_back(TuplePattern::create(Context, SourceLoc(),
ArrayRef<TuplePatternElt>(),
SourceLoc()));
Scope FnBodyScope(this, /*AllowLookup=*/true);
// Start the function.
Type GetterRetTy = ElementTy;
FuncExpr *GetFn = actOnFuncExprStart(GetLoc,
TypeLoc::withoutLoc(GetterRetTy),
Params, Params);
// Establish the new context.
ContextChange CC(*this, GetFn);
SmallVector<ExprStmtOrDecl, 16> Entries;
parseBraceItemList(Entries, false /*NotTopLevel*/, true /*IsGetSet*/);
NullablePtr<BraceStmt> Body = BraceStmt::create(Context, ColonLoc,
Entries, Tok.getLoc());
if (Body.isNull()) {
GetLoc = SourceLoc();
skipUntilDeclRBrace();
Invalid = true;
break;
}
GetFn->setBody(Body.get());
LastValidLoc = Body.get()->getRBraceLoc();
Get = new (Context) FuncDecl(/*StaticLoc=*/SourceLoc(), GetLoc,
Identifier(), GetLoc, /*generic=*/nullptr,
Type(), GetFn, CurDeclContext);
GetFn->setDecl(Get);
continue;
}
// var-set ::= 'set' var-set-name? stmt-brace
// Have we already parsed a var-set clause?
if (Set) {
diagnose(Tok.getLoc(), diag::duplicate_getset, true);
diagnose(Set->getLoc(), diag::previous_getset, true);
// Forget the previous setter.
Set = 0;
}
SourceLoc SetLoc = consumeToken();
// var-set-name ::= '(' identifier ')'
Identifier SetName;
SourceLoc SetNameLoc;
SourceRange SetNameParens;
if (Tok.isAnyLParen()) {
SourceLoc StartLoc = consumeToken();
if (Tok.is(tok::identifier)) {
// We have a name.
SetName = Context.getIdentifier(Tok.getText());
SetNameLoc = consumeToken();
// Look for the closing ')'.
SourceLoc EndLoc;
if (parseMatchingToken(tok::r_paren, EndLoc,
diag::expected_rparen_setname,
StartLoc, diag::opening_paren))
EndLoc = SetNameLoc;
SetNameParens = SourceRange(StartLoc, EndLoc);
} else {
diagnose(Tok.getLoc(), diag::expected_setname);
skipUntil(tok::r_paren, tok::l_brace);
if (Tok.is(tok::r_paren))
consumeToken();
}
}
if (Tok.isNot(tok::colon)) {
diagnose(Tok.getLoc(), diag::expected_colon_set);
Invalid = true;
break;
}
SourceLoc ColonLoc = consumeToken(tok::colon);
// Set up a function declaration for the setter and parse its body.
// Create the parameter list(s) for the setter.
llvm::SmallVector<Pattern *, 3> Params;
// Add the implicit 'this' to Params, if needed.
if (HasContainerType)
Params.push_back(buildImplicitThisParameter());
// Add the index parameters, if necessary.
if (Indices) {
Params.push_back(Indices->clone(Context));
}
// Add the parameter. If no name was specified, the name defaults to
// 'value'.
if (SetName.empty())
SetName = Context.getIdentifier("value");
{
VarDecl *Value = new (Context) VarDecl(SetNameLoc, SetName, ElementTy,
CurDeclContext);
Pattern *ValuePattern
= new (Context) TypedPattern(new (Context) NamedPattern(Value),
TypeLoc::withoutLoc(ElementTy));
TuplePatternElt ValueElt(ValuePattern);
Pattern *ValueParamsPattern
= TuplePattern::create(Context, SetNameParens.Start, ValueElt,
SetNameParens.End);
Params.push_back(ValueParamsPattern);
}
Scope FnBodyScope(this, /*AllowLookup=*/true);
// Start the function.
Type SetterRetTy = TupleType::getEmpty(Context);
FuncExpr *SetFn = actOnFuncExprStart(SetLoc,
TypeLoc::withoutLoc(SetterRetTy),
Params, Params);
// Establish the new context.
ContextChange CC(*this, SetFn);
// Parse the body.
SmallVector<ExprStmtOrDecl, 16> Entries;
parseBraceItemList(Entries, false /*NotTopLevel*/, true /*IsGetSet*/);
NullablePtr<BraceStmt> Body = BraceStmt::create(Context, ColonLoc,
Entries, Tok.getLoc());
if (Body.isNull()) {
skipUntilDeclRBrace();
Invalid = true;
break;
}
SetFn->setBody(Body.get());
LastValidLoc = Body.get()->getRBraceLoc();
Set = new (Context) FuncDecl(/*StaticLoc=*/SourceLoc(), SetLoc,
Identifier(), SetLoc, /*generic=*/nullptr,
Type(), SetFn, CurDeclContext);
SetFn->setDecl(Set);
}
return Invalid;
}
/// parseDeclVarGetSet - Parse the brace-enclosed getter and setter for a variable.
///
/// decl-var:
/// 'var' attribute-list identifier : type-annotation { get-set }
void Parser::parseDeclVarGetSet(Pattern &pattern, bool HasContainerType) {
assert(!GetIdent.empty() && "No 'get' identifier?");
assert(!SetIdent.empty() && "No 'set' identifier?");
bool Invalid = false;
// The grammar syntactically requires a simple identifier for the variable
// name. Complain if that isn't what we got.
VarDecl *PrimaryVar = 0;
{
Pattern *PrimaryPattern = &pattern;
if (TypedPattern *Typed = dyn_cast<TypedPattern>(PrimaryPattern))
PrimaryPattern = Typed->getSubPattern();
if (NamedPattern *Named = dyn_cast<NamedPattern>(PrimaryPattern)) {
PrimaryVar = Named->getDecl();
}
}
if (!PrimaryVar)
diagnose(pattern.getLoc(), diag::getset_nontrivial_pattern);
// The grammar syntactically requires a type annotation. Complain if
// our pattern does not have one.
Type Ty;
if (TypedPattern *TP = dyn_cast<TypedPattern>(&pattern)) {
Ty = TP->getTypeLoc().getType();
} else {
if (PrimaryVar)
diagnose(pattern.getLoc(), diag::getset_missing_type);
Ty = ErrorType::get(Context);
}
SourceLoc LBLoc = consumeToken(tok::l_brace);
// Parse getter and setter.
FuncDecl *Get = 0;
FuncDecl *Set = 0;
SourceLoc LastValidLoc = LBLoc;
if (parseGetSet(HasContainerType, /*Indices=*/0, Ty, Get, Set, LastValidLoc))
Invalid = true;
// Parse the final '}'.
SourceLoc RBLoc;
if (Invalid) {
skipUntilDeclRBrace();
RBLoc = LastValidLoc;
}
if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset,
LBLoc, diag::opening_brace)) {
RBLoc = LastValidLoc;
}
if (Set && !Get) {
if (!Invalid)
diagnose(Set->getLoc(), diag::var_set_without_get);
Set = nullptr;
Invalid = true;
}
// If things went well, turn this variable into a property.
if (!Invalid && PrimaryVar && (Set || Get))
PrimaryVar->setProperty(Context, LBLoc, Get, Set, RBLoc);
}
/// parseDeclVar - Parse a 'var' declaration, returning true (and doing no
/// token skipping) on error.
///
/// decl-var:
/// 'var' attribute-list pattern initializer? (',' pattern initializer? )*
/// 'var' attribute-list identifier : type-annotation { get-set }
bool Parser::parseDeclVar(unsigned Flags, SmallVectorImpl<Decl*> &Decls){
SourceLoc VarLoc = consumeToken(tok::kw_var);
DeclAttributes Attributes;
parseAttributeList(Attributes);
SmallVector<PatternBindingDecl*, 4> PBDs;
bool HasGetSet = false;
bool Invalid = false;
do {
NullablePtr<Pattern> pattern = parsePattern();
if (pattern.isNull()) return true;
// If we syntactically match the second decl-var production, with a
// var-get-set clause, parse the var-get-set clause.
if (Tok.is(tok::l_brace)) {
// Get the identifiers for both 'get' and 'set'.
if (GetIdent.empty()) {
GetIdent = Context.getIdentifier("get");
SetIdent = Context.getIdentifier("set");
}
parseDeclVarGetSet(*pattern.get(), Flags & PD_HasContainerType);
HasGetSet = true;
}
Type Ty;
NullablePtr<Expr> Init;
if (Tok.is(tok::equal)) {
SourceLoc EqualLoc = consumeToken(tok::equal);
Init = parseExpr(diag::expected_initializer_expr);
if (Init.isNull()) {
Invalid = true;
break;
}
if (HasGetSet) {
diagnose(pattern.get()->getLoc(), diag::getset_init)
<< Init.get()->getSourceRange();
Init = nullptr;
}
if (Flags & PD_DisallowInit) {
diagnose(EqualLoc, diag::disallowed_init);
Invalid = true;
}
}
addVarsToScope(pattern.get(), Decls, Attributes);
PatternBindingDecl *PBD =
new (Context) PatternBindingDecl(VarLoc, pattern.get(),
Init.getPtrOrNull(), CurDeclContext);
Decls.push_back(PBD);
// Propagate back types for simple patterns, like "var A, B : T".
if (TypedPattern *TP = dyn_cast<TypedPattern>(PBD->getPattern())) {
if (isa<NamedPattern>(TP->getSubPattern()) && !PBD->hasInit()) {
for (unsigned i = PBDs.size(); i != 0; --i) {
PatternBindingDecl *PrevPBD = PBDs[i-1];
Pattern *PrevPat = PrevPBD->getPattern();
if (!isa<NamedPattern>(PrevPat) || PrevPBD->hasInit())
break;
if (HasGetSet) {
// FIXME -- offer a fixit to explicitly specify the type
diagnose(PrevPat->getLoc(), diag::getset_cannot_be_implied);
Invalid = true;
}
TypedPattern *NewTP = new (Context) TypedPattern(PrevPat,
TP->getTypeLoc());
PrevPBD->setPattern(NewTP);
}
}
}
PBDs.push_back(PBD);
} while (consumeIf(tok::comma));
if (HasGetSet) {
if (Flags & PD_DisallowProperty) {
diagnose(VarLoc, diag::disallowed_property_decl);
return true;
}
} else if (Flags & PD_DisallowVar) {
diagnose(VarLoc, diag::disallowed_var_decl);
return true;
}
return Invalid;
}
/// addImplicitThisParameter - Add an implicit 'this' parameter to the given
/// set of parameter clauses.
Pattern *Parser::buildImplicitThisParameter() {
VarDecl *D
= new (Context) VarDecl(SourceLoc(), Context.getIdentifier("this"),
Type(), CurDeclContext);
Pattern *P = new (Context) NamedPattern(D);
return new (Context) TypedPattern(P, TypeLoc());
}
/// parseDeclFunc - Parse a 'func' declaration, returning null on error. The
/// caller handles this case and does recovery as appropriate.
///
/// decl-func:
/// 'static'? 'func' attribute-list any-identifier generic-params?
/// func-signature stmt-brace?
///
/// NOTE: The caller of this method must ensure that the token sequence is
/// either 'func' or 'static' 'func'.
///
FuncDecl *Parser::parseDeclFunc(unsigned Flags) {
bool HasContainerType = Flags & PD_HasContainerType;
SourceLoc StaticLoc;
if (Tok.is(tok::kw_static)) {
StaticLoc = consumeToken(tok::kw_static);
// Reject 'static' functions at global scope.
if (!HasContainerType) {
diagnose(Tok, diag::static_func_decl_global_scope);
StaticLoc = SourceLoc();
}
}
SourceLoc FuncLoc = consumeToken(tok::kw_func);
DeclAttributes Attributes;
// FIXME: Implicitly add immutable attribute.
parseAttributeList(Attributes);
Identifier Name;
SourceLoc NameLoc = Tok.getLoc();
if (parseAnyIdentifier(Name, diag::expected_identifier_in_decl, "func"))
return 0;
// Parse the generic-params, if present.
Optional<Scope> GenericsScope;
GenericsScope.emplace(this, /*AllowLookup*/true);
GenericParamList *GenericParams = maybeParseGenericParams();
// We force first type of a func declaration to be a tuple for consistency.
if (Tok.isNotAnyLParen()) {
diagnose(Tok, diag::func_decl_without_paren);
return 0;
}
SmallVector<Pattern*, 8> ArgParams;
SmallVector<Pattern*, 8> BodyParams;
// If we're within a container and this isn't a static method, add an
// implicit first pattern to match the container type as an element
// named 'this'. This turns "(int)->int" on FooTy into "(this :
// [byref] FooTy)->((int)->int)". Note that we can't actually compute the
// type here until Sema.
if (HasContainerType) {
Pattern *thisPattern = buildImplicitThisParameter();
ArgParams.push_back(thisPattern);
BodyParams.push_back(thisPattern);
}
TypeLoc FuncRetTy;
if (parseFunctionSignature(ArgParams, BodyParams, FuncRetTy))
return 0;
// Enter the arguments for the function into a new function-body scope. We
// need this even if there is no function body to detect argument name
// duplication.
FuncExpr *FE = 0;
{
Scope FnBodyScope(this, /*AllowLookup=*/true);
FE = actOnFuncExprStart(FuncLoc, FuncRetTy, ArgParams, BodyParams);
// Now that we have a context, update the generic parameters with that
// context.
if (GenericParams) {
for (auto Param : *GenericParams) {
Param.setDeclContext(FE);
}
}
// Establish the new context.
ContextChange CC(*this, FE);
// Then parse the expression.
NullablePtr<Stmt> Body;
// Check to see if we have a "{" to start a brace statement.
if (Flags & PD_DisallowFuncDef) {
if (Tok.is(tok::l_brace)) {
diagnose(Tok.getLoc(), diag::disallowed_func_def);
consumeToken();
skipUntil(tok::r_brace);
consumeToken();
return 0;
}
} else if (Attributes.AsmName.empty() || Tok.is(tok::l_brace)) {
NullablePtr<BraceStmt> Body=parseStmtBrace(diag::func_decl_without_brace);
if (Body.isNull()) {
// FIXME: Should do some sort of error recovery here?
} else {
FE->setBody(Body.get());
}
}
}
// Exit the scope introduced for the generic parameters.
GenericsScope.reset();
// Create the decl for the func and add it to the parent scope.
FuncDecl *FD = new (Context) FuncDecl(StaticLoc, FuncLoc, Name, NameLoc,
GenericParams, Type(), FE,
CurDeclContext);
if (FE)
FE->setDecl(FD);
if (Attributes.isValid()) FD->getMutableAttrs() = Attributes;
ScopeInfo.addToScope(FD);
return FD;
}
/// parseDeclOneOf - Parse a 'oneof' declaration, returning true (and doing no
/// token skipping) on error.
///
/// decl-oneof:
/// 'oneof' attribute-list identifier generic-params? inheritance?
/// '{' oneof-body '}'
/// oneof-body:
/// oneof-element (',' oneof-element)* decl*
/// oneof-element:
/// identifier
/// identifier ':' type-annotation
///
bool Parser::parseDeclOneOf(unsigned Flags, SmallVectorImpl<Decl*> &Decls) {
SourceLoc OneOfLoc = consumeToken(tok::kw_oneof);
DeclAttributes Attributes;
parseAttributeList(Attributes);
Identifier OneOfName;
SourceLoc OneOfNameLoc = Tok.getLoc();
if (parseIdentifier(OneOfName, diag::expected_identifier_in_decl, "oneof"))
return true;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope GenericsScope(this, /*AllowLookup*/true);
GenericParams = maybeParseGenericParams();
}
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (Tok.is(tok::colon))
parseInheritance(Inherited);
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_oneof_type))
return true;
OneOfDecl *OOD = new (Context) OneOfDecl(OneOfLoc, OneOfName, OneOfNameLoc,
Context.AllocateCopy(Inherited),
GenericParams, CurDeclContext);
Decls.push_back(OOD);
if (Attributes.isValid()) OOD->getMutableAttrs() = Attributes;
// Now that we have a context, update the generic parameters with that
// context.
if (GenericParams) {
for (auto Param : *GenericParams) {
Param.setDeclContext(OOD);
}
}
struct OneOfElementInfo {
SourceLoc NameLoc;
StringRef Name;
TypeLoc EltTypeLoc;
};
SmallVector<OneOfElementInfo, 8> ElementInfos;
{
ContextChange CC(*this, OOD);
Scope OneofBodyScope(this, /*AllowLookup=*/false);
// Parse the comma separated list of oneof elements.
while (Tok.is(tok::identifier)) {
OneOfElementInfo ElementInfo;
ElementInfo.Name = Tok.getText();
ElementInfo.NameLoc = Tok.getLoc();
consumeToken(tok::identifier);
// See if we have a type specifier for this oneof element.
// If so, parse it.
if (consumeIf(tok::colon) &&
parseTypeAnnotation(ElementInfo.EltTypeLoc,
diag::expected_type_oneof_element)) {
skipUntil(tok::r_brace);
return true;
}
ElementInfos.push_back(ElementInfo);
// Require comma separation.
if (!consumeIf(tok::comma))
break;
}
}
llvm::SmallDenseMap<Identifier, OneOfElementDecl*, 16> SeenSoFar;
SmallVector<Decl *, 16> MemberDecls;
for (const OneOfElementInfo &Elt : ElementInfos) {
Identifier NameI = Context.getIdentifier(Elt.Name);
// Create a decl for each element, giving each a temporary type.
OneOfElementDecl *OOED =
new (Context) OneOfElementDecl(Elt.NameLoc, NameI,
Elt.EltTypeLoc, OOD);
// If this was multiply defined, reject it.
auto insertRes = SeenSoFar.insert(std::make_pair(NameI, OOED));
if (!insertRes.second) {
diagnose(Elt.NameLoc, diag::duplicate_oneof_element, Elt.Name);
diagnose(insertRes.first->second->getLoc(),
diag::previous_definition, NameI);
// Don't copy this element into NewElements.
continue;
}
MemberDecls.push_back(OOED);
}
// Parse the extended body of the oneof.
{
ContextChange CC(*this, OOD);
Scope OneofBodyScope(this, /*AllowLookup=*/false);
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
if (parseDecl(MemberDecls,
PD_HasContainerType|PD_DisallowVar))
skipUntilDeclRBrace();
}
}
OOD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, Tok.getLoc() });
ScopeInfo.addToScope(OOD);
if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_oneof_type,
LBLoc, diag::opening_brace))
return true;
if (Flags & PD_DisallowNominalTypes) {
diagnose(OneOfLoc, diag::disallowed_type);
return true;
}
return false;
}
/// parseDeclStruct - Parse a 'struct' declaration, returning true (and doing no
/// token skipping) on error.
///
/// decl-struct:
/// 'struct' attribute-list identifier generic-params? inheritance?
/// '{' decl-struct-body '}
/// decl-struct-body:
/// decl*
///
bool Parser::parseDeclStruct(unsigned Flags, SmallVectorImpl<Decl*> &Decls) {
SourceLoc StructLoc = consumeToken(tok::kw_struct);
DeclAttributes Attributes;
parseAttributeList(Attributes);
Identifier StructName;
SourceLoc StructNameLoc = Tok.getLoc();
SourceLoc LBLoc, RBLoc;
if (parseIdentifier(StructName, diag::expected_identifier_in_decl, "struct"))
return true;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope GenericsScope(this, /*AllowLookup*/true);
GenericParams = maybeParseGenericParams();
}
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (Tok.is(tok::colon))
parseInheritance(Inherited);
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_struct))
return true;
StructDecl *SD = new (Context) StructDecl(StructLoc, StructName,
StructNameLoc,
Context.AllocateCopy(Inherited),
GenericParams,
CurDeclContext);
Decls.push_back(SD);
if (Attributes.isValid()) SD->getMutableAttrs() = Attributes;
// Now that we have a context, update the generic parameters with that
// context.
if (GenericParams) {
for (auto Param : *GenericParams) {
Param.setDeclContext(SD);
}
}
// Parse the body.
SmallVector<Decl*, 8> MemberDecls;
{
ContextChange CC(*this, SD);
Scope StructBodyScope(this, /*AllowLookup=*/false);
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
if (parseDecl(MemberDecls, PD_HasContainerType))
skipUntilDeclRBrace();
}
}
// FIXME: Need better handling for implicit constructors.
Identifier ConstructID = Context.getIdentifier("constructor");
VarDecl *ThisDecl
= new (Context) VarDecl(SourceLoc(), Context.getIdentifier("this"),
Type(), SD);
ConstructorDecl *ValueCD =
new (Context) ConstructorDecl(ConstructID, StructLoc, nullptr, ThisDecl,
nullptr, SD);
MemberDecls.push_back(ValueCD);
ThisDecl->setDeclContext(ValueCD);
SD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, Tok.getLoc() });
ScopeInfo.addToScope(SD);
if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_struct,
LBLoc, diag::opening_brace))
return true;
if (Flags & PD_DisallowNominalTypes) {
diagnose(StructLoc, diag::disallowed_type);
return true;
}
return false;
}
/// parseDeclClass - Parse a 'class' declaration, returning true (and doing no
/// token skipping) on error.
///
/// decl-class:
/// 'class' attribute-list identifier generic-params? inheritance?
/// '{' decl-class-body '}
/// decl-class-body:
/// decl*
///
bool Parser::parseDeclClass(unsigned Flags, SmallVectorImpl<Decl*> &Decls) {
SourceLoc ClassLoc = consumeToken(tok::kw_class);
DeclAttributes Attributes;
parseAttributeList(Attributes);
Identifier ClassName;
SourceLoc ClassNameLoc = Tok.getLoc();
SourceLoc LBLoc, RBLoc;
if (parseIdentifier(ClassName, diag::expected_identifier_in_decl, "class"))
return true;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope GenericsScope(this, /*AllowLookup*/true);
GenericParams = maybeParseGenericParams();
}
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (Tok.is(tok::colon))
parseInheritance(Inherited);
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_class))
return true;
ClassDecl *CD = new (Context) ClassDecl(ClassLoc, ClassName, ClassNameLoc,
Context.AllocateCopy(Inherited),
GenericParams, CurDeclContext);
Decls.push_back(CD);
if (Attributes.isValid()) CD->getMutableAttrs() = Attributes;
// Now that we have a context, update the generic parameters with that
// context.
if (GenericParams) {
for (auto Param : *GenericParams) {
Param.setDeclContext(CD);
}
}
// Parse the body.
SmallVector<Decl*, 8> MemberDecls;
{
ContextChange CC(*this, CD);
Scope ClassBodyScope(this, /*AllowLookup=*/false);
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
if (parseDecl(MemberDecls, PD_HasContainerType|PD_AllowDestructor))
skipUntilDeclRBrace();
}
}
bool hasConstructor = false;
for (Decl *Member : MemberDecls) {
if (isa<ConstructorDecl>(Member))
hasConstructor = true;
}
if (!hasConstructor) {
VarDecl *ThisDecl
= new (Context) VarDecl(SourceLoc(), Context.getIdentifier("this"),
Type(), CD);
Pattern *Arguments = TuplePattern::create(Context, SourceLoc(),
ArrayRef<TuplePatternElt>(),
SourceLoc());
ConstructorDecl *Constructor =
new (Context) ConstructorDecl(Context.getIdentifier("constructor"),
SourceLoc(), Arguments, ThisDecl,
nullptr, CD);
ThisDecl->setDeclContext(Constructor);
MemberDecls.push_back(Constructor);
}
CD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, Tok.getLoc() });
ScopeInfo.addToScope(CD);
if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_class,
LBLoc, diag::opening_brace))
return true;
if (Flags & PD_DisallowNominalTypes) {
diagnose(ClassLoc, diag::disallowed_type);
return true;
}
return false;
}
/// parseDeclProtocol - Parse a 'protocol' declaration, returning null (and
/// doing no token skipping) on error.
///
/// decl-protocol:
/// protocol-head '{' protocol-member* '}'
///
/// protocol-head:
/// 'protocol' attribute-list identifier inheritance?
///
/// protocol-member:
/// decl-func
/// decl-var-simple
/// decl-typealias
///
Decl *Parser::parseDeclProtocol(unsigned Flags) {
SourceLoc ProtocolLoc = consumeToken(tok::kw_protocol);
DeclAttributes Attributes;
parseAttributeList(Attributes);
SourceLoc NameLoc = Tok.getLoc();
Identifier ProtocolName;
if (parseIdentifier(ProtocolName,
diag::expected_identifier_in_decl, "protocol"))
return 0;
SmallVector<TypeLoc, 4> InheritedProtocols;
if (Tok.is(tok::colon))
parseInheritance(InheritedProtocols);
ProtocolDecl *Proto
= new (Context) ProtocolDecl(CurDeclContext, ProtocolLoc, NameLoc,
ProtocolName,
Context.AllocateCopy(InheritedProtocols));
if (Attributes.isValid()) Proto->getMutableAttrs() = Attributes;
ContextChange CC(*this, Proto);
Scope ProtocolBodyScope(this, /*AllowLookup=*/false);
{
// Parse the body.
SourceLoc LBraceLoc = Tok.getLoc();
if (parseToken(tok::l_brace, diag::expected_lbrace_protocol_type))
return nullptr;
// Parse the list of protocol elements.
SmallVector<Decl*, 8> Members;
// Add the implicit 'This' associated type.
// FIXME: Mark as 'implicit'.
Members.push_back(new (Context) TypeAliasDecl(ProtocolLoc,
Context.getIdentifier("This"),
ProtocolLoc, TypeLoc(),
CurDeclContext,
MutableArrayRef<TypeLoc>()));
bool HadError = false;
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
if (parseDecl(Members,
PD_HasContainerType|PD_DisallowProperty|
PD_DisallowFuncDef|PD_DisallowNominalTypes|
PD_DisallowInit|PD_DisallowTypeAliasDef)) {
skipUntilDeclRBrace();
HadError = true;
}
}
// Find the closing brace.
SourceLoc RBraceLoc = Tok.getLoc();
if (Tok.is(tok::r_brace))
consumeToken();
else if (!HadError) {
diagnose(Tok.getLoc(), diag::expected_rbrace_protocol);
diagnose(LBraceLoc, diag::opening_brace);
}
// Install the protocol elements.
Proto->setMembers(Context.AllocateCopy(Members),
SourceRange(LBraceLoc, RBraceLoc));
}
if (Flags & PD_DisallowNominalTypes) {
diagnose(ProtocolLoc, diag::disallowed_type);
return nullptr;
} else if (!(Flags & PD_AllowTopLevel)) {
diagnose(ProtocolLoc, diag::decl_inner_scope);
return nullptr;
}
return Proto;
}
/// parseDeclSubscript - Parse a 'subscript' declaration, returning true
/// on error.
///
/// decl-subscript:
/// subscript-head get-set
/// subscript-head
/// 'subscript' attribute-list pattern-tuple '->' type
///
bool Parser::parseDeclSubscript(bool HasContainerType,
bool NeedDefinition,
SmallVectorImpl<Decl *> &Decls) {
bool Invalid = false;
SourceLoc SubscriptLoc = consumeToken(tok::kw_subscript);
// Reject 'subscript' functions outside of type decls
if (!HasContainerType) {
diagnose(Tok, diag::subscript_decl_wrong_scope);
Invalid = true;
}
// attribute-list
DeclAttributes Attributes;
parseAttributeList(Attributes);
// pattern-tuple
if (Tok.isNotAnyLParen()) {
diagnose(Tok.getLoc(), diag::expected_lparen_subscript);
return true;
}
NullablePtr<Pattern> Indices = parsePatternTuple();
if (Indices.isNull())
return true;
// '->'
if (!Tok.is(tok::arrow)) {
diagnose(Tok.getLoc(), diag::expected_arrow_subscript);
return true;
}
SourceLoc ArrowLoc = consumeToken();
// type
TypeLoc ElementTy;
if (parseTypeAnnotation(ElementTy, diag::expected_type_subscript))
return true;
if (!NeedDefinition) {
SubscriptDecl *Subscript
= new (Context) SubscriptDecl(Context.getIdentifier("__subscript"),
SubscriptLoc, Indices.get(), ArrowLoc,
ElementTy, SourceRange(),
0, 0, CurDeclContext);
Decls.push_back(Subscript);
return false;
}
// '{'
if (!Tok.is(tok::l_brace)) {
diagnose(Tok.getLoc(), diag::expected_lbrace_subscript);
return true;
}
SourceLoc LBLoc = consumeToken();
// Parse getter and setter.
FuncDecl *Get = 0;
FuncDecl *Set = 0;
SourceLoc LastValidLoc = LBLoc;
if (parseGetSet(HasContainerType, Indices.get(), ElementTy.getType(),
Get, Set, LastValidLoc))
Invalid = true;
// Parse the final '}'.
SourceLoc RBLoc;
if (Invalid) {
skipUntilDeclRBrace();
RBLoc = LastValidLoc;
}
if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset,
LBLoc, diag::opening_brace)) {
RBLoc = LastValidLoc;
}
if (!Get) {
if (!Invalid)
diagnose(SubscriptLoc, diag::subscript_without_get);
Invalid = true;
}
if (!Invalid) {
// FIXME: We should build the declarations even if they are invalid.
// Build an AST for the subscript declaration.
SubscriptDecl *Subscript
= new (Context) SubscriptDecl(Context.getIdentifier("__subscript"),
SubscriptLoc, Indices.get(), ArrowLoc,
ElementTy, SourceRange(LBLoc, RBLoc),
Get, Set, CurDeclContext);
Decls.push_back(Subscript);
// FIXME: Order of get/set not preserved.
if (Set) {
Set->setDeclContext(CurDeclContext);
Set->makeSetter(Subscript);
Decls.push_back(Set);
}
if (Get) {
Get->setDeclContext(CurDeclContext);
Get->makeGetter(Subscript);
Decls.push_back(Get);
}
}
return Invalid;
}
static void AddConstructorArgumentsToScope(Pattern *pat, ConstructorDecl *CD,
Parser &P) {
switch (pat->getKind()) {
case PatternKind::Named: {
// Reparent the decl and add it to the scope.
VarDecl *var = cast<NamedPattern>(pat)->getDecl();
var->setDeclContext(CD);
P.ScopeInfo.addToScope(var);
return;
}
case PatternKind::Any:
return;
case PatternKind::Paren:
AddConstructorArgumentsToScope(cast<ParenPattern>(pat)->getSubPattern(),
CD, P);
return;
case PatternKind::Typed:
AddConstructorArgumentsToScope(cast<TypedPattern>(pat)->getSubPattern(),
CD, P);
return;
case PatternKind::Tuple:
for (const TuplePatternElt &field : cast<TuplePattern>(pat)->getFields())
AddConstructorArgumentsToScope(field.getPattern(), CD, P);
return;
}
llvm_unreachable("bad pattern kind!");
}
ConstructorDecl *Parser::parseDeclConstructor(bool HasContainerType) {
SourceLoc ConstructorLoc = consumeToken(tok::kw_constructor);
// Reject 'constructor' functions outside of types
if (!HasContainerType) {
diagnose(Tok, diag::constructor_decl_wrong_scope);
return nullptr;
}
// attribute-list
DeclAttributes Attributes;
parseAttributeList(Attributes);
// Parse the generic-params, if present.
Scope GenericsScope(this, /*AllowLookup*/true);
GenericParamList *GenericParams = maybeParseGenericParams();
// pattern-tuple
if (Tok.isNotAnyLParen()) {
diagnose(Tok.getLoc(), diag::expected_lparen_constructor);
return nullptr;
}
NullablePtr<Pattern> Arguments = parsePatternTuple();
if (Arguments.isNull())
return nullptr;
// '{'
if (!Tok.is(tok::l_brace)) {
diagnose(Tok.getLoc(), diag::expected_lbrace_constructor);
return nullptr;
}
VarDecl *ThisDecl
= new (Context) VarDecl(SourceLoc(), Context.getIdentifier("this"),
Type(), CurDeclContext);
Scope ConstructorBodyScope(this, /*AllowLookup=*/true);
ConstructorDecl *CD =
new (Context) ConstructorDecl(Context.getIdentifier("constructor"),
ConstructorLoc, Arguments.get(), ThisDecl,
GenericParams, CurDeclContext);
ThisDecl->setDeclContext(CD);
if (GenericParams) {
for (auto Param : *GenericParams)
Param.setDeclContext(CD);
}
AddConstructorArgumentsToScope(Arguments.get(), CD, *this);
ScopeInfo.addToScope(ThisDecl);
ContextChange CC(*this, CD);
NullablePtr<BraceStmt> Body = parseStmtBrace(diag::invalid_diagnostic);
if (!Body.isNull())
CD->setBody(Body.get());
if (Attributes.isValid()) CD->getMutableAttrs() = Attributes;
return CD;
}
DestructorDecl *Parser::parseDeclDestructor(unsigned Flags) {
SourceLoc DestructorLoc = consumeToken(tok::kw_destructor);
// Reject 'destructor' functions outside of classes
if (!(Flags & PD_AllowDestructor)) {
diagnose(Tok, diag::destructor_decl_outside_class);
return nullptr;
}
// attribute-list
DeclAttributes Attributes;
parseAttributeList(Attributes);
// '{'
if (!Tok.is(tok::l_brace)) {
diagnose(Tok.getLoc(), diag::expected_lbrace_destructor);
return nullptr;
}
VarDecl *ThisDecl
= new (Context) VarDecl(SourceLoc(), Context.getIdentifier("this"),
Type(), CurDeclContext);
Scope DestructorBodyScope(this, /*AllowLookup=*/true);
DestructorDecl *DD =
new (Context) DestructorDecl(Context.getIdentifier("destructor"),
DestructorLoc, ThisDecl, CurDeclContext);
ThisDecl->setDeclContext(DD);
ScopeInfo.addToScope(ThisDecl);
ContextChange CC(*this, DD);
NullablePtr<BraceStmt> Body = parseStmtBrace(diag::invalid_diagnostic);
if (!Body.isNull())
DD->setBody(Body.get());
if (Attributes.isValid()) DD->getMutableAttrs() = Attributes;
return DD;
}