Files
swift-mirror/stdlib/public/Platform/tgmath.swift.gyb
Saleem Abdulrasool a05fd17b64 Platform: port to msvcrt, add msvcrt module
This adds the swiftMSVCRT module which is similar in spirit to swiftGlibc and
swiftDarwin, exposing the Microsoft C Runtime library to swift.  Furthermore,
disable pieces of the standard library which are not immediately trivially
portable to Windows.  A lot of this functionality can still be implemented and
exposed to the user, however, this is the quickest means to a PoC for native
windows support.

As a temporary solution, add a -DCYGWIN flag to indicate that we are building
for the cygwin windows target.  This allows us to continue supporting the cygwin
environment whilst making the windows port work natively against the windows
environment (msvc).  Eventually, that will hopefully be replaced with an
environment check in swift.
2016-07-12 17:31:06 -07:00

362 lines
9.3 KiB
Swift

//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
%{
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
# FIXME: need 80-bit (Float80/long double) versions when long double is imported
overlayFloatBits = [32] # 80
allFloatBits = [32, 64] # 80
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFloatName(bits):
if bits == 32:
return 'CFloat'
if bits == 64:
return 'CDouble'
if bits == 80:
return 'CLongDouble'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
# Each of the following lists is ordered to match math.h
# (T) -> T
# These functions do not have a corresponding LLVM intrinsic
UnaryFunctions = [
'acos', 'asin', 'atan', 'tan',
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
'expm1',
'log1p', 'logb',
'cbrt', 'sqrt', 'erf', 'erfc', 'tgamma',
]
# These functions have a corresponding LLVM intrinsic
# We call this intrinsic via the Builtin method so keep this list in
# sync with core/BuiltinMath.swift.gyb
UnaryIntrinsicFunctions = [
'cos', 'sin',
'exp', 'exp2',
'log', 'log10', 'log2',
'fabs',
'ceil', 'floor', 'nearbyint', 'rint', 'round', 'trunc',
]
# (T, T) -> T
BinaryFunctions = [
'atan2', 'hypot', 'pow', 'fmod',
'remainder', 'copysign', 'nextafter', 'fdim', 'fmax', 'fmin'
]
# These functions have special implementations.
OtherFunctions = [
'fpclassify',
'isnormal', 'isfinite', 'isinf', 'isnan', 'signbit',
'modf', 'ldexp', 'frexp', 'ilogb', 'scalbn', 'lgamma',
'remquo', 'nan', 'fma',
'jn', 'yn'
]
# These functions are imported correctly as-is.
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
# These functions are not supported for various reasons.
UnhandledFunctions = [
'math_errhandling', 'scalbln',
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
'islessgreater', 'isunordered', '__exp10',
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi'
]
def AllFloatTypes():
for bits in allFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def OverlayFloatTypes():
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def TypedUnaryFunctions():
for ufunc in UnaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
def TypedUnaryIntrinsicFunctions():
for ufunc in UnaryIntrinsicFunctions:
for bits in allFloatBits:
yield floatName(bits), ufunc
def TypedBinaryFunctions():
for bfunc in BinaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
}%
// Unary functions
// Note these do not have a corresponding LLVM intrinsic
% for T, CT, f, ufunc in TypedUnaryFunctions():
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% end
#if os(OSX) || os(iOS) || os(tvOS) || os(watchOS)
// Unary intrinsic functions
// Note these have a corresponding LLVM intrinsic
% for T, ufunc in TypedUnaryIntrinsicFunctions():
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return _${ufunc}(x)
}
% end
#else
// FIXME: As of now, we cannot declare 64-bit (Double/CDouble) overlays here.
// Since CoreFoundation also exports libc functions, they will conflict with
// Swift overlays when building Foundation. For now, just like normal
// UnaryFunctions, we define overlays only for OverlayFloatTypes.
% for ufunc in UnaryIntrinsicFunctions:
% for T, CT, f in OverlayFloatTypes():
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% end
% end
#endif
// Binary functions
% for T, CT, f, bfunc in TypedBinaryFunctions():
@_transparent
public func ${bfunc}(_ lhs: ${T}, _ rhs: ${T}) -> ${T} {
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
}
% end
// Other functions
% for T, CT, f in AllFloatTypes():
@available(*, deprecated, message: "use the floatingPointClass property.")
public func fpclassify(_ value: ${T}) -> Int {
%if T == 'Double':
#if os(Linux)
return Int(__fpclassify(CDouble(value)))
#elseif os(Windows)
#if CYGWIN
return Int(__fpclassify(CDouble(value)))
#else
return Int(_dclass(CDouble(value)))
#endif
#else
return Int(__fpclassifyd(CDouble(value)))
#endif
%else:
#if os(Windows)
#if CYGWIN
return Int(__fpclassify${f}(${CT}(value)))
#else
return Int(_${f}dclass(${CT}(value)))
#endif
#else
return Int(__fpclassify${f}(${CT}(value)))
#endif
%end
}
@available(*, unavailable, message: "use the isNormal property.")
public func isnormal(_ value: ${T}) -> Bool { return value.isNormal }
@available(*, unavailable, message: "use the isFinite property.")
public func isfinite(_ value: ${T}) -> Bool { return value.isFinite }
@available(*, unavailable, message: "use the isInfinite property.")
public func isinf(_ value: ${T}) -> Bool { return value.isInfinite }
@available(*, unavailable, message: "use the isNaN property.")
public func isnan(_ value: ${T}) -> Bool { return value.isNaN }
@available(*, unavailable, message: "use the sign property.")
public func signbit(_ value: ${T}) -> Int { return value.sign.rawValue }
% end
% # These are AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func modf(_ value: ${T}) -> (${T}, ${T}) {
var ipart = ${CT}(0)
let fpart = modf${f}(${CT}(value), &ipart)
return (${T}(ipart), ${T}(fpart))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@_transparent
public func ldexp(_ x: ${T}, _ n: Int) -> ${T} {
return ${T}(ldexp${f}(${CT}(x), Int32(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func frexp(_ value: ${T}) -> (${T}, Int) {
var exp = Int32(0)
let frac = frexp${f}(${CT}(value), &exp)
return (${T}(frac), Int(exp))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func ilogb(_ x: ${T}) -> Int {
return Int(ilogb${f}(${CT}(x)) as Int32)
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@_transparent
public func scalbn(_ x: ${T}, _ n: Int) -> ${T} {
return ${T}(scalbn${f}(${CT}(x), Int32(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
#if os(Linux) || os(FreeBSD) || os(PS4) || os(Android)
@_transparent
public func lgamma(_ x: ${T}) -> (${T}, Int) {
var sign = Int32(0)
let value = lgamma${f}_r(${CT}(x), &sign)
return (${T}(value), Int(sign))
}
#elseif os(Windows)
#if CYGWIN
@_transparent
public func lgamma(_ x: ${T}) -> (${T}, Int) {
var sign = Int32(0)
let value = lgamma${f}_r(${CT}(x), &sign)
return (${T}(value), Int(sign))
}
#else
// TODO(compnerd): implement
#endif
#else
% # On Darwin platform,
% # The real lgamma_r is not imported because it hides behind macro _REENTRANT.
@_versioned
@_silgen_name("_swift_Darwin_lgamma${f}_r")
func _swift_Darwin_lgamma${f}_r(_: ${CT},
_: UnsafeMutablePointer<Int32>) -> ${CT}
@_transparent
public func lgamma(_ x: ${T}) -> (${T}, Int) {
var sign = Int32(0)
let value = withUnsafeMutablePointer(&sign) {
(signp: UnsafeMutablePointer<Int32>) -> ${CT} in
return _swift_Darwin_lgamma${f}_r(${CT}(x), signp)
}
return (${T}(value), Int(sign))
}
#endif
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) {
var quo = Int32(0)
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
return (${T}(rem), Int(quo))
}
% end
% for T, CT, f in OverlayFloatTypes():
@_transparent
public func nan(_ tag: String) -> ${T} {
return ${T}(nan${f}(tag))
}
% end
% for T, CT, f in OverlayFloatTypes():
@_transparent
public func fma(_ x: ${T}, _ y: ${T}, _ z: ${T}) -> ${T} {
return ${T}(fma${f}(${CT}(x), ${CT}(y), ${CT}(z)))
}
% end
% # These C functions only support double. The overlay fixes the Int parameter.
@_transparent
public func jn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
#if CYGWIN
return jn(Int32(n), x)
#else
return _jn(Int32(n), x)
#endif
#else
return jn(Int32(n), x)
#endif
}
@_transparent
public func yn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
#if CYGWIN
return yn(Int32(n), x)
#else
return _yn(Int32(n), x)
#endif
#else
return yn(Int32(n), x)
#endif
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: