Files
swift-mirror/SwiftCompilerSources/Sources/SIL/Argument.swift

334 lines
10 KiB
Swift

//===--- Argument.swift - Defines the Argument classes --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import Basic
import SILBridging
/// A basic block argument.
///
/// Maps to both, SILPhiArgument and SILFunctionArgument.
public class Argument : Value, Hashable {
public var definingInstruction: Instruction? { nil }
public var parentBlock: BasicBlock {
return bridged.getParent().block
}
var bridged: BridgedArgument { BridgedArgument(obj: SwiftObject(self)) }
public var index: Int {
return parentBlock.arguments.firstIndex(of: self)!
}
public static func ==(lhs: Argument, rhs: Argument) -> Bool {
lhs === rhs
}
public func hash(into hasher: inout Hasher) {
hasher.combine(ObjectIdentifier(self))
}
}
final public class FunctionArgument : Argument {
public var convention: ArgumentConvention {
bridged.getConvention().convention
}
public var isSelf: Bool {
return bridged.isSelf()
}
public var isIndirectResult: Bool {
return index < parentFunction.numIndirectResultArguments
}
}
public struct Phi {
public let value: Argument
// TODO: Remove the CondBr case. All passes avoid critical edges. It is only included here for compatibility with .sil tests that have not been migrated.
public init?(_ value: Value) {
guard let argument = value as? Argument else { return nil }
var preds = argument.parentBlock.predecessors
guard let pred = preds.next() else { return nil }
let term = pred.terminator
guard term is BranchInst || term is CondBranchInst else { return nil }
self.value = argument
}
public init?(using operand: Operand) {
switch operand.instruction {
case let br as BranchInst:
self.init(br.getArgument(for: operand))
case let condBr as CondBranchInst:
guard let arg = condBr.getArgument(for: operand) else { return nil }
self.init(arg)
default:
return nil
}
}
public var predecessors: PredecessorList {
return value.parentBlock.predecessors
}
public var successor: BasicBlock {
return value.parentBlock
}
public var incomingOperands: LazyMapSequence<PredecessorList, Operand> {
let blockArgIdx = value.index
return predecessors.lazy.map {
switch $0.terminator {
case let br as BranchInst:
return br.operands[blockArgIdx]
case let condBr as CondBranchInst:
if condBr.trueBlock == successor {
assert(condBr.falseBlock != successor)
return condBr.trueOperands[blockArgIdx]
} else {
assert(condBr.falseBlock == successor)
return condBr.falseOperands[blockArgIdx]
}
default:
fatalError("wrong terminator for phi-argument")
}
}
}
public var incomingValues: LazyMapSequence<LazyMapSequence<PredecessorList, Operand>, Value> {
incomingOperands.lazy.map { $0.value }
}
public static func ==(lhs: Phi, rhs: Phi) -> Bool {
lhs.value === rhs.value
}
public func hash(into hasher: inout Hasher) {
value.hash(into: &hasher)
}
}
public struct TerminatorResult {
public let value: Argument
public init?(_ value: Value) {
guard let argument = value as? Argument else { return nil }
var preds = argument.parentBlock.predecessors
guard let pred = preds.next() else { return nil }
let term = pred.terminator
if term is BranchInst || term is CondBranchInst { return nil }
self.value = argument
}
public var terminator: TermInst {
var preds = value.parentBlock.predecessors
return preds.next()!.terminator
}
public var predecessor: BasicBlock {
return terminator.parentBlock
}
public var successor: BasicBlock {
return value.parentBlock
}
public static func ==(lhs: TerminatorResult, rhs: TerminatorResult) -> Bool {
lhs.value == rhs.value
}
public func hash(into hasher: inout Hasher) {
value.hash(into: &hasher)
}
}
public enum ArgumentConvention {
/// This argument is passed indirectly, i.e. by directly passing the address
/// of an object in memory. The callee is responsible for destroying the
/// object. The callee may assume that the address does not alias any valid
/// object.
case indirectIn
/// This argument is passed indirectly, i.e. by directly passing the address
/// of an object in memory. The callee may not modify and does not destroy
/// the object.
case indirectInGuaranteed
/// This argument is passed indirectly, i.e. by directly passing the address
/// of an object in memory. The object is always valid, but the callee may
/// assume that the address does not alias any valid object and reorder loads
/// stores to the parameter as long as the whole object remains valid. Invalid
/// single-threaded aliasing may produce inconsistent results, but should
/// remain memory safe.
case indirectInout
/// This argument is passed indirectly, i.e. by directly passing the address
/// of an object in memory. The object is allowed to be aliased by other
/// well-typed references, but is not allowed to be escaped. This is the
/// convention used by mutable captures in @noescape closures.
case indirectInoutAliasable
/// This argument represents an indirect return value address. The callee stores
/// the returned value to this argument. At the time when the function is called,
/// the memory location referenced by the argument is uninitialized.
case indirectOut
/// This argument is passed directly. Its type is non-trivial, and the callee
/// is responsible for destroying it.
case directOwned
/// This argument is passed directly. Its type may be trivial, or it may
/// simply be that the callee is not responsible for destroying it. Its
/// validity is guaranteed only at the instant the call begins.
case directUnowned
/// This argument is passed directly. Its type is non-trivial, and the caller
/// guarantees its validity for the entirety of the call.
case directGuaranteed
/// This argument is a value pack of mutable references to storage,
/// which the function is being given exclusive access to. The elements
/// must be passed indirectly.
case packInout
/// This argument is a value pack, and ownership of the elements is being
/// transferred into this function. Whether the elements are passed
/// indirectly is recorded in the pack type.
case packOwned
/// This argument is a value pack, and ownership of the elements is not
/// being transferred into this function. Whether the elements are passed
/// indirectly is recorded in the pack type.
case packGuaranteed
/// This argument is a pack of indirect return value addresses. The
/// addresses are stored in the pack by the caller and read out by the
/// callee; within the callee, they are individually treated like
/// indirectOut arguments.
case packOut
public var isIndirect: Bool {
switch self {
case .indirectIn, .indirectInGuaranteed,
.indirectInout, .indirectInoutAliasable, .indirectOut,
.packOut, .packInout, .packOwned, .packGuaranteed:
return true
case .directOwned, .directUnowned, .directGuaranteed:
return false
}
}
public var isIndirectIn: Bool {
switch self {
case .indirectIn, .indirectInGuaranteed,
.packOwned, .packGuaranteed:
return true
case .directOwned, .directUnowned, .directGuaranteed,
.indirectInout, .indirectInoutAliasable, .indirectOut,
.packOut, .packInout:
return false
}
}
public var isIndirectOut: Bool {
switch self {
case .indirectOut, .packOut:
return true
case .indirectInGuaranteed, .directGuaranteed, .packGuaranteed,
.indirectIn, .directOwned, .directUnowned,
.indirectInout, .indirectInoutAliasable,
.packInout, .packOwned:
return false
}
}
public var isGuaranteed: Bool {
switch self {
case .indirectInGuaranteed, .directGuaranteed, .packGuaranteed:
return true
case .indirectIn, .directOwned, .directUnowned,
.indirectInout, .indirectInoutAliasable, .indirectOut,
.packOut, .packInout, .packOwned:
return false
}
}
public var isExclusiveIndirect: Bool {
switch self {
case .indirectIn,
.indirectOut,
.indirectInGuaranteed,
.indirectInout,
.packOut,
.packInout,
.packOwned,
.packGuaranteed:
return true
case .indirectInoutAliasable,
.directUnowned,
.directGuaranteed,
.directOwned:
return false
}
}
public var isInout: Bool {
switch self {
case .indirectInout,
.indirectInoutAliasable,
.packInout:
return true
case .indirectIn,
.indirectOut,
.indirectInGuaranteed,
.directUnowned,
.directGuaranteed,
.directOwned,
.packOut,
.packOwned,
.packGuaranteed:
return false
}
}
}
// Bridging utilities
extension BridgedArgument {
public var argument: Argument { obj.getAs(Argument.self) }
public var functionArgument: FunctionArgument { obj.getAs(FunctionArgument.self) }
}
extension BridgedArgumentConvention {
var convention: ArgumentConvention {
switch self {
case .Indirect_In: return .indirectIn
case .Indirect_In_Guaranteed: return .indirectInGuaranteed
case .Indirect_Inout: return .indirectInout
case .Indirect_InoutAliasable: return .indirectInoutAliasable
case .Indirect_Out: return .indirectOut
case .Direct_Owned: return .directOwned
case .Direct_Unowned: return .directUnowned
case .Direct_Guaranteed: return .directGuaranteed
case .Pack_Out: return .packOut
case .Pack_Inout: return .packInout
case .Pack_Owned: return .packOwned
case .Pack_Guaranteed: return .packGuaranteed
default:
fatalError("unsupported argument convention")
}
}
}