Files
swift-mirror/SwiftCompilerSources/Sources/Optimizer/Utilities/AccessUtils.swift
Andrew Trick a5d8aafb23 SwiftCompilerSources: Replace BlockArgument with Phi and TermResult.
All SILArgument types are "block arguments". There are three kinds:
1. Function arguments
2. Phis
3. Terminator results

In every situation where the source of the block argument matters, we
need to distinguish between these three. Accidentally failing to
handle one of the cases is an perpetual source of compiler
bugs. Attempting to handle both phis and terminator results uniformly
is *always* a bug, especially once OSSA has phi flags. Even when all
cases are handled correctly, the code that deals with data flow across
blocks is incomprehensible without giving each case a type. This
continues to be a massive waste of time literally every time I review
code that involves cross-block control flow.

Unfortunately, we don't have these C++ types yet (nothing big is
blocking that, it just wasn't done). That's manageable because we can
use wrapper types on the Swift side for now. Wrapper types don't
create any more complexity than protocols, but they do sacrifice some
usability in switch cases.

There is no reason for a BlockArgument type. First, a function
argument is a block argument just as much as any other. BlockArgument
provides no useful information beyond Argument. And it is nearly
always a mistake to care about whether a value is a function argument
and not care whether it is a phi or terminator result.
2023-09-27 18:47:46 -07:00

601 lines
22 KiB
Swift

//===--- AccessUtils.swift - Utilities for analyzing memory accesses ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This file provides a set of utilities for analyzing memory accesses.
// It defines the following concepts
// - `AccessBase`: represents the base address of a memory access.
// - `AccessPath`: a pair of an `AccessBase` and `SmallProjectionPath` with the
// the path describing the specific address (in terms of projections) of the
// access.
// - Access storage path (which is of type `ProjectedValue`): identifies the
// reference (or a value which contains a reference) an address originates from.
//
// The snippet below shows the relationship between the access concepts.
// ```
// %ref = struct_extract %value, #f1 access storage path
// %base = ref_element_addr %ref, #f2 AccessBase AccessPath |
// %scope = begin_access %base AccessScope | |
// %t = tuple_element_addr %scope, 0 | |
// %s = struct_element_addr %t, #f3 v v
// %l = load %s the access
// ```
//===----------------------------------------------------------------------===//
import SIL
/// AccessBase describes the base address of a memory access (e.g. of a `load` or `store``).
/// The "base address" is defined as the address which is obtained from the access address by
/// looking through all address projections.
/// This means that the base address is either the same as the access address or:
/// the access address is a chain of address projections of the base address.
/// The following snippets show examples of memory accesses and their respective bases.
///
/// ```
/// %base1 = ref_element_addr %ref, #Obj.field // A `class` base
/// %base2 = alloc_stack $S // A `stack` base
/// %base3 = global_addr @gaddr // A `global` base
/// %addr1 = struct_element_addr %base1
/// %access1 = store %v1 to [trivial] %addr1 // accessed address is offset from base
/// %access2 = store %v2 to [trivial] %base2 // accessed address is base itself
/// ```
///
/// The base address is never inside an access scope.
enum AccessBase : CustomStringConvertible, Hashable {
/// The address of a boxed variable, i.e. a field of an `alloc_box`.
case box(ProjectBoxInst)
/// The address of a stack-allocated value, i.e. an `alloc_stack`
case stack(AllocStackInst)
/// The address of a global variable.
case global(GlobalVariable)
/// The address of a stored property of a class instance.
case `class`(RefElementAddrInst)
/// The base address of the tail allocated elements of a class instance.
case tail(RefTailAddrInst)
/// An indirect function argument, like `@inout`.
case argument(FunctionArgument)
/// An indirect result of a `begin_apply`.
case yield(MultipleValueInstructionResult)
/// An address which is derived from a `Builtin.RawPointer`.
case pointer(PointerToAddressInst)
/// The access base is some SIL pattern which does not fit into any other case.
/// This should be a very rare situation.
case unidentified
init(baseAddress: Value) {
switch baseAddress {
case let rea as RefElementAddrInst : self = .class(rea)
case let rta as RefTailAddrInst : self = .tail(rta)
case let pbi as ProjectBoxInst : self = .box(pbi)
case let asi as AllocStackInst : self = .stack(asi)
case let arg as FunctionArgument : self = .argument(arg)
case let ga as GlobalAddrInst : self = .global(ga.global)
case let mvr as MultipleValueInstructionResult:
if mvr.parentInstruction is BeginApplyInst && baseAddress.type.isAddress {
self = .yield(mvr)
} else {
self = .unidentified
}
default:
self = .unidentified
}
}
var description: String {
switch self {
case .unidentified: return "?"
case .box(let pbi): return "box - \(pbi)"
case .stack(let asi): return "stack - \(asi)"
case .global(let gl): return "global - @\(gl.name)"
case .class(let rea): return "class - \(rea)"
case .tail(let rta): return "tail - \(rta.instance)"
case .argument(let arg): return "argument - \(arg)"
case .yield(let result): return "yield - \(result)"
case .pointer(let p): return "pointer - \(p)"
}
}
/// True, if this is an access to a class instance.
var isObjectAccess: Bool {
switch self {
case .class, .tail:
return true
case .box, .stack, .global, .argument, .yield, .pointer, .unidentified:
return false
}
}
/// The reference value if this is an access to a referenced objecct (class, box, tail).
var reference: Value? {
switch self {
case .box(let pbi): return pbi.box
case .class(let rea): return rea.instance
case .tail(let rta): return rta.instance
case .stack, .global, .argument, .yield, .pointer, .unidentified:
return nil
}
}
/// True if this access base may be derived from a reference that is only valid within a locally
/// scoped OSSA lifetime. For example:
///
/// %reference = begin_borrow %1
/// %base = ref_tail_addr %reference <- %base must not be used outside the borrow scope
/// end_borrow %reference
///
/// This is not true for scoped storage such as alloc_stack and @in arguments.
///
var hasLocalOwnershipLifetime: Bool {
if let reference = reference {
// Conservatively assume that everything which is a ref-counted object is within an ownership scope.
// TODO: we could e.g. exclude guaranteed function arguments.
return reference.ownership != .none
}
return false
}
/// True, if the baseAddress is of an immutable property or global variable
var isLet: Bool {
switch self {
case .class(let rea): return rea.fieldIsLet
case .global(let g): return g.isLet
case .box, .stack, .tail, .argument, .yield, .pointer, .unidentified:
return false
}
}
/// True, if the address is immediately produced by an allocation in its function.
var isLocal: Bool {
switch self {
case .box(let pbi): return pbi.box is AllocBoxInst
case .class(let rea): return rea.instance is AllocRefInstBase
case .tail(let rta): return rta.instance is AllocRefInstBase
case .stack: return true
case .global, .argument, .yield, .pointer, .unidentified:
return false
}
}
/// True, if the kind of storage of the access is known (e.g. a class property, or global variable).
var hasKnownStorageKind: Bool {
switch self {
case .box, .class, .tail, .stack, .global:
return true
case .argument, .yield, .pointer, .unidentified:
return false
}
}
/// Returns true if it's guaranteed that this access has the same base address as the `other` access.
///
/// `isEqual` abstracts away the projection instructions that are included as part of the AccessBase:
/// multiple `project_box` and `ref_element_addr` instructions are equivalent bases as long as they
/// refer to the same variable or class property.
func isEqual(to other: AccessBase) -> Bool {
switch (self, other) {
case (.box(let pb1), .box(let pb2)):
return pb1.box.referenceRoot == pb2.box.referenceRoot
case (.class(let rea1), .class(let rea2)):
return rea1.fieldIndex == rea2.fieldIndex &&
rea1.instance.referenceRoot == rea2.instance.referenceRoot
case (.tail(let rta1), .tail(let rta2)):
return rta1.instance.referenceRoot == rta2.instance.referenceRoot &&
rta1.type == rta2.type
case (.stack(let as1), .stack(let as2)):
return as1 == as2
case (.global(let gl1), .global(let gl2)):
return gl1 == gl2
case (.argument(let arg1), .argument(let arg2)):
return arg1 == arg2
case (.yield(let baResult1), .yield(let baResult2)):
return baResult1 == baResult2
case (.pointer(let p1), .pointer(let p2)):
return p1 == p2
default:
return false
}
}
/// Returns `true` if the two access bases do not alias.
func isDistinct(from other: AccessBase) -> Bool {
func isDifferentAllocation(_ lhs: Value, _ rhs: Value) -> Bool {
switch (lhs, rhs) {
case (is Allocation, is Allocation):
return lhs != rhs
case (is Allocation, is FunctionArgument),
(is FunctionArgument, is Allocation):
// A local allocation cannot alias with something passed to the function.
return true
default:
return false
}
}
func argIsDistinct(_ arg: FunctionArgument, from other: AccessBase) -> Bool {
if arg.convention.isExclusiveIndirect {
// Exclusive indirect arguments cannot alias with an address for which we know that it
// is not derived from that argument (which might be the case for `pointer` and `yield`).
return other.hasKnownStorageKind
}
// Non-exclusive argument still cannot alias with anything allocated locally in the function.
return other.isLocal
}
switch (self, other) {
// First handle all pairs of the same kind (except `yield` and `pointer`).
case (.box(let pb), .box(let otherPb)):
return pb.fieldIndex != otherPb.fieldIndex ||
isDifferentAllocation(pb.box, otherPb.box)
case (.stack(let asi), .stack(let otherAsi)):
return asi != otherAsi
case (.global(let global), .global(let otherGlobal)):
return global != otherGlobal
case (.class(let rea), .class(let otherRea)):
return rea.fieldIndex != otherRea.fieldIndex ||
isDifferentAllocation(rea.instance, otherRea.instance)
case (.tail(let rta), .tail(let otherRta)):
return isDifferentAllocation(rta.instance, otherRta.instance)
case (.argument(let arg), .argument(let otherArg)):
return (arg.convention.isExclusiveIndirect || otherArg.convention.isExclusiveIndirect) && arg != otherArg
// Handle arguments vs non-arguments
case (.argument(let arg), _):
return argIsDistinct(arg, from: other)
case (_, .argument(let otherArg)):
return argIsDistinct(otherArg, from: self)
default:
// As we already handled pairs of the same kind, here we handle pairs with different kinds.
// Different storage kinds cannot alias, regardless where the storage comes from.
// E.g. a class property address cannot alias with a global variable address.
return hasKnownStorageKind && other.hasKnownStorageKind
}
}
}
/// An `AccessPath` is a pair of a `base: AccessBase` and a `projectionPath: Path`
/// which denotes the offset of the access from the base in terms of projections.
struct AccessPath : CustomStringConvertible {
let base: AccessBase
/// address projections only
let projectionPath: SmallProjectionPath
static func unidentified() -> AccessPath {
return AccessPath(base: .unidentified, projectionPath: SmallProjectionPath())
}
var description: String {
"\(projectionPath): \(base)"
}
func isDistinct(from other: AccessPath) -> Bool {
if base.isDistinct(from: other.base) {
// We can already derived from the bases that there is no alias.
// No need to look at the projection paths.
return true
}
if base == other.base ||
(base.hasKnownStorageKind && other.base.hasKnownStorageKind) {
if !projectionPath.mayOverlap(with: other.projectionPath) {
return true
}
}
return false
}
/// Returns true if this access addresses the same memory location as `other` or if `other`
/// is a sub-field of this access.
/// Note that this access _contains_ `other` if `other` has a _larger_ projection path than this acccess.
/// For example:
/// `%value.s0` contains `%value.s0.s1`
func isEqualOrContains(_ other: AccessPath) -> Bool {
return getProjection(to: other) != nil
}
var materializableProjectionPath: SmallProjectionPath? {
if projectionPath.isMaterializable {
return projectionPath
}
return nil
}
/// Returns the projection path to `other` if this access path is equal or contains `other`.
///
/// For example,
/// `%value.s0`.getProjection(to: `%value.s0.s1`)
/// yields
/// `s1`
func getProjection(to other: AccessPath) -> SmallProjectionPath? {
if !base.isEqual(to: other.base) {
return nil
}
if let resultPath = projectionPath.subtract(from: other.projectionPath),
// Indexing is not a projection where the base overlaps the projected address.
!resultPath.pop().kind.isIndexedElement
{
return resultPath
}
return nil
}
/// Like `getProjection`, but also requires that the resulting projection path is materializable.
func getMaterializableProjection(to other: AccessPath) -> SmallProjectionPath? {
if let projectionPath = getProjection(to: other),
projectionPath.isMaterializable {
return projectionPath
}
return nil
}
}
private func canBeOperandOfIndexAddr(_ value: Value) -> Bool {
switch value {
case is IndexAddrInst, is RefTailAddrInst, is PointerToAddressInst:
return true
default:
return false
}
}
/// Tries to identify from which address the pointer operand originates from.
/// This is useful to identify patterns like
/// ```
/// %orig_addr = global_addr @...
/// %ptr = address_to_pointer %orig_addr
/// %addr = pointer_to_address %ptr
/// ```
extension PointerToAddressInst {
var originatingAddress: Value? {
struct Walker : ValueUseDefWalker {
let addrType: Type
var result: Value?
var walkUpCache = WalkerCache<Path>()
mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
if let atp = value as? AddressToPointerInst {
if let res = result, atp.address != res {
return .abortWalk
}
if addrType != atp.address.type { return .abortWalk }
if !path.isEmpty { return .abortWalk }
self.result = atp.address
return .continueWalk
}
return .abortWalk
}
mutating func walkUp(value: Value, path: SmallProjectionPath) -> WalkResult {
switch value {
case is Argument, is MarkDependenceInst, is CopyValueInst,
is StructExtractInst, is TupleExtractInst, is StructInst, is TupleInst, is AddressToPointerInst:
return walkUpDefault(value: value, path: path)
default:
return .abortWalk
}
}
}
var walker = Walker(addrType: type)
if walker.walkUp(value: pointer, path: SmallProjectionPath()) == .abortWalk {
return nil
}
return walker.result
}
}
/// The `EnclosingScope` of an access is the innermost `begin_access`
/// instruction that checks for exclusivity of the access.
/// If there is no `begin_access` instruction found, then the scope is
/// the base itself.
///
/// The access scopes for the snippet below are:
/// (l1, .base(%addr)), (l2, .scope(%a2)), (l3, .scope(%a3))
///
/// ````
/// %addr = ... : $*Int64
/// %l1 = load %addr : $*Int64
/// %a1 = begin_access [read] [dynamic] %addr : $*Int64
/// %a2 = begin_access [read] [dynamic] %addr : $*Int64
/// %l2 = load %a2 : $*Int64
/// end_access %a2 : $*Int64
/// end_access %a1 : $*Int64
/// %a3 = begin_access [read] [dynamic] [no_nested_conflict] %addr : $*Int64
/// %l3 = load %a3 : $*Int64
/// end_access %a3 : $*Int64
/// ```
enum EnclosingScope {
case scope(BeginAccessInst)
case base(AccessBase)
}
private struct AccessPathWalker : AddressUseDefWalker {
var result = AccessPath.unidentified()
var foundBeginAccess: BeginAccessInst?
mutating func walk(startAt address: Value, initialPath: SmallProjectionPath = SmallProjectionPath()) {
if walkUp(address: address, path: Path(projectionPath: initialPath)) == .abortWalk {
assert(result.base == .unidentified,
"shouldn't have set an access base in an aborted walk")
}
}
struct Path : SmallProjectionWalkingPath {
let projectionPath: SmallProjectionPath
// Tracks whether an `index_addr` instruction was crossed.
// It should be (FIXME: check if it's enforced) that operands
// of `index_addr` must be `tail_addr` or other `index_addr` results.
let indexAddr: Bool
init(projectionPath: SmallProjectionPath = SmallProjectionPath(), indexAddr: Bool = false) {
self.projectionPath = projectionPath
self.indexAddr = indexAddr
}
func with(projectionPath: SmallProjectionPath) -> Self {
return Self(projectionPath: projectionPath, indexAddr: indexAddr)
}
func with(indexAddr: Bool) -> Self {
return Self(projectionPath: projectionPath, indexAddr: indexAddr)
}
func merge(with other: Self) -> Self {
return Self(
projectionPath: projectionPath.merge(with: other.projectionPath),
indexAddr: indexAddr || other.indexAddr
)
}
}
mutating func rootDef(address: Value, path: Path) -> WalkResult {
assert(result.base == .unidentified, "rootDef should only called once")
// Try identifying the address a pointer originates from
if let p2ai = address as? PointerToAddressInst {
if let originatingAddr = p2ai.originatingAddress {
return walkUp(address: originatingAddr, path: path)
} else {
self.result = AccessPath(base: .pointer(p2ai), projectionPath: path.projectionPath)
return .continueWalk
}
}
let base = AccessBase(baseAddress: address)
self.result = AccessPath(base: base, projectionPath: path.projectionPath)
return .continueWalk
}
mutating func walkUp(address: Value, path: Path) -> WalkResult {
if address is IndexAddrInst {
// Track that we crossed an `index_addr` during the walk-up
return walkUpDefault(address: address, path: path.with(indexAddr: true))
} else if path.indexAddr && !canBeOperandOfIndexAddr(address) {
// An `index_addr` instruction cannot be derived from an address
// projection. Bail out
return .abortWalk
} else if let ba = address as? BeginAccessInst, foundBeginAccess == nil {
foundBeginAccess = ba
}
return walkUpDefault(address: address, path: path.with(indexAddr: false))
}
}
extension Value {
// Convenient properties to avoid instantiating an explicit AccessPathWalker.
//
// Although an AccessPathWalker is created for each call of these properties,
// it's very unlikely that this will end up in memory allocations.
// Only in the rare case of `pointer_to_address` -> `address_to_pointer` pairs, which
// go through phi-arguments, the AccessPathWalker will allocate memnory in its cache.
/// Computes the access base of this address value.
var accessBase: AccessBase { accessPath.base }
/// Computes the access path of this address value.
var accessPath: AccessPath {
var walker = AccessPathWalker()
walker.walk(startAt: self)
return walker.result
}
func getAccessPath(fromInitialPath: SmallProjectionPath) -> AccessPath {
var walker = AccessPathWalker()
walker.walk(startAt: self, initialPath: fromInitialPath)
return walker.result
}
/// Computes the access path of this address value and also returns the scope.
var accessPathWithScope: (AccessPath, scope: BeginAccessInst?) {
var walker = AccessPathWalker()
walker.walk(startAt: self)
return (walker.result, walker.foundBeginAccess)
}
/// Computes the enclosing access scope of this address value.
var enclosingAccessScope: EnclosingScope {
var walker = AccessPathWalker()
walker.walk(startAt: self)
if let ba = walker.foundBeginAccess {
return .scope(ba)
}
return .base(walker.result.base)
}
/// The root definition of a reference, obtained by skipping casts, etc.
var referenceRoot: Value {
var value: Value = self
while true {
switch value {
case is BeginBorrowInst, is CopyValueInst, is MoveValueInst,
is EndInitLetRefInst,
is BeginDeallocRefInst,
is UpcastInst, is UncheckedRefCastInst, is EndCOWMutationInst:
value = (value as! Instruction).operands[0].value
case let mvr as MultipleValueInstructionResult:
guard let bcm = mvr.parentInstruction as? BeginCOWMutationInst else {
return value
}
value = bcm.instance
default:
return value
}
}
}
}
/// A ValueUseDef walker that that visits access storage paths of an address.
///
/// An access storage path is the reference (or a value which contains a reference)
/// an address originates from.
/// In the following example the `storage` is `contains_ref` with `path` `"s0.c0.s0"`
/// ```
/// %ref = struct_extract %contains_ref : $S, #S.l
/// %base = ref_element_addr %ref : $List, #List.x
/// %addr = struct_element_addr %base : $X, #X.e
/// store %v to [trivial] %addr : $*Int
/// ```
extension ValueUseDefWalker where Path == SmallProjectionPath {
/// The main entry point.
/// Given an `accessPath` where the access base is a reference (class, tail, box), call
/// the `visit` function for all storage roots with a the corresponding path.
/// Returns true on success.
/// Returns false if not all storage roots could be identified or if `accessPath` has not a "reference" base.
mutating func visitAccessStorageRoots(of accessPath: AccessPath) -> Bool {
walkUpCache.clear()
let path = accessPath.projectionPath
switch accessPath.base {
case .box(let pbi):
return walkUp(value: pbi.box, path: path.push(.classField, index: pbi.fieldIndex)) != .abortWalk
case .class(let rea):
return walkUp(value: rea.instance, path: path.push(.classField, index: rea.fieldIndex)) != .abortWalk
case .tail(let rta):
return walkUp(value: rta.instance, path: path.push(.tailElements, index: 0)) != .abortWalk
case .stack, .global, .argument, .yield, .pointer, .unidentified:
return false
}
}
}