Files
swift-mirror/lib/SIL/Linker.cpp
Slava Pestov a2df485bf3 SIL Linker: Only link non-public functions in LinkNormal mode
LinkNormal mode is used by the mandatory pipeline. It only needs
to deserialize what is necessary for code generation, that is
functions with shared linkage that must be emitted into the client.
2018-04-16 19:31:12 -07:00

399 lines
15 KiB
C++

//===--- Linker.cpp -------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// \file The SIL linker walks the call graph beginning at a starting function,
/// deserializing functions, vtables and witness tables.
///
/// The behavior of the linker is controlled by a LinkMode value. The LinkMode
/// has three possible values:
///
/// - LinkNone: The linker does not deserialize anything. This is only used for
/// debugging and testing purposes, and never during normal operation.
///
/// - LinkNormal: The linker deserializes bodies for declarations that must be
/// emitted into the client because they do not have definitions available
/// externally. This includes:
///
/// - witness tables for imported conformances
///
/// - functions with shared linkage
///
/// - LinkAll: All reachable functions (including public functions) are
/// deserialized, including public functions.
///
/// The primary entry point into the linker is the SILModule::linkFunction()
/// function, which recursively walks the call graph starting from the given
/// function.
///
/// In the mandatory pipeline (-Onone), the linker is invoked from the mandatory
/// SIL linker pass, which pulls in just enough to allow us to emit code, using
/// LinkNormal mode.
///
/// In the performance pipeline, after guaranteed optimizations but before
/// performance optimizations, the 'performance SILLinker' pass links
/// transitively all reachable functions, to uncover optimization opportunities
/// that might be missed from deserializing late. The performance pipeline uses
/// LinkAll mode.
///
/// *NOTE*: In LinkAll mode, we deserialize all vtables and witness tables,
/// even those with public linkage. This is not strictly necessary, since the
/// devirtualizer deserializes vtables and witness tables as needed. However,
/// doing so early creates more opportunities for optimization.
#define DEBUG_TYPE "sil-linker"
#include "Linker.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/FormalLinkage.h"
#include <functional>
using namespace swift;
using namespace Lowering;
STATISTIC(NumFuncLinked, "Number of SIL functions linked");
//===----------------------------------------------------------------------===//
// Linker Helpers
//===----------------------------------------------------------------------===//
void SILLinkerVisitor::addFunctionToWorklist(SILFunction *F) {
assert(F->isExternalDeclaration());
DEBUG(llvm::dbgs() << "Imported function: "
<< F->getName() << "\n");
if (Mod.loadFunction(F)) {
if (F->isExternalDeclaration())
return;
F->setBare(IsBare);
F->verify();
Worklist.push_back(F);
Changed = true;
++NumFuncLinked;
}
}
/// Deserialize a function and add it to the worklist for processing.
void SILLinkerVisitor::maybeAddFunctionToWorklist(SILFunction *F) {
// Don't need to do anything if the function already has a body.
if (!F->isExternalDeclaration())
return;
// In the performance pipeline, we deserialize all reachable functions.
if (isLinkAll())
return addFunctionToWorklist(F);
// Otherwise, make sure to deserialize shared functions; we need to
// emit them into the client binary since they're not available
// externally.
if (hasSharedVisibility(F->getLinkage()))
return addFunctionToWorklist(F);
// Functions with PublicNonABI linkage are deserialized as having
// HiddenExternal linkage when they are declarations, then they
// become SharedExternal after the body has been deserialized.
// So try deserializing HiddenExternal functions too.
if (F->getLinkage() == SILLinkage::HiddenExternal)
return addFunctionToWorklist(F);
}
/// Process F, recursively deserializing any thing F may reference.
bool SILLinkerVisitor::processFunction(SILFunction *F) {
if (Mode == LinkingMode::LinkNone)
return false;
// If F is a declaration, first deserialize it.
if (F->isExternalDeclaration()) {
maybeAddFunctionToWorklist(F);
} else {
Worklist.push_back(F);
}
process();
return Changed;
}
/// Deserialize the given VTable all SIL the VTable transitively references.
void SILLinkerVisitor::linkInVTable(ClassDecl *D) {
// Devirtualization already deserializes vtables as needed in both the
// mandatory and performance pipelines, and we don't support specialized
// vtables that might have shared linkage yet, so this is only needed in
// the performance pipeline to deserialize more functions early, and expose
// optimization opportunities.
assert(isLinkAll());
// Attempt to lookup the Vtbl from the SILModule.
SILVTable *Vtbl = Mod.lookUpVTable(D);
if (!Vtbl)
return;
// Ok we found our VTable. Visit each function referenced by the VTable. If
// any of the functions are external declarations, add them to the worklist
// for processing.
for (auto P : Vtbl->getEntries()) {
// Deserialize and recursively walk any vtable entries that do not have
// bodies yet.
maybeAddFunctionToWorklist(P.Implementation);
}
}
//===----------------------------------------------------------------------===//
// Visitors
//===----------------------------------------------------------------------===//
void SILLinkerVisitor::visitApplyInst(ApplyInst *AI) {
if (auto sig = AI->getCallee()->getType().castTo<SILFunctionType>()
->getGenericSignature()) {
visitApplySubstitutions(sig->getSubstitutionMap(AI->getSubstitutions()));
}
}
void SILLinkerVisitor::visitTryApplyInst(TryApplyInst *TAI) {
if (auto sig = TAI->getCallee()->getType().castTo<SILFunctionType>()
->getGenericSignature()) {
visitApplySubstitutions(sig->getSubstitutionMap(TAI->getSubstitutions()));
}
}
void SILLinkerVisitor::visitPartialApplyInst(PartialApplyInst *PAI) {
if (auto sig = PAI->getCallee()->getType().castTo<SILFunctionType>()
->getGenericSignature()) {
visitApplySubstitutions(sig->getSubstitutionMap(PAI->getSubstitutions()));
}
}
void SILLinkerVisitor::visitFunctionRefInst(FunctionRefInst *FRI) {
maybeAddFunctionToWorklist(FRI->getReferencedFunction());
}
// Eagerly visiting all used conformances leads to a large blowup
// in the amount of SIL we read in. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
static bool mustDeserializeProtocolConformance(SILModule &M,
ProtocolConformanceRef c) {
if (!c.isConcrete())
return false;
auto conformance = c.getConcrete()->getRootNormalConformance();
return M.Types.protocolRequiresWitnessTable(conformance->getProtocol())
&& isa<ClangModuleUnit>(conformance->getDeclContext()
->getModuleScopeContext());
}
void SILLinkerVisitor::visitProtocolConformance(
ProtocolConformanceRef ref, const Optional<SILDeclRef> &Member) {
// If an abstract protocol conformance was passed in, just return false.
if (ref.isAbstract())
return;
bool mustDeserialize = mustDeserializeProtocolConformance(Mod, ref);
// Otherwise try and lookup a witness table for C.
auto C = ref.getConcrete();
if (!VisitedConformances.insert(C).second)
return;
SILWitnessTable *WT = Mod.lookUpWitnessTable(C, true);
// If we don't find any witness table for the conformance, bail and return
// false.
if (!WT) {
Mod.createWitnessTableDeclaration(
C, getLinkageForProtocolConformance(
C->getRootNormalConformance(), NotForDefinition));
// Adding the declaration may allow us to now deserialize the body.
// Force the body if we must deserialize this witness table.
if (mustDeserialize) {
WT = Mod.lookUpWitnessTable(C, true);
assert(WT && WT->isDefinition()
&& "unable to deserialize witness table when we must?!");
} else {
return;
}
}
// If the looked up witness table is a declaration, there is nothing we can
// do here. Just bail and return false.
if (WT->isDeclaration())
return;
auto maybeVisitRelatedConformance = [&](ProtocolConformanceRef c) {
// Formally all conformances referenced by a used conformance are used.
// However, eagerly visiting them all at this point leads to a large blowup
// in the amount of SIL we read in. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
if (mustDeserializeProtocolConformance(Mod, c))
visitProtocolConformance(c, None);
};
// For each entry in the witness table...
for (auto &E : WT->getEntries()) {
switch (E.getKind()) {
// If the entry is a witness method...
case SILWitnessTable::WitnessKind::Method: {
// And we are only interested in deserializing a specific requirement
// and don't have that requirement, don't deserialize this method.
if (Member.hasValue() && E.getMethodWitness().Requirement != *Member)
continue;
// The witness could be removed by dead function elimination.
if (!E.getMethodWitness().Witness)
continue;
// Otherwise, deserialize the witness if it has shared linkage, or if
// we were asked to deserialize everything.
maybeAddFunctionToWorklist(E.getMethodWitness().Witness);
break;
}
// If the entry is a related witness table, see whether we need to
// eagerly deserialize it.
case SILWitnessTable::WitnessKind::BaseProtocol: {
auto baseConformance = E.getBaseProtocolWitness().Witness;
maybeVisitRelatedConformance(ProtocolConformanceRef(baseConformance));
break;
}
case SILWitnessTable::WitnessKind::AssociatedTypeProtocol: {
auto assocConformance = E.getAssociatedTypeProtocolWitness().Witness;
maybeVisitRelatedConformance(assocConformance);
break;
}
case SILWitnessTable::WitnessKind::AssociatedType:
case SILWitnessTable::WitnessKind::Invalid:
break;
}
}
}
void SILLinkerVisitor::visitApplySubstitutions(const SubstitutionMap &subs) {
for (auto &reqt : subs.getGenericSignature()->getRequirements()) {
switch (reqt.getKind()) {
case RequirementKind::Conformance: {
auto conformance = subs.lookupConformance(
reqt.getFirstType()->getCanonicalType(),
cast<ProtocolDecl>(reqt.getSecondType()->getAnyNominal()))
.getValue();
// Formally all conformances referenced in a function application are
// used. However, eagerly visiting them all at this point leads to a
// large blowup in the amount of SIL we read in, and we aren't very
// systematic about laziness. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
if (mustDeserializeProtocolConformance(Mod, conformance)) {
visitProtocolConformance(conformance, None);
}
break;
}
case RequirementKind::Layout:
case RequirementKind::SameType:
case RequirementKind::Superclass:
break;
}
}
}
void SILLinkerVisitor::visitInitExistentialAddrInst(
InitExistentialAddrInst *IEI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the open_existential_addr/witness_method before the
// init_existential_inst.
for (ProtocolConformanceRef C : IEI->getConformances()) {
visitProtocolConformance(C, Optional<SILDeclRef>());
}
}
void SILLinkerVisitor::visitInitExistentialRefInst(
InitExistentialRefInst *IERI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the protocol_method before the init_existential_inst.
for (ProtocolConformanceRef C : IERI->getConformances()) {
visitProtocolConformance(C, Optional<SILDeclRef>());
}
}
void SILLinkerVisitor::visitAllocRefInst(AllocRefInst *ARI) {
if (!isLinkAll())
return;
// Grab the class decl from the alloc ref inst.
ClassDecl *D = ARI->getType().getClassOrBoundGenericClass();
if (!D)
return;
linkInVTable(D);
}
void SILLinkerVisitor::visitMetatypeInst(MetatypeInst *MI) {
if (!isLinkAll())
return;
CanType instTy = MI->getType().castTo<MetatypeType>().getInstanceType();
ClassDecl *C = instTy.getClassOrBoundGenericClass();
if (!C)
return;
linkInVTable(C);
}
//===----------------------------------------------------------------------===//
// Top Level Routine
//===----------------------------------------------------------------------===//
// Main loop of the visitor. Called by one of the other *visit* methods.
void SILLinkerVisitor::process() {
// Process everything transitively referenced by one of the functions in the
// worklist.
while (!Worklist.empty()) {
auto *Fn = Worklist.pop_back_val();
if (Fn->getModule().isSerialized()) {
// If the containing module has been serialized,
// Remove The Serialized state (if any)
// This allows for more optimizations
Fn->setSerialized(IsSerialized_t::IsNotSerialized);
}
DEBUG(llvm::dbgs() << "Process imports in function: "
<< Fn->getName() << "\n");
for (auto &BB : *Fn) {
for (auto &I : BB) {
visit(&I);
}
}
}
}