Files
swift-mirror/stdlib/public/core/Policy.swift
Nate Cook 9f326385d6 [stdlib] Revise documentation for core types and protocols
This adds to and expands upon documentation for some core parts of the
standard library, including Optional, ErrorProtocol, AnyObject, and Bool.
2016-05-09 16:41:20 -05:00

678 lines
24 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Swift Standard Prolog Library.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Standardized aliases
//===----------------------------------------------------------------------===//
/// The return type of functions that don't explicitly specify a return type;
/// an empty tuple (i.e., `()`).
///
/// When declaring a function or method, you don't need to specify a return
/// type if no value will be returned. However, the type of a function,
/// method, or closure always includes a return type, which is `Void` if
/// otherwise unspeficied.
///
/// Use `Void` or an empty tuple as the return type when declaring a
/// closure, function, or method that doesn't return a value.
///
/// // No return type declared:
/// func logMessage(s: String) {
/// print("Message: \(s)")
/// }
///
/// let logger: String -> Void = logMessage
/// logger("This is a void function")
/// // Prints "Message: This is a void function"
public typealias Void = ()
//===----------------------------------------------------------------------===//
// Aliases for floating point types
//===----------------------------------------------------------------------===//
// FIXME: it should be the other way round, Float = Float32, Double = Float64,
// but the type checker loses sugar currently, and ends up displaying 'FloatXX'
// in diagnostics.
/// A 32-bit floating point type.
public typealias Float32 = Float
/// A 64-bit floating point type.
public typealias Float64 = Double
//===----------------------------------------------------------------------===//
// Default types for unconstrained literals
//===----------------------------------------------------------------------===//
/// The default type for an otherwise-unconstrained integer literal.
public typealias IntegerLiteralType = Int
/// The default type for an otherwise-unconstrained floating point literal.
public typealias FloatLiteralType = Double
/// The default type for an otherwise-unconstrained Boolean literal.
///
/// When you create a constant or variable using one of the Boolean literals
/// `true` or `false`, the resulting type is determined by the
/// `BooleanLiteralType` alias. For example:
///
/// let isBool = true
/// print("isBool is a '\(isBool.dynamicType)'")
/// // Prints "isBool is a 'Bool'"
///
/// The type aliased by `BooleanLiteralType` must conform to the
/// `BooleanLiteralConvertible` protocol.
public typealias BooleanLiteralType = Bool
/// The default type for an otherwise-unconstrained unicode scalar literal.
public typealias UnicodeScalarType = String
/// The default type for an otherwise-unconstrained Unicode extended
/// grapheme cluster literal.
public typealias ExtendedGraphemeClusterType = String
/// The default type for an otherwise-unconstrained string literal.
public typealias StringLiteralType = String
//===----------------------------------------------------------------------===//
// Default types for unconstrained number literals
//===----------------------------------------------------------------------===//
// Integer literals are limited to 2048 bits.
// The intent is to have arbitrary-precision literals, but implementing that
// requires more work.
//
// Rationale: 1024 bits are enough to represent the absolute value of min/max
// IEEE Binary64, and we need 1 bit to represent the sign. Instead of using
// 1025, we use the next round number -- 2048.
public typealias _MaxBuiltinIntegerType = Builtin.Int2048
#if !os(Windows) && (arch(i386) || arch(x86_64))
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE80
#else
public typealias _MaxBuiltinFloatType = Builtin.FPIEEE64
#endif
//===----------------------------------------------------------------------===//
// Standard protocols
//===----------------------------------------------------------------------===//
/// The protocol to which all types implicitly conform.
///
/// The `Any` protocol can be used as the concrete type for an instance of any
/// type in Swift: a class, struct, or enumeration; a metatype, such as
/// `Int.self`; a tuple with any types of components; or a closure or function
/// type.
///
/// Casting Any Instances to a Known Type
/// =====================================
///
/// When you use `Any` as a concrete type, you must cast your instance back to
/// a known type before you can access its properties or methods. Instances
/// with a concrete type of `Any` maintain their original dynamic type and can
/// be cast to that type using one of the type-cast operators (`as`, `as?`, or
/// `as!`).
///
/// For example, use `as?` to conditionally downcast the first object
/// in an heterogenous array to a `String`.
///
/// let mixed: [Any] = ["one", "two", 3, true, {(x: Int) -> Int in x * 2 }]
///
/// let first = = numberObjects.firstObject
/// if let first = mixed.first as? String {
/// print("The first item, '\(first)', is a String")
/// }
/// // Prints("The first item, 'one', is a String")
///
/// If you have prior knowledge that an `Any` instance is an instance of
/// a particular type, you can use the `as!` operator to unconditionally
/// downcast. Performing an invalid cast results in a runtime error.
///
/// let second = mixed[1] as! String
/// print("'\(second)' is also a String")
/// // Prints "'two' is also a String"
///
/// In a `switch` statement, a value is cast to a type only when pattern
/// matching with that type succeeds. For that reason, you use the `as`
/// operator instead of the conditional `as?` or unconditional `as!`
/// operators.
///
/// for item in mixed {
/// switch item {
/// case let s as String:
/// print("String: \(s)")
/// case let i as Int:
/// print("Integer: \(i)")
/// case let b as Bool:
/// print("Bool: \(b)")
/// case let f as Int -> Int:
/// print("Function: 2 * 5 = \(f(5))")
/// default:
/// print("Unrecognized type")
/// }
/// }
/// // Prints "String: one"
/// // Prints "String: two"
/// // Prints "Integer: 3"
/// // Prints "Bool: true"
/// // Prints "Function: 2 * 5 = 10"
///
/// - SeeAlso: `AnyObject`, `AnyClass`
public typealias Any = protocol<>
#if _runtime(_ObjC)
/// The protocol to which all classes implicitly conform.
///
/// You use `AnyObject` when you need the flexibility of an untyped object or
/// when you use bridged Objective-C methods and properties that return an
/// untyped result. `AnyObject` can be used as the concrete type for an
/// instance of any class, class type, or class-only protocol. For example:
///
/// class FloatRef {
/// let value: Float
/// init(_ value: Float) {
/// self.value = value
/// }
/// }
///
/// let x = FloatRef(2.3)
/// let y: AnyObject = x
/// let z: AnyObject = FloatRef.self
///
/// `AnyObject` can also be used as the concrete type for an instance of a type
/// that bridges to an Objective-C class. Many value types in Swift bridge to
/// Objective-C counterparts, like `String` and `Int`.
///
/// let s: AnyObject = "This is a bridged string."
/// print(s is NSString)
/// // Prints "true"
///
/// let v: AnyObject = 100
/// print(v.dynamicType)
/// // Prints "__NSCFNumber"
///
/// The flexible behavior of the `AnyObject` protocol is similar to
/// Objective-C's `id` type. For this reason, imported Objective-C types
/// frequently use `AnyObject` as the type for properties, method parameters,
/// and return values.
///
/// Casting AnyObject Instances to a Known Type
/// ===========================================
///
/// Objects with a concrete type of `AnyObject` maintain a specific dynamic
/// type and can be cast to that type using one of the type-cast operators
/// (`as`, `as?`, or `as!`).
///
/// In the code samples that follow, the elements of the `NSArray` instance
/// `numberObjects` have `AnyObject` as their type. The first example uses the
/// `as?` (conditional downcast) operator to conditionally cast the first
/// object in the `numberObjects` array to an instance of Swift's `String`
/// type.
///
/// let numberObjects: NSArray = ["one", "two", 3, 4]
///
/// let first: AnyObject = numberObjects[0]
/// if let first = first as? String {
/// print("The first object, '\(first)', is a String")
/// }
/// // Prints("The first object, 'one', is a String")
///
/// If you have prior knowledge that an `AnyObject` instance has a particular
/// type, you can use the `as!` (unconditional downcast) operator. Performing
/// an invalid cast triggers a runtime error.
///
/// let second = numberObjects.object(at: 1) as! String
/// print("'\(second)' is also a String")
/// // Prints "'two' is also a String"
///
/// let badCase = numberObjects.object(at: 2) as! NSDate
/// // Runtime error
///
/// Casting is always safe in the context of a `switch` statement.
///
/// for object in numberObjects {
/// switch object {
/// case let x as String:
/// print("'\(x)' is a String")
/// default:
/// print("'\(object)' is not a String")
/// }
/// }
/// // Prints "'one' is a String"
/// // Prints "'two' is a String"
/// // Prints "'3' is not a String"
/// // Prints "'4' is not a String"
///
/// You can call a method that takes an `AnyObject` parameter with an instance
/// of any class, `@objc` protocol, or type that bridges to Objective-C. In
/// the following example, the `toFind` constant is of type `Int`, which
/// bridges to `NSNumber` when passed to an `NSArray` method that expects an
/// `AnyObject` parameter:
///
/// let toFind = 3
/// let i = numberObjects.index(of: toFind)
/// if i != NSNotFound {
/// print("Found '\(numberObjects[i])' at index \(i)")
/// } else {
/// print("Couldn't find \(toFind)")
/// }
/// // Prints "Found '3' at index 2"
///
/// Accessing Objective-C Methods and Properties
/// ============================================
///
/// When you use `AnyObject` as a concrete type, you have at your disposal
/// every `@objc` method and property---that is, methods and properties
/// imported from Objective-C or marked with the `@objc` attribute. Because
/// Swift can't guarantee at compile time that these methods and properties
/// are actually available on an `AnyObject` instance's underlying type, these
/// `@objc` symbols are available as implicitly unwrapped optional methods and
/// properties, respectively.
///
/// This example defines an `IntegerRef` type with an `@objc` method named
/// `getIntegerValue`.
///
/// class IntegerRef {
/// let value: Int
/// init(_ value: Int) {
/// self.value = value
/// }
///
/// @objc func getIntegerValue() -> Int {
/// return value
/// }
/// }
///
/// func getObject() -> AnyObject {
/// return IntegerRef(100)
/// }
///
/// let x: AnyObject = getObject()
///
/// In the example, `x` has a static type of `AnyObject` and a dynamic type of
/// `IntegerRef`. You can use optional chaining to call the `@objc` method
/// `getIntegerValue()` on `x` safely. If you're sure of the dynamic type of
/// `x`, you can call `getIntegerValue()` directly.
///
/// let possibleValue = x.getIntegerValue?()
/// print(possibleValue)
/// // Prints "Optional(100)"
///
/// let certainValue = x.getIntegerValue()
/// print(certainValue)
/// // Prints "100"
///
/// If the dynamic type of `x` doesn't implement a `getIntegerValue()` method,
/// the system returns a runtime error when you initialize `certainValue`.
///
/// Alternatively, if you need to test whether `x.getValue()` exists, use
/// optional binding before calling the method.
///
/// if let f = x.getIntegerValue {
/// print("The value of 'x' is \(f())")
/// } else {
/// print("'x' does not have a 'getIntegerValue()' method")
/// }
/// // Prints "The value of 'x' is 100"
///
/// - SeeAlso: `AnyClass`, `Any`
@objc
public protocol AnyObject : class {}
#else
/// The protocol to which all classes implicitly conform.
///
/// - SeeAlso: `AnyClass`
public protocol AnyObject : class {}
#endif
// Implementation note: the `AnyObject` protocol *must* not have any method or
// property requirements.
// FIXME: AnyObject should have an alternate version for non-objc without
// the @objc attribute, but AnyObject needs to be not be an address-only
// type to be able to be the target of castToNativeObject and an empty
// non-objc protocol appears not to be. There needs to be another way to make
// this the right kind of object.
/// The protocol to which all class types implicitly conform.
///
/// You can use the `AnyClass` protocol as the concrete type for an instance of
/// any class. When you do, all known `@objc` class methods and properties are
/// available as implicitly unwrapped optional methods and properties,
/// respectively. For example:
///
/// class IntegerRef {
/// @objc class func getDefaultValue() -> Int {
/// return 42
/// }
/// }
///
/// func getDefaultValue(_ c: AnyClass) -> Int? {
/// return c.getDefaultValue?()
/// }
///
/// The `getDefaultValue(_:)` function uses optional chaining to safely call
/// the implicitly unwrapped class method on `c`. Calling the function with
/// different class types shows how the `getDefaultValue()` class method is
/// only conditionally available.
///
/// print(getDefaultValue(IntegerRef.self))
/// // Prints "Optional(42)"
///
/// print(getDefaultValue(NSString.self))
/// // Prints "nil"
///
/// - SeeAlso: `AnyObject`, `Any`
public typealias AnyClass = AnyObject.Type
/// Returns `true` iff `lhs` and `rhs` are references to the same object
/// instance (in other words, are identical pointers).
///
/// - SeeAlso: `Equatable`, `==`
@warn_unused_result
public func === (lhs: AnyObject?, rhs: AnyObject?) -> Bool {
switch (lhs, rhs) {
case let (l?, r?):
return Bool(Builtin.cmp_eq_RawPointer(
Builtin.bridgeToRawPointer(Builtin.castToNativeObject(l)),
Builtin.bridgeToRawPointer(Builtin.castToNativeObject(r))
))
case (nil, nil):
return true
default:
return false
}
}
@warn_unused_result
public func !== (lhs: AnyObject?, rhs: AnyObject?) -> Bool {
return !(lhs === rhs)
}
//
// Equatable
//
/// Instances of conforming types can be compared for value equality
/// using operators `==` and `!=`.
///
/// When adopting `Equatable`, only the `==` operator is required to be
/// implemented. The standard library provides an implementation for `!=`.
public protocol Equatable {
/// Returns `true` if `lhs` is equal to `rhs`.
///
/// **Equality implies substitutability**. When `x == y`, `x` and
/// `y` are interchangeable in any code that only depends on their
/// values.
///
/// Class instance identity as distinguished by triple-equals `===`
/// is notably not part of an instance's value. Exposing other
/// non-value aspects of `Equatable` types is discouraged, and any
/// that *are* exposed should be explicitly pointed out in
/// documentation.
///
/// **Equality is an equivalence relation**
///
/// - `x == x` is `true`
/// - `x == y` implies `y == x`
/// - `x == y` and `y == z` implies `x == z`
///
/// **Inequality is the inverse of equality**, i.e. `!(x == y)` iff
/// `x != y`.
@warn_unused_result
func == (lhs: Self, rhs: Self) -> Bool
}
@warn_unused_result
public func != <T : Equatable>(lhs: T, rhs: T) -> Bool {
return !(lhs == rhs)
}
//
// Comparable
//
@warn_unused_result
public func > <T : Comparable>(lhs: T, rhs: T) -> Bool {
return rhs < lhs
}
@warn_unused_result
public func <= <T : Comparable>(lhs: T, rhs: T) -> Bool {
return !(rhs < lhs)
}
@warn_unused_result
public func >= <T : Comparable>(lhs: T, rhs: T) -> Bool {
return !(lhs < rhs)
}
/// Instances of conforming types can be compared using relational
/// operators, which define a [strict total order](http://en.wikipedia.org/wiki/Total_order#Strict_total_order)
/// on normal values. A conforming type may contain a subset of values which
/// are treated as exceptional; i.e. outside the domain of meaningful arguments
/// for the purposes of the Comparable protocol; such values need not take part
/// in the strict total order. One example is NaN for floating-point types.
///
/// A type conforming to `Comparable` need only supply the `<` and
/// `==` operators; default implementations of `<=`, `>`, `>=`, and
/// `!=` are supplied by the standard library:
///
/// struct Singular : Comparable {}
/// func ==(x: Singular, y: Singular) -> Bool { return true }
/// func <(x: Singular, y: Singular) -> Bool { return false }
///
/// **Axioms**, in addition to those of `Equatable`:
///
/// - `x == y` implies `x <= y`, `x >= y`, `!(x < y)`, and `!(x > y)`
/// - `x < y` implies `x <= y` and `y > x`
/// - `x > y` implies `x >= y` and `y < x`
/// - `x <= y` implies `y >= x`
/// - `x >= y` implies `y <= x`
public protocol Comparable : Equatable {
/// A [strict total order](http://en.wikipedia.org/wiki/Total_order#Strict_total_order)
/// over instances of `Self`.
@warn_unused_result
func < (lhs: Self, rhs: Self) -> Bool
@warn_unused_result
func <= (lhs: Self, rhs: Self) -> Bool
@warn_unused_result
func >= (lhs: Self, rhs: Self) -> Bool
@warn_unused_result
func > (lhs: Self, rhs: Self) -> Bool
}
/// A set type with O(1) standard bitwise operators.
///
/// Each instance is a subset of `~Self.allZeros`.
///
/// **Axioms**, where `x` is an instance of `Self`:
///
/// - `x | Self.allZeros == x`
/// - `x ^ Self.allZeros == x`
/// - `x & Self.allZeros == .allZeros`
/// - `x & ~Self.allZeros == x`
/// - `~x == x ^ ~Self.allZeros`
public protocol BitwiseOperations {
/// Returns the intersection of bits set in `lhs` and `rhs`.
///
/// - Complexity: O(1).
@warn_unused_result
func & (lhs: Self, rhs: Self) -> Self
/// Returns the union of bits set in `lhs` and `rhs`.
///
/// - Complexity: O(1).
@warn_unused_result
func | (lhs: Self, rhs: Self) -> Self
/// Returns the bits that are set in exactly one of `lhs` and `rhs`.
///
/// - Complexity: O(1).
@warn_unused_result
func ^ (lhs: Self, rhs: Self) -> Self
/// Returns `x ^ ~Self.allZeros`.
///
/// - Complexity: O(1).
@warn_unused_result
prefix func ~ (x: Self) -> Self
/// The empty bitset.
///
/// Also the [identity element](http://en.wikipedia.org/wiki/Identity_element) for `|` and
/// `^`, and the [fixed point](http://en.wikipedia.org/wiki/Fixed_point_(mathematics)) for
/// `&`.
static var allZeros: Self { get }
}
public func |= <T : BitwiseOperations>(lhs: inout T, rhs: T) {
lhs = lhs | rhs
}
public func &= <T : BitwiseOperations>(lhs: inout T, rhs: T) {
lhs = lhs & rhs
}
public func ^= <T : BitwiseOperations>(lhs: inout T, rhs: T) {
lhs = lhs ^ rhs
}
/// Instances of conforming types provide an integer `hashValue` and
/// can be used as `Dictionary` keys.
public protocol Hashable : Equatable {
/// The hash value.
///
/// **Axiom:** `x == y` implies `x.hashValue == y.hashValue`.
///
/// - Note: The hash value is not guaranteed to be stable across
/// different invocations of the same program. Do not persist the
/// hash value across program runs.
var hashValue: Int { get }
}
//===----------------------------------------------------------------------===//
// Standard pattern matching forms
//===----------------------------------------------------------------------===//
// Equatable types can be matched in patterns by value equality.
@_transparent
@warn_unused_result
public func ~= <T : Equatable> (a: T, b: T) -> Bool {
return a == b
}
//===----------------------------------------------------------------------===//
// Standard operators
//===----------------------------------------------------------------------===//
// Standard postfix operators.
postfix operator ++ {}
postfix operator -- {}
// Optional<T> unwrapping operator is built into the compiler as a part of
// postfix expression grammar.
//
// postfix operator ! {}
// Standard prefix operators.
prefix operator ++ {}
prefix operator -- {}
prefix operator ! {}
prefix operator ~ {}
prefix operator + {}
prefix operator - {}
// Standard infix operators.
// "Exponentiative"
infix operator << { associativity none precedence 160 }
infix operator >> { associativity none precedence 160 }
// "Multiplicative"
infix operator * { associativity left precedence 150 }
infix operator &* { associativity left precedence 150 }
infix operator / { associativity left precedence 150 }
infix operator % { associativity left precedence 150 }
infix operator & { associativity left precedence 150 }
// "Additive"
infix operator + { associativity left precedence 140 }
infix operator &+ { associativity left precedence 140 }
infix operator - { associativity left precedence 140 }
infix operator &- { associativity left precedence 140 }
infix operator | { associativity left precedence 140 }
infix operator ^ { associativity left precedence 140 }
// FIXME: is this the right precedence level for "..." ?
infix operator ... { associativity none precedence 135 }
infix operator ..< { associativity none precedence 135 }
// The cast operators 'as' and 'is' are hardcoded as if they had the
// following attributes:
// infix operator as { associativity none precedence 132 }
// "Coalescing"
infix operator ?? { associativity right precedence 131 }
// "Comparative"
infix operator < { associativity none precedence 130 }
infix operator <= { associativity none precedence 130 }
infix operator > { associativity none precedence 130 }
infix operator >= { associativity none precedence 130 }
infix operator == { associativity none precedence 130 }
infix operator != { associativity none precedence 130 }
infix operator === { associativity none precedence 130 }
infix operator !== { associativity none precedence 130 }
// FIXME: ~= will be built into the compiler.
infix operator ~= { associativity none precedence 130 }
// "Conjunctive"
infix operator && { associativity left precedence 120 }
// "Disjunctive"
infix operator || { associativity left precedence 110 }
// User-defined ternary operators are not supported. The ? : operator is
// hardcoded as if it had the following attributes:
// operator ternary ? : { associativity right precedence 100 }
// User-defined assignment operators are not supported. The = operator is
// hardcoded as if it had the following attributes:
// infix operator = { associativity right precedence 90 }
// Compound
infix operator *= { associativity right precedence 90 assignment }
infix operator /= { associativity right precedence 90 assignment }
infix operator %= { associativity right precedence 90 assignment }
infix operator += { associativity right precedence 90 assignment }
infix operator -= { associativity right precedence 90 assignment }
infix operator <<= { associativity right precedence 90 assignment }
infix operator >>= { associativity right precedence 90 assignment }
infix operator &= { associativity right precedence 90 assignment }
infix operator ^= { associativity right precedence 90 assignment }
infix operator |= { associativity right precedence 90 assignment }
// Workaround for <rdar://problem/14011860> SubTLF: Default
// implementations in protocols. Library authors should ensure
// that this operator never needs to be seen by end-users. See
// test/Prototypes/GenericDispatch.swift for a fully documented
// example of how this operator is used, and how its use can be hidden
// from users.
infix operator ~> { associativity left precedence 255 }
@available(*, unavailable, renamed: "BitwiseOperations")
public typealias BitwiseOperationsType = BitwiseOperations