mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Verify that the OwnershipRAUWUtility always preserves the original borrow scope by exhaustively switching over OperandOwnership. And related cleanup.
1029 lines
41 KiB
C++
1029 lines
41 KiB
C++
//===--- OwnershipOptUtils.cpp --------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
///
|
|
/// Ownership Utilities that rely on SILOptimizer functionality.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
|
|
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/LinearLifetimeChecker.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void cleanupOperandsBeforeDeletion(SILInstruction *oldValue,
|
|
InstModCallbacks &callbacks) {
|
|
SILBuilderWithScope builder(oldValue);
|
|
for (auto &op : oldValue->getAllOperands()) {
|
|
if (!op.isLifetimeEnding()) {
|
|
continue;
|
|
}
|
|
|
|
switch (op.get().getOwnershipKind()) {
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid ownership for value");
|
|
case OwnershipKind::Owned: {
|
|
auto *dvi = builder.createDestroyValue(oldValue->getLoc(), op.get());
|
|
callbacks.createdNewInst(dvi);
|
|
continue;
|
|
}
|
|
case OwnershipKind::Guaranteed: {
|
|
// Should only happen once we model destructures as true reborrows.
|
|
auto *ebi = builder.createEndBorrow(oldValue->getLoc(), op.get());
|
|
callbacks.createdNewInst(ebi);
|
|
continue;
|
|
}
|
|
case OwnershipKind::None:
|
|
continue;
|
|
case OwnershipKind::Unowned:
|
|
llvm_unreachable("Unowned object can never be consumed?!");
|
|
}
|
|
llvm_unreachable("Covered switch isn't covered");
|
|
}
|
|
}
|
|
|
|
static SILPhiArgument *
|
|
insertOwnedBaseValueAlongBranchEdge(BranchInst *bi, SILValue innerCopy,
|
|
InstModCallbacks &callbacks) {
|
|
auto *destBB = bi->getDestBB();
|
|
// We need to create the phi argument before calling addNewEdgeValueToBranch
|
|
// since it checks that the destination block has enough arguments for the
|
|
// argument.
|
|
auto *phiArg =
|
|
destBB->createPhiArgument(innerCopy->getType(), OwnershipKind::Owned);
|
|
addNewEdgeValueToBranch(bi, destBB, innerCopy, callbacks);
|
|
|
|
// Grab our predecessor blocks, ignoring us, add to the branch edge an
|
|
// undef corresponding to our value.
|
|
//
|
|
// We gather all predecessor blocks in a separate array to avoid
|
|
// iterator invalidation issues as we mess with terminators.
|
|
SmallVector<SILBasicBlock *, 8> predecessorBlocks(
|
|
destBB->getPredecessorBlocks());
|
|
|
|
for (auto *predBlock : predecessorBlocks) {
|
|
if (predBlock == innerCopy->getParentBlock())
|
|
continue;
|
|
addNewEdgeValueToBranch(
|
|
predBlock->getTerminator(), destBB,
|
|
SILUndef::get(innerCopy->getType(), *destBB->getParent()), callbacks);
|
|
}
|
|
|
|
return phiArg;
|
|
}
|
|
|
|
static bool findTransitiveBorrowedUses(
|
|
SILValue value, SmallVectorImpl<Operand *> &usePoints,
|
|
SmallVectorImpl<BorrowingOperand> &reborrowPoints) {
|
|
assert(value.getOwnershipKind() == OwnershipKind::Guaranteed);
|
|
|
|
unsigned firstOffset = usePoints.size();
|
|
for (Operand *use : value->getUses()) {
|
|
if (use->getOperandOwnership() != OperandOwnership::NonUse)
|
|
usePoints.push_back(use);
|
|
}
|
|
|
|
// NOTE: Use points resizes in this loop so usePoints.size() may be
|
|
// different every time.
|
|
for (unsigned i = firstOffset; i < usePoints.size(); ++i) {
|
|
Operand *use = usePoints[i];
|
|
switch (use->getOperandOwnership()) {
|
|
case OperandOwnership::NonUse:
|
|
case OperandOwnership::TrivialUse:
|
|
case OperandOwnership::ForwardingConsume:
|
|
case OperandOwnership::DestroyingConsume:
|
|
llvm_unreachable("this operand cannot handle a guaranteed use");
|
|
|
|
case OperandOwnership::ForwardingUnowned:
|
|
case OperandOwnership::PointerEscape:
|
|
return false;
|
|
|
|
case OperandOwnership::InstantaneousUse:
|
|
case OperandOwnership::UnownedInstantaneousUse:
|
|
case OperandOwnership::BitwiseEscape:
|
|
case OperandOwnership::EndBorrow:
|
|
case OperandOwnership::Reborrow:
|
|
break;
|
|
|
|
case OperandOwnership::InteriorPointer:
|
|
// If our base guaranteed value does not have any consuming uses (consider
|
|
// function arguments), we need to be sure to include interior pointer
|
|
// operands since we may not get a use from a end_scope instruction.
|
|
if (!InteriorPointerOperand(use).findTransitiveUses(usePoints)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case OperandOwnership::ForwardingBorrow:
|
|
ForwardingOperand(use).visitForwardedValues(
|
|
[&](SILValue transitiveValue) {
|
|
// Do not include transitive uses with 'none' ownership
|
|
if (transitiveValue.getOwnershipKind() == OwnershipKind::None)
|
|
return true;
|
|
for (auto *transitiveUse : transitiveValue->getUses()) {
|
|
if (transitiveUse->getOperandOwnership()
|
|
!= OperandOwnership::NonUse) {
|
|
usePoints.push_back(transitiveUse);
|
|
}
|
|
}
|
|
return true;
|
|
});
|
|
break;
|
|
|
|
case OperandOwnership::Borrow:
|
|
// Try to grab additional end scope instructions to find more liveness
|
|
// info. Stash any reborrow uses so that we can eliminate the reborrow
|
|
// before we are done processing.
|
|
BorrowingOperand(use).visitLocalEndScopeUses(
|
|
[&](Operand *scopeEndingUse) {
|
|
if (auto scopeEndingBorrowingOp = BorrowingOperand(scopeEndingUse)) {
|
|
if (scopeEndingBorrowingOp.isReborrow()) {
|
|
reborrowPoints.push_back(scopeEndingUse);
|
|
return true;
|
|
}
|
|
}
|
|
usePoints.push_back(scopeEndingUse);
|
|
return true;
|
|
});
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Determine whether it is valid to replace \p oldValue with \p newValue by
|
|
// directly checking ownership requirements. This does not determine whether the
|
|
// scope of the newValue can be fully extended.
|
|
static bool hasValidRAUWOwnership(SILValue oldValue, SILValue newValue) {
|
|
auto newOwnershipKind = newValue.getOwnershipKind();
|
|
|
|
// If our new kind is ValueOwnershipKind::None, then we are fine. We
|
|
// trivially support that. This check also ensures that we can always
|
|
// replace any value with a ValueOwnershipKind::None value.
|
|
if (newOwnershipKind == OwnershipKind::None)
|
|
return true;
|
|
|
|
// If our old ownership kind is ValueOwnershipKind::None and our new kind is
|
|
// not, we may need to do more work that has not been implemented yet. So
|
|
// bail.
|
|
//
|
|
// Due to our requirement that types line up, this can only occur given a
|
|
// non-trivial typed value with None ownership. This can only happen when
|
|
// oldValue is a trivial payloaded or no-payload non-trivially typed
|
|
// enum. That doesn't occur that often so we just bail on it today until we
|
|
// implement this functionality.
|
|
if (oldValue.getOwnershipKind() == OwnershipKind::None)
|
|
return false;
|
|
|
|
// First check if oldValue is SILUndef. If it is, then we know that:
|
|
//
|
|
// 1. SILUndef (and thus oldValue) must have OwnershipKind::None.
|
|
// 2. newValue is not OwnershipKind::None due to our check above.
|
|
//
|
|
// Thus we know that we would be replacing a value with OwnershipKind::None
|
|
// with a value with non-None ownership. This is a case we don't support, so
|
|
// we can bail now.
|
|
if (isa<SILUndef>(oldValue))
|
|
return false;
|
|
|
|
// Ok, we now know that we do not have SILUndef implying that we must be able
|
|
// to get a module from our value since we must have an argument or an
|
|
// instruction.
|
|
auto *m = oldValue->getModule();
|
|
assert(m);
|
|
|
|
// If we are in Raw SIL, just bail at this point. We do not support
|
|
// ownership fixups.
|
|
if (m->getStage() == SILStage::Raw)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Determine whether it is valid to replace \p oldValue with \p newValue and
|
|
// extend the lifetime of \p oldValue to cover the new uses.
|
|
//
|
|
// This updates the OwnershipFixupContext, populating transitiveBorrowedUses and
|
|
// recursiveReborrows.
|
|
static bool canFixUpOwnershipForRAUW(SILValue oldValue, SILValue newValue,
|
|
OwnershipFixupContext &context) {
|
|
if (!hasValidRAUWOwnership(oldValue, newValue))
|
|
return false;
|
|
|
|
if (oldValue.getOwnershipKind() == OwnershipKind::Guaranteed) {
|
|
// Check that the old lifetime can be extended and record the necessary
|
|
// book-keeping in the OwnershipFixupContext.
|
|
return findTransitiveBorrowedUses(oldValue, context.transitiveBorrowedUses,
|
|
context.recursiveReborrows);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ownership Lifetime Extender
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct OwnershipLifetimeExtender {
|
|
OwnershipFixupContext &ctx;
|
|
|
|
/// Create a new copy of \p value assuming that our caller will clean up the
|
|
/// copy along all paths that go through consuming point. Operationally this
|
|
/// means that the API will insert compensating destroy_value on the copy
|
|
/// along all paths that do not go through consuming point.
|
|
///
|
|
/// DISCUSSION: If \p consumingPoint is an instruction that forwards \p value,
|
|
/// calling this and then RAUWing with \p value guarantee that \p value will
|
|
/// be consumed by the forwarding instruction's results consuming uses.
|
|
CopyValueInst *createPlusOneCopy(SILValue value,
|
|
SILInstruction *consumingPoint);
|
|
|
|
/// Create a copy of \p value that covers all of \p range and insert all
|
|
/// needed destroy_values. We assume that no uses in \p range consume \p
|
|
/// value.
|
|
CopyValueInst *createPlusZeroCopy(SILValue value, ArrayRef<Operand *> range) {
|
|
return createPlusZeroCopy<ArrayRef<Operand *>>(value, range);
|
|
}
|
|
|
|
/// Create a copy of \p value that covers all of \p range and insert all
|
|
/// needed destroy_values. We assume that all uses in \p range do not consume
|
|
/// \p value.
|
|
///
|
|
/// We return our copy_value to the user at +0 to show that they do not need
|
|
/// to insert cleanup destroys.
|
|
template <typename RangeTy>
|
|
CopyValueInst *createPlusZeroCopy(SILValue value, const RangeTy &range);
|
|
|
|
/// Create a new borrow scope for \p newValue that contains all uses in \p
|
|
/// useRange. We assume that \p useRange does not contain any lifetime ending
|
|
/// uses.
|
|
template <typename RangeTy>
|
|
BeginBorrowInst *createPlusZeroBorrow(SILValue newValue, RangeTy useRange);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Lifetime extend newValue over owned oldValue assuming that our copy will have
|
|
// its lifetime ended by oldValue's lifetime ending uses after RAUWing by our
|
|
// caller.
|
|
CopyValueInst *
|
|
OwnershipLifetimeExtender::createPlusOneCopy(SILValue value,
|
|
SILInstruction *consumingPoint) {
|
|
auto *newValInsertPt = value->getDefiningInsertionPoint();
|
|
assert(newValInsertPt);
|
|
CopyValueInst *copy;
|
|
if (!isa<SILArgument>(value)) {
|
|
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
|
|
copy = builder.createCopyValue(builder.getInsertionPointLoc(), value);
|
|
});
|
|
} else {
|
|
SILBuilderWithScope builder(newValInsertPt);
|
|
copy = builder.createCopyValue(newValInsertPt->getLoc(), value);
|
|
}
|
|
|
|
auto &callbacks = ctx.callbacks;
|
|
callbacks.createdNewInst(copy);
|
|
|
|
auto *result = copy;
|
|
ctx.jointPostDomSetComputer.findJointPostDominatingSet(
|
|
newValInsertPt->getParent(), consumingPoint->getParent(),
|
|
// inputBlocksFoundDuringWalk.
|
|
[&](SILBasicBlock *loopBlock) {
|
|
// This must be consumingPoint->getParent() since we only have one
|
|
// consuming use. In this case, we know that this is the consuming
|
|
// point where we will need a control equivalent copy_value (and that
|
|
// destroy_value will be put for the out of loop value as appropriate.
|
|
assert(loopBlock == consumingPoint->getParent());
|
|
auto front = loopBlock->begin();
|
|
SILBuilderWithScope newBuilder(front);
|
|
result = newBuilder.createCopyValue(front->getLoc(), copy);
|
|
callbacks.createdNewInst(result);
|
|
|
|
llvm_unreachable("Should never visit this!");
|
|
},
|
|
// Input blocks in joint post dom set. We don't care about thse.
|
|
[&](SILBasicBlock *postDomBlock) {
|
|
auto front = postDomBlock->begin();
|
|
SILBuilderWithScope newBuilder(front);
|
|
auto *dvi = newBuilder.createDestroyValue(front->getLoc(), copy);
|
|
callbacks.createdNewInst(dvi);
|
|
});
|
|
return result;
|
|
}
|
|
|
|
// A copy_value that we lifetime extend with destroy_value over range. We assume
|
|
// all instructions passed into range do not consume value.
|
|
template <typename RangeTy>
|
|
CopyValueInst *
|
|
OwnershipLifetimeExtender::createPlusZeroCopy(SILValue value,
|
|
const RangeTy &range) {
|
|
auto *newValInsertPt = value->getDefiningInsertionPoint();
|
|
assert(newValInsertPt);
|
|
|
|
CopyValueInst *copy;
|
|
|
|
if (!isa<SILArgument>(value)) {
|
|
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
|
|
copy = builder.createCopyValue(builder.getInsertionPointLoc(), value);
|
|
});
|
|
} else {
|
|
SILBuilderWithScope builder(newValInsertPt);
|
|
copy = builder.createCopyValue(newValInsertPt->getLoc(), value);
|
|
}
|
|
|
|
auto &callbacks = ctx.callbacks;
|
|
callbacks.createdNewInst(copy);
|
|
|
|
auto opRange = makeUserRange(range);
|
|
ValueLifetimeAnalysis lifetimeAnalysis(copy, opRange);
|
|
ValueLifetimeAnalysis::Frontier frontier;
|
|
bool result = lifetimeAnalysis.computeFrontier(
|
|
frontier, ValueLifetimeAnalysis::DontModifyCFG, &ctx.deBlocks);
|
|
assert(result);
|
|
|
|
while (!frontier.empty()) {
|
|
auto *insertPt = frontier.pop_back_val();
|
|
SILBuilderWithScope frontierBuilder(insertPt);
|
|
auto *dvi = frontierBuilder.createDestroyValue(insertPt->getLoc(), copy);
|
|
callbacks.createdNewInst(dvi);
|
|
}
|
|
|
|
return copy;
|
|
}
|
|
|
|
template <typename RangeTy>
|
|
BeginBorrowInst *
|
|
OwnershipLifetimeExtender::createPlusZeroBorrow(SILValue newValue,
|
|
RangeTy useRange) {
|
|
auto *newValInsertPt = newValue->getDefiningInsertionPoint();
|
|
assert(newValInsertPt);
|
|
|
|
CopyValueInst *copy = nullptr;
|
|
BeginBorrowInst *borrow = nullptr;
|
|
if (!isa<SILArgument>(newValue)) {
|
|
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
|
|
auto loc = builder.getInsertionPointLoc();
|
|
copy = builder.createCopyValue(loc, newValue);
|
|
borrow = builder.createBeginBorrow(loc, copy);
|
|
});
|
|
} else {
|
|
SILBuilderWithScope builder(newValInsertPt);
|
|
auto loc = newValInsertPt->getLoc();
|
|
copy = builder.createCopyValue(loc, newValue);
|
|
borrow = builder.createBeginBorrow(loc, copy);
|
|
}
|
|
assert(copy && borrow);
|
|
|
|
auto opRange = makeUserRange(useRange);
|
|
ValueLifetimeAnalysis lifetimeAnalysis(copy, opRange);
|
|
ValueLifetimeAnalysis::Frontier frontier;
|
|
bool result = lifetimeAnalysis.computeFrontier(
|
|
frontier, ValueLifetimeAnalysis::DontModifyCFG, &ctx.deBlocks);
|
|
assert(result);
|
|
|
|
auto &callbacks = ctx.callbacks;
|
|
while (!frontier.empty()) {
|
|
auto *insertPt = frontier.pop_back_val();
|
|
SILBuilderWithScope frontierBuilder(insertPt);
|
|
// Use an auto-generated location here, because insertPt may have an
|
|
// incompatible LocationKind
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(
|
|
insertPt->getLoc().getSourceLoc());
|
|
auto *ebi = frontierBuilder.createEndBorrow(loc, borrow);
|
|
auto *dvi = frontierBuilder.createDestroyValue(loc, copy);
|
|
callbacks.createdNewInst(ebi);
|
|
callbacks.createdNewInst(dvi);
|
|
}
|
|
|
|
return borrow;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Reborrow Elimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void eliminateReborrowsOfRecursiveBorrows(
|
|
ArrayRef<BorrowingOperand> transitiveReborrows,
|
|
SmallVectorImpl<Operand *> &usePoints, InstModCallbacks &callbacks) {
|
|
SmallVector<std::pair<SILPhiArgument *, SILPhiArgument *>, 8>
|
|
baseBorrowedValuePair;
|
|
// Ok, we have transitive reborrows.
|
|
for (auto borrowingOperand : transitiveReborrows) {
|
|
// We eliminate the reborrow by creating a new copy+borrow at the reborrow
|
|
// edge from the base value and using that for the reborrow instead of the
|
|
// actual value. We of course insert an end_borrow for our original incoming
|
|
// value.
|
|
SILValue value = borrowingOperand->get();
|
|
auto *bi = cast<BranchInst>(borrowingOperand->getUser());
|
|
SILBuilderWithScope reborrowBuilder(bi);
|
|
// Use an auto-generated location here, because the branch may have an
|
|
// incompatible LocationKind
|
|
auto loc =
|
|
RegularLocation::getAutoGeneratedLocation(bi->getLoc().getSourceLoc());
|
|
auto *innerCopy = reborrowBuilder.createCopyValue(loc, value);
|
|
auto *innerBorrow = reborrowBuilder.createBeginBorrow(loc, innerCopy);
|
|
auto *outerEndBorrow = reborrowBuilder.createEndBorrow(loc, value);
|
|
|
|
callbacks.createdNewInst(innerCopy);
|
|
callbacks.createdNewInst(innerBorrow);
|
|
callbacks.createdNewInst(outerEndBorrow);
|
|
|
|
// Then set our borrowing operand to take our innerBorrow instead of value
|
|
// (whose lifetime we just ended).
|
|
callbacks.setUseValue(*borrowingOperand, innerBorrow);
|
|
// Add our outer end borrow as a use point to make sure that we extend our
|
|
// base value to this point.
|
|
usePoints.push_back(&outerEndBorrow->getAllOperands()[0]);
|
|
|
|
// Then check if in our destination block, we have further reborrows. If we
|
|
// do, we need to recursively process them.
|
|
auto *borrowedArg =
|
|
const_cast<SILPhiArgument *>(bi->getArgForOperand(borrowingOperand));
|
|
auto *baseArg =
|
|
insertOwnedBaseValueAlongBranchEdge(bi, innerCopy, callbacks);
|
|
baseBorrowedValuePair.emplace_back(baseArg, borrowedArg);
|
|
}
|
|
|
|
// Now recursively update all further reborrows...
|
|
while (!baseBorrowedValuePair.empty()) {
|
|
SILPhiArgument *baseArg;
|
|
SILPhiArgument *borrowedArg;
|
|
std::tie(baseArg, borrowedArg) = baseBorrowedValuePair.pop_back_val();
|
|
|
|
for (auto *use : borrowedArg->getConsumingUses()) {
|
|
// If our consuming use is an end of scope marker, we need to end
|
|
// the lifetime of our base arg.
|
|
if (isEndOfScopeMarker(use->getUser())) {
|
|
SILBuilderWithScope::insertAfter(use->getUser(), [&](SILBuilder &b) {
|
|
auto *dvi = b.createDestroyValue(b.getInsertionPointLoc(), baseArg);
|
|
callbacks.createdNewInst(dvi);
|
|
});
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a reborrow. For now our reborrows must be
|
|
// phis. Add our owned value as a new argument of that phi along our
|
|
// edge and undef along all other edges.
|
|
auto borrowingOp = BorrowingOperand::get(use);
|
|
auto *brInst = cast<BranchInst>(borrowingOp.op->getUser());
|
|
auto *newBorrowedPhi = brInst->getArgForOperand(borrowingOp);
|
|
auto *newBasePhi =
|
|
insertOwnedBaseValueAlongBranchEdge(brInst, baseArg, callbacks);
|
|
baseBorrowedValuePair.emplace_back(newBasePhi, newBorrowedPhi);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rewriteReborrows(SILValue newBorrowedValue,
|
|
ArrayRef<BorrowingOperand> foundReborrows,
|
|
InstModCallbacks &callbacks) {
|
|
// Each initial reborrow that we have is a use of oldValue, so we know
|
|
// that copy should be valid at the reborrow.
|
|
SmallVector<std::pair<SILPhiArgument *, SILPhiArgument *>, 8>
|
|
baseBorrowedValuePair;
|
|
for (auto reborrow : foundReborrows) {
|
|
auto *bi = cast<BranchInst>(reborrow.op->getUser());
|
|
SILBuilderWithScope reborrowBuilder(bi);
|
|
// Use an auto-generated location here, because the branch may have an
|
|
// incompatible LocationKind
|
|
auto loc =
|
|
RegularLocation::getAutoGeneratedLocation(bi->getLoc().getSourceLoc());
|
|
auto *innerCopy = reborrowBuilder.createCopyValue(loc, newBorrowedValue);
|
|
auto *innerBorrow = reborrowBuilder.createBeginBorrow(loc, innerCopy);
|
|
auto *outerEndBorrow =
|
|
reborrowBuilder.createEndBorrow(loc, reborrow.op->get());
|
|
callbacks.createdNewInst(innerCopy);
|
|
callbacks.createdNewInst(innerBorrow);
|
|
callbacks.createdNewInst(outerEndBorrow);
|
|
|
|
callbacks.setUseValue(*reborrow, innerBorrow);
|
|
|
|
auto *borrowedArg =
|
|
const_cast<SILPhiArgument *>(bi->getArgForOperand(reborrow.op));
|
|
auto *baseArg =
|
|
insertOwnedBaseValueAlongBranchEdge(bi, innerCopy, callbacks);
|
|
baseBorrowedValuePair.emplace_back(baseArg, borrowedArg);
|
|
}
|
|
|
|
// Now, follow through all chains of reborrows.
|
|
while (!baseBorrowedValuePair.empty()) {
|
|
SILPhiArgument *baseArg;
|
|
SILPhiArgument *borrowedArg;
|
|
std::tie(baseArg, borrowedArg) = baseBorrowedValuePair.pop_back_val();
|
|
|
|
for (auto *use : borrowedArg->getConsumingUses()) {
|
|
// If our consuming use is an end of scope marker, we need to end
|
|
// the lifetime of our base arg.
|
|
if (isEndOfScopeMarker(use->getUser())) {
|
|
SILBuilderWithScope::insertAfter(use->getUser(), [&](SILBuilder &b) {
|
|
auto *dvi = b.createDestroyValue(b.getInsertionPointLoc(), baseArg);
|
|
callbacks.createdNewInst(dvi);
|
|
});
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a reborrow. For now our reborrows must be
|
|
// phis. Add our owned value as a new argument of that phi along our
|
|
// edge and undef along all other edges.
|
|
auto borrowingOp = BorrowingOperand::get(use);
|
|
auto *brInst = cast<BranchInst>(borrowingOp.op->getUser());
|
|
auto *newBorrowedPhi = brInst->getArgForOperand(borrowingOp);
|
|
auto *newBasePhi =
|
|
insertOwnedBaseValueAlongBranchEdge(brInst, baseArg, callbacks);
|
|
baseBorrowedValuePair.emplace_back(newBasePhi, newBorrowedPhi);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OwnershipRAUWUtility - RAUW + fix ownership
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Given an old value and a new value, lifetime extend new value as appropriate
|
|
/// so we can RAUW new value with old value and preserve ownership
|
|
/// invariants. We leave fixing up the lifetime of old value to our caller.
|
|
namespace {
|
|
|
|
struct OwnershipRAUWUtility {
|
|
SingleValueInstruction *oldValue;
|
|
SILValue newValue;
|
|
OwnershipFixupContext &ctx;
|
|
|
|
SILBasicBlock::iterator handleUnowned();
|
|
|
|
SILBasicBlock::iterator handleGuaranteed();
|
|
|
|
SILBasicBlock::iterator perform();
|
|
|
|
/// Insert copies/borrows as appropriate to eliminate any reborrows of
|
|
/// borrowed value, given we are going to replace it with newValue.
|
|
void eliminateReborrows(BorrowedValue oldBorrowedValue, SILValue newValue);
|
|
|
|
OwnershipLifetimeExtender getLifetimeExtender() { return {ctx}; }
|
|
|
|
const InstModCallbacks &getCallbacks() const { return ctx.callbacks; }
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
SILBasicBlock::iterator OwnershipRAUWUtility::handleUnowned() {
|
|
auto &callbacks = ctx.callbacks;
|
|
switch (newValue.getOwnershipKind()) {
|
|
case OwnershipKind::None:
|
|
llvm_unreachable("Should have been handled elsewhere");
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid for values");
|
|
case OwnershipKind::Unowned:
|
|
// An unowned value can always be RAUWed with another unowned value.
|
|
return replaceAllUsesAndErase(oldValue, newValue, callbacks);
|
|
case OwnershipKind::Guaranteed: {
|
|
// If we have an unowned value that we want to replace with a guaranteed
|
|
// value, we need to ensure that the guaranteed value is live at all use
|
|
// points of the unowned value. If so, just replace and continue.
|
|
//
|
|
// TODO: Implement this.
|
|
|
|
// Otherwise, we need to lifetime extend the borrow over all of the use
|
|
// points. To do so, we copy the value, borrow it, insert an unchecked
|
|
// ownership conversion to unowned at oldValue and then RAUW.
|
|
//
|
|
// We need to insert the conversion to ensure that we do not violate
|
|
// ownership propagation rules of forwarding insts.
|
|
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
|
|
for (auto *use : oldValueUses) {
|
|
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
|
|
if (ti->isFunctionExiting()) {
|
|
SILBuilderWithScope builder(ti);
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
ti->getLoc(), use->get(), OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
callbacks.setUseValue(use, newInst);
|
|
}
|
|
}
|
|
}
|
|
auto extender = getLifetimeExtender();
|
|
SILValue borrow =
|
|
extender.createPlusZeroBorrow(newValue, oldValue->getUses());
|
|
SILBuilderWithScope builder(oldValue);
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
oldValue->getLoc(), borrow, OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
return replaceAllUsesAndErase(oldValue, newInst, callbacks);
|
|
}
|
|
case OwnershipKind::Owned: {
|
|
// If we have an unowned value that we want to replace with an owned value,
|
|
// we first check if the owned value is live over all use points of the old
|
|
// value. If so, just RAUW and continue.
|
|
//
|
|
// TODO: Implement this.
|
|
|
|
// Otherwise, insert a copy of the owned value and lifetime extend that over
|
|
// all uses of the value and then RAUW.
|
|
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
|
|
for (auto *use : oldValueUses) {
|
|
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
|
|
if (ti->isFunctionExiting()) {
|
|
SILBuilderWithScope builder(ti);
|
|
// We insert this to ensure that we can extend our owned value's
|
|
// lifetime to before the function end point.
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
ti->getLoc(), use->get(), OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
callbacks.setUseValue(use, newInst);
|
|
}
|
|
}
|
|
}
|
|
auto extender = getLifetimeExtender();
|
|
SILValue copy = extender.createPlusZeroCopy(newValue, oldValue->getUses());
|
|
SILBuilderWithScope builder(oldValue);
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
oldValue->getLoc(), copy, OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
auto result = replaceAllUsesAndErase(oldValue, newInst, callbacks);
|
|
return result;
|
|
}
|
|
}
|
|
llvm_unreachable("covered switch isn't covered?!");
|
|
}
|
|
|
|
SILBasicBlock::iterator OwnershipRAUWUtility::handleGuaranteed() {
|
|
// If we want to replace a guaranteed value with a value of some other
|
|
// ownership whose def dominates our guaranteed value. We first see if all
|
|
// uses of the old guaranteed value are within the lifetime of the new
|
|
// guaranteed value. If so, we can just RAUW and move on.
|
|
//
|
|
// TODO: Implement this.
|
|
//
|
|
// Otherwise, we need to actually modify the IR. We first always first
|
|
// lifetime extend newValue to oldValue's transitive uses to set our
|
|
// workspace.
|
|
|
|
// If we have any transitive reborrows on sub-borrows.
|
|
if (ctx.recursiveReborrows.size())
|
|
eliminateReborrowsOfRecursiveBorrows(ctx.recursiveReborrows,
|
|
ctx.transitiveBorrowedUses,
|
|
ctx.callbacks);
|
|
|
|
auto extender = getLifetimeExtender();
|
|
SILValue newBorrowedValue =
|
|
extender.createPlusZeroBorrow<ArrayRef<Operand *>>(
|
|
newValue, ctx.transitiveBorrowedUses);
|
|
|
|
// Now we need to handle reborrows by eliminating the reborrows from any
|
|
// borrowing operands that use old value as well as from oldvalue itself. We
|
|
// take advantage of a few properties of reborrows:
|
|
//
|
|
// 1. A reborrow has to be on a BorrowedValue. This ensures that the same
|
|
// base value is propagated through chains of reborrows. (In the future
|
|
// this may not be true when destructures are introduced as reborrow
|
|
// instructions).
|
|
//
|
|
// 2. Given that, we change each reborrows into new copy+borrow from the
|
|
// owned value that we perform at the reborrow use. What is nice about
|
|
// this formulation is that it ensures that we are always working with a
|
|
// non-dominating copy value, allowing us to force our borrowing value to
|
|
// need a base phi argument (the one of our choosing).
|
|
if (auto oldValueBorrowedVal = BorrowedValue::get(oldValue)) {
|
|
SmallVector<BorrowingOperand, 8> foundReborrows;
|
|
if (oldValueBorrowedVal.gatherReborrows(foundReborrows)) {
|
|
rewriteReborrows(newBorrowedValue, foundReborrows, ctx.callbacks);
|
|
}
|
|
}
|
|
|
|
// Then we need to look and see if our oldValue had any transitive uses that
|
|
|
|
// Ok, we now have eliminated any reborrows if we had any. That means that
|
|
// the uses of oldValue should be completely within the lifetime of our new
|
|
// borrow.
|
|
return replaceAllUsesAndErase(oldValue, newBorrowedValue, ctx.callbacks);
|
|
}
|
|
|
|
SILBasicBlock::iterator OwnershipRAUWUtility::perform() {
|
|
assert(oldValue->getFunction()->hasOwnership());
|
|
assert(hasValidRAUWOwnership(oldValue, newValue) &&
|
|
"Should have checked if can perform this operation before calling it?!");
|
|
// If our new value is just none, we can pass anything to do it so just RAUW
|
|
// and return.
|
|
//
|
|
// NOTE: This handles RAUWing with undef.
|
|
if (newValue.getOwnershipKind() == OwnershipKind::None)
|
|
return replaceAllUsesAndErase(oldValue, newValue, ctx.callbacks);
|
|
assert(SILValue(oldValue).getOwnershipKind() != OwnershipKind::None);
|
|
|
|
switch (SILValue(oldValue).getOwnershipKind()) {
|
|
case OwnershipKind::None:
|
|
// If our old value was none and our new value is not, we need to do
|
|
// something more complex that we do not support yet, so bail. We should
|
|
// have not called this function in such a case.
|
|
llvm_unreachable("Should have been handled elsewhere");
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid for values");
|
|
case OwnershipKind::Guaranteed: {
|
|
return handleGuaranteed();
|
|
}
|
|
case OwnershipKind::Owned: {
|
|
// If we have an owned value that we want to replace with a value with any
|
|
// other non-None ownership, we need to copy the other value for a
|
|
// lifetimeEnding RAUW, then RAUW the value, and insert a destroy_value on
|
|
// the original value.
|
|
auto extender = getLifetimeExtender();
|
|
SILValue copy = extender.createPlusOneCopy(newValue, oldValue);
|
|
cleanupOperandsBeforeDeletion(oldValue, ctx.callbacks);
|
|
auto result = replaceAllUsesAndErase(oldValue, copy, ctx.callbacks);
|
|
return result;
|
|
}
|
|
case OwnershipKind::Unowned: {
|
|
return handleUnowned();
|
|
}
|
|
}
|
|
llvm_unreachable("Covered switch isn't covered?!");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interior Pointer Operand Rebasing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Clone all projections and casts on the access use-def chain until either the
|
|
/// specified predicate is true or the access base is reached.
|
|
///
|
|
/// This will not clone ref_element_addr or ref_tail_addr because those aren't
|
|
/// part of the access chain.
|
|
class InteriorPointerAddressRebaseUseDefChainCloner
|
|
: public AccessUseDefChainVisitor<
|
|
InteriorPointerAddressRebaseUseDefChainCloner, SILValue> {
|
|
SILValue oldAddressValue;
|
|
SingleValueInstruction *oldIntPtr;
|
|
SingleValueInstruction *newIntPtr;
|
|
SILInstruction *insertPt;
|
|
|
|
public:
|
|
InteriorPointerAddressRebaseUseDefChainCloner(
|
|
SILValue oldAddressValue, SingleValueInstruction *oldIntPtr,
|
|
SingleValueInstruction *newIntPtr, SILInstruction *insertPt)
|
|
: oldAddressValue(oldAddressValue), oldIntPtr(oldIntPtr),
|
|
newIntPtr(newIntPtr), insertPt(insertPt) {}
|
|
|
|
// Recursive main entry point
|
|
SILValue cloneUseDefChain(SILValue currentOldAddr) {
|
|
// If we have finally hit oldIntPtr, we are done.
|
|
if (currentOldAddr == oldIntPtr)
|
|
return currentOldAddr;
|
|
return this->visit(currentOldAddr);
|
|
}
|
|
|
|
// Recursively clone an address on the use-def chain.
|
|
SingleValueInstruction *cloneProjection(SingleValueInstruction *projectedAddr,
|
|
Operand *sourceOper) {
|
|
SILValue sourceOperVal = sourceOper->get();
|
|
SILValue projectedSource = cloneUseDefChain(sourceOperVal);
|
|
// If we hit the end of our chain, then make newIntPtr the operand so that
|
|
// we have successfully rebased.
|
|
if (sourceOperVal == projectedSource)
|
|
projectedSource = newIntPtr;
|
|
SILInstruction *clone = projectedAddr->clone(insertPt);
|
|
clone->setOperand(sourceOper->getOperandNumber(), projectedSource);
|
|
return cast<SingleValueInstruction>(clone);
|
|
}
|
|
|
|
SILValue visitBase(SILValue base, AccessedStorage::Kind kind) {
|
|
assert(false && "access base cannot be cloned");
|
|
return SILValue();
|
|
}
|
|
|
|
SILValue visitNonAccess(SILValue base) {
|
|
assert(false && "unknown address root cannot be cloned");
|
|
return SILValue();
|
|
}
|
|
|
|
SILValue visitPhi(SILPhiArgument *phi) {
|
|
assert(false && "unexpected phi on access path");
|
|
return SILValue();
|
|
}
|
|
|
|
SILValue visitStorageCast(SingleValueInstruction *cast, Operand *sourceOper) {
|
|
assert(false && "unexpected storage cast on access path");
|
|
return SILValue();
|
|
}
|
|
|
|
SILValue visitAccessProjection(SingleValueInstruction *projectedAddr,
|
|
Operand *sourceOper) {
|
|
return cloneProjection(projectedAddr, sourceOper);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// \p oldAddressValue is an address rooted in \p oldIntPtr. Clone the use-def
|
|
/// chain from \p oldAddressValue to \p oldIntPtr, but starting from \p
|
|
/// newAddressValue.
|
|
static SILValue cloneInteriorProjectionUseDefChain(
|
|
SILValue oldAddressValue, SingleValueInstruction *oldIntPtr,
|
|
SingleValueInstruction *newIntPtr, SILInstruction *insertPt) {
|
|
InteriorPointerAddressRebaseUseDefChainCloner cloner(
|
|
oldAddressValue, oldIntPtr, newIntPtr, insertPt);
|
|
return cloner.cloneUseDefChain(oldAddressValue);
|
|
}
|
|
|
|
SILBasicBlock::iterator
|
|
OwnershipRAUWHelper::replaceAddressUses(SingleValueInstruction *oldValue,
|
|
SILValue newValue) {
|
|
assert(oldValue->getType().isAddress() &&
|
|
oldValue->getType() == newValue->getType());
|
|
|
|
// If we are replacing addresses, see if we need to handle interior pointer
|
|
// fixups. If we don't have any extra info, then we know that we can just RAUW
|
|
// without any further work.
|
|
if (!ctx->extraAddressFixupInfo.intPtrOp)
|
|
return replaceAllUsesAndErase(oldValue, newValue, ctx->callbacks);
|
|
|
|
// We are RAUWing two addresses and we found that:
|
|
//
|
|
// 1. newValue is an address associated with an interior pointer instruction.
|
|
// 2. oldValue has uses that are outside of newValue's borrow scope.
|
|
//
|
|
// So, we need to copy/borrow the base value of the interior pointer to
|
|
// lifetime extend the base value over the new uses. Then we clone the
|
|
// interior pointer instruction and change the clone to use our new borrowed
|
|
// value. Then we RAUW as appropriate.
|
|
OwnershipLifetimeExtender extender{*ctx};
|
|
auto &extraInfo = ctx->extraAddressFixupInfo;
|
|
auto intPtr = *extraInfo.intPtrOp;
|
|
BeginBorrowInst *bbi = extender.createPlusZeroBorrow(
|
|
intPtr->get(), llvm::makeArrayRef(extraInfo.allAddressUsesFromOldValue));
|
|
auto bbiNext = &*std::next(bbi->getIterator());
|
|
auto *newIntPtrUser =
|
|
cast<SingleValueInstruction>(intPtr->getUser()->clone(bbiNext));
|
|
ctx->callbacks.createdNewInst(newIntPtrUser);
|
|
newIntPtrUser->setOperand(0, bbi);
|
|
|
|
// Now that we have extended our lifetime as appropriate, we need to recreate
|
|
// the access path from newValue to intPtr but upon newIntPtr. Then we make it
|
|
// use newIntPtr.
|
|
auto *intPtrUser = cast<SingleValueInstruction>(intPtr->getUser());
|
|
SILValue initialAddr = cloneInteriorProjectionUseDefChain(
|
|
newValue /*address we originally wanted to replace*/,
|
|
intPtrUser /*the interior pointer of that value*/,
|
|
newIntPtrUser /*the interior pointer we need to recreate the chain upon*/,
|
|
oldValue /*insert point*/);
|
|
|
|
// If we got back newValue, then we need to set initialAddr to be int ptr
|
|
// user.
|
|
if (initialAddr == newValue)
|
|
initialAddr = newIntPtrUser;
|
|
|
|
// Now that we have an addr that is setup appropriately, RAUW!
|
|
return replaceAllUsesAndErase(oldValue, initialAddr, ctx->callbacks);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entrypoints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OwnershipRAUWHelper::OwnershipRAUWHelper(OwnershipFixupContext &inputCtx,
|
|
SingleValueInstruction *inputOldValue,
|
|
SILValue inputNewValue)
|
|
: ctx(&inputCtx), oldValue(inputOldValue), newValue(inputNewValue) {
|
|
// If we are already not valid, just bail.
|
|
if (!isValid())
|
|
return;
|
|
|
|
// Otherwise, lets check if we can perform this RAUW operation. If we can't,
|
|
// set ctx to nullptr to invalidate the helper and return.
|
|
if (!canFixUpOwnershipForRAUW(oldValue, newValue, inputCtx)) {
|
|
ctx = nullptr;
|
|
return;
|
|
}
|
|
|
|
// If we have an object, at this point we are good to go so we can just
|
|
// return.
|
|
if (newValue->getType().isObject())
|
|
return;
|
|
|
|
// But if we have an address, we need to check if new value is from an
|
|
// interior pointer or not in a way that the pass understands. What we do is:
|
|
//
|
|
// 1. Early exit some cases that we know can never have interior pointers.
|
|
//
|
|
// 2. Compute the AccessPathWithBase of newValue. If we do not get back a
|
|
// valid such object, invalidate and then bail.
|
|
//
|
|
// 3. Then we check if the base address is the result of an interior pointer
|
|
// instruction. If we do not find one we bail.
|
|
//
|
|
// 4. Then grab the base value of the interior pointer operand. We only
|
|
// support cases where we have a single BorrowedValue as our base. This is
|
|
// a safe future proof assumption since one reborrows are on
|
|
// structs/tuple/destructures, a guaranteed value will always be associated
|
|
// with a single BorrowedValue, so this will never fail (and the code will
|
|
// probably be DCEed).
|
|
//
|
|
// 5. Then we compute an AccessPathWithBase for oldValue and then find its
|
|
// derived uses. If we fail, we bail.
|
|
//
|
|
// 6. At this point, we know that we can perform this RAUW. The only question
|
|
// is if we need to when we RAUW copy the interior pointer base value. We
|
|
// perform this check by making sure all of the old value's derived uses
|
|
// are within our BorrowedValue's scope. If so, we clear the extra state we
|
|
// were tracking (the interior pointer/oldValue's transitive uses), so we
|
|
// perform just a normal RAUW (without inserting the copy) when we RAUW.
|
|
//
|
|
// We can always RAUW an address with a pointer_to_address since if there
|
|
// were any interior pointer constraints on whatever address pointer came
|
|
// from, the address_to_pointer producing that value erases that
|
|
// information, so we can RAUW without worrying.
|
|
//
|
|
// NOTE: We also need to handle this here since a pointer_to_address is not a
|
|
// valid base value for an access path since it doesn't refer to any storage.
|
|
{
|
|
auto baseProj =
|
|
getUnderlyingObjectStoppingAtObjectToAddrProjections(newValue);
|
|
if (isa<PointerToAddressInst>(baseProj)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto accessPathWithBase = AccessPathWithBase::compute(newValue);
|
|
if (!accessPathWithBase.base) {
|
|
// Invalidate!
|
|
ctx = nullptr;
|
|
return;
|
|
}
|
|
|
|
auto &intPtr = ctx->extraAddressFixupInfo.intPtrOp;
|
|
intPtr = InteriorPointerOperand::inferFromResult(accessPathWithBase.base);
|
|
if (!intPtr) {
|
|
// We can optimize! Do not invalidate!
|
|
return;
|
|
}
|
|
|
|
auto borrowedValue = intPtr.getSingleBaseValue();
|
|
if (!borrowedValue) {
|
|
// Invalidate!
|
|
ctx = nullptr;
|
|
return;
|
|
}
|
|
|
|
// For now, just gather up uses
|
|
auto &oldValueUses = ctx->extraAddressFixupInfo.allAddressUsesFromOldValue;
|
|
if (InteriorPointerOperand::findTransitiveUsesForAddress(oldValue,
|
|
oldValueUses)) {
|
|
// If we found an error, invalidate and return!
|
|
ctx = nullptr;
|
|
return;
|
|
}
|
|
|
|
// Ok, at this point we know that we can optimize. The only question is if we
|
|
// need to perform the copy or not when we actually RAUW. So perform the is
|
|
// within region check. If we succeed, clear our extra state so we perform a
|
|
// normal RAUW.
|
|
SmallVector<Operand *, 8> scratchSpace;
|
|
SmallPtrSet<SILBasicBlock *, 8> visitedBlocks;
|
|
if (borrowedValue.areUsesWithinScope(oldValueUses, scratchSpace,
|
|
visitedBlocks, ctx->deBlocks)) {
|
|
// We do not need to copy the base value! Clear the extra info we have.
|
|
ctx->extraAddressFixupInfo.clear();
|
|
}
|
|
}
|
|
|
|
SILBasicBlock::iterator OwnershipRAUWHelper::perform() {
|
|
assert(isValid() && "OwnershipRAUWHelper invalid?!");
|
|
|
|
// Make sure to always clear our context after we transform.
|
|
SWIFT_DEFER { ctx->clear(); };
|
|
|
|
if (oldValue->getType().isAddress())
|
|
return replaceAddressUses(oldValue, newValue);
|
|
|
|
OwnershipRAUWUtility utility{oldValue, newValue, *ctx};
|
|
return utility.perform();
|
|
}
|