mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
706 lines
23 KiB
C++
706 lines
23 KiB
C++
//===--- swift-reflection-dump.cpp - Reflection testing application -------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This is a host-side tool to dump remote reflection sections in swift
|
|
// binaries.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/ABI/MetadataValues.h"
|
|
#include "swift/Basic/LLVMInitialize.h"
|
|
#include "swift/Demangling/Demangle.h"
|
|
#include "swift/Reflection/ReflectionContext.h"
|
|
#include "swift/Reflection/TypeRef.h"
|
|
#include "swift/Reflection/TypeRefBuilder.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/MachOUniversal.h"
|
|
#include "llvm/Object/RelocationResolver.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
|
|
#if defined(_WIN32)
|
|
#include <io.h>
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(__APPLE__) && defined(__MACH__)
|
|
#include <TargetConditionals.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <csignal>
|
|
|
|
using llvm::ArrayRef;
|
|
using llvm::dyn_cast;
|
|
using llvm::StringRef;
|
|
using namespace llvm::object;
|
|
|
|
using namespace swift;
|
|
using namespace swift::reflection;
|
|
using namespace swift::remote;
|
|
using namespace Demangle;
|
|
|
|
enum class ActionType { DumpReflectionSections, DumpTypeLowering };
|
|
|
|
namespace options {
|
|
static llvm::cl::opt<ActionType> Action(
|
|
llvm::cl::desc("Mode:"),
|
|
llvm::cl::values(
|
|
clEnumValN(ActionType::DumpReflectionSections,
|
|
"dump-reflection-sections",
|
|
"Dump the field reflection section"),
|
|
clEnumValN(
|
|
ActionType::DumpTypeLowering, "dump-type-lowering",
|
|
"Dump the field layout for typeref strings read from stdin")),
|
|
llvm::cl::init(ActionType::DumpReflectionSections));
|
|
|
|
static llvm::cl::list<std::string>
|
|
BinaryFilename("binary-filename",
|
|
llvm::cl::desc("Filenames of the binary files"),
|
|
llvm::cl::OneOrMore);
|
|
|
|
static llvm::cl::opt<std::string>
|
|
Architecture("arch",
|
|
llvm::cl::desc("Architecture to inspect in the binary"),
|
|
llvm::cl::Required);
|
|
} // end namespace options
|
|
|
|
template <typename T> static T unwrap(llvm::Expected<T> value) {
|
|
if (value)
|
|
return std::move(value.get());
|
|
llvm::errs() << "swift-reflection-test error: " << toString(value.takeError())
|
|
<< "\n";
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
using ReadBytesResult = swift::remote::MemoryReader::ReadBytesResult;
|
|
|
|
// Since ObjectMemoryReader maintains ownership of the ObjectFiles and their
|
|
// raw data, we can vend ReadBytesResults with no-op destructors.
|
|
static void no_op_destructor(const void*) {}
|
|
|
|
class Image {
|
|
private:
|
|
struct Segment {
|
|
uint64_t Addr;
|
|
StringRef Contents;
|
|
};
|
|
const ObjectFile *O;
|
|
uint64_t HeaderAddress;
|
|
std::vector<Segment> Segments;
|
|
struct DynamicRelocation {
|
|
StringRef Symbol;
|
|
uint64_t Offset;
|
|
};
|
|
llvm::DenseMap<uint64_t, DynamicRelocation> DynamicRelocations;
|
|
|
|
void scanMachO(const MachOObjectFile *O) {
|
|
using namespace llvm::MachO;
|
|
|
|
HeaderAddress = UINT64_MAX;
|
|
|
|
// Collect the segment preferred vm mappings.
|
|
for (const auto &Load : O->load_commands()) {
|
|
if (Load.C.cmd == LC_SEGMENT_64) {
|
|
auto Seg = O->getSegment64LoadCommand(Load);
|
|
if (Seg.filesize == 0)
|
|
continue;
|
|
|
|
auto contents = O->getData().slice(Seg.fileoff,
|
|
Seg.fileoff + Seg.filesize);
|
|
|
|
if (contents.empty() || contents.size() != Seg.filesize)
|
|
continue;
|
|
|
|
Segments.push_back({Seg.vmaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, Seg.vmaddr);
|
|
} else if (Load.C.cmd == LC_SEGMENT) {
|
|
auto Seg = O->getSegmentLoadCommand(Load);
|
|
if (Seg.filesize == 0)
|
|
continue;
|
|
|
|
auto contents = O->getData().slice(Seg.fileoff,
|
|
Seg.fileoff + Seg.filesize);
|
|
|
|
if (contents.empty() || contents.size() != Seg.filesize)
|
|
continue;
|
|
|
|
Segments.push_back({Seg.vmaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, (uint64_t)Seg.vmaddr);
|
|
}
|
|
}
|
|
|
|
// Walk through the bindings list to collect all the external references
|
|
// in the image.
|
|
llvm::Error error = llvm::Error::success();
|
|
auto OO = const_cast<MachOObjectFile*>(O);
|
|
|
|
for (auto bind : OO->bindTable(error)) {
|
|
if (error) {
|
|
llvm::consumeError(std::move(error));
|
|
break;
|
|
}
|
|
|
|
// The offset from the symbol is stored at the target address.
|
|
uint64_t Offset;
|
|
auto OffsetContent = getContentsAtAddress(bind.address(),
|
|
O->getBytesInAddress());
|
|
if (OffsetContent.empty())
|
|
continue;
|
|
|
|
if (O->getBytesInAddress() == 8) {
|
|
memcpy(&Offset, OffsetContent.data(), sizeof(Offset));
|
|
} else if (O->getBytesInAddress() == 4) {
|
|
uint32_t OffsetValue;
|
|
memcpy(&OffsetValue, OffsetContent.data(), sizeof(OffsetValue));
|
|
Offset = OffsetValue;
|
|
} else {
|
|
assert(false && "unexpected word size?!");
|
|
}
|
|
|
|
DynamicRelocations.insert({bind.address(), {bind.symbolName(), Offset}});
|
|
}
|
|
if (error) {
|
|
llvm::consumeError(std::move(error));
|
|
}
|
|
}
|
|
|
|
template<typename ELFT>
|
|
void scanELFType(const ELFObjectFile<ELFT> *O) {
|
|
using namespace llvm::ELF;
|
|
|
|
HeaderAddress = UINT64_MAX;
|
|
|
|
auto phdrs = O->getELFFile().program_headers();
|
|
if (!phdrs) {
|
|
llvm::consumeError(phdrs.takeError());
|
|
}
|
|
|
|
for (auto &ph : *phdrs) {
|
|
if (ph.p_filesz == 0)
|
|
continue;
|
|
|
|
auto contents = O->getData().slice(ph.p_offset,
|
|
ph.p_offset + ph.p_filesz);
|
|
if (contents.empty() || contents.size() != ph.p_filesz)
|
|
continue;
|
|
|
|
Segments.push_back({ph.p_vaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, (uint64_t)ph.p_vaddr);
|
|
}
|
|
|
|
// Collect the dynamic relocations.
|
|
auto resolver = getRelocationResolver(*O);
|
|
auto resolverSupports = resolver.first;
|
|
auto resolve = resolver.second;
|
|
|
|
if (!resolverSupports || !resolve)
|
|
return;
|
|
|
|
auto machine = O->getELFFile().getHeader().e_machine;
|
|
auto relativeRelocType = getELFRelativeRelocationType(machine);
|
|
|
|
for (auto &S : static_cast<const ELFObjectFileBase*>(O)
|
|
->dynamic_relocation_sections()) {
|
|
bool isRela = O->getSection(S.getRawDataRefImpl())->sh_type
|
|
== llvm::ELF::SHT_RELA;
|
|
|
|
for (const RelocationRef &R : S.relocations()) {
|
|
// `getRelocationResolver` doesn't handle RELATIVE relocations, so we
|
|
// have to do that ourselves.
|
|
if (isRela && R.getType() == relativeRelocType) {
|
|
auto rela = O->getRela(R.getRawDataRefImpl());
|
|
DynamicRelocations.insert({R.getOffset(),
|
|
{{}, HeaderAddress + rela->r_addend}});
|
|
continue;
|
|
}
|
|
|
|
if (!resolverSupports(R.getType()))
|
|
continue;
|
|
auto symbol = R.getSymbol();
|
|
auto name = symbol->getName();
|
|
if (!name) {
|
|
llvm::consumeError(name.takeError());
|
|
continue;
|
|
}
|
|
uint64_t offset = resolve(R.getType(), R.getOffset(), 0, 0, 0);
|
|
DynamicRelocations.insert({R.getOffset(), {*name, offset}});
|
|
}
|
|
}
|
|
}
|
|
|
|
void scanELF(const ELFObjectFileBase *O) {
|
|
if (auto le32 = dyn_cast<ELFObjectFile<ELF32LE>>(O)) {
|
|
scanELFType(le32);
|
|
} else if (auto be32 = dyn_cast<ELFObjectFile<ELF32BE>>(O)) {
|
|
scanELFType(be32);
|
|
} else if (auto le64 = dyn_cast<ELFObjectFile<ELF64LE>>(O)) {
|
|
scanELFType(le64);
|
|
} else if (auto be64 = dyn_cast<ELFObjectFile<ELF64BE>>(O)) {
|
|
scanELFType(be64);
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
// FIXME: ReflectionContext tries to read bits of the ELF structure that
|
|
// aren't normally mapped by a phdr. Until that's fixed,
|
|
// allow access to the whole file 1:1 in address space that isn't otherwise
|
|
// mapped.
|
|
Segments.push_back({HeaderAddress, O->getData()});
|
|
}
|
|
|
|
void scanCOFF(const COFFObjectFile *O) {
|
|
HeaderAddress = O->getImageBase();
|
|
|
|
for (auto SectionRef : O->sections()) {
|
|
auto Section = O->getCOFFSection(SectionRef);
|
|
|
|
if (Section->SizeOfRawData == 0)
|
|
continue;
|
|
|
|
auto SectionBase = O->getImageBase() + Section->VirtualAddress;
|
|
auto SectionContent =
|
|
O->getData().slice(Section->PointerToRawData,
|
|
Section->PointerToRawData + Section->SizeOfRawData);
|
|
if (SectionContent.empty()
|
|
|| SectionContent.size() != Section->SizeOfRawData)
|
|
continue;
|
|
|
|
Segments.push_back({SectionBase, SectionContent});
|
|
}
|
|
|
|
// FIXME: We need to map the header at least, but how much of it does
|
|
// Windows typically map?
|
|
Segments.push_back({HeaderAddress, O->getData()});
|
|
}
|
|
|
|
bool isMachOWithPtrAuth() const {
|
|
auto macho = dyn_cast<MachOObjectFile>(O);
|
|
if (!macho)
|
|
return false;
|
|
|
|
auto &header = macho->getHeader();
|
|
|
|
return header.cputype == llvm::MachO::CPU_TYPE_ARM64
|
|
&& header.cpusubtype == llvm::MachO::CPU_SUBTYPE_ARM64E;
|
|
}
|
|
|
|
public:
|
|
explicit Image(const ObjectFile *O) : O(O) {
|
|
// Unfortunately llvm doesn't provide a uniform interface for iterating
|
|
// loadable segments or dynamic relocations in executable images yet.
|
|
if (auto macho = dyn_cast<MachOObjectFile>(O)) {
|
|
scanMachO(macho);
|
|
} else if (auto elf = dyn_cast<ELFObjectFileBase>(O)) {
|
|
scanELF(elf);
|
|
} else if (auto coff = dyn_cast<COFFObjectFile>(O)) {
|
|
scanCOFF(coff);
|
|
} else {
|
|
fputs("unsupported image format\n", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
const ObjectFile *getObjectFile() const { return O; }
|
|
|
|
unsigned getBytesInAddress() const {
|
|
return O->getBytesInAddress();
|
|
}
|
|
|
|
uint64_t getStartAddress() const {
|
|
return HeaderAddress;
|
|
}
|
|
|
|
uint64_t getEndAddress() const {
|
|
uint64_t max = 0;
|
|
for (auto &Segment : Segments) {
|
|
max = std::max(max, Segment.Addr + Segment.Contents.size());
|
|
}
|
|
return max;
|
|
}
|
|
|
|
StringRef getContentsAtAddress(uint64_t Addr, uint64_t Size) const {
|
|
for (auto &Segment : Segments) {
|
|
auto addrInSegment = Segment.Addr <= Addr
|
|
&& Addr + Size <= Segment.Addr + Segment.Contents.size();
|
|
|
|
if (!addrInSegment)
|
|
continue;
|
|
|
|
auto offset = Addr - Segment.Addr;
|
|
auto result = Segment.Contents.drop_front(offset);
|
|
return result;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
RemoteAbsolutePointer
|
|
resolvePointer(uint64_t Addr, uint64_t pointerValue) const {
|
|
auto found = DynamicRelocations.find(Addr);
|
|
RemoteAbsolutePointer result;
|
|
if (found == DynamicRelocations.end())
|
|
// In Mach-O images with ptrauth, the pointer value has an offset from
|
|
// the base address in the low 32 bits, and ptrauth discriminator info
|
|
// in the top 32 bits.
|
|
if (isMachOWithPtrAuth()) {
|
|
result = RemoteAbsolutePointer("",
|
|
HeaderAddress + (pointerValue & 0xffffffffull));
|
|
} else {
|
|
result = RemoteAbsolutePointer("", pointerValue);
|
|
}
|
|
else
|
|
result = RemoteAbsolutePointer(found->second.Symbol,
|
|
found->second.Offset);
|
|
return result;
|
|
}
|
|
};
|
|
|
|
/// MemoryReader that reads from the on-disk representation of an executable
|
|
/// or dynamic library image.
|
|
///
|
|
/// This reader uses a remote addressing scheme where the most significant
|
|
/// 16 bits of the address value serve as an index into the array of loaded images,
|
|
/// and the low 48 bits correspond to the preferred virtual address mapping of
|
|
/// the image.
|
|
class ObjectMemoryReader : public MemoryReader {
|
|
struct ImageEntry {
|
|
Image TheImage;
|
|
uint64_t Slide;
|
|
};
|
|
std::vector<ImageEntry> Images;
|
|
|
|
std::pair<const Image *, uint64_t>
|
|
decodeImageIndexAndAddress(uint64_t Addr) const {
|
|
for (auto &Image : Images) {
|
|
if (Image.TheImage.getStartAddress() + Image.Slide <= Addr
|
|
&& Addr < Image.TheImage.getEndAddress() + Image.Slide) {
|
|
return {&Image.TheImage, Addr - Image.Slide};
|
|
}
|
|
}
|
|
return {nullptr, 0};
|
|
}
|
|
|
|
uint64_t
|
|
encodeImageIndexAndAddress(const Image *image, uint64_t imageAddr) const {
|
|
auto entry = (const ImageEntry*)image;
|
|
return imageAddr + entry->Slide;
|
|
}
|
|
|
|
StringRef getContentsAtAddress(uint64_t Addr, uint64_t Size) {
|
|
const Image *image;
|
|
uint64_t imageAddr;
|
|
std::tie(image, imageAddr) = decodeImageIndexAndAddress(Addr);
|
|
|
|
if (!image)
|
|
return StringRef();
|
|
|
|
return image->getContentsAtAddress(imageAddr, Size);
|
|
}
|
|
|
|
public:
|
|
explicit ObjectMemoryReader(
|
|
const std::vector<const ObjectFile *> &ObjectFiles) {
|
|
if (ObjectFiles.empty()) {
|
|
fputs("no object files provided\n", stderr);
|
|
abort();
|
|
}
|
|
unsigned WordSize = 0;
|
|
for (const ObjectFile *O : ObjectFiles) {
|
|
// All the object files we look at should share a word size.
|
|
if (!WordSize) {
|
|
WordSize = O->getBytesInAddress();
|
|
} else if (WordSize != O->getBytesInAddress()) {
|
|
fputs("object files must all be for the same architecture\n", stderr);
|
|
abort();
|
|
}
|
|
Images.push_back({Image(O), 0});
|
|
}
|
|
|
|
// If there is more than one image loaded, try to fit them into one address
|
|
// space.
|
|
if (Images.size() > 1) {
|
|
uint64_t NextAddrSpace = 0;
|
|
for (auto &Image : Images) {
|
|
Image.Slide = NextAddrSpace - Image.TheImage.getStartAddress();
|
|
NextAddrSpace +=
|
|
Image.TheImage.getEndAddress() - Image.TheImage.getStartAddress();
|
|
NextAddrSpace = (NextAddrSpace + 16383) & ~16383;
|
|
}
|
|
|
|
if (WordSize < 8 && NextAddrSpace > 0xFFFFFFFFu) {
|
|
fputs("object files did not fit in address space", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
ArrayRef<ImageEntry> getImages() const { return Images; }
|
|
|
|
bool queryDataLayout(DataLayoutQueryType type, void *inBuffer,
|
|
void *outBuffer) override {
|
|
auto wordSize = Images.front().TheImage.getBytesInAddress();
|
|
// TODO: The following should be set based on inspecting the image.
|
|
// This code sets it to match the platform this code was compiled for.
|
|
#if defined(__APPLE__) && __APPLE__
|
|
auto applePlatform = true;
|
|
#else
|
|
auto applePlatform = false;
|
|
#endif
|
|
#if defined(__APPLE__) && __APPLE__ && ((defined(TARGET_OS_IOS) && TARGET_OS_IOS) || (defined(TARGET_OS_IOS) && TARGET_OS_WATCH) || (defined(TARGET_OS_TV) && TARGET_OS_TV) || defined(__arm64__))
|
|
auto iosDerivedPlatform = true;
|
|
#else
|
|
auto iosDerivedPlatform = false;
|
|
#endif
|
|
|
|
switch (type) {
|
|
case DLQ_GetPointerSize: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
*result = wordSize;
|
|
return true;
|
|
}
|
|
case DLQ_GetSizeSize: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
*result = wordSize;
|
|
return true;
|
|
}
|
|
case DLQ_GetPtrAuthMask: {
|
|
// We don't try to sign pointers at all in our view of the object
|
|
// mapping.
|
|
if (wordSize == 4) {
|
|
auto result = static_cast<uint32_t *>(outBuffer);
|
|
*result = (uint32_t)~0ull;
|
|
return true;
|
|
} else if (wordSize == 8) {
|
|
auto result = static_cast<uint64_t *>(outBuffer);
|
|
*result = (uint64_t)~0ull;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case DLQ_GetObjCReservedLowBits: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
if (applePlatform && !iosDerivedPlatform && wordSize == 8) {
|
|
// Obj-C reserves low bit on 64-bit macOS only.
|
|
// Other Apple platforms don't reserve this bit (even when
|
|
// running on x86_64-based simulators).
|
|
*result = 1;
|
|
} else {
|
|
*result = 0;
|
|
}
|
|
return true;
|
|
}
|
|
case DLQ_GetLeastValidPointerValue: {
|
|
auto result = static_cast<uint64_t *>(outBuffer);
|
|
if (applePlatform && wordSize == 8) {
|
|
// Swift reserves the first 4GiB on 64-bit Apple platforms
|
|
*result = 0x100000000;
|
|
} else {
|
|
// Swift reserves the first 4KiB everywhere else
|
|
*result = 0x1000;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
RemoteAddress getImageStartAddress(unsigned i) const {
|
|
assert(i < Images.size());
|
|
|
|
return RemoteAddress(
|
|
encodeImageIndexAndAddress(&Images[i].TheImage,
|
|
Images[i].TheImage.getStartAddress()));
|
|
}
|
|
|
|
// TODO: We could consult the dynamic symbol tables of the images to
|
|
// implement this.
|
|
RemoteAddress getSymbolAddress(const std::string &name) override {
|
|
return RemoteAddress(nullptr);
|
|
}
|
|
|
|
ReadBytesResult readBytes(RemoteAddress Addr, uint64_t Size) override {
|
|
auto addrValue = Addr.getAddressData();
|
|
auto resultBuffer = getContentsAtAddress(addrValue, Size);
|
|
return ReadBytesResult(resultBuffer.data(), no_op_destructor);
|
|
}
|
|
|
|
bool readString(RemoteAddress Addr, std::string &Dest) override {
|
|
auto addrValue = Addr.getAddressData();
|
|
auto resultBuffer = getContentsAtAddress(addrValue, 1);
|
|
if (resultBuffer.empty())
|
|
return false;
|
|
|
|
// Make sure there's a null terminator somewhere in the contents.
|
|
unsigned i = 0;
|
|
for (unsigned e = resultBuffer.size(); i < e; ++i) {
|
|
if (resultBuffer[i] == 0)
|
|
goto found_terminator;
|
|
}
|
|
return false;
|
|
|
|
found_terminator:
|
|
Dest.append(resultBuffer.begin(), resultBuffer.begin() + i);
|
|
return true;
|
|
}
|
|
|
|
RemoteAbsolutePointer resolvePointer(RemoteAddress Addr,
|
|
uint64_t pointerValue) override {
|
|
auto addrValue = Addr.getAddressData();
|
|
const Image *image;
|
|
uint64_t imageAddr;
|
|
std::tie(image, imageAddr) =
|
|
decodeImageIndexAndAddress(addrValue);
|
|
|
|
if (!image)
|
|
return RemoteAbsolutePointer();
|
|
|
|
auto resolved = image->resolvePointer(imageAddr, pointerValue);
|
|
|
|
if (resolved && resolved.isResolved()) {
|
|
// Mix in the image index again to produce a remote address pointing into
|
|
// the same image.
|
|
return RemoteAbsolutePointer("", encodeImageIndexAndAddress(image,
|
|
resolved.getResolvedAddress().getAddressData()));
|
|
}
|
|
// If the pointer is relative to an unresolved relocation, leave it as is.
|
|
return resolved;
|
|
}
|
|
};
|
|
|
|
using ReflectionContextOwner
|
|
= std::unique_ptr<void, void (*)(void*)>;
|
|
|
|
struct ReflectionContextHolder {
|
|
ReflectionContextOwner Owner;
|
|
TypeRefBuilder &Builder;
|
|
ObjectMemoryReader &Reader;
|
|
};
|
|
|
|
template <typename Runtime>
|
|
static ReflectionContextHolder makeReflectionContextForMetadataReader(
|
|
std::shared_ptr<ObjectMemoryReader> reader) {
|
|
using ReflectionContext = ReflectionContext<Runtime>;
|
|
auto context = new ReflectionContext(reader);
|
|
auto &builder = context->getBuilder();
|
|
for (unsigned i = 0, e = reader->getImages().size(); i < e; ++i) {
|
|
context->addImage(reader->getImageStartAddress(i));
|
|
}
|
|
return {ReflectionContextOwner(
|
|
context, [](void *x) { delete (ReflectionContext *)x; }),
|
|
builder, *reader};
|
|
}
|
|
|
|
static ReflectionContextHolder makeReflectionContextForObjectFiles(
|
|
const std::vector<const ObjectFile *> &objectFiles) {
|
|
auto Reader = std::make_shared<ObjectMemoryReader>(objectFiles);
|
|
|
|
uint8_t pointerSize;
|
|
Reader->queryDataLayout(DataLayoutQueryType::DLQ_GetPointerSize,
|
|
nullptr, &pointerSize);
|
|
|
|
switch (pointerSize) {
|
|
case 4:
|
|
return makeReflectionContextForMetadataReader<External<RuntimeTarget<4>>>
|
|
(std::move(Reader));
|
|
case 8:
|
|
return makeReflectionContextForMetadataReader<External<RuntimeTarget<8>>>
|
|
(std::move(Reader));
|
|
default:
|
|
fputs("unsupported word size in object file\n", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static int doDumpReflectionSections(ArrayRef<std::string> BinaryFilenames,
|
|
StringRef Arch, ActionType Action,
|
|
FILE *file) {
|
|
// Note: binaryOrError and objectOrError own the memory for our ObjectFile;
|
|
// once they go out of scope, we can no longer do anything.
|
|
std::vector<OwningBinary<Binary>> BinaryOwners;
|
|
std::vector<std::unique_ptr<ObjectFile>> ObjectOwners;
|
|
std::vector<const ObjectFile *> ObjectFiles;
|
|
|
|
for (const std::string &BinaryFilename : BinaryFilenames) {
|
|
auto BinaryOwner = unwrap(createBinary(BinaryFilename));
|
|
Binary *BinaryFile = BinaryOwner.getBinary();
|
|
|
|
// The object file we are doing lookups in -- either the binary itself, or
|
|
// a particular slice of a universal binary.
|
|
std::unique_ptr<ObjectFile> ObjectOwner;
|
|
const ObjectFile *O = dyn_cast<ObjectFile>(BinaryFile);
|
|
if (!O) {
|
|
auto Universal = cast<MachOUniversalBinary>(BinaryFile);
|
|
ObjectOwner = unwrap(Universal->getMachOObjectForArch(Arch));
|
|
O = ObjectOwner.get();
|
|
}
|
|
|
|
// Retain the objects that own section memory
|
|
BinaryOwners.push_back(std::move(BinaryOwner));
|
|
ObjectOwners.push_back(std::move(ObjectOwner));
|
|
ObjectFiles.push_back(O);
|
|
}
|
|
|
|
auto context = makeReflectionContextForObjectFiles(ObjectFiles);
|
|
auto &builder = context.Builder;
|
|
|
|
switch (Action) {
|
|
case ActionType::DumpReflectionSections:
|
|
// Dump everything
|
|
builder.dumpAllSections(file);
|
|
break;
|
|
case ActionType::DumpTypeLowering: {
|
|
for (std::string Line; std::getline(std::cin, Line);) {
|
|
if (Line.empty())
|
|
continue;
|
|
|
|
if (StringRef(Line).startswith("//"))
|
|
continue;
|
|
|
|
Demangle::Demangler Dem;
|
|
auto Demangled = Dem.demangleType(Line);
|
|
auto Result = swift::Demangle::decodeMangledType(builder, Demangled);
|
|
if (Result.isError()) {
|
|
auto *error = Result.getError();
|
|
char *str = error->copyErrorString();
|
|
fprintf(file, "Invalid typeref:%s - %s\n", Line.c_str(), str);
|
|
error->freeErrorString(str);
|
|
continue;
|
|
}
|
|
auto TypeRef = Result.getType();
|
|
|
|
TypeRef->dump(file);
|
|
auto *TypeInfo = builder.getTypeConverter().getTypeInfo(TypeRef, nullptr);
|
|
if (TypeInfo == nullptr) {
|
|
fprintf(file, "Invalid lowering\n");
|
|
continue;
|
|
}
|
|
TypeInfo->dump(file);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
PROGRAM_START(argc, argv);
|
|
llvm::cl::ParseCommandLineOptions(argc, argv, "Swift Reflection Dump\n");
|
|
return doDumpReflectionSections(options::BinaryFilename,
|
|
options::Architecture, options::Action,
|
|
stdout);
|
|
}
|