Files
swift-mirror/lib/Parse/Parser.cpp
2011-03-22 04:54:13 +00:00

1109 lines
32 KiB
C++

//===--- Parser.cpp - Swift Language Parser -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Swift parser.
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/Parse/Lexer.h"
#include "swift/Sema/Sema.h"
#include "swift/Sema/Scope.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Type.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/ADT/NullablePtr.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
using llvm::SMLoc;
using llvm::NullablePtr;
//===----------------------------------------------------------------------===//
// Setup and Helper Methods
//===----------------------------------------------------------------------===//
Parser::Parser(unsigned BufferID, ASTContext &Context)
: SourceMgr(Context.SourceMgr),
L(*new Lexer(BufferID, Context)),
S(*new Sema(Context)) {
}
Parser::~Parser() {
delete &L;
delete &S;
}
void Parser::note(SMLoc Loc, const llvm::Twine &Message) {
SourceMgr.PrintMessage(Loc, Message, "note");
}
void Parser::warning(SMLoc Loc, const llvm::Twine &Message) {
SourceMgr.PrintMessage(Loc, Message, "warning");
}
void Parser::error(SMLoc Loc, const llvm::Twine &Message) {
S.Context.setHadError();
SourceMgr.PrintMessage(Loc, Message, "error");
}
void Parser::consumeToken() {
assert(Tok.isNot(tok::eof) && "Lexing past eof!");
L.Lex(Tok);
}
/// skipUntil - Read tokens until we get to the specified token, then return.
/// Because we cannot guarantee that the token will ever occur, this skips to
/// some likely good stopping point.
///
void Parser::skipUntil(tok::TokenKind T) {
// tok::unknown is a sentinel that means "don't skip".
if (T == tok::unknown) return;
while (Tok.isNot(tok::eof) && Tok.isNot(T)) {
switch (Tok.getKind()) {
default: consumeToken(); break;
// TODO: Handle paren/brace/bracket recovery.
}
}
}
//===----------------------------------------------------------------------===//
// Primitive Parsing
//===----------------------------------------------------------------------===//
/// parseIdentifier - Consume an identifier if present and return its name in
/// Result. Otherwise, emit an error and return true.
bool Parser::parseIdentifier(Identifier &Result, const llvm::Twine &Message) {
if (Tok.is(tok::identifier)) {
Result = S.Context.getIdentifier(Tok.getText());
consumeToken(tok::identifier);
return false;
}
error(Tok.getLoc(), Message);
return true;
}
/// parseToken - The parser expects that 'K' is next in the input. If so, it is
/// consumed and false is returned.
///
/// If the input is malformed, this emits the specified error diagnostic.
/// Next, if SkipToTok is specified, it calls skipUntil(SkipToTok). Finally,
/// true is returned.
bool Parser::parseToken(tok::TokenKind K, const char *Message,
tok::TokenKind SkipToTok) {
if (Tok.is(K)) {
consumeToken(K);
return false;
}
error(Tok.getLoc(), Message);
skipUntil(SkipToTok);
// If we skipped ahead to the missing token and found it, consume it as if
// there were no error.
if (K == SkipToTok && Tok.is(SkipToTok))
consumeToken();
return true;
}
/// value-specifier:
/// ':' type
/// ':' type '=' expr
/// '=' expr
bool Parser::parseValueSpecifier(Type *&Ty, NullablePtr<Expr> &Init) {
// Diagnose when we don't have a type or an expression.
if (Tok.isNot(tok::colon) && Tok.isNot(tok::equal)) {
error(Tok.getLoc(), "expected a type or an initializer");
// TODO: Recover better by still creating var, but making it have
// 'invalid' type so that uses of the identifier are not errors.
return true;
}
// Parse the type if present.
if (consumeIf(tok::colon) &&
parseType(Ty, "expected type in var declaration"))
return true;
// Parse the initializer, if present.
if (consumeIf(tok::equal)) {
if (parseExpr(Init, "expected expression in var declaration"))
return true;
// If there was an expression, but it had a parse error, give the var decl
// an artificial int type to avoid chained errors.
// FIXME: We really need to distinguish erroneous expr from missing expr in
// ActOnVarDecl.
if (Init.isNull() && Ty == 0)
Ty = S.Context.TheInt32Type;
}
return false;
}
//===----------------------------------------------------------------------===//
// Decl Parsing
//===----------------------------------------------------------------------===//
/// ParseTranslationUnit
/// translation-unit:
/// top-level-item*
TranslationUnitDecl *Parser::parseTranslationUnit() {
// Prime the lexer.
consumeToken();
SMLoc FileStartLoc = Tok.getLoc();
TranslationUnitDecl *Result = new (S.Context) TranslationUnitDecl(S.Context);
// Parse the body of the file.
llvm::SmallVector<ExprOrDecl, 128> Items;
bool MissingSemiAtEnd = false; // Don't care, FIXME remove.
parseDeclExprList(Items, MissingSemiAtEnd, true);
// Notify sema about the end of the translation unit.
S.decl.handleEndOfTranslationUnit(Result, FileStartLoc, Items, Tok.getLoc());
return Result;
}
/// parseAttribute
/// attribute:
/// 'infix' '=' numeric_constant
bool Parser::parseAttribute(DeclAttributes &Attributes) {
if (Tok.is(tok::identifier) && Tok.getText() == "infix") {
if (Attributes.InfixPrecedence != -1)
error(Tok.getLoc(), "infix precedence repeatedly specified");
consumeToken(tok::identifier);
// The default infix precedence is 100.
Attributes.InfixPrecedence = 100;
if (consumeIf(tok::equal)) {
SMLoc PrecLoc = Tok.getLoc();
llvm::StringRef Text = Tok.getText();
if (!parseToken(tok::numeric_constant,
"expected precedence number in 'infix' attribute")) {
long long Value;
if (Text.getAsInteger(10, Value) || Value > 255 || Value < 0)
error(PrecLoc, "invalid precedence: value must be between 0 and 255");
else
Attributes.InfixPrecedence = Value;
}
}
return false;
}
error(Tok.getLoc(), "unknown declaration attribute");
skipUntil(tok::r_square);
return true;
}
/// parseAttributeList
/// attribute-list:
/// '[' ']'
/// '[' attribute (',' attribute)* ']'
void Parser::parseAttributeList(DeclAttributes &Attributes) {
Attributes.LSquareLoc = Tok.getLoc();
consumeToken(tok::l_square);
// If this is an empty attribute list, consume it and return.
if (Tok.is(tok::r_square)) {
Attributes.RSquareLoc = Tok.getLoc();
consumeToken(tok::r_square);
return;
}
bool HadError = parseAttribute(Attributes);
while (Tok.is(tok::comma)) {
consumeToken(tok::comma);
HadError |= parseAttribute(Attributes);
}
Attributes.RSquareLoc = Tok.getLoc();
if (consumeIf(tok::r_square))
return;
// Otherwise, there was an error parsing the attribute list. If we already
// reported an error, skip to a ], otherwise report the error.
if (!HadError)
parseToken(tok::r_square, "expected ']' or ',' in attribute list",
tok::r_square);
else {
skipUntil(tok::r_square);
consumeIf(tok::r_square);
}
}
/// parseDeclImport - Parse an 'import' declaration, returning null (and doing
/// no token skipping) on error.
///
/// decl-import:
/// 'import' attribute-list? identifier
///
Decl *Parser::parseDeclImport() {
SMLoc ImportLoc = Tok.getLoc();
consumeToken(tok::kw_import);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
parseAttributeList(Attributes);
Identifier ModuleName;
if (parseIdentifier(ModuleName, "expected module name in import declaration"))
return 0;
return S.decl.ActOnImportDecl(ImportLoc, ModuleName, Attributes);
}
/// parseVarName
/// var-name:
/// identifier
/// '(' ')'
/// '(' name (',' name)* ')'
bool Parser::parseVarName(DeclVarName &Name) {
// Single name case.
if (Tok.is(tok::identifier)) {
Name.LPLoc = Name.RPLoc = Tok.getLoc();
parseIdentifier(Name.Name, "");
return false;
}
Name.LPLoc = Tok.getLoc();
if (parseToken(tok::l_paren, "expected identifier or '(' in var name"))
return true;
llvm::SmallVector<DeclVarName*, 8> ChildNames;
if (Tok.isNot(tok::r_paren)) {
do {
DeclVarName *Elt = new (S.Context) DeclVarName();
if (parseVarName(*Elt)) return true;
ChildNames.push_back(Elt);
} while (consumeIf(tok::comma));
}
Name.RPLoc = Tok.getLoc();
if (parseToken(tok::r_paren, "expected ')' at end of var name"))
note(Name.LPLoc, "to match this '('");
Name.Elements = ChildNames;
Name.Elements = S.Context.AllocateCopy(Name.Elements);
return false;
}
/// parseDeclTypeAlias
/// decl-typealias:
/// 'typealias' identifier ':' type
TypeAliasDecl *Parser::parseDeclTypeAlias() {
SMLoc TypeAliasLoc = Tok.getLoc();
consumeToken(tok::kw_typealias);
Identifier Id;
Type *Ty = 0;
if (parseIdentifier(Id, "expected identifier in var declaration") ||
parseToken(tok::colon, "expected ':' in typealias declaration") ||
parseType(Ty, "expected type in var declaration"))
return 0;
return S.decl.ActOnTypeAlias(TypeAliasLoc, Id, Ty);
}
/// AddElementNamesForVarDecl - This recursive function walks a name specifier
/// adding ElementRefDecls for the named subcomponents and checking that types
/// match up correctly.
static void AddElementNamesForVarDecl(const DeclVarName *Name,
llvm::SmallVectorImpl<unsigned> &AccessPath,
VarDecl *VD, SemaDecl &SD,
llvm::SmallVectorImpl<Parser::ExprOrDecl> &Decls){
if (Name->isSimple()) {
// If this is a leaf name, ask sema to create a ElementRefDecl for us with
// the specified access path.
ElementRefDecl *ERD =
SD.ActOnElementName(Name->Name, Name->LPLoc, VD, AccessPath);
Decls.push_back(ERD);
SD.AddToScope(ERD);
return;
}
AccessPath.push_back(0);
for (unsigned i = 0, e = Name->Elements.size(); i != e; ++i) {
AccessPath.back() = i;
AddElementNamesForVarDecl(Name->Elements[i], AccessPath, VD, SD, Decls);
}
AccessPath.pop_back();
}
/// parseDeclVar - Parse a 'var' declaration, returning null (and doing no
/// token skipping) on error.
///
/// decl-var:
/// 'var' attribute-list? var-name value-specifier
bool Parser::parseDeclVar(llvm::SmallVectorImpl<ExprOrDecl> &Decls) {
SMLoc VarLoc = Tok.getLoc();
consumeToken(tok::kw_var);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
parseAttributeList(Attributes);
DeclVarName VarName;
if (parseVarName(VarName)) return true;
Type *Ty = 0;
NullablePtr<Expr> Init;
if (parseValueSpecifier(Ty, Init))
return true;
VarDecl *VD = S.decl.ActOnVarDecl(VarLoc, VarName, Ty, Init.getPtrOrNull(),
Attributes);
if (VD == 0) return true;
Decls.push_back(VD);
// Enter the declaration into the current scope. Since var's are not allowed
// to be recursive, they are entered after its initializer is parsed. This
// does mean that stuff like this is different than C:
// var x = 1; { var x = x+1; assert(x == 2); }
if (VarName.isSimple())
S.decl.AddToScope(VD);
else {
// If there is a more interesting name presented here, then we need to walk
// through it and synthesize the decls that reference the var elements as
// appropriate.
llvm::SmallVector<unsigned, 8> AccessPath;
AddElementNamesForVarDecl(VD->NestedName, AccessPath, VD, S.decl, Decls);
}
return false;
}
/// parseDeclFunc - Parse a 'func' declaration, returning null on error. The
/// caller handles this case and does recovery as appropriate.
///
/// decl-func:
/// 'func' attribute-list? identifier arg-list-type '=' expr
/// 'func' attribute-list? identifier arg-list-type expr-brace
/// 'func' attribute-list? identifier arg-list-type
FuncDecl *Parser::parseDeclFunc() {
SMLoc FuncLoc = Tok.getLoc();
consumeToken(tok::kw_func);
DeclAttributes Attributes;
// FIXME: Implicitly add immutable attribute.
if (Tok.is(tok::l_square))
parseAttributeList(Attributes);
Identifier Name;
if (parseIdentifier(Name, "expected identifier in func declaration"))
return 0;
// We force first type of a func declaration to be a tuple for consistency.
if (Tok.isNot(tok::l_paren)) {
error(Tok.getLoc(), "expected '(' in argument list of func declaration");
return 0;
}
Type *FuncTy = 0;
if (parseType(FuncTy))
return 0;
// If the parsed function type is not spelled as a function type (i.e., has an
// '->' in it), then it is implicitly a function that returns ().
if (!llvm::isa<FunctionType>(FuncTy))
FuncTy = S.type.ActOnFunctionType(FuncTy, SMLoc(),
S.Context.TheEmptyTupleType);
// Build the decl for the function.
FuncDecl *FD = S.decl.ActOnFuncDecl(FuncLoc, Name, FuncTy, Attributes);
// Enter the func into the current scope, which allows it to be visible and
// used within its body.
if (FD)
S.decl.AddToScope(FD);
// Enter the arguments for the function into a new function-body scope. We
// need this even if there is no function body to detect argument name
// duplication.
Scope FnBodyScope(S.decl);
if (FD)
S.decl.CreateArgumentDeclsForFunc(FD);
// Then parse the expression.
llvm::NullablePtr<Expr> Body;
// Check to see if we have a "= expr" or "{" which is a brace expr.
if (consumeIf(tok::equal)) {
if (parseExpr(Body, "expected expression parsing func body") ||
Body.isNull())
return 0; // FIXME: Need to call a new ActOnFuncBodyError?
} else if (Tok.is(tok::l_brace)) {
if (parseExprBrace(Body) || Body.isNull())
return 0; // FIXME: Need to call a new ActOnFuncBodyError?
}
// If this is a declaration, we're done.
if (Body.isNull())
return FD;
return S.decl.ActOnFuncBody(FD, Body.get());
}
/// parseDeclOneOf - Parse a 'oneof' declaration, returning null (and doing no
/// token skipping) on error.
///
/// decl-oneof:
/// 'oneof' attribute-list? identifier oneof-body
/// oneof-body:
/// '{' oneof-element-list '}'
/// oneof-element-list:
/// oneof-element ','?
/// oneof-element ',' oneof-element-list
/// oneof-element:
/// identifier
/// identifier ':' type
///
Decl *Parser::parseDeclOneOf() {
SMLoc OneOfLoc = Tok.getLoc();
consumeToken(tok::kw_oneof);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
parseAttributeList(Attributes);
SMLoc NameLoc = Tok.getLoc();
Identifier OneOfName;
Type *OneOfType = 0;
if (parseIdentifier(OneOfName, "expected identifier in oneof declaration"))
return 0;
TypeAliasDecl *TAD = S.decl.ActOnTypeAlias(NameLoc, OneOfName,
S.Context.TheUnresolvedType);
if (parseTypeOneOfBody(OneOfLoc, Attributes, OneOfType, TAD))
return 0;
return TAD;
}
/// parseDeclStruct - Parse a 'struct' declaration, returning null (and doing no
/// token skipping) on error. A 'struct' is just syntactic sugar for a oneof
/// with a single element.
///
/// decl-struct:
/// 'struct' attribute-list? identifier type-tuple
///
Decl *Parser::parseDeclStruct() {
SMLoc StructLoc = Tok.getLoc();
consumeToken(tok::kw_struct);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
parseAttributeList(Attributes);
Identifier StructName;
if (parseIdentifier(StructName, "expected identifier in struct declaration"))
return 0;
Type *Ty = 0;
if (parseType(Ty)) return 0;
// The type is required to be syntactically a tuple type.
if (!llvm::isa<TupleType>(Ty)) {
error(StructLoc, "element type of struct is not a tuple");
// FIXME: Should set this as an erroroneous decl.
return 0;
}
return S.decl.ActOnStructDecl(StructLoc, Attributes, StructName, Ty);
}
//===----------------------------------------------------------------------===//
// Type Parsing
//===----------------------------------------------------------------------===//
/// parseType
/// type:
/// type-simple
/// type-function
/// type-array
///
/// type-function:
/// type-simple '->' type
///
/// type-array:
/// type '[' ']'
/// type '[' expr ']'
///
/// type-simple:
/// '__builtin_int32_type'
/// identifier
/// type-tuple
/// type-oneof
///
/// type-oneof:
/// 'oneof' attribute-list? oneof-body
///
bool Parser::parseType(Type *&Result, const llvm::Twine &Message) {
// Parse type-simple first.
switch (Tok.getKind()) {
case tok::identifier:
Result = S.type.ActOnTypeName(Tok.getLoc(),
S.Context.getIdentifier(Tok.getText()));
consumeToken(tok::identifier);
break;
case tok::kw___builtin_int32_type:
Result = S.type.ActOnInt32Type(Tok.getLoc());
consumeToken(tok::kw___builtin_int32_type);
break;
case tok::l_paren:
if (parseTypeTuple(Result))
return true;
break;
case tok::kw_oneof: {
SMLoc OneOfLoc = Tok.getLoc();
consumeToken(tok::kw_oneof);
DeclAttributes Attributes;
if (Tok.is(tok::l_square))
parseAttributeList(Attributes);
if (parseTypeOneOfBody(OneOfLoc, Attributes, Result))
return true;
break;
}
default:
error(Tok.getLoc(), Message);
return true;
}
while (1) {
// If there is an arrow, parse the rest of the type.
SMLoc TokLoc = Tok.getLoc();
if (consumeIf(tok::arrow)) {
Type *SecondHalf = 0;
if (parseType(SecondHalf, "expected type in result of function type"))
return true;
Result = S.type.ActOnFunctionType(Result, TokLoc, SecondHalf);
continue;
}
// If there is a square bracket, we have an array.
if (consumeIf(tok::l_square)) {
llvm::NullablePtr<Expr> Size;
if (!Tok.is(tok::r_square) &&
parseExpr(Size, "expected expression for array type size"))
return true;
SMLoc RArrayTok = Tok.getLoc();
if (parseToken(tok::r_square, "expected ']' in array type")) {
note(TokLoc, "to match this '['");
return true;
}
Result = S.type.ActOnArrayType(Result, TokLoc, Size.getPtrOrNull(),
RArrayTok);
continue;
}
break;
}
return false;
}
bool Parser::parseType(Type *&Result) {
return parseType(Result, "expected type");
}
/// parseTypeTuple
/// type-tuple:
/// '(' ')'
/// '(' identifier? value-specifier (',' identifier? value-specifier)* ')'
///
bool Parser::parseTypeTuple(Type *&Result) {
assert(Tok.is(tok::l_paren) && "Not start of type tuple");
SMLoc LPLoc = Tok.getLoc();
consumeToken(tok::l_paren);
llvm::SmallVector<TupleTypeElt, 8> Elements;
if (Tok.isNot(tok::r_paren)) {
bool HadError = false;
do {
Elements.push_back(TupleTypeElt());
TupleTypeElt &Result = Elements.back();
if (Tok.is(tok::identifier))
parseIdentifier(Result.Name, "");
NullablePtr<Expr> Init;
if ((HadError = parseValueSpecifier(Result.Ty, Init)))
break;
Result.Init = Init.getPtrOrNull();
} while (consumeIf(tok::comma));
if (HadError) {
skipUntil(tok::r_paren);
if (Tok.is(tok::r_paren))
consumeToken(tok::r_paren);
return true;
}
}
SMLoc RPLoc = Tok.getLoc();
if (parseToken(tok::r_paren, "expected ')' at end of tuple list",
tok::r_paren)) {
note(LPLoc, "to match this opening '('");
return true;
}
Result = S.type.ActOnTupleType(LPLoc, Elements, RPLoc);
return false;
}
/// oneof-body:
/// '{' oneof-element-list '}'
/// oneof-element-list:
/// oneof-element ','?
/// oneof-element ',' oneof-element-list
/// oneof-element:
/// identifier
/// identifier ':' type
///
/// If TypeName is specified, it is the type that the constructors should be
/// built with, so that they preserve the name of the oneof decl that contains
/// this.
bool Parser::parseTypeOneOfBody(SMLoc OneOfLoc, const DeclAttributes &Attrs,
Type *&Result, TypeAliasDecl *TypeName) {
if (parseToken(tok::l_brace, "expected '{' in oneof type"))
return true;
llvm::SmallVector<SemaType::OneOfElementInfo, 8> ElementInfos;
// Parse the comma separated list of oneof elements.
while (Tok.is(tok::identifier)) {
SemaType::OneOfElementInfo ElementInfo;
ElementInfo.Name = Tok.getText();
ElementInfo.NameLoc = Tok.getLoc();
ElementInfo.EltType = 0;
consumeToken(tok::identifier);
// See if we have a type specifier for this oneof element. If so, parse it.
if (consumeIf(tok::colon) &&
parseType(ElementInfo.EltType,
"expected type while parsing oneof element '" +
ElementInfo.Name + "'")) {
skipUntil(tok::r_brace);
return true;
}
ElementInfos.push_back(ElementInfo);
// Require comma separation.
if (!consumeIf(tok::comma))
break;
}
parseToken(tok::r_brace, "expected '}' at end of oneof");
Result = S.type.ActOnOneOfType(OneOfLoc, Attrs, ElementInfos, TypeName);
return false;
}
//===----------------------------------------------------------------------===//
// Expression Parsing
//===----------------------------------------------------------------------===//
static bool isStartOfExpr(Token &Tok) {
return Tok.is(tok::numeric_constant) || Tok.is(tok::colon) ||
Tok.is(tok::l_paren) || Tok.is(tok::l_brace) ||
Tok.is(tok::dollarident) || Tok.is(tok::identifier);
}
/// parseExpr
/// expr:
/// expr-primary+
bool Parser::parseExpr(NullablePtr<Expr> &Result, const char *Message) {
llvm::SmallVector<Expr*, 8> SequencedExprs;
do {
// Parse the expr-primary.
Result = 0;
if (parseExprPrimary(Result) || Result.isNull()) return true;
SequencedExprs.push_back(Result.get());
} while (isStartOfExpr(Tok));
// If there is exactly one element in the sequence, it is a degenerate
// sequence that just returns the last value anyway, shortcut ActOnSequence.
if (SequencedExprs.size() == 1) {
Result = SequencedExprs[0];
return false;
}
Result = S.expr.ActOnSequence(SequencedExprs);
return false;
}
/// parseExprPrimary
/// expr-primary:
/// expr-literal
/// expr-identifier
/// ':' identifier
/// expr-paren
/// expr-brace
/// expr-field
/// expr-subscript
/// expr-primary-fn expr-primary
///
/// expr-literal:
/// numeric_constant
///
/// expr-primary-fn:
/// expr-primary Type sensitive: iff expr has fn type
///
/// expr-field:
/// expr-primary '.' identifier
/// expr-primary '.' dollarident
///
/// expr-subscript:
/// expr-primary '[' expr ']'
bool Parser::parseExprPrimary(NullablePtr<Expr> &Result, const char *Message) {
switch (Tok.getKind()) {
case tok::numeric_constant:
Result = S.expr.ActOnNumericConstant(Tok.getText(), Tok.getLoc());
consumeToken(tok::numeric_constant);
break;
case tok::dollarident: // $1
case tok::identifier: // foo and foo::bar
if (parseExprIdentifier(Result)) return true;
break;
case tok::colon: { // :foo
SMLoc ColonLoc = Tok.getLoc();
consumeToken(tok::colon);
Identifier Name;
SMLoc NameLoc = Tok.getLoc();
if (parseIdentifier(Name, "expected identifier after ':' expression"))
return true;
Result = S.expr.ActOnUnresolvedMemberExpr(ColonLoc, NameLoc, Name);
break;
}
case tok::l_paren:
if (parseExprParen(Result)) return true;
break;
case tok::l_brace:
if (parseExprBrace(Result)) return true;
break;
default:
error(Tok.getLoc(), Message ? Message : "expected expression");
return true;
}
// Handle suffix expressions.
while (1) {
// Check for a .foo suffix.
SMLoc TokLoc = Tok.getLoc();
if (consumeIf(tok::period)) {
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::dollarident)) {
error(Tok.getLoc(), "expected field name");
return true;
}
if (!Result.isNull())
Result = S.expr.ActOnDotIdentifier(Result.get(), TokLoc,
S.Context.getIdentifier(Tok.getText()),
Tok.getLoc());
if (Tok.is(tok::identifier))
consumeToken(tok::identifier);
else
consumeToken(tok::dollarident);
continue;
}
// Check for a [expr] suffix.
if (consumeIf(tok::l_square)) {
NullablePtr<Expr> Idx;
if (parseExpr(Idx, "expected expression parsing array index"))
return true;
SMLoc RLoc = Tok.getLoc();
if (parseToken(tok::r_square, "expected ']'")) {
note(TokLoc, "to match this '['");
return true;
}
if (!Result.isNull() && !Idx.isNull())
Result = S.expr.ActOnArraySubscript(Result.get(), TokLoc, Idx.get(),
RLoc);
}
break;
}
return false;
}
/// parseExprIdentifier - Parse an identifier expression:
///
/// expr-identifier:
/// identifier
/// dollarident
/// identifier '::' identifier
bool Parser::parseExprIdentifier(llvm::NullablePtr<Expr> &Result) {
if (Tok.is(tok::dollarident)) {
llvm::StringRef Name = Tok.getText();
SMLoc Loc = Tok.getLoc();
consumeToken(tok::dollarident);
assert(Name[0] == '$' && "Not a dollarident");
bool AllNumeric = true;
for (unsigned i = 1, e = Name.size(); i != e; ++i)
AllNumeric &= isdigit(Name[i]);
if (Name.size() == 1 || !AllNumeric) {
error(Loc, "invalid identifier, expected expression");
return true;
}
Result = S.expr.ActOnDollarIdentExpr(Name, Loc);
return false;
}
assert(Tok.is(tok::identifier));
SMLoc Loc = Tok.getLoc();
Identifier Name;
parseIdentifier(Name, "");
if (Tok.isNot(tok::coloncolon)) {
Result = S.expr.ActOnIdentifierExpr(Name, Loc);
return false;
}
SMLoc ColonColonLoc = Tok.getLoc();
consumeToken(tok::coloncolon);
SMLoc Loc2 = Tok.getLoc();
Identifier Name2;
if (parseIdentifier(Name2, "expected identifier after '" + Name.str() +
"::' expression"))
return true;
Result = S.expr.ActOnScopedIdentifierExpr(Name, Loc, ColonColonLoc,
Name2, Loc2);
return false;
}
/// parseExprParen - Parse a tuple expression.
///
/// expr-paren:
/// '(' ')'
/// '(' expr-paren-element (',' expr-paren-element)* ')'
///
/// expr-paren-element:
/// ('.' identifier '=')? expr
///
bool Parser::parseExprParen(llvm::NullablePtr<Expr> &Result) {
SMLoc LPLoc = Tok.getLoc();
consumeToken(tok::l_paren);
llvm::SmallVector<Expr*, 8> SubExprs;
llvm::SmallVector<Identifier, 8> SubExprNames;
bool AnyErroneousSubExprs = false;
if (Tok.isNot(tok::r_paren)) {
do {
Identifier FieldName;
// Check to see if there is a field specifier.
if (consumeIf(tok::period)) {
if (parseIdentifier(FieldName,
"expected field specifier name in tuple expression")||
parseToken(tok::equal, "expected '=' in tuple expression"))
return true;
}
if (!SubExprNames.empty())
SubExprNames.push_back(FieldName);
else if (FieldName.get()) {
SubExprNames.resize(SubExprs.size());
SubExprNames.push_back(FieldName);
}
NullablePtr<Expr> SubExpr;
if (parseExpr(SubExpr, "expected expression in parentheses")) return true;
if (SubExpr.isNull())
AnyErroneousSubExprs = true;
else
SubExprs.push_back(SubExpr.get());
} while (consumeIf(tok::comma));
}
SMLoc RPLoc = Tok.getLoc();
if (parseToken(tok::r_paren, "expected ')' in parenthesis expression")) {
note(LPLoc, "to match this opening '('");
return true;
}
if (!AnyErroneousSubExprs)
Result = S.expr.ActOnTupleExpr(LPLoc, SubExprs.data(),
SubExprNames.empty()?0 : SubExprNames.data(),
SubExprs.size(), RPLoc);
return false;
}
/// parseExprBrace - A brace enclosed expression list which may optionally end
/// with a ; inside of it. For example { 1; 4+5; } or { 1; 2 }.
///
/// expr-brace:
/// '{' expr-brace-item* '}'
/// expr-brace-item:
/// expr
/// expr '=' expr
/// decl-var
/// decl-oneof
/// decl-struct
/// decl-typealias
/// ';'
bool Parser::parseExprBrace(llvm::NullablePtr<Expr> &Result) {
SMLoc LBLoc = Tok.getLoc();
consumeToken(tok::l_brace);
llvm::SmallVector<ExprOrDecl, 16> Entries;
// MissingSemiAtEnd - Keep track of whether the last expression in the block
// had no semicolon.
bool MissingSemiAtEnd = false;
if (parseDeclExprList(Entries, MissingSemiAtEnd, false /*NotTopLevel*/))
return true;
SMLoc RBLoc = Tok.getLoc();
if (parseToken(tok::r_brace, "expected '}' at end of brace expression",
tok::r_brace)) {
note(LBLoc, "to match this opening '{'");
return true;
}
Result = S.expr.ActOnBraceExpr(LBLoc, Entries, MissingSemiAtEnd, RBLoc);
return false;
}
/// expr-brace-item:
/// expr
/// expr '=' expr
/// decl-var
/// decl-oneof
/// decl-struct
/// decl-typealias
/// ';'
bool Parser::parseDeclExprList(llvm::SmallVectorImpl<ExprOrDecl> &Entries,
bool &MissingSemiAtEnd, bool IsTopLevel) {
// This forms a lexical scope.
Scope BraceScope(S.decl);
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
MissingSemiAtEnd = false;
// Parse the decl or expression.
switch (Tok.getKind()) {
case tok::semi:
// Could create a decl for semicolons if we care.
consumeToken(tok::semi);
continue;
case tok::kw_import:
Entries.push_back(parseDeclImport());
if (Entries.back() && !IsTopLevel) {
error(Entries.back().get<Decl*>()->getLocStart(),
"import is only valid at file scope");
Entries.pop_back();
}
break;
case tok::kw_var:
parseDeclVar(Entries);
break;
case tok::kw_func:
Entries.push_back(parseDeclFunc());
break;
case tok::kw_typealias:
Entries.push_back(parseDeclTypeAlias());
break;
case tok::kw_oneof:
Entries.push_back(parseDeclOneOf());
break;
case tok::kw_struct:
Entries.push_back(parseDeclStruct());
break;
default:
Entries.push_back(ExprOrDecl());
NullablePtr<Expr> ResultExpr;
if (parseExpr(ResultExpr) || ResultExpr.isNull())
break;
// FIXME: Assignment is a hack until we get generics. We really want to
// parse '=' as any other overloaded/generic binary operator.
if (Tok.is(tok::equal)) {
SMLoc EqualLoc = Tok.getLoc();
consumeToken();
NullablePtr<Expr> RHSExpr;
if (parseExpr(RHSExpr) || RHSExpr.isNull())
break;
// FIXME: Assignment is represented with null Fn.
ResultExpr = new (S.Context) BinaryExpr(ResultExpr.get(), 0, EqualLoc,
RHSExpr.get());
}
Entries.back() = ResultExpr.get();
MissingSemiAtEnd = true;
break;
}
if (Entries.back().isNull()) {
Entries.pop_back();
if (Tok.is(tok::semi))
continue; // Consume the ';' and keep going.
// FIXME: QOI: Improve error recovery.
if (Tok.is(tok::semi) && Tok.isNot(tok::r_brace))
skipUntil(tok::r_brace);
consumeIf(tok::r_brace);
return true;
}
}
return false;
}