mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
* SwiftDtoa v2: Better, Smaller, Faster floating-point formatting SwiftDtoa is the C/C++ code used in the Swift runtime to produce the textual representations used by the `description` and `debugDescription` properties of the standard Swift floating-point types. This update includes a number of algorithmic improvements to SwiftDtoa to improve portability, reduce code size, and improve performance but does not change the actual output. About SwiftDtoa =============== In early versions of Swift, the `description` properties used the C library `sprintf` functionality with a fixed number of digits. In 2018, that logic was replaced with the first version of SwiftDtoa which used used a fast, adaptive algorithm to automatically choose the correct number of digits for a particular value. The resulting decimal output is always: * Accurate. Parsing the decimal form will yield exactly the same binary floating-point value again. This guarantee holds for any parser that accurately implements IEEE 754. In particular, the Swift standard library can guarantee that for any Double `d` that is not a NaN, `Double(d.description) == d`. * Short. Among all accurate forms, this form has the fewest significant digits. (Caution: Surprisingly, this is not the same as minimizing the number of characters. In some cases, minimizing the number of characters requires producing additional significant digits.) * Close. If there are multiple accurate, short forms, this code chooses the decimal form that is closest to the exact binary value. If there are two exactly the same distance, the one with an even final digit will be used. Algorithms that can produce this "optimal" output have been known since at least 1990, when Steele and White published their Dragon4 algorithm. However, Dragon4 and other algorithms from that period relied on high-precision integer arithmetic, which made them slow. More recently, a surge of interest in this problem has produced dramatically better algorithms that can produce the same results using only fast fixed-precision arithmetic. This format is ideal for JSON and other textual interchange: accuracy ensures that the value will be correctly decoded, shortness minimizes network traffic, and the existence of high-performance algorithms allows this form to be generated more quickly than many `printf`-based implementations. This format is also ideal for logging, debugging, and other general display. In particular, the shortness guarantee avoids the confusion of unnecessary additional digits, so that the result of `1.0 / 10.0` consistently displays as `0.1` instead of `0.100000000000000000001`. About SwiftDtoa v2 ================== Compared to the original SwiftDtoa code, this update is: **Better**: The core logic is implemented using only C99 features with 64-bit and smaller integer arithmetic. If available, 128-bit integers are used for better performance. The core routines do not require any floating-point support from the C/C++ standard library and with only minor modifications should be usable on systems with no hardware or software floating-point support at all. This version also has experimental support for IEEE 754 binary128 format, though this support is obviously not included when compiling for the Swift standard library. **Smaller**: Code size reduction compared to the earlier versions was a primary goal for this effort. In particular, the new binary128 support shares essentially all of its code with the float80 implementation. **Faster**: Even with the code size reductions, all formats are noticeably faster. The primary performance gains come from three major changes: Text digits are now emitted directly in the core routines in a form that requires only minimal adjustment to produce the final text. Digit generation produces 2, 4, or even 8 digits at a time, depending on the format. The double logic optimistically produces 7 digits in the initial scaling with a Ryu-inspired backtracking when fewer digits suffice. SwiftDtoa's algorithms ====================== SwiftDtoa started out as a variation of Florian Loitsch' Grisu2 that addressed the shortness failures of that algorithm. Subsequent work has incorporated ideas from Errol3, Ryu, and other sources to yield a production-quality implementation that is performance- and size-competitive with current research code. Those who wish to understand the details can read the extensive comments included in the code. Note that float16 actually uses a different algorithm than the other formats, as the extremely limited range can be handled with much simpler techniques. The float80/binary128 logic sacrifices some performance optimizations in order to minimize the code size for these less-used formats; the goal for SwiftDtoa v2 has been to match the float80 performance of earlier implementations while reducing code size and widening the arithmetic routines sufficiently to support binary128. SwiftDtoa Testing ================= A newly-developed test harness generates several large files of test data that include known-correct results computed with high-precision arithmetic routines. The test files include: * Critical values generated by the algorithm presented in the Errol paper (about 48 million cases for binary128) * Values for which the optimal decimal form is exactly midway between two binary floating-point values. * All exact powers of two representable in this format. * Floating-point values that are close to exact powers of ten. In addition, several billion random values for each format were compared to the results from other implementations. For binary16 and binary32 this provided exhaustive validation of every possible input value. Code Size and Performance ========================= The tables below summarize the code size and performance for the SwiftDtoa C library module by itself on several different processor architectures. When used from Swift, the `.description` and `.debugDescription` implementations incur additional overhead for creating and returning Swift strings that are not captured here. The code size tables show the total size in bytes of the compiled `.o` object files for a particular version of that code. The headings indicate the floating-point formats supported by that particular build (e.g., "16,32" for a version that supports binary16 and binary32 but no other formats). The performance numbers below were obtained from a custom test harness that generates random bit patterns, interprets them as the corresponding floating-point value, and averages the overall time. For float80, the random bit patterns were generated in a way that avoids generating invalid values. All code was compiled with the system C/C++ compiler using `-O2` optimization. A few notes about particular implementations: * **SwiftDtoa v1** is the original SwiftDtoa implementation as committed to the Swift runtime in April 2018. * **SwiftDtoa v1a** is the same as SwiftDtoa v1 with added binary16 support. * **SwiftDtoa v2** can be configured with preprocessor macros to support any subset of the supported formats. I've provided sizes here for several different build configurations. * **Ryu** (Ulf Anders) implements binary32 and binary64 as completely independent source files. The size here is the total size of the two .o object files. * **Ryu(size)** is Ryu compiled with the `RYU_OPTIMIZE_SIZE` option. * **Dragonbox** (Junekey Jeon). The size here is the compiled size of a simple `.cpp` file that instantiates the template for the specified formats, plus the size of the associated text output logic. * **Dragonbox(size)** is Dragonbox compiled to minimize size by using a compressed power-of-10 table. * **gdtoa** has a very large feature set. For this reason, I excluded it from the code size comparison since I didn't consider the numbers to be comparable to the others. x86_64 ---------------- These were built using Apple clang 12.0.5 on a 2019 16" MacBook Pro (2.4GHz 8-core Intel Core i9) running macOS 11.1. **Code Size** Bold numbers here indicate the configurations that have shipped as part of the Swift runtime. | | 16,32,64,80 | 32,64,80 | 32,64 | |---------------|------------:|------------:|------------:| |SwiftDtoa v1 | | **15128** | | |SwiftDtoa v1a | **16888** | | | |SwiftDtoa v2 | **20220** | 18628 | 8248 | |Ryu | | | 40408 | |Ryu(size) | | | 23836 | |Dragonbox | | | 23176 | |Dragonbox(size)| | | 15132 | **Performance** | | binary16 | binary32 | binary64 | float80 | binary128 | |--------------|---------:|---------:|---------:|--------:|----------:| |SwiftDtoa v1 | | 25ns | 46ns | 82ns | | |SwiftDtoa v1a | 37ns | 26ns | 47ns | 83ns | | |SwiftDtoa v2 | 22ns | 19ns | 31ns | 72ns | 90ns | |Ryu | | 19ns | 26ns | | | |Ryu(size) | | 17ns | 24ns | | | |Dragonbox | | 19ns | 24ns | | | |Dragonbox(size) | | 19ns | 29ns | | | |gdtoa | 220ns | 381ns | 1184ns | 16044ns | 22800ns | ARM64 ---------------- These were built using Apple clang 12.0.0 on a 2020 M1 Mac Mini running macOS 11.1. **Code Size** | | 16,32,64 | 32,64 | |---------------|---------:|------:| |SwiftDtoa v1 | | 7436 | |SwiftDtoa v1a | 9124 | | |SwiftDtoa v2 | 9964 | 8228 | |Ryu | | 35764 | |Ryu(size) | | 16708 | |Dragonbox | | 27108 | |Dragonbox(size)| | 19172 | **Performance** | | binary16 | binary32 | binary64 | float80 | binary128 | |--------------|---------:|---------:|---------:|--------:|----------:| |SwiftDtoa v1 | | 21ns | 39ns | | | |SwiftDtoa v1a | 17ns | 21ns | 39ns | | | |SwiftDtoa v2 | 15ns | 17ns | 29ns | 54ns | 71ns | |Ryu | | 15ns | 19ns | | | |Ryu(size) | | 29ns | 24ns | | | |Dragonbox | | 16ns | 24ns | | | |Dragonbox(size) | | 15ns | 34ns | | | |gdtoa | 143ns | 242ns | 858ns | 25129ns | 36195ns | ARM32 ---------------- These were built using clang 8.0.1 on a BeagleBone Black (500MHz ARMv7) running FreeBSD 12.1-RELEASE. **Code Size** | | 16,32,64 | 32,64 | |---------------|---------:|------:| |SwiftDtoa v1 | | 8668 | |SwiftDtoa v1a | 10356 | | |SwiftDtoa v2 | 9796 | 8340 | |Ryu | | 32292 | |Ryu(size) | | 14592 | |Dragonbox | | 29000 | |Dragonbox(size)| | 21980 | **Performance** | | binary16 | binary32 | binary64 | float80 | binary128 | |--------------|---------:|---------:|---------:|--------:|----------:| |SwiftDtoa v1 | | 459ns | 1152ns | | | |SwiftDtoa v1a | 383ns | 451ns | 1148ns | | | |SwiftDtoa v2 | 202ns | 357ns | 715ns | 2720ns | 3379ns | |Ryu | | 345ns | 5450ns | | | |Ryu(size) | | 786ns | 5577ns | | | |Dragonbox | | 300ns | 904ns | | | |Dragonbox(size) | | 294ns | 1021ns | | | |gdtoa | 2180ns | 4749ns | 18742ns |293000ns | 440000ns | * This is fast enough now even for non-optimized test runs * Fix float80 Nan/Inf parsing, comment more thoroughly
2762 lines
117 KiB
C++
2762 lines
117 KiB
C++
//===--- SwiftDtoa.c ---------------------------------------------*- c -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2018-2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
//
|
|
// Note: This source file is used in different projects where it gets
|
|
// compiled variously as ".c" or ".cpp". Please keep the code clean
|
|
// portable C so others can share your improvements.
|
|
//
|
|
/// For binary16, this uses a simple approach that is normally
|
|
/// implemented with variable-length arithmetic. However, due to
|
|
/// the limited range of binary16, this can be implemented simply
|
|
/// with only 32-bit integer arithmetic.
|
|
///
|
|
/// For other formats, SwiftDtoa uses a modified form of the Grisu2
|
|
/// algorithm from Florian Loitsch; "Printing Floating-Point Numbers
|
|
/// Quickly and Accurately with Integers", 2010.
|
|
/// https://doi.org/10.1145/1806596.1806623
|
|
///
|
|
/// Some of the Grisu2 modifications were suggested by the "Errol
|
|
/// paper": Marc Andrysco, Ranjit Jhala, Sorin Lerner; "Printing
|
|
/// Floating-Point Numbers: A Faster, Always Correct Method", 2016.
|
|
/// https://doi.org/10.1145/2837614.2837654
|
|
/// In particular, the Errol paper explored the impact of higher-precision
|
|
/// fixed-width arithmetic on Grisu2 and showed a way to rapidly test
|
|
/// the correctness of such algorithms.
|
|
///
|
|
/// A few further improvements were inspired by the Ryu algorithm
|
|
/// from Ulf Anders; "Ryū: fast float-to-string conversion", 2018.
|
|
/// https://doi.org/10.1145/3296979.3192369
|
|
///
|
|
/// In summary, this implementation is:
|
|
///
|
|
/// * Fast. It uses only fixed-width integer arithmetic and has
|
|
/// constant memory requirements. For double-precision values on
|
|
/// 64-bit processors, it is competitive with Ryu. For double-precision
|
|
/// values on 32-bit processors, and higher-precision values on all
|
|
/// processors, it is considerably faster.
|
|
///
|
|
/// * Always Accurate. Converting the decimal form back to binary
|
|
/// will always yield exactly the same value. For the IEEE 754
|
|
/// formats, the round-trip will produce exactly the same bit
|
|
/// pattern in memory.
|
|
///
|
|
/// * Always Short. This always selects an accurate result with the
|
|
/// minimum number of significant digits.
|
|
///
|
|
/// * Always Close. Among all accurate, short results, this always
|
|
/// chooses the result that is closest to the exact floating-point
|
|
/// value. (In case of an exact tie, it rounds the last digit even.)
|
|
///
|
|
/// * Portable. The code is written in portable C99. The core
|
|
/// implementations utilize only fixed-size integer arithmetic.
|
|
/// 128-bit integer support is utilized if present but is not
|
|
/// necessary. There are thin wrappers that accept platform-native
|
|
/// floating point types and delegate to the portable core
|
|
/// functions.
|
|
///
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "swift/Runtime/SwiftDtoa.h"
|
|
|
|
#if defined(__SIZEOF_INT128__)
|
|
// We get a significant speed boost if we can use the __uint128_t
|
|
// type that's present in GCC and Clang on 64-bit architectures. In
|
|
// particular, we can do 128-bit arithmetic directly and can
|
|
// represent 256-bit integers as collections of 64-bit elements.
|
|
#define HAVE_UINT128_T 1
|
|
#else
|
|
// On 32-bit, we use slower code that manipulates 128-bit
|
|
// and 256-bit integers as collections of 32-bit elements.
|
|
#define HAVE_UINT128_T 0
|
|
#endif
|
|
|
|
//
|
|
// Predefine various arithmetic helpers. Most implementations and extensive
|
|
// comments are at the bottom of this file.
|
|
//
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
// The power-of-10 tables do not directly store the associated binary
|
|
// exponent. That's because the binary exponent is a simple linear
|
|
// function of the decimal power (and vice versa), so it's just as
|
|
// fast (and uses much less memory) to compute it:
|
|
|
|
// The binary exponent corresponding to a particular power of 10.
|
|
// This matches the power-of-10 tables across the full range of binary128.
|
|
#define binaryExponentFor10ToThe(p) ((int)(((((int64_t)(p)) * 55732705) >> 24) + 1))
|
|
|
|
// A decimal exponent that approximates a particular binary power.
|
|
#define decimalExponentFor2ToThe(e) ((int)(((int64_t)e * 20201781) >> 26))
|
|
#endif
|
|
|
|
//
|
|
// Helper functions used only by the single-precision binary32 formatter
|
|
//
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT
|
|
static uint64_t multiply64x32RoundingDown(uint64_t lhs, uint32_t rhs) {
|
|
static const uint64_t mask32 = UINT32_MAX;
|
|
uint64_t t = ((lhs & mask32) * rhs) >> 32;
|
|
return t + (lhs >> 32) * rhs;
|
|
}
|
|
static uint64_t multiply64x32RoundingUp(uint64_t lhs, uint32_t rhs) {
|
|
static const uint64_t mask32 = UINT32_MAX;
|
|
uint64_t t = (((lhs & mask32) * rhs) + mask32) >> 32;
|
|
return t + (lhs >> 32) * rhs;
|
|
}
|
|
static void intervalContainingPowerOf10_Binary32(int p, uint64_t *lower, uint64_t *upper, int *exponent);
|
|
#endif
|
|
|
|
//
|
|
// Helpers used by binary32, binary64, float80, and binary128
|
|
//
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
#if HAVE_UINT128_T
|
|
typedef __uint128_t swift_uint128_t;
|
|
#define initialize128WithHighLow64(dest, high64, low64) ((dest) = ((__uint128_t)(high64) << 64) | (low64))
|
|
#define shiftLeft128(u128, shift) (*(u128) <<= shift)
|
|
#else
|
|
typedef struct {
|
|
uint32_t low, b, c, high;
|
|
} swift_uint128_t;
|
|
#define initialize128WithHighLow64(dest, high64, low64) \
|
|
((dest).low = (uint32_t)(low64), \
|
|
(dest).b = (uint32_t)((low64) >> 32), \
|
|
(dest).c = (uint32_t)(high64), \
|
|
(dest).high = (uint32_t)((high64) >> 32))
|
|
static void shiftLeft128(swift_uint128_t *, int shift);
|
|
#endif
|
|
inline static int finishFormatting(char *, size_t, char *, char *, int, int);
|
|
#endif
|
|
|
|
|
|
//
|
|
// Helper functions needed by the binary64 formatter.
|
|
//
|
|
|
|
#if SWIFT_DTOA_BINARY64_SUPPORT
|
|
#if HAVE_UINT128_T
|
|
#define isLessThan128x128(lhs, rhs) ((lhs) < (rhs))
|
|
#define subtract128x128(lhs, rhs) (*(lhs) -= (rhs))
|
|
#define multiply128xu32(lhs, rhs) (*(lhs) *= (rhs))
|
|
#define initialize128WithHigh64(dest, value) ((dest) = (__uint128_t)(value) << 64)
|
|
#define extractHigh64From128(arg) ((uint64_t)((arg) >> 64))
|
|
#define is128bitZero(arg) ((arg) == 0)
|
|
static int extractIntegerPart128(__uint128_t *fixed128, int integerBits) {
|
|
const int fractionBits = 128 - integerBits;
|
|
int integerPart = (int)(*fixed128 >> fractionBits);
|
|
const swift_uint128_t fixedPointMask = (((__uint128_t)1 << fractionBits) - 1);
|
|
*fixed128 &= fixedPointMask;
|
|
return integerPart;
|
|
}
|
|
#define shiftRightRoundingDown128(val, shift) ((val) >> (shift))
|
|
#define shiftRightRoundingUp128(val, shift) (((val) + (((uint64_t)1 << (shift)) - 1)) >> (shift))
|
|
|
|
#else
|
|
|
|
static int isLessThan128x128(swift_uint128_t lhs, swift_uint128_t rhs);
|
|
static void subtract128x128(swift_uint128_t *lhs, swift_uint128_t rhs);
|
|
static void multiply128xu32(swift_uint128_t *lhs, uint32_t rhs);
|
|
#define initialize128WithHigh64(dest, value) \
|
|
((dest).low = (dest).b = 0, \
|
|
(dest).c = (uint32_t)(value), \
|
|
(dest).high = (uint32_t)((value) >> 32))
|
|
#define extractHigh64From128(arg) (((uint64_t)(arg).high << 32)|((arg).c))
|
|
#define is128bitZero(dest) \
|
|
(((dest).low | (dest).b | (dest).c | (dest).high) == 0)
|
|
// Treat a uint128_t as a fixed-point value with `integerBits` bits in
|
|
// the integer portion. Return the integer portion and zero it out.
|
|
static int extractIntegerPart128(swift_uint128_t *fixed128, int integerBits) {
|
|
const int highFractionBits = 32 - integerBits;
|
|
int integerPart = (int)(fixed128->high >> highFractionBits);
|
|
fixed128->high &= ((uint32_t)1 << highFractionBits) - 1;
|
|
return integerPart;
|
|
}
|
|
static swift_uint128_t shiftRightRoundingDown128(swift_uint128_t lhs, int shift);
|
|
static swift_uint128_t shiftRightRoundingUp128(swift_uint128_t lhs, int shift);
|
|
#endif
|
|
static swift_uint128_t multiply128x64RoundingDown(swift_uint128_t lhs, uint64_t rhs);
|
|
static swift_uint128_t multiply128x64RoundingUp(swift_uint128_t lhs, uint64_t rhs);
|
|
static void intervalContainingPowerOf10_Binary64(int p, swift_uint128_t *lower, swift_uint128_t *upper, int *exponent);
|
|
#endif
|
|
|
|
//
|
|
// Helper functions used by the 256-bit backend needed for
|
|
// float80 and binary128
|
|
//
|
|
|
|
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
#if HAVE_UINT128_T
|
|
// A 256-bit unsigned integer type stored as 3 64-bit words
|
|
typedef struct {uint64_t low, midlow, midhigh, high;} swift_uint256_t;
|
|
#define initialize256WithHighMidLow64(dest, high64, midhigh64, midlow64, low64) \
|
|
((dest).low = (low64), \
|
|
(dest).midlow = (midlow64), \
|
|
(dest).midhigh = (midhigh64), \
|
|
(dest).high = (high64))
|
|
#define is256bitZero(dest) \
|
|
(((dest).low | (dest).midlow | (dest).midhigh | (dest).high) == 0)
|
|
static int extractIntegerPart256(swift_uint256_t *fixed256, int integerBits) {
|
|
int integerPart = (int)(fixed256->high >> (64 - integerBits));
|
|
const uint64_t fixedPointMask = (((uint64_t)1 << (64 - integerBits)) - 1);
|
|
fixed256->high &= fixedPointMask;
|
|
return integerPart;
|
|
}
|
|
#else
|
|
// A 256-bit unsigned integer type stored as 8 32-bit words
|
|
typedef struct { uint32_t elt[8]; } swift_uint256_t; // [0]=low, [7]=high
|
|
#define initialize256WithHighMidLow64(dest, high64, midhigh64, midlow64, low64) \
|
|
((dest).elt[0] = (uint64_t)(low64), \
|
|
(dest).elt[1] = (uint64_t)(low64) >> 32, \
|
|
(dest).elt[2] = (uint64_t)(midlow64), \
|
|
(dest).elt[3] = (uint64_t)(midlow64) >> 32, \
|
|
(dest).elt[4] = (uint64_t)(midhigh64), \
|
|
(dest).elt[5] = (uint64_t)(midhigh64) >> 32, \
|
|
(dest).elt[6] = (uint64_t)(high64), \
|
|
(dest).elt[7] = (uint64_t)(high64) >> 32)
|
|
#define is256bitZero(dest) \
|
|
(((dest).elt[0] | (dest).elt[1] | (dest).elt[2] | (dest).elt[3] \
|
|
| (dest).elt[4] | (dest).elt[5] | (dest).elt[6] | (dest).elt[7]) == 0)
|
|
static int extractIntegerPart256(swift_uint256_t *fixed256, int integerBits) {
|
|
int integerPart = (int)(fixed256->elt[7] >> (32 - integerBits));
|
|
const uint64_t fixedPointMask = (((uint64_t)1 << (32 - integerBits)) - 1);
|
|
fixed256->elt[7] &= fixedPointMask;
|
|
return integerPart;
|
|
}
|
|
#endif
|
|
static void multiply256xu32(swift_uint256_t *lhs, uint32_t rhs);
|
|
// Multiply a 256-bit fraction times a 128-bit fraction, with controlled rounding
|
|
static void multiply256x128RoundingDown(swift_uint256_t *lhs, swift_uint128_t rhs);
|
|
static void multiply256x128RoundingUp(swift_uint256_t *lhs, swift_uint128_t rhs);
|
|
static void subtract256x256(swift_uint256_t *lhs, swift_uint256_t rhs);
|
|
static int isLessThan256x256(swift_uint256_t lhs, swift_uint256_t rhs);
|
|
static void shiftRightRoundingDown256(swift_uint256_t *lhs, int shift);
|
|
static void shiftRightRoundingUp256(swift_uint256_t *lhs, int shift);
|
|
static void intervalContainingPowerOf10_Binary128(int p, swift_uint256_t *lower, swift_uint256_t *upper, int *exponent);
|
|
static size_t _swift_dtoa_256bit_backend(char *, size_t, swift_uint128_t, swift_uint128_t, int, int, int, int, bool);
|
|
#endif
|
|
|
|
|
|
// A table of all two-digit decimal numbers
|
|
#if SWIFT_DTOA_BINARY16_SUPPORT || SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
static const char asciiDigitTable[] =
|
|
"0001020304050607080910111213141516171819"
|
|
"2021222324252627282930313233343536373839"
|
|
"4041424344454647484950515253545556575859"
|
|
"6061626364656667686970717273747576777879"
|
|
"8081828384858687888990919293949596979899";
|
|
#endif
|
|
|
|
// ================================================================
|
|
//
|
|
// Helpers to output formatted results for infinity, zero, and NaN
|
|
//
|
|
// ================================================================
|
|
|
|
static size_t infinity(char *dest, size_t len, int negative) {
|
|
if (negative) {
|
|
if (len >= 5) {
|
|
memcpy(dest, "-inf", 5);
|
|
return 4;
|
|
}
|
|
} else {
|
|
if (len >= 4) {
|
|
memcpy(dest, "inf", 4);
|
|
return 3;
|
|
}
|
|
}
|
|
if (len > 0) {
|
|
dest[0] = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static size_t zero(char *dest, size_t len, int negative) {
|
|
if (negative) {
|
|
if (len >= 5) {
|
|
memcpy(dest, "-0.0", 5);
|
|
return 4;
|
|
}
|
|
} else {
|
|
if (len >= 4) {
|
|
memcpy(dest, "0.0", 4);
|
|
return 3;
|
|
}
|
|
}
|
|
if (len > 0) {
|
|
dest[0] = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static size_t nan_details(char *dest, size_t len, int negative, int quiet, uint64_t payloadHigh, uint64_t payloadLow) {
|
|
const char *sign = negative ? "-" : "";
|
|
const char *signalingChar = quiet ? "" : "s";
|
|
char buff[64];
|
|
if (payloadLow != 0) {
|
|
if (payloadHigh != 0) {
|
|
snprintf(buff, sizeof(buff), "%s%snan(0x%" PRIx64 "%016" PRIx64 ")",
|
|
sign, signalingChar, payloadHigh, payloadLow);
|
|
} else {
|
|
snprintf(buff, sizeof(buff), "%s%snan(0x%" PRIx64 ")",
|
|
sign, signalingChar, payloadLow);
|
|
}
|
|
} else {
|
|
snprintf(buff, sizeof(buff), "%s%snan",
|
|
sign, signalingChar);
|
|
}
|
|
size_t nanlen = strlen(buff);
|
|
if (nanlen < len) {
|
|
memcpy(dest, buff, nanlen + 1);
|
|
return nanlen;
|
|
}
|
|
if (len > 0) {
|
|
dest[0] = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ================================================================
|
|
//
|
|
// BINARY16
|
|
//
|
|
// ================================================================
|
|
|
|
|
|
#if SWIFT_DTOA_BINARY16_SUPPORT
|
|
// Format an IEEE 754 binary16 half-precision floating point value
|
|
// into an optimal text form.
|
|
|
|
// This does not assume that the C environment has any support
|
|
// for binary16.
|
|
|
|
// Because binary16 has such a limited range, a simple exact
|
|
// implementation can fit in 32 bit arithmetic. Since we can easily
|
|
// verify every single binary16 value, this can be experimentally
|
|
// optimized.
|
|
size_t swift_dtoa_optimal_binary16_p(const void *f, char *dest, size_t length) {
|
|
static const int significandBitCount = 10;
|
|
static const uint32_t significandMask
|
|
= ((uint32_t)1 << significandBitCount) - 1;
|
|
static const int exponentBitCount = 5;
|
|
static const int exponentMask = (1 << exponentBitCount) - 1;
|
|
// See comments in swift_dtoa_optimal_binary64_p
|
|
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 14
|
|
|
|
if (length < 1) {
|
|
return 0;
|
|
}
|
|
|
|
// Step 0: Deconstruct IEEE 754 binary16 format
|
|
uint16_t raw = *(const uint16_t *)f;
|
|
int exponentBitPattern = (raw >> significandBitCount) & exponentMask;
|
|
uint16_t significandBitPattern = raw & significandMask;
|
|
int negative = raw >> 15;
|
|
|
|
// Step 1: Handle the various input cases:
|
|
int binaryExponent;
|
|
uint16_t significand;
|
|
int isBoundary = significandBitPattern == 0;
|
|
if (exponentBitPattern == exponentMask) { // NaN or Infinity
|
|
if (isBoundary) { // Infinity
|
|
return infinity(dest, length, negative);
|
|
} else {
|
|
const int quiet = (significandBitPattern >> (significandBitCount - 1)) & 1;
|
|
uint16_t payload = significandBitPattern & ((1U << (significandBitCount - 2)) - 1);
|
|
return nan_details(dest, length, negative, quiet, 0, payload);
|
|
}
|
|
} else if (exponentBitPattern == 0) {
|
|
if (isBoundary) { // Zero
|
|
return zero(dest, length, negative);
|
|
} else { // Subnormal
|
|
binaryExponent = 1 - exponentBias;
|
|
significand = significandBitPattern;
|
|
}
|
|
} else { // normal
|
|
binaryExponent = exponentBitPattern - exponentBias;
|
|
uint16_t hiddenBit = (uint32_t)1 << (uint32_t)significandBitCount;
|
|
uint16_t fullSignificand = significandBitPattern + hiddenBit;
|
|
significand = fullSignificand;
|
|
}
|
|
|
|
// Step 2: Determine the exact target interval
|
|
significand <<= 2;
|
|
static const uint16_t halfUlp = 2;
|
|
uint32_t upperMidpointExact = significand + halfUlp;
|
|
|
|
static const uint16_t quarterUlp = 1;
|
|
uint32_t lowerMidpointExact
|
|
= significand - (isBoundary ? quarterUlp : halfUlp);
|
|
|
|
// Shortest output from here is "1.0" plus null byte
|
|
if (length < 4) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
char *p = dest;
|
|
if (negative) {
|
|
*p++ = '-';
|
|
}
|
|
|
|
if (binaryExponent < -13 || (binaryExponent == -13 && significand < 0x1a38)) {
|
|
// Format values < 10^-5 as exponential form
|
|
// We know value < 10^-5, so we can do the first scaling step unconditionally
|
|
int decimalExponent = -5;
|
|
uint32_t u = (upperMidpointExact << (28 - 13 + binaryExponent)) * 100000;
|
|
uint32_t l = (lowerMidpointExact << (28 - 13 + binaryExponent)) * 100000;
|
|
uint32_t t = (significand << (28 - 13 + binaryExponent)) * 100000;
|
|
const uint32_t mask = (1 << 28) - 1;
|
|
if (t < ((1 << 28) / 10)) {
|
|
u *= 100; l *= 100; t *= 100;
|
|
decimalExponent -= 2;
|
|
}
|
|
if (t < (1 << 28)) {
|
|
u *= 10; l *= 10; t *= 10;
|
|
decimalExponent -= 1;
|
|
}
|
|
const int uDigit = u >> 28, lDigit = l >> 28;
|
|
if (uDigit == lDigit) {
|
|
// There's more than one digit, emit a '.' and the rest
|
|
if (p > dest + length - 6) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = (t >> 28) + '0';
|
|
*p++ = '.';
|
|
while (true) {
|
|
u = (u & mask) * 10; l = (l & mask) * 10;
|
|
const int uDigit = u >> 28, lDigit = l >> 28;
|
|
if (uDigit != lDigit) {
|
|
t = (t & mask) * 10;
|
|
break;
|
|
}
|
|
t *= 10;
|
|
*p++ = uDigit + '0';
|
|
}
|
|
}
|
|
t = (t + (1 << 27)) >> 28; // Add 1/2 to round
|
|
if (p > dest + length - 6) { // Exactly 6 bytes written below
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = t + '0';
|
|
memcpy(p, "e-", 2);
|
|
p += 2;
|
|
memcpy(p, asciiDigitTable + (-decimalExponent) * 2, 2);
|
|
p += 2;
|
|
*p = '\0';
|
|
return p - dest;
|
|
}
|
|
|
|
// Format the value using decimal format
|
|
|
|
// There's an integer portion of no more than 5 digits
|
|
int intportion;
|
|
if (binaryExponent < 13) {
|
|
intportion = significand >> (13 - binaryExponent);
|
|
significand -= intportion << (13 - binaryExponent);
|
|
} else {
|
|
intportion = significand << (binaryExponent - 13);
|
|
significand -= intportion >> (binaryExponent - 13);
|
|
}
|
|
if (intportion < 10) {
|
|
if (p > dest + length - 3) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = intportion + '0'; // One digit is the most common case
|
|
} else if (intportion < 1000) {
|
|
// 2 or 3 digits
|
|
if (p > dest + length - 4) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
if (intportion > 99) {
|
|
*p++ = intportion / 100 + '0';
|
|
}
|
|
memcpy(p, asciiDigitTable + (intportion % 100) * 2, 2);
|
|
p += 2;
|
|
} else {
|
|
// 4 or 5 digits
|
|
if (p > dest + length - 6) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
if (intportion > 9999) {
|
|
*p++ = intportion / 10000 + '0';
|
|
intportion %= 10000;
|
|
}
|
|
memcpy(p, asciiDigitTable + (intportion / 100) * 2, 2);
|
|
memcpy(p + 2, asciiDigitTable + (intportion % 100) * 2, 2);
|
|
p += 4;
|
|
}
|
|
if (p > dest + length - 3) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = '.';
|
|
if (significand == 0) { // No fraction, so we're done.
|
|
*p++ = '0';
|
|
*p = '\0';
|
|
return p - dest;
|
|
}
|
|
|
|
// Format the fractional part
|
|
uint32_t u = upperMidpointExact << (28 - 13 + binaryExponent);
|
|
uint32_t l = lowerMidpointExact << (28 - 13 + binaryExponent);
|
|
uint32_t t = significand << (28 - 13 + binaryExponent);
|
|
const uint32_t mask = (1 << 28) - 1;
|
|
unsigned uDigit, lDigit;
|
|
while (true) {
|
|
u = (u & mask) * 10; l = (l & mask) * 10;
|
|
uDigit = u >> 28; lDigit = l >> 28;
|
|
if (uDigit != lDigit) {
|
|
t = (t & mask) * 10;
|
|
break;
|
|
}
|
|
t *= 10;
|
|
if (p > dest + length - 3) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = uDigit + '0';
|
|
}
|
|
t += 1 << 27; // Add 1/2
|
|
if ((t & mask) == 0) { // Was exactly 1/2 (now zero)
|
|
t = (t >> 28) & ~1; // Round even
|
|
} else {
|
|
t >>= 28;
|
|
}
|
|
if (t <= lDigit && l > 0)
|
|
t += 1;
|
|
*p++ = t + '0';
|
|
*p = '\0';
|
|
return p - dest;
|
|
}
|
|
#endif
|
|
|
|
// ================================================================
|
|
//
|
|
// BINARY32
|
|
//
|
|
// ================================================================
|
|
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT
|
|
#if FLOAT_IS_BINARY32
|
|
// Format a C `float`
|
|
size_t swift_dtoa_optimal_float(float d, char *dest, size_t length) {
|
|
return swift_dtoa_optimal_binary32_p(&d, dest, length);
|
|
}
|
|
#endif
|
|
|
|
// Format an IEEE 754 single-precision binary32 format floating-point number.
|
|
size_t swift_dtoa_optimal_binary32_p(const void *f, char *dest, size_t length)
|
|
{
|
|
static const int significandBitCount = FLT_MANT_DIG - 1;
|
|
static const uint32_t significandMask
|
|
= ((uint32_t)1 << significandBitCount) - 1;
|
|
static const int exponentBitCount = 8;
|
|
static const int exponentMask = (1 << exponentBitCount) - 1;
|
|
// See comments in swift_dtoa_optimal_binary64_p
|
|
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 125
|
|
|
|
// Step 0: Deconstruct the target number
|
|
// Note: this strongly assumes IEEE 754 binary32 format
|
|
uint32_t raw = *(const uint32_t *)f;
|
|
int exponentBitPattern = (raw >> significandBitCount) & exponentMask;
|
|
uint32_t significandBitPattern = raw & significandMask;
|
|
int negative = raw >> 31;
|
|
|
|
// Step 1: Handle the various input cases:
|
|
int binaryExponent;
|
|
uint32_t significand;
|
|
if (length < 1) {
|
|
return 0;
|
|
} else if (exponentBitPattern == exponentMask) { // NaN or Infinity
|
|
if (significandBitPattern == 0) { // Infinity
|
|
return infinity(dest, length, negative);
|
|
} else { // NaN
|
|
const int quiet = (significandBitPattern >> (significandBitCount - 1)) & 1;
|
|
uint32_t payload = raw & ((1UL << (significandBitCount - 2)) - 1);
|
|
return nan_details(dest, length, negative, quiet != 0, 0, payload);
|
|
}
|
|
} else if (exponentBitPattern == 0) {
|
|
if (significandBitPattern == 0) { // Zero
|
|
return zero(dest, length, negative);
|
|
} else { // Subnormal
|
|
binaryExponent = 1 - exponentBias;
|
|
significand = significandBitPattern << (32 - significandBitCount - 1);
|
|
}
|
|
} else { // normal
|
|
binaryExponent = exponentBitPattern - exponentBias;
|
|
uint32_t hiddenBit = (uint32_t)1 << (uint32_t)significandBitCount;
|
|
uint32_t fullSignificand = significandBitPattern + hiddenBit;
|
|
significand = fullSignificand << (32 - significandBitCount - 1);
|
|
}
|
|
|
|
// Step 2: Determine the exact unscaled target interval
|
|
static const uint32_t halfUlp = (uint32_t)1 << (32 - significandBitCount - 2);
|
|
uint64_t upperMidpointExact = (uint64_t)(significand + halfUlp);
|
|
|
|
int isBoundary = significandBitPattern == 0;
|
|
static const uint32_t quarterUlp = halfUlp >> 1;
|
|
uint64_t lowerMidpointExact
|
|
= (uint64_t)(significand - (isBoundary ? quarterUlp : halfUlp));
|
|
|
|
// Step 3: Estimate the base 10 exponent
|
|
int base10Exponent = decimalExponentFor2ToThe(binaryExponent);
|
|
|
|
// Step 4: Compute a power-of-10 scale factor
|
|
uint64_t powerOfTenRoundedDown = 0;
|
|
uint64_t powerOfTenRoundedUp = 0;
|
|
int powerOfTenExponent = 0;
|
|
static const int bulkFirstDigits = 1;
|
|
intervalContainingPowerOf10_Binary32(-base10Exponent + bulkFirstDigits - 1,
|
|
&powerOfTenRoundedDown,
|
|
&powerOfTenRoundedUp,
|
|
&powerOfTenExponent);
|
|
const int extraBits = binaryExponent + powerOfTenExponent;
|
|
|
|
// Step 5: Scale the interval (with rounding)
|
|
static const int integerBits = 8;
|
|
const int shift = integerBits - extraBits;
|
|
const int roundUpBias = (1 << shift) - 1;
|
|
static const int fractionBits = 64 - integerBits;
|
|
static const uint64_t fractionMask = ((uint64_t)1 << fractionBits) - (uint64_t)1;
|
|
uint64_t u, l;
|
|
if (significandBitPattern & 1) {
|
|
// Narrow the interval (odd significand)
|
|
uint64_t u1 = multiply64x32RoundingDown(powerOfTenRoundedDown,
|
|
upperMidpointExact);
|
|
u = u1 >> shift; // Rounding down
|
|
|
|
uint64_t l1 = multiply64x32RoundingUp(powerOfTenRoundedUp,
|
|
lowerMidpointExact);
|
|
l = (l1 + roundUpBias) >> shift; // Rounding Up
|
|
} else {
|
|
// Widen the interval (even significand)
|
|
uint64_t u1 = multiply64x32RoundingUp(powerOfTenRoundedUp,
|
|
upperMidpointExact);
|
|
u = (u1 + roundUpBias) >> shift; // Rounding Up
|
|
|
|
uint64_t l1 = multiply64x32RoundingDown(powerOfTenRoundedDown,
|
|
lowerMidpointExact);
|
|
l = l1 >> shift; // Rounding down
|
|
}
|
|
|
|
// Step 6: Align first digit, adjust exponent
|
|
// In particular, this prunes leading zeros from subnormals
|
|
uint64_t t = u;
|
|
uint64_t delta = u - l;
|
|
while (t < (uint64_t)1 << fractionBits) {
|
|
base10Exponent -= 1;
|
|
t *= 10;
|
|
delta *= 10;
|
|
}
|
|
|
|
// Step 7: Generate decimal digits into the destination buffer
|
|
char *p = dest;
|
|
if (p > dest + length - 3) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
if (negative) {
|
|
*p++ = '-';
|
|
}
|
|
char * const firstOutputChar = p;
|
|
// Format first digit as a 2-digit value to get a leading '0'
|
|
memcpy(p, asciiDigitTable + (t >> fractionBits) * 2, 2);
|
|
t &= fractionMask;
|
|
p += 2;
|
|
|
|
// Emit two digits at a time
|
|
while ((delta * 10) < ((t * 10) & fractionMask)) {
|
|
if (p > dest + length - 3) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
delta *= 100;
|
|
t *= 100;
|
|
memcpy(p, asciiDigitTable + (t >> fractionBits) * 2, 2);
|
|
t &= fractionMask;
|
|
p += 2;
|
|
}
|
|
|
|
// Emit any final digit
|
|
if (delta < t) {
|
|
if (p > dest + length - 2) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
delta *= 10;
|
|
t *= 10;
|
|
*p++ = '0' + (t >> fractionBits);
|
|
t &= fractionMask;
|
|
}
|
|
|
|
// Adjust the final digit to be closer to the original value
|
|
if (delta > t + ((uint64_t)1 << fractionBits)) {
|
|
uint64_t skew;
|
|
if (isBoundary) {
|
|
skew = delta - delta / 3 - t;
|
|
} else {
|
|
skew = delta / 2 - t;
|
|
}
|
|
uint64_t one = (uint64_t)(1) << (64 - integerBits);
|
|
uint64_t lastAccurateBit = 1ULL << 24;
|
|
uint64_t fractionMask = (one - 1) & ~(lastAccurateBit - 1);
|
|
uint64_t oneHalf = one >> 1;
|
|
if (((skew + (lastAccurateBit >> 1)) & fractionMask) == oneHalf) {
|
|
// If the skew is exactly integer + 1/2, round the last
|
|
// digit even after adjustment
|
|
int adjust = (int)(skew >> (64 - integerBits));
|
|
p[-1] -= adjust;
|
|
p[-1] &= ~1;
|
|
} else {
|
|
// Else round to nearest...
|
|
int adjust = (int)((skew + oneHalf) >> (64 - integerBits));
|
|
p[-1] -= adjust;
|
|
}
|
|
}
|
|
|
|
int forceExponential = binaryExponent > 25 || (binaryExponent == 25 && !isBoundary);
|
|
return finishFormatting(dest, length, p, firstOutputChar, forceExponential, base10Exponent);
|
|
}
|
|
#endif
|
|
|
|
|
|
// ================================================================
|
|
//
|
|
// BINARY64
|
|
//
|
|
// ================================================================
|
|
|
|
#if SWIFT_DTOA_BINARY64_SUPPORT
|
|
#if LONG_DOUBLE_IS_BINARY64
|
|
size_t swift_dtoa_optimal_long_double(long double d, char *dest, size_t length) {
|
|
return swift_dtoa_optimal_binary64_p(&d, dest, length);
|
|
}
|
|
#endif
|
|
#if DOUBLE_IS_BINARY64
|
|
size_t swift_dtoa_optimal_double(double d, char *dest, size_t length) {
|
|
return swift_dtoa_optimal_binary64_p(&d, dest, length);
|
|
}
|
|
#endif
|
|
|
|
// Format an IEEE 754 double-precision binary64 format floating-point number.
|
|
|
|
// The calling convention here assumes that C `double` is this format,
|
|
// but otherwise, this does not utilize any floating-point arithmetic
|
|
// or library routines.
|
|
size_t swift_dtoa_optimal_binary64_p(const void *d, char *dest, size_t length)
|
|
{
|
|
// Bits in raw significand (not including hidden bit, if present)
|
|
static const int significandBitCount = DBL_MANT_DIG - 1;
|
|
static const uint64_t significandMask
|
|
= ((uint64_t)1 << significandBitCount) - 1;
|
|
// Bits in raw exponent
|
|
static const int exponentBitCount = 11;
|
|
static const int exponentMask = (1 << exponentBitCount) - 1;
|
|
// Note: IEEE 754 conventionally uses 1023 as the exponent
|
|
// bias. That's because they treat the significand as a
|
|
// fixed-point number with one bit (the hidden bit) integer
|
|
// portion. The logic here reconstructs the significand as a
|
|
// pure fraction, so we need to accomodate that when
|
|
// reconstructing the binary exponent.
|
|
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 1022
|
|
|
|
// Step 0: Deconstruct an IEEE 754 binary64 double-precision value
|
|
uint64_t raw = *(const uint64_t *)d;
|
|
int exponentBitPattern = (raw >> significandBitCount) & exponentMask;
|
|
uint64_t significandBitPattern = raw & significandMask;
|
|
int negative = raw >> 63;
|
|
|
|
// Step 1: Handle the various input cases:
|
|
if (length < 1) {
|
|
return 0;
|
|
}
|
|
int binaryExponent;
|
|
int isBoundary = significandBitPattern == 0;
|
|
uint64_t significand;
|
|
if (exponentBitPattern == exponentMask) { // NaN or Infinity
|
|
if (isBoundary) { // Infinity
|
|
return infinity(dest, length, negative);
|
|
} else {
|
|
const int quiet = (raw >> (significandBitCount - 1)) & 1;
|
|
uint64_t payload = raw & ((1ull << (significandBitCount - 2)) - 1);
|
|
return nan_details(dest, length, negative, quiet, 0, payload);
|
|
}
|
|
} else if (exponentBitPattern == 0) {
|
|
if (isBoundary) { // Zero
|
|
return zero(dest, length, negative);
|
|
} else { // subnormal
|
|
binaryExponent = 1 - exponentBias;
|
|
significand = significandBitPattern
|
|
<< (64 - significandBitCount - 1);
|
|
}
|
|
} else { // normal
|
|
binaryExponent = exponentBitPattern - exponentBias;
|
|
uint64_t hiddenBit = (uint64_t)1 << significandBitCount;
|
|
uint64_t fullSignificand = significandBitPattern + hiddenBit;
|
|
significand = fullSignificand << (64 - significandBitCount - 1);
|
|
}
|
|
|
|
// Step 2: Determine the exact unscaled target interval
|
|
|
|
// Grisu-style algorithms construct the shortest decimal digit
|
|
// sequence within a specific interval. To build the appropriate
|
|
// interval, we start by computing the midpoints between this
|
|
// floating-point value and the adjacent ones. Note that this
|
|
// step is an exact computation.
|
|
|
|
uint64_t halfUlp = (uint64_t)1 << (64 - significandBitCount - 2);
|
|
uint64_t quarterUlp = halfUlp >> 1;
|
|
uint64_t upperMidpointExact = significand + halfUlp;
|
|
|
|
uint64_t lowerMidpointExact
|
|
= significand - (isBoundary ? quarterUlp : halfUlp);
|
|
|
|
int isOddSignificand = (significandBitPattern & 1) != 0;
|
|
|
|
// Step 3: Estimate the base 10 exponent
|
|
|
|
// Grisu algorithms are based in part on a simple technique for
|
|
// generating a base-10 form for a binary floating-point number.
|
|
// Start with a binary floating-point number `f * 2^e` and then
|
|
// estimate the decimal exponent `p`. You can then rewrite your
|
|
// original number as:
|
|
//
|
|
// ```
|
|
// f * 2^e * 10^-p * 10^p
|
|
// ```
|
|
//
|
|
// The last term is part of our output, and a good estimate for
|
|
// `p` will ensure that `2^e * 10^-p` is close to 1. Multiplying
|
|
// the first three terms then yields a fraction suitable for
|
|
// producing the decimal digits. Here we use a very fast estimate
|
|
// of `p` that is never off by more than 1; we'll have
|
|
// opportunities later to correct any error.
|
|
|
|
int base10Exponent = decimalExponentFor2ToThe(binaryExponent);
|
|
|
|
// Step 4: Compute a power-of-10 scale factor
|
|
|
|
// Compute `10^-p` to 128-bit precision. We generate
|
|
// both over- and under-estimates to ensure we can exactly
|
|
// bound the later use of these values.
|
|
swift_uint128_t powerOfTenRoundedDown;
|
|
swift_uint128_t powerOfTenRoundedUp;
|
|
int powerOfTenExponent = 0;
|
|
static const int bulkFirstDigits = 7;
|
|
static const int bulkFirstDigitFactor = 1000000; // 10^(bulkFirstDigits - 1)
|
|
// Note the extra factor of 10^bulkFirstDigits -- that will give
|
|
// us a headstart on digit generation later on. (In contrast, Ryu
|
|
// uses an extra factor of 10^17 here to get all the digits up
|
|
// front, but then has to back out any extra digits. Doing that
|
|
// with a 17-digit value requires 64-bit division, which is the
|
|
// root cause of Ryu's poor performance on 32-bit processors. We
|
|
// also might have to back out extra digits if 7 is too many, but
|
|
// will only need 32-bit division in that case.)
|
|
intervalContainingPowerOf10_Binary64(-base10Exponent + bulkFirstDigits - 1,
|
|
&powerOfTenRoundedDown,
|
|
&powerOfTenRoundedUp,
|
|
&powerOfTenExponent);
|
|
const int extraBits = binaryExponent + powerOfTenExponent;
|
|
|
|
// Step 5: Scale the interval (with rounding)
|
|
|
|
// As mentioned above, the final digit generation works
|
|
// with an interval, so we actually apply the scaling
|
|
// to the upper and lower midpoint values separately.
|
|
|
|
// As part of the scaling here, we'll switch from a pure
|
|
// fraction with zero bit integer portion and 128-bit fraction
|
|
// to a fixed-point form with 32 bits in the integer portion.
|
|
static const int integerBits = 32;
|
|
|
|
// We scale the interval in one of two different ways,
|
|
// depending on whether the significand is even or odd...
|
|
|
|
swift_uint128_t u, l;
|
|
if (isOddSignificand) {
|
|
// Case A: Narrow the interval (odd significand)
|
|
|
|
// Loitsch' original Grisu2 always rounds so as to narrow the
|
|
// interval. Since our digit generation will select a value
|
|
// within the scaled interval, narrowing the interval
|
|
// guarantees that we will find a digit sequence that converts
|
|
// back to the original value.
|
|
|
|
// This ensures accuracy but, as explained in Loitsch' paper,
|
|
// this carries a risk that there will be a shorter digit
|
|
// sequence outside of our narrowed interval that we will
|
|
// miss. This risk obviously gets lower with increased
|
|
// precision, but it wasn't until the Errol paper that anyone
|
|
// had a good way to test whether a particular implementation
|
|
// had sufficient precision. That paper shows a way to enumerate
|
|
// the worst-case numbers; those numbers that are extremely close
|
|
// to the mid-points between adjacent floating-point values.
|
|
// These are the values that might sit just outside of the
|
|
// narrowed interval. By testing these values, we can verify
|
|
// the correctness of our implementation.
|
|
|
|
// Multiply out the upper midpoint, rounding down...
|
|
swift_uint128_t u1 = multiply128x64RoundingDown(powerOfTenRoundedDown,
|
|
upperMidpointExact);
|
|
// Account for residual binary exponent and adjust
|
|
// to the fixed-point format
|
|
u = shiftRightRoundingDown128(u1, integerBits - extraBits);
|
|
|
|
// Conversely for the lower midpoint...
|
|
swift_uint128_t l1 = multiply128x64RoundingUp(powerOfTenRoundedUp,
|
|
lowerMidpointExact);
|
|
l = shiftRightRoundingUp128(l1, integerBits - extraBits);
|
|
|
|
} else {
|
|
// Case B: Widen the interval (even significand)
|
|
|
|
// As explained in Errol Theorem 6, in certain cases there is
|
|
// a short decimal representation at the exact boundary of the
|
|
// scaled interval. When such a number is converted back to
|
|
// binary, it will get rounded to the adjacent even
|
|
// significand.
|
|
|
|
// So when the significand is even, we round so as to widen
|
|
// the interval in order to ensure that the exact midpoints
|
|
// are considered. Of couse, this ensures that we find a
|
|
// short result but carries a risk of selecting a result
|
|
// outside of the exact scaled interval (which would be
|
|
// inaccurate).
|
|
|
|
// The same testing approach described above (based on results
|
|
// in the Errol paper) also applies
|
|
// to this case.
|
|
|
|
swift_uint128_t u1 = multiply128x64RoundingUp(powerOfTenRoundedUp,
|
|
upperMidpointExact);
|
|
u = shiftRightRoundingUp128(u1, integerBits - extraBits);
|
|
|
|
swift_uint128_t l1 = multiply128x64RoundingDown(powerOfTenRoundedDown,
|
|
lowerMidpointExact);
|
|
l = shiftRightRoundingDown128(l1, integerBits - extraBits);
|
|
}
|
|
|
|
// Step 6: Align first digit, adjust exponent
|
|
|
|
// Calculations above used an estimate for the power-of-ten scale.
|
|
// Here, we compensate for any error in that estimate by testing
|
|
// whether we have the expected number of digits in the integer
|
|
// portion and correcting as necesssary. This also serves to
|
|
// prune leading zeros from subnormals.
|
|
|
|
// Except for subnormals, this loop should never run more than once.
|
|
// For subnormals, this might run as many as 16 + bulkFirstDigits
|
|
// times.
|
|
#if HAVE_UINT128_T
|
|
while (u < ((__uint128_t)bulkFirstDigitFactor << (128 - integerBits)))
|
|
#else
|
|
while (u.high < ((uint32_t)bulkFirstDigitFactor << (32 - integerBits)))
|
|
#endif
|
|
{
|
|
base10Exponent -= 1;
|
|
multiply128xu32(&l, 10);
|
|
multiply128xu32(&u, 10);
|
|
}
|
|
|
|
// Step 7: Produce decimal digits
|
|
|
|
// One standard approach generates digits for the scaled upper and
|
|
// lower boundaries and stops when at the first digit that
|
|
// differs. For example, note that 0.1234 is the shortest decimal
|
|
// between u = 0.123456 and l = 0.123345.
|
|
|
|
// Grisu optimizes this by generating digits for the upper bound
|
|
// (multiplying by 10 to isolate each digit) while simultaneously
|
|
// scaling the interval width `delta`. As we remove each digit
|
|
// from the upper bound, the remainder is the difference between
|
|
// the base-10 value generated so far and the true upper bound.
|
|
// When that remainder is less than the scaled width of the
|
|
// interval, we know the current digits specify a value within the
|
|
// target interval.
|
|
|
|
// The logic below actually blends three different digit-generation
|
|
// strategies:
|
|
// * The first digits are already in the integer portion of the
|
|
// fixed-point value, thanks to the `bulkFirstDigits` factor above.
|
|
// We can just break those down and write them out.
|
|
// * If we generated too many digits, we use a Ryu-inspired technique
|
|
// to backtrack.
|
|
// * If we generated too few digits (the usual case), we use an
|
|
// optimized form of the Grisu2 method to produce the remaining
|
|
// values.
|
|
|
|
// Generate digits for `t` with interval width `delta = u - l`
|
|
swift_uint128_t t = u;
|
|
swift_uint128_t delta = u;
|
|
subtract128x128(&delta, l);
|
|
|
|
char *p = dest;
|
|
if (negative) {
|
|
if (p >= dest + length) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = '-';
|
|
}
|
|
char * const firstOutputChar = p;
|
|
|
|
// The `bulkFirstDigits` adjustment above already set up the first 7 digits
|
|
// Format as 8 digits (with a leading zero that we'll exploit later on).
|
|
uint32_t d12345678 = extractIntegerPart128(&t, integerBits);
|
|
|
|
if (!isLessThan128x128(delta, t)) {
|
|
// Oops! We have too many digits. Back out the extra ones to
|
|
// get the right answer. This is similar to Ryu, but since
|
|
// we've only produced seven digits, we only need 32-bit
|
|
// arithmetic here. A few notes:
|
|
// * Our target hardware always supports 32-bit hardware division,
|
|
// so this should be reasonably fast.
|
|
// * For small integers (like "2"), Ryu would have to back out 16
|
|
// digits; we only have to back out 6.
|
|
// * Very few double-precision values actually need fewer than 7
|
|
// digits. So this is rarely used except in workloads that
|
|
// specifically use double for small integers. This is more
|
|
// common for binary32, of course.
|
|
|
|
// TODO: Add benchmarking for "small integers" -1000...1000 to
|
|
// verify that this does not unduly penalize those values.
|
|
|
|
// Why this is critical for performance: In order to use the
|
|
// 8-digits-at-a-time optimization below, we need at least 30
|
|
// bits in the integer part of our fixed-point format above. If
|
|
// we only use bulkDigits = 1, that leaves only 128 - 30 = 98
|
|
// bit accuracy for our scaling step, which isn't enough
|
|
// (binary64 needs ~110 bits for correctness). So we have to
|
|
// use a large bulkDigits value to make full use of the 128-bit
|
|
// scaling above, which forces us to have some form of logic to
|
|
// handle the case of too many digits. The alternatives are to
|
|
// use >128 bit values (slower) or do some complex finessing of
|
|
// bit counts by working with powers of 5 instead of 10.
|
|
|
|
#if HAVE_UINT128_T
|
|
uint64_t uHigh = u >> 64;
|
|
uint64_t lHigh = l >> 64;
|
|
if (0 != (uint64_t)l) {
|
|
lHigh += 1;
|
|
}
|
|
#else
|
|
uint64_t uHigh = ((uint64_t)u.high << 32) + u.c;
|
|
uint64_t lHigh = ((uint64_t)l.high << 32) + l.c;
|
|
if (0 != (l.b | l.low)) {
|
|
lHigh += 1;
|
|
}
|
|
#endif
|
|
uint64_t tHigh;
|
|
if (isBoundary) {
|
|
tHigh = (uHigh + lHigh * 2) / 3;
|
|
} else {
|
|
tHigh = (uHigh + lHigh) / 2;
|
|
}
|
|
|
|
uint32_t u0 = uHigh >> (64 - integerBits);
|
|
uint32_t l0 = lHigh >> (64 - integerBits);
|
|
if ((lHigh & ((1ULL << (64 - integerBits)) - 1)) != 0) {
|
|
l0 += 1;
|
|
}
|
|
uint32_t t0 = tHigh >> (64 - integerBits);
|
|
int t0digits = 8;
|
|
|
|
uint32_t u1 = u0 / 10;
|
|
uint32_t l1 = (l0 + 9) / 10;
|
|
int trailingZeros = is128bitZero(t);
|
|
int droppedDigit = ((tHigh * 10) >> (64 - integerBits)) % 10;
|
|
while (u1 >= l1 && u1 != 0) {
|
|
u0 = u1;
|
|
l0 = l1;
|
|
trailingZeros &= droppedDigit == 0;
|
|
droppedDigit = t0 % 10;
|
|
t0 /= 10;
|
|
t0digits--;
|
|
u1 = u0 / 10;
|
|
l1 = (l0 + 9) / 10;
|
|
}
|
|
// Correct the final digit
|
|
if (droppedDigit > 5 || (droppedDigit == 5 && !trailingZeros)) {
|
|
t0 += 1;
|
|
} else if (droppedDigit == 5 && trailingZeros) {
|
|
t0 += 1;
|
|
t0 &= ~1;
|
|
}
|
|
// t0 has t0digits digits. Write them out
|
|
if (p > dest + length - t0digits - 1) { // Make sure we have space
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
int i = t0digits;
|
|
while (i > 1) { // Write out 2 digits at a time back-to-front
|
|
i -= 2;
|
|
memcpy(p + i, asciiDigitTable + (t0 % 100) * 2, 2);
|
|
t0 /= 100;
|
|
}
|
|
if (i > 0) { // Handle an odd number of digits
|
|
p[0] = t0 + '0';
|
|
}
|
|
p += t0digits; // Move the pointer past the digits we just wrote
|
|
} else {
|
|
//
|
|
// Our initial scaling did not produce too many digits.
|
|
// The `d12345678` value holds the first 7 digits (plus
|
|
// a leading zero that will be useful later). We write
|
|
// those out and then incrementally generate as many
|
|
// more digits as necessary. The remainder of this
|
|
// algorithm is basically just Grisu2.
|
|
//
|
|
|
|
if (p > dest + length - 9) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
// Write out the 7 digits we got earlier + leading zero
|
|
int d1234 = d12345678 / 10000;
|
|
int d5678 = d12345678 % 10000;
|
|
int d78 = d5678 % 100;
|
|
int d56 = d5678 / 100;
|
|
memcpy(p + 6, asciiDigitTable + d78 * 2, 2);
|
|
memcpy(p + 4, asciiDigitTable + d56 * 2, 2);
|
|
int d34 = d1234 % 100;
|
|
int d12 = d1234 / 100;
|
|
memcpy(p + 2, asciiDigitTable + d34 * 2, 2);
|
|
memcpy(p, asciiDigitTable + d12 * 2, 2);
|
|
p += 8;
|
|
|
|
// Seven digits wasn't enough, so let's get some more.
|
|
// Most binary64 values need >= 15 digits total. We already have seven,
|
|
// so try grabbing the next 8 digits all at once.
|
|
// (This is suboptimal for binary32, but the code savings
|
|
// from sharing this implementation are worth it.)
|
|
static const uint32_t bulkDigitFactor = 100000000; // 10^(15-bulkFirstDigits)
|
|
swift_uint128_t d0 = delta;
|
|
multiply128xu32(&d0, bulkDigitFactor);
|
|
swift_uint128_t t0 = t;
|
|
multiply128xu32(&t0, bulkDigitFactor);
|
|
int bulkDigits = extractIntegerPart128(&t0, integerBits); // 9 digits
|
|
if (isLessThan128x128(d0, t0)) {
|
|
if (p > dest + length - 9) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
// Next 8 digits are good; add them to the output
|
|
int d1234 = bulkDigits / 10000;
|
|
int d5678 = bulkDigits % 10000;
|
|
int d78 = d5678 % 100;
|
|
int d56 = d5678 / 100;
|
|
memcpy(p + 6, asciiDigitTable + d78 * 2, 2);
|
|
memcpy(p + 4, asciiDigitTable + d56 * 2, 2);
|
|
int d34 = d1234 % 100;
|
|
int d12 = d1234 / 100;
|
|
memcpy(p + 2, asciiDigitTable + d34 * 2, 2);
|
|
memcpy(p, asciiDigitTable + d12 * 2, 2);
|
|
p += 8;
|
|
|
|
t = t0;
|
|
delta = d0;
|
|
}
|
|
|
|
// Finish up by generating and writing one digit at a time.
|
|
while (isLessThan128x128(delta, t)) {
|
|
if (p > dest + length - 2) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
multiply128xu32(&delta, 10);
|
|
multiply128xu32(&t, 10);
|
|
*p++ = '0' + extractIntegerPart128(&t, integerBits);
|
|
}
|
|
|
|
// Adjust the final digit to be closer to the original value. This accounts
|
|
// for the fact that sometimes there is more than one shortest digit
|
|
// sequence.
|
|
|
|
// For example, consider how the above would work if you had the
|
|
// value 0.1234 and computed u = 0.1257, l = 0.1211. The above
|
|
// digit generation works with `u`, so produces 0.125. But the
|
|
// values 0.122, 0.123, and 0.124 are just as short and 0.123 is
|
|
// the best choice, since it's closest to the original value.
|
|
|
|
// We know delta and t are both less than 10.0 here, so we can
|
|
// shed some excess integer bits to simplify the following:
|
|
const int adjustIntegerBits = 4; // Integer bits for "adjust" phase
|
|
shiftLeft128(&delta, integerBits - adjustIntegerBits);
|
|
shiftLeft128(&t, integerBits - adjustIntegerBits);
|
|
|
|
// Note: We've already consumed most of our available precision,
|
|
// so it's okay to just work in 64 bits for this...
|
|
uint64_t deltaHigh64 = extractHigh64From128(delta);
|
|
uint64_t tHigh64 = extractHigh64From128(t);
|
|
|
|
// If `delta < t + 1.0`, then the interval is narrower than
|
|
// one decimal digit, so there is no other option.
|
|
if (deltaHigh64 >= tHigh64 + ((uint64_t)1 << (64 - adjustIntegerBits))) {
|
|
uint64_t skew;
|
|
if (isBoundary) {
|
|
// If we're at the boundary where the exponent shifts,
|
|
// then the original value is 1/3 of the way from
|
|
// the bottom of the interval ...
|
|
skew = deltaHigh64 - deltaHigh64 / 3 - tHigh64;
|
|
} else {
|
|
// ... otherwise it's exactly in the middle.
|
|
skew = deltaHigh64 / 2 - tHigh64;
|
|
}
|
|
|
|
// The `skew` above is the difference between our
|
|
// computed digits and the original exact value.
|
|
// Use that to offset the final digit:
|
|
uint64_t one = (uint64_t)(1) << (64 - adjustIntegerBits);
|
|
uint64_t fractionMask = one - 1;
|
|
uint64_t oneHalf = one >> 1;
|
|
if ((skew & fractionMask) == oneHalf) {
|
|
int adjust = (int)(skew >> (64 - adjustIntegerBits));
|
|
// If the skew is exactly integer + 1/2, round the
|
|
// last digit even after adjustment
|
|
p[-1] -= adjust;
|
|
p[-1] &= ~1;
|
|
} else {
|
|
// Else round to nearest...
|
|
int adjust = (int)((skew + oneHalf) >> (64 - adjustIntegerBits));
|
|
p[-1] -= adjust;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 8: Shuffle digits into the final textual form
|
|
int forceExponential = binaryExponent > 54 || (binaryExponent == 54 && !isBoundary);
|
|
return finishFormatting(dest, length, p, firstOutputChar, forceExponential, base10Exponent);
|
|
}
|
|
#endif
|
|
|
|
// ================================================================
|
|
//
|
|
// FLOAT80
|
|
//
|
|
// ================================================================
|
|
|
|
#if SWIFT_DTOA_FLOAT80_SUPPORT
|
|
#if LONG_DOUBLE_IS_FLOAT80
|
|
size_t swift_dtoa_optimal_long_double(long double d, char *dest, size_t length) {
|
|
return swift_dtoa_optimal_float80_p(&d, dest, length);
|
|
}
|
|
#endif
|
|
|
|
// Format an Intel x87 80-bit extended precision floating-point format
|
|
// This does not rely on the C environment for floating-point arithmetic
|
|
// or library support of any kind.
|
|
size_t swift_dtoa_optimal_float80_p(const void *d, char *dest, size_t length)
|
|
{
|
|
static const int exponentBitCount = 15;
|
|
static const int exponentMask = (1 << exponentBitCount) - 1;
|
|
// See comments in swift_dtoa_optimal_binary64_p to understand
|
|
// why we use 16,382 instead of 16,383 here.
|
|
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 16,382
|
|
|
|
// Step 0: Deconstruct the target number
|
|
// Note: this strongly assumes Intel 80-bit extended format in LSB
|
|
// byte order
|
|
const uint64_t *raw_p = (const uint64_t *)d;
|
|
int exponentBitPattern = raw_p[1] & exponentMask;
|
|
int negative = (raw_p[1] >> 15) & 1;
|
|
uint64_t significandBitPattern = raw_p[0];
|
|
|
|
// Step 1: Handle the various input cases:
|
|
int64_t binaryExponent;
|
|
uint64_t significand;
|
|
int isBoundary = (significandBitPattern & 0x7fffffffffffffff) == 0;
|
|
if (length < 1) {
|
|
return 0;
|
|
} else if (exponentBitPattern == exponentMask) { // NaN or Infinity
|
|
// Following 80387 semantics as documented in Wikipedia.org "Extended Precision"
|
|
// Also see Intel's "Floating Point Reference Sheet"
|
|
// https://software.intel.com/content/dam/develop/external/us/en/documents/floating-point-reference-sheet.pdf
|
|
int selector = significandBitPattern >> 62; // Top 2 bits
|
|
uint64_t payload = significandBitPattern & (((uint64_t)1 << 62) - 1); // bottom 62 bits
|
|
switch (selector) {
|
|
case 0: // ∞ or snan on 287, invalid on 387
|
|
case 1: // Pseudo-NaN: snan on 287, invalid on 387
|
|
break;
|
|
case 2:
|
|
if (payload == 0) { // snan on 287, ∞ on 387
|
|
return infinity(dest, length, negative);
|
|
} else { // snan on 287 and 387
|
|
return nan_details(dest, length, negative, 0 /* quiet */, 0, payload);
|
|
}
|
|
break;
|
|
case 3:
|
|
// Zero payload and sign bit set is "indefinite" (treated as qNaN here),
|
|
// Otherwise qNan on 387, sNaN on 287
|
|
return nan_details(dest, length, negative, 1 /* quiet */, 0, payload);
|
|
}
|
|
// Handle "invalid" patterns as plain "nan"
|
|
return nan_details(dest, length, 0 /* negative */, 1 /* quiet */, 0, payload);
|
|
} else if (exponentBitPattern == 0) {
|
|
if (significandBitPattern == 0) { // Zero
|
|
return zero(dest, length, negative);
|
|
} else { // subnormal
|
|
binaryExponent = 1 - exponentBias;
|
|
significand = significandBitPattern;
|
|
}
|
|
} else if (significandBitPattern >> 63) { // Normal
|
|
binaryExponent = exponentBitPattern - exponentBias;
|
|
significand = significandBitPattern;
|
|
} else {
|
|
// Invalid pattern rejected by 80387 and later.
|
|
// Handle "invalid" patterns as plain "nan"
|
|
return nan_details(dest, length, 0 /* negative */, 1 /* quiet */, 0, 0);
|
|
}
|
|
|
|
// Step 2: Determine the exact unscaled target interval
|
|
uint64_t halfUlp = (uint64_t)1 << 63;
|
|
uint64_t quarterUlp = halfUlp >> 1;
|
|
uint64_t threeQuarterUlp = halfUlp + quarterUlp;
|
|
swift_uint128_t upperMidpointExact, lowerMidpointExact;
|
|
initialize128WithHighLow64(upperMidpointExact, significand, halfUlp);
|
|
// Subtract 1/4 or 1/2 ULP by first subtracting 1 full ULP, then adding some back
|
|
initialize128WithHighLow64(lowerMidpointExact, significand - 1, isBoundary ? threeQuarterUlp : halfUlp);
|
|
|
|
return _swift_dtoa_256bit_backend
|
|
(
|
|
dest,
|
|
length,
|
|
upperMidpointExact,
|
|
lowerMidpointExact,
|
|
negative,
|
|
isBoundary,
|
|
(significandBitPattern & 1) != 0,
|
|
binaryExponent,
|
|
binaryExponent > 65 || (binaryExponent == 65 && !isBoundary) // forceExponential
|
|
);
|
|
|
|
}
|
|
#endif
|
|
|
|
// ================================================================
|
|
//
|
|
// BINARY128
|
|
//
|
|
// ================================================================
|
|
|
|
#if SWIFT_DTOA_BINARY128_SUPPORT
|
|
#if LONG_DOUBLE_IS_BINARY128
|
|
size_t swift_dtoa_optimal_long_double(long double d, char *dest, size_t length) {
|
|
return swift_dtoa_optimal_binary128_p(&d, dest, length);
|
|
}
|
|
#endif
|
|
|
|
// Format an IEEE 754 binary128 quad-precision floating-point number.
|
|
// This does not rely on the C environment for floating-point arithmetic
|
|
// or library support of any kind.
|
|
size_t swift_dtoa_optimal_binary128_p(const void *d, char *dest, size_t length)
|
|
{
|
|
static const int exponentBitCount = 15;
|
|
static const int exponentMask = (1 << exponentBitCount) - 1;
|
|
// See comments in swift_dtoa_optimal_binary64_p to understand
|
|
// why we use 16,382 instead of 16,383 here.
|
|
static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 16,382
|
|
|
|
// Step 0: Deconstruct the target number in IEEE 754 binary128 LSB format
|
|
const uint64_t *raw_p = (const uint64_t *)d;
|
|
int exponentBitPattern = (raw_p[1] >> 48) & exponentMask;
|
|
int negative = (raw_p[1] >> 63) & 1;
|
|
uint64_t significandHigh = raw_p[1] & 0xffffffffffffULL;
|
|
uint64_t significandLow = raw_p[0];
|
|
|
|
// Step 1: Handle the various input cases:
|
|
int64_t binaryExponent;
|
|
int isBoundary = (significandLow == 0) && (significandHigh == 0);
|
|
if (length < 1) {
|
|
return 0;
|
|
} else if (exponentBitPattern == exponentMask) { // NaN or Infinity
|
|
if (isBoundary) { // Infinity
|
|
return infinity(dest, length, negative);
|
|
} else { // NaN
|
|
int signaling = (significandHigh >> 47) & 1;
|
|
uint64_t payloadHigh = significandHigh & 0x3fffffffffffULL;
|
|
uint64_t payloadLow = significandLow;
|
|
return nan_details(dest, length, negative, signaling == 0, payloadHigh, payloadLow);
|
|
}
|
|
} else if (exponentBitPattern == 0) {
|
|
if (isBoundary) { // Zero
|
|
return zero(dest, length, negative);
|
|
} else { // subnormal
|
|
binaryExponent = 1 - exponentBias;
|
|
}
|
|
} else { // Normal
|
|
binaryExponent = exponentBitPattern - exponentBias;
|
|
significandHigh |= (1ULL << 48);
|
|
}
|
|
// Align significand to 0.113 fractional form
|
|
significandHigh <<= 15;
|
|
significandHigh |= significandLow >> (64 - 15);
|
|
significandLow <<= 15;
|
|
|
|
// Step 2: Determine the exact unscaled target interval
|
|
uint64_t halfUlp = (uint64_t)1 << 14;
|
|
uint64_t quarterUlp = halfUlp >> 1;
|
|
swift_uint128_t upperMidpointExact, lowerMidpointExact;
|
|
initialize128WithHighLow64(upperMidpointExact, significandHigh, significandLow + halfUlp);
|
|
// Subtract 1/4 or 1/2 ULP
|
|
if (significandLow == 0) {
|
|
initialize128WithHighLow64(lowerMidpointExact,
|
|
significandHigh - 1,
|
|
significandLow - (isBoundary ? quarterUlp : halfUlp));
|
|
} else {
|
|
initialize128WithHighLow64(lowerMidpointExact,
|
|
significandHigh,
|
|
significandLow - (isBoundary ? quarterUlp : halfUlp));
|
|
}
|
|
|
|
return _swift_dtoa_256bit_backend
|
|
(
|
|
dest,
|
|
length,
|
|
upperMidpointExact,
|
|
lowerMidpointExact,
|
|
negative,
|
|
isBoundary,
|
|
(significandLow & 0x8000) != 0,
|
|
binaryExponent,
|
|
binaryExponent > 114 || (binaryExponent == 114 && !isBoundary) // forceExponential
|
|
);
|
|
}
|
|
#endif
|
|
|
|
// ================================================================
|
|
//
|
|
// FLOAT80/BINARY128 common backend
|
|
//
|
|
// This uses 256-bit fixed-width arithmetic to efficiently compute the
|
|
// optimal form for a decomposed float80 or binary128 value. It is
|
|
// less heavily commented than the 128-bit version above; see that
|
|
// implementation for detailed explanation of the logic here.
|
|
//
|
|
// This sacrifices some performance for float80, which can be done
|
|
// more efficiently with 192-bit fixed-width arithmetic. But the code
|
|
// size savings from sharing this logic between float80 and binary128
|
|
// are substantial, and the resulting float80 performance is still much
|
|
// better than most competing implementations.
|
|
//
|
|
// Also in the interest of code size savings, this eschews some of the
|
|
// optimizations used by the 128-bit backend above. Those
|
|
// optimizations are simple to reintroduce if you're interested in
|
|
// further performance improvements.
|
|
//
|
|
// If you are interested in extreme code size, you can also use this
|
|
// backend for binary32 and binary64, eliminating the separate 128-bit
|
|
// implementation. That variation offers surprisingly reasonable
|
|
// performance overall.
|
|
//
|
|
// ================================================================
|
|
|
|
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
static size_t _swift_dtoa_256bit_backend
|
|
(
|
|
char *dest,
|
|
size_t length,
|
|
swift_uint128_t upperMidpointExact,
|
|
swift_uint128_t lowerMidpointExact,
|
|
int negative,
|
|
int isBoundary,
|
|
int isOddSignificand,
|
|
int binaryExponent,
|
|
bool forceExponential
|
|
)
|
|
{
|
|
// Step 3: Estimate the base 10 exponent
|
|
int base10Exponent = decimalExponentFor2ToThe(binaryExponent);
|
|
|
|
// Step 4: Compute a power-of-10 scale factor
|
|
swift_uint256_t powerOfTenRoundedDown;
|
|
swift_uint256_t powerOfTenRoundedUp;
|
|
int powerOfTenExponent = 0;
|
|
intervalContainingPowerOf10_Binary128(-base10Exponent,
|
|
&powerOfTenRoundedDown,
|
|
&powerOfTenRoundedUp,
|
|
&powerOfTenExponent);
|
|
const int extraBits = binaryExponent + powerOfTenExponent;
|
|
|
|
// Step 5: Scale the interval (with rounding)
|
|
static const int integerBits = 14; // Enough for 4 decimal digits
|
|
#if HAVE_UINT128_T
|
|
static const int highFractionBits = 64 - integerBits;
|
|
#else
|
|
static const int highFractionBits = 32 - integerBits;
|
|
#endif
|
|
swift_uint256_t u, l;
|
|
if (isOddSignificand) {
|
|
// Narrow the interval (odd significand)
|
|
u = powerOfTenRoundedDown;
|
|
multiply256x128RoundingDown(&u, upperMidpointExact);
|
|
shiftRightRoundingDown256(&u, integerBits - extraBits);
|
|
|
|
l = powerOfTenRoundedUp;
|
|
multiply256x128RoundingUp(&l, lowerMidpointExact);
|
|
shiftRightRoundingUp256(&l, integerBits - extraBits);
|
|
} else {
|
|
// Widen the interval (even significand)
|
|
u = powerOfTenRoundedUp;
|
|
multiply256x128RoundingUp(&u, upperMidpointExact);
|
|
shiftRightRoundingUp256(&u, integerBits - extraBits);
|
|
|
|
l = powerOfTenRoundedDown;
|
|
multiply256x128RoundingDown(&l, lowerMidpointExact);
|
|
shiftRightRoundingDown256(&l, integerBits - extraBits);
|
|
}
|
|
|
|
// Step 6: Align first digit, adjust exponent
|
|
#if HAVE_UINT128_T
|
|
while (u.high < (uint64_t)1 << highFractionBits)
|
|
#else
|
|
while (u.elt[7] < (uint64_t)1 << highFractionBits)
|
|
#endif
|
|
{
|
|
base10Exponent -= 1;
|
|
multiply256xu32(&l, 10);
|
|
multiply256xu32(&u, 10);
|
|
}
|
|
|
|
swift_uint256_t t = u;
|
|
swift_uint256_t delta = u;
|
|
subtract256x256(&delta, l);
|
|
|
|
// Step 7: Generate digits
|
|
char *p = dest;
|
|
if (p > dest + length - 4) { // Shortest output is "1.0" (4 bytes)
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
if (negative) {
|
|
*p++ = '-';
|
|
}
|
|
char * const firstOutputChar = p;
|
|
|
|
// Adjustment above already set up the first digit
|
|
*p++ = '0';
|
|
*p++ = '0' + extractIntegerPart256(&t, integerBits);
|
|
|
|
// Generate 4 digits at a time
|
|
swift_uint256_t d0 = delta;
|
|
multiply256xu32(&d0, 10000);
|
|
swift_uint256_t t0 = t;
|
|
multiply256xu32(&t0, 10000);
|
|
int d1234 = extractIntegerPart256(&t0, integerBits);
|
|
while (isLessThan256x256(d0, t0)) {
|
|
if (p > dest + length - 5) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
int d34 = d1234 % 100;
|
|
int d12 = d1234 / 100;
|
|
memcpy(p + 2, asciiDigitTable + d34 * 2, 2);
|
|
memcpy(p, asciiDigitTable + d12 * 2, 2);
|
|
p += 4;
|
|
t = t0;
|
|
delta = d0;
|
|
multiply256xu32(&d0, 10000);
|
|
multiply256xu32(&t0, 10000);
|
|
d1234 = extractIntegerPart256(&t0, integerBits);
|
|
}
|
|
|
|
// Generate one digit at a time...
|
|
while (isLessThan256x256(delta, t)) {
|
|
if (p > dest + length - 2) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
multiply256xu32(&delta, 10);
|
|
multiply256xu32(&t, 10);
|
|
*p++ = extractIntegerPart256(&t, integerBits) + '0';
|
|
}
|
|
|
|
// Adjust the final digit to be closer to the original value
|
|
// We've already consumed most of our available precision, and only
|
|
// need a couple of integer bits, so we can narrow down to
|
|
// 64 bits here.
|
|
#if HAVE_UINT128_T
|
|
uint64_t deltaHigh64 = delta.high;
|
|
uint64_t tHigh64 = t.high;
|
|
#else
|
|
uint64_t deltaHigh64 = ((uint64_t)delta.elt[7] << 32) + delta.elt[6];
|
|
uint64_t tHigh64 = ((uint64_t)t.elt[7] << 32) + t.elt[6];
|
|
#endif
|
|
if (deltaHigh64 >= tHigh64 + ((uint64_t)1 << (64 - integerBits))) {
|
|
uint64_t skew;
|
|
if (isBoundary) {
|
|
skew = deltaHigh64 - deltaHigh64 / 3 - tHigh64;
|
|
} else {
|
|
skew = deltaHigh64 / 2 - tHigh64;
|
|
}
|
|
uint64_t one = (uint64_t)(1) << (64 - integerBits);
|
|
uint64_t fractionMask = one - 1;
|
|
uint64_t oneHalf = one >> 1;
|
|
if ((skew & fractionMask) == oneHalf) {
|
|
int adjust = (int)(skew >> (64 - integerBits));
|
|
// If the skew is integer + 1/2, round the last digit even
|
|
// after adjustment
|
|
p[-1] -= adjust;
|
|
p[-1] &= ~1;
|
|
} else {
|
|
// Else round to nearest...
|
|
int adjust = (int)((skew + oneHalf) >> (64 - integerBits));
|
|
p[-1] -= adjust;
|
|
}
|
|
}
|
|
|
|
return finishFormatting(dest, length, p, firstOutputChar, forceExponential, base10Exponent);
|
|
}
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
static int finishFormatting(char *dest, size_t length,
|
|
char *p,
|
|
char *firstOutputChar,
|
|
int forceExponential,
|
|
int base10Exponent)
|
|
{
|
|
int digitCount = p - firstOutputChar - 1;
|
|
if (base10Exponent < -4 || forceExponential) {
|
|
// Exponential form: convert "0123456" => "1.23456e78"
|
|
firstOutputChar[0] = firstOutputChar[1];
|
|
if (digitCount > 1) {
|
|
firstOutputChar[1] = '.';
|
|
} else {
|
|
p--;
|
|
}
|
|
// Add exponent at the end
|
|
if (p > dest + length - 5) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = 'e';
|
|
if (base10Exponent < 0) {
|
|
*p++ = '-';
|
|
base10Exponent = -base10Exponent;
|
|
} else {
|
|
*p++ = '+';
|
|
}
|
|
if (base10Exponent > 99) {
|
|
if (base10Exponent > 999) {
|
|
if (p > dest + length - 5) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
memcpy(p, asciiDigitTable + (base10Exponent / 100) * 2, 2);
|
|
p += 2;
|
|
} else {
|
|
if (p > dest + length - 4) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
*p++ = (base10Exponent / 100) + '0';
|
|
}
|
|
base10Exponent %= 100;
|
|
}
|
|
memcpy(p, asciiDigitTable + base10Exponent * 2, 2);
|
|
p += 2;
|
|
} else if (base10Exponent < 0) { // "0123456" => "0.00123456"
|
|
// Slide digits back in buffer and prepend zeros and a period
|
|
if (p > dest + length + base10Exponent - 1) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
memmove(firstOutputChar - base10Exponent, firstOutputChar, p - firstOutputChar);
|
|
memset(firstOutputChar, '0', -base10Exponent);
|
|
firstOutputChar[1] = '.';
|
|
p += -base10Exponent;
|
|
} else if (base10Exponent + 1 < digitCount) { // "0123456" => "123.456"
|
|
// Slide integer digits forward and insert a '.'
|
|
memmove(firstOutputChar, firstOutputChar + 1, base10Exponent + 1);
|
|
firstOutputChar[base10Exponent + 1] = '.';
|
|
} else { // "0123456" => "12345600.0"
|
|
// Slide digits forward 1 and append suitable zeros and '.0'
|
|
if (p + base10Exponent - digitCount > dest + length - 3) {
|
|
dest[0] = '\0';
|
|
return 0;
|
|
}
|
|
memmove(firstOutputChar, firstOutputChar + 1, p - firstOutputChar - 1);
|
|
p -= 1;
|
|
memset(p, '0', base10Exponent - digitCount + 1);
|
|
p += base10Exponent - digitCount + 1;
|
|
*p++ = '.';
|
|
*p++ = '0';
|
|
}
|
|
*p = '\0';
|
|
return p - dest;
|
|
}
|
|
#endif
|
|
|
|
// ================================================================
|
|
//
|
|
// Arithmetic helpers
|
|
//
|
|
// ================================================================
|
|
|
|
// The core algorithm relies heavily on fixed-point arithmetic with
|
|
// 128-bit and 256-bit integer values. (For binary32/64 and
|
|
// float80/binary128, respectively.) They also need precise control
|
|
// over all rounding.
|
|
//
|
|
// Note that most arithmetic operations are the same for integers and
|
|
// fractions, so we can just use the normal integer operations in most
|
|
// places. Multiplication however, is different for fixed-size
|
|
// fractions. Integer multiplication preserves the low-order part and
|
|
// discards the high-order part (ignoring overflow). Fraction
|
|
// multiplication preserves the high-order part and discards the
|
|
// low-order part (rounding). So most of the arithmetic helpers here
|
|
// are for multiplication.
|
|
|
|
// Note: With 64-bit GCC and Clang, we get a noticable performance
|
|
// gain by using `__uint128_t`. Otherwise, we have to break things
|
|
// down into 32-bit chunks so we don't overflow 64-bit temporaries.
|
|
|
|
#if SWIFT_DTOA_BINARY64_SUPPORT
|
|
// Multiply a 128-bit fraction by a 64-bit fraction, rounding down.
|
|
static swift_uint128_t multiply128x64RoundingDown(swift_uint128_t lhs, uint64_t rhs) {
|
|
#if HAVE_UINT128_T
|
|
uint64_t lhsl = (uint64_t)lhs;
|
|
uint64_t lhsh = (uint64_t)(lhs >> 64);
|
|
swift_uint128_t h = (swift_uint128_t)lhsh * rhs;
|
|
swift_uint128_t l = (swift_uint128_t)lhsl * rhs;
|
|
return h + (l >> 64);
|
|
#else
|
|
swift_uint128_t result;
|
|
static const uint64_t mask32 = UINT32_MAX;
|
|
uint64_t rhs0 = rhs & mask32;
|
|
uint64_t rhs1 = rhs >> 32;
|
|
uint64_t t = (lhs.low) * rhs0;
|
|
t >>= 32;
|
|
uint64_t a = (lhs.b) * rhs0;
|
|
uint64_t b = (lhs.low) * rhs1;
|
|
t += a + (b & mask32);
|
|
t >>= 32;
|
|
t += (b >> 32);
|
|
a = lhs.c * rhs0;
|
|
b = lhs.b * rhs1;
|
|
t += (a & mask32) + (b & mask32);
|
|
result.low = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
a = lhs.high * rhs0;
|
|
b = lhs.c * rhs1;
|
|
t += (a & mask32) + (b & mask32);
|
|
result.b = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
t += lhs.high * rhs1;
|
|
result.c = t;
|
|
result.high = t >> 32;
|
|
return result;
|
|
#endif
|
|
}
|
|
|
|
// Multiply a 128-bit fraction by a 64-bit fraction, rounding up.
|
|
static swift_uint128_t multiply128x64RoundingUp(swift_uint128_t lhs, uint64_t rhs) {
|
|
#if HAVE_UINT128_T
|
|
uint64_t lhsl = (uint64_t)lhs;
|
|
uint64_t lhsh = (uint64_t)(lhs >> 64);
|
|
swift_uint128_t h = (swift_uint128_t)lhsh * rhs;
|
|
swift_uint128_t l = (swift_uint128_t)lhsl * rhs;
|
|
const static __uint128_t bias = ((__uint128_t)1 << 64) - 1;
|
|
return h + ((l + bias) >> 64);
|
|
#else
|
|
swift_uint128_t result;
|
|
static const uint64_t mask32 = UINT32_MAX;
|
|
uint64_t rhs0 = rhs & mask32;
|
|
uint64_t rhs1 = rhs >> 32;
|
|
uint64_t t = (lhs.low) * rhs0 + mask32;
|
|
t >>= 32;
|
|
uint64_t a = (lhs.b) * rhs0;
|
|
uint64_t b = (lhs.low) * rhs1;
|
|
t += (a & mask32) + (b & mask32) + mask32;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
a = lhs.c * rhs0;
|
|
b = lhs.b * rhs1;
|
|
t += (a & mask32) + (b & mask32);
|
|
result.low = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
a = lhs.high * rhs0;
|
|
b = lhs.c * rhs1;
|
|
t += (a & mask32) + (b & mask32);
|
|
result.b = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
t += lhs.high * rhs1;
|
|
result.c = t;
|
|
result.high = t >> 32;
|
|
return result;
|
|
#endif
|
|
}
|
|
|
|
#if !HAVE_UINT128_T
|
|
// Multiply a 128-bit fraction by a 32-bit integer in a 32-bit environment.
|
|
// (On 64-bit, we use a fast inline macro.)
|
|
static void multiply128xu32(swift_uint128_t *lhs, uint32_t rhs) {
|
|
uint64_t t = (uint64_t)(lhs->low) * rhs;
|
|
lhs->low = (uint32_t)t;
|
|
t = (t >> 32) + (uint64_t)(lhs->b) * rhs;
|
|
lhs->b = (uint32_t)t;
|
|
t = (t >> 32) + (uint64_t)(lhs->c) * rhs;
|
|
lhs->c = (uint32_t)t;
|
|
t = (t >> 32) + (uint64_t)(lhs->high) * rhs;
|
|
lhs->high = (uint32_t)t;
|
|
}
|
|
|
|
// Compare two 128-bit integers in a 32-bit environment
|
|
// (On 64-bit, we use a fast inline macro.)
|
|
static int isLessThan128x128(swift_uint128_t lhs, swift_uint128_t rhs) {
|
|
return ((lhs.high < rhs.high)
|
|
|| ((lhs.high == rhs.high)
|
|
&& ((lhs.c < rhs.c)
|
|
|| ((lhs.c == rhs.c)
|
|
&& ((lhs.b < rhs.b)
|
|
|| ((lhs.b == rhs.b)
|
|
&& (lhs.low < rhs.low)))))));
|
|
}
|
|
|
|
// Subtract 128-bit values in a 32-bit environment
|
|
static void subtract128x128(swift_uint128_t *lhs, swift_uint128_t rhs) {
|
|
uint64_t t = (uint64_t)lhs->low + (~rhs.low) + 1;
|
|
lhs->low = (uint32_t)t;
|
|
t = (t >> 32) + lhs->b + (~rhs.b);
|
|
lhs->b = (uint32_t)t;
|
|
t = (t >> 32) + lhs->c + (~rhs.c);
|
|
lhs->c = (uint32_t)t;
|
|
t = (t >> 32) + lhs->high + (~rhs.high);
|
|
lhs->high = (uint32_t)t;
|
|
}
|
|
#endif
|
|
|
|
#if !HAVE_UINT128_T
|
|
// Shift a 128-bit integer right, rounding down.
|
|
static swift_uint128_t shiftRightRoundingDown128(swift_uint128_t lhs, int shift) {
|
|
// Note: Shift is always less than 32
|
|
swift_uint128_t result;
|
|
uint64_t t = (uint64_t)lhs.low >> shift;
|
|
t += ((uint64_t)lhs.b << (32 - shift));
|
|
result.low = t;
|
|
t >>= 32;
|
|
t += ((uint64_t)lhs.c << (32 - shift));
|
|
result.b = t;
|
|
t >>= 32;
|
|
t += ((uint64_t)lhs.high << (32 - shift));
|
|
result.c = t;
|
|
t >>= 32;
|
|
result.high = t;
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
#if !HAVE_UINT128_T
|
|
// Shift a 128-bit integer right, rounding up.
|
|
static swift_uint128_t shiftRightRoundingUp128(swift_uint128_t lhs, int shift) {
|
|
swift_uint128_t result;
|
|
const uint64_t bias = (1 << shift) - 1;
|
|
uint64_t t = ((uint64_t)lhs.low + bias) >> shift;
|
|
t += ((uint64_t)lhs.b << (32 - shift));
|
|
result.low = t;
|
|
t >>= 32;
|
|
t += ((uint64_t)lhs.c << (32 - shift));
|
|
result.b = t;
|
|
t >>= 32;
|
|
t += ((uint64_t)lhs.high << (32 - shift));
|
|
result.c = t;
|
|
t >>= 32;
|
|
result.high = t;
|
|
return result;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// Shift a 128-bit integer left, discarding high bits
|
|
#if (SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT) && !HAVE_UINT128_T
|
|
static void shiftLeft128(swift_uint128_t *lhs, int shift) {
|
|
// Note: Shift is always less than 32
|
|
uint64_t t = (uint64_t)lhs->high << (shift + 32);
|
|
t += (uint64_t)lhs->c << shift;
|
|
lhs->high = t >> 32;
|
|
t <<= 32;
|
|
t += (uint64_t)lhs->b << shift;
|
|
lhs->c = t >> 32;
|
|
t <<= 32;
|
|
t += (uint64_t)lhs->low << shift;
|
|
lhs->b = t >> 32;
|
|
lhs->low = t;
|
|
}
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
// Multiply a 256-bit fraction by a 32-bit integer.
|
|
// This is used in the digit generation to multiply by ten or
|
|
// 10,000. Note that rounding is never an issue.
|
|
// As used above, this will never overflow.
|
|
static void multiply256xu32(swift_uint256_t *lhs, uint32_t rhs) {
|
|
#if HAVE_UINT128_T
|
|
__uint128_t t = (__uint128_t)lhs->low * rhs;
|
|
lhs->low = (uint64_t)t;
|
|
t = (t >> 64) + (__uint128_t)lhs->midlow * rhs;
|
|
lhs->midlow = (uint64_t)t;
|
|
t = (t >> 64) + (__uint128_t)lhs->midhigh * rhs;
|
|
lhs->midhigh = (uint64_t)t;
|
|
t = (t >> 64) + (__uint128_t)lhs->high * rhs;
|
|
lhs->high = (uint64_t)t;
|
|
#else
|
|
uint64_t t = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
t = (t >> 32) + (uint64_t)lhs->elt[i] * rhs;
|
|
lhs->elt[i] = t;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Multiply a 256-bit fraction by a 128-bit fraction, rounding down.
|
|
static void multiply256x128RoundingDown(swift_uint256_t *lhs, swift_uint128_t rhs) {
|
|
#if HAVE_UINT128_T
|
|
// A full multiply of four 64-bit values by two 64-bit values
|
|
// yields six such components. We discard the bottom two (except
|
|
// for carries) to get a rounded-down four-element result.
|
|
__uint128_t current = (__uint128_t)lhs->low * (uint64_t)rhs;
|
|
|
|
current = (current >> 64);
|
|
__uint128_t t = (__uint128_t)lhs->low * (rhs >> 64);
|
|
current += (uint64_t)t;
|
|
__uint128_t next = t >> 64;
|
|
t = (__uint128_t)lhs->midlow * (uint64_t)rhs;
|
|
current += (uint64_t)t;
|
|
next += t >> 64;
|
|
|
|
current = next + (current >> 64);
|
|
t = (__uint128_t)lhs->midlow * (rhs >> 64);
|
|
current += (uint64_t)t;
|
|
next = t >> 64;
|
|
t = (__uint128_t)lhs->midhigh * (uint64_t)rhs;
|
|
current += (uint64_t)t;
|
|
next += t >> 64;
|
|
lhs->low = (uint64_t)current;
|
|
|
|
current = next + (current >> 64);
|
|
t = (__uint128_t)lhs->midhigh * (rhs >> 64);
|
|
current += (uint64_t)t;
|
|
next = t >> 64;
|
|
t = (__uint128_t)lhs->high * (uint64_t)rhs;
|
|
current += (uint64_t)t;
|
|
next += t >> 64;
|
|
lhs->midlow = (uint64_t)current;
|
|
|
|
current = next + (current >> 64);
|
|
t = (__uint128_t)lhs->high * (rhs >> 64);
|
|
current += t;
|
|
lhs->midhigh = (uint64_t)current;
|
|
lhs->high = (uint64_t)(current >> 64);
|
|
#else
|
|
uint64_t a, b, c, d; // temporaries
|
|
// Eight 32-bit values multiplied by 4 32-bit values. Oh my.
|
|
static const uint64_t mask32 = UINT32_MAX;
|
|
uint64_t t = 0;
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.low;
|
|
t += (a & mask32);
|
|
t >>= 32;
|
|
t += (a >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.b;
|
|
b = (uint64_t)lhs->elt[1] * rhs.low;
|
|
t += (a & mask32) + (b & mask32);
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.c;
|
|
b = (uint64_t)lhs->elt[1] * rhs.b;
|
|
c = (uint64_t)lhs->elt[2] * rhs.low;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32);
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.high;
|
|
b = (uint64_t)lhs->elt[1] * rhs.c;
|
|
c = (uint64_t)lhs->elt[2] * rhs.b;
|
|
d = (uint64_t)lhs->elt[3] * rhs.low;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32);
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
a = (uint64_t)lhs->elt[i + 1] * rhs.high;
|
|
b = (uint64_t)lhs->elt[i + 2] * rhs.c;
|
|
c = (uint64_t)lhs->elt[i + 3] * rhs.b;
|
|
d = (uint64_t)lhs->elt[i + 4] * rhs.low;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32);
|
|
lhs->elt[i] = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
|
|
}
|
|
|
|
a = (uint64_t)lhs->elt[5] * rhs.high;
|
|
b = (uint64_t)lhs->elt[6] * rhs.c;
|
|
c = (uint64_t)lhs->elt[7] * rhs.b;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32);
|
|
lhs->elt[4] = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[6] * rhs.high;
|
|
b = (uint64_t)lhs->elt[7] * rhs.c;
|
|
t += (a & mask32) + (b & mask32);
|
|
lhs->elt[5] = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
|
|
t += (uint64_t)lhs->elt[7] * rhs.high;
|
|
lhs->elt[6] = t;
|
|
lhs->elt[7] = t >> 32;
|
|
#endif
|
|
}
|
|
|
|
// Multiply a 256-bit fraction by a 128-bit fraction, rounding up.
|
|
static void multiply256x128RoundingUp(swift_uint256_t *lhs, swift_uint128_t rhs) {
|
|
#if HAVE_UINT128_T
|
|
// Same as the rounding-down version, but we add
|
|
// UINT128_MAX to the bottom two to force an extra
|
|
// carry if they are non-zero.
|
|
swift_uint128_t current = (swift_uint128_t)lhs->low * (uint64_t)rhs;
|
|
current += UINT64_MAX;
|
|
|
|
current = (current >> 64);
|
|
swift_uint128_t t = (swift_uint128_t)lhs->low * (rhs >> 64);
|
|
current += (uint64_t)t;
|
|
swift_uint128_t next = t >> 64;
|
|
t = (swift_uint128_t)lhs->midlow * (uint64_t)rhs;
|
|
current += (uint64_t)t;
|
|
next += t >> 64;
|
|
// Round up by adding UINT128_MAX (upper half)
|
|
current += UINT64_MAX;
|
|
|
|
current = next + (current >> 64);
|
|
t = (swift_uint128_t)lhs->midlow * (rhs >> 64);
|
|
current += (uint64_t)t;
|
|
next = t >> 64;
|
|
t = (swift_uint128_t)lhs->midhigh * (uint64_t)rhs;
|
|
current += (uint64_t)t;
|
|
next += t >> 64;
|
|
lhs->low = (uint64_t)current;
|
|
|
|
current = next + (current >> 64);
|
|
t = (swift_uint128_t)lhs->midhigh * (rhs >> 64);
|
|
current += (uint64_t)t;
|
|
next = t >> 64;
|
|
t = (swift_uint128_t)lhs->high * (uint64_t)rhs;
|
|
current += (uint64_t)t;
|
|
next += t >> 64;
|
|
lhs->midlow = (uint64_t)current;
|
|
|
|
current = next + (current >> 64);
|
|
t = (swift_uint128_t)lhs->high * (rhs >> 64);
|
|
current += t;
|
|
lhs->midhigh = (uint64_t)current;
|
|
lhs->high = (uint64_t)(current >> 64);
|
|
#else
|
|
uint64_t a, b, c, d; // temporaries
|
|
// Eight 32-bit values multiplied by 4 32-bit values. Oh my.
|
|
static const uint64_t mask32 = UINT32_MAX;
|
|
uint64_t t = 0;
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.low + mask32;
|
|
t += (a & mask32);
|
|
t >>= 32;
|
|
t += (a >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.b;
|
|
b = (uint64_t)lhs->elt[1] * rhs.low;
|
|
t += (a & mask32) + (b & mask32) + mask32;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.c;
|
|
b = (uint64_t)lhs->elt[1] * rhs.b;
|
|
c = (uint64_t)lhs->elt[2] * rhs.low;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32) + mask32;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[0] * rhs.high;
|
|
b = (uint64_t)lhs->elt[1] * rhs.c;
|
|
c = (uint64_t)lhs->elt[2] * rhs.b;
|
|
d = (uint64_t)lhs->elt[3] * rhs.low;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32) + mask32;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
a = (uint64_t)lhs->elt[i + 1] * rhs.high;
|
|
b = (uint64_t)lhs->elt[i + 2] * rhs.c;
|
|
c = (uint64_t)lhs->elt[i + 3] * rhs.b;
|
|
d = (uint64_t)lhs->elt[i + 4] * rhs.low;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32);
|
|
lhs->elt[i] = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32);
|
|
}
|
|
|
|
a = (uint64_t)lhs->elt[5] * rhs.high;
|
|
b = (uint64_t)lhs->elt[6] * rhs.c;
|
|
c = (uint64_t)lhs->elt[7] * rhs.b;
|
|
t += (a & mask32) + (b & mask32) + (c & mask32);
|
|
lhs->elt[4] = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32) + (c >> 32);
|
|
|
|
a = (uint64_t)lhs->elt[6] * rhs.high;
|
|
b = (uint64_t)lhs->elt[7] * rhs.c;
|
|
t += (a & mask32) + (b & mask32);
|
|
lhs->elt[5] = t;
|
|
t >>= 32;
|
|
t += (a >> 32) + (b >> 32);
|
|
|
|
t += (uint64_t)lhs->elt[7] * rhs.high;
|
|
lhs->elt[6] = t;
|
|
lhs->elt[7] = t >> 32;
|
|
|
|
#endif
|
|
}
|
|
|
|
// Subtract two 256-bit integers or fractions.
|
|
static void subtract256x256(swift_uint256_t *lhs, swift_uint256_t rhs) {
|
|
#if HAVE_UINT128_T
|
|
swift_uint128_t t = (swift_uint128_t)lhs->low + (~rhs.low) + 1;
|
|
lhs->low = t;
|
|
t = (t >> 64) + lhs->midlow + (~rhs.midlow);
|
|
lhs->midlow = t;
|
|
t = (t >> 64) + lhs->midhigh + (~rhs.midhigh);
|
|
lhs->midhigh = t;
|
|
lhs->high += (t >> 64) + (~rhs.high);
|
|
#else
|
|
uint64_t t = ((uint64_t)1) << 32;
|
|
for (int i = 0; i < 8; i++) {
|
|
t = (t >> 32) + lhs->elt[i] + (~rhs.elt[i]);
|
|
lhs->elt[i] = t;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Compare two 256-bit integers or fractions.
|
|
static int isLessThan256x256(swift_uint256_t lhs, swift_uint256_t rhs) {
|
|
#if HAVE_UINT128_T
|
|
return (lhs.high < rhs.high)
|
|
|| (lhs.high == rhs.high
|
|
&& (lhs.midhigh < rhs.midhigh
|
|
|| (lhs.midhigh == rhs.midhigh
|
|
&& (lhs.midlow < rhs.midlow
|
|
|| (lhs.midlow == rhs.midlow
|
|
&& lhs.low < rhs.low)))));
|
|
#else
|
|
for (int i = 7; i >= 0; i--) {
|
|
if (lhs.elt[i] < rhs.elt[i]) {
|
|
return true;
|
|
} else if (lhs.elt[i] > rhs.elt[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// Shift a 256-bit integer right (by less than 32 bits!), rounding down.
|
|
static void shiftRightRoundingDown256(swift_uint256_t *lhs, int shift) {
|
|
#if HAVE_UINT128_T
|
|
__uint128_t t = (__uint128_t)lhs->low >> shift;
|
|
t += ((__uint128_t)lhs->midlow << (64 - shift));
|
|
lhs->low = t;
|
|
t >>= 64;
|
|
t += ((__uint128_t)lhs->midhigh << (64 - shift));
|
|
lhs->midlow = t;
|
|
t >>= 64;
|
|
t += ((__uint128_t)lhs->high << (64 - shift));
|
|
lhs->midhigh = t;
|
|
t >>= 64;
|
|
lhs->high = t;
|
|
#else
|
|
uint64_t t = (uint64_t)lhs->elt[0] >> shift;
|
|
for (int i = 0; i < 7; ++i) {
|
|
t += ((uint64_t)lhs->elt[i + 1] << (32 - shift));
|
|
lhs->elt[i] = t;
|
|
t >>= 32;
|
|
}
|
|
lhs->elt[7] = t;
|
|
#endif
|
|
}
|
|
|
|
// Shift a 256-bit integer right, rounding up.
|
|
// Note: The shift will always be less than 20. Someday, that
|
|
// might suggest a way to further optimize this.
|
|
static void shiftRightRoundingUp256(swift_uint256_t *lhs, int shift) {
|
|
#if HAVE_UINT128_T
|
|
const uint64_t bias = (1 << shift) - 1;
|
|
__uint128_t t = ((__uint128_t)lhs->low + bias) >> shift;
|
|
t += ((__uint128_t)lhs->midlow << (64 - shift));
|
|
lhs->low = t;
|
|
t >>= 64;
|
|
t += ((__uint128_t)lhs->midhigh << (64 - shift));
|
|
lhs->midlow = t;
|
|
t >>= 64;
|
|
t += ((__uint128_t)lhs->high << (64 - shift));
|
|
lhs->midhigh = t;
|
|
t >>= 64;
|
|
lhs->high = t;
|
|
#else
|
|
const uint64_t bias = (1 << shift) - 1;
|
|
uint64_t t = ((uint64_t)lhs->elt[0] + bias) >> shift;
|
|
for (int i = 0; i < 7; ++i) {
|
|
t += ((uint64_t)lhs->elt[i + 1] << (32 - shift));
|
|
lhs->elt[i] = t;
|
|
t >>= 32;
|
|
}
|
|
lhs->elt[7] = t;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// ================================================================
|
|
//
|
|
// Power of 10 calculation
|
|
//
|
|
// ================================================================
|
|
|
|
//
|
|
// ------------ Power-of-10 tables. --------------------------
|
|
//
|
|
// Grisu-style algorithms rely on being able to rapidly
|
|
// find a high-precision approximation of any power of 10.
|
|
// These values were computed by a simple script that
|
|
// relied on Python's excellent variable-length
|
|
// integer support.
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT
|
|
// Table with negative powers of 10 to 64 bits
|
|
//
|
|
// Table size: 320 bytes
|
|
static uint64_t powersOf10_negativeBinary32[] = {
|
|
0x8b61313bbabce2c6ULL, // x 2^-132 ~= 10^-40
|
|
0xae397d8aa96c1b77ULL, // x 2^-129 ~= 10^-39
|
|
0xd9c7dced53c72255ULL, // x 2^-126 ~= 10^-38
|
|
0x881cea14545c7575ULL, // x 2^-122 ~= 10^-37
|
|
0xaa242499697392d2ULL, // x 2^-119 ~= 10^-36
|
|
0xd4ad2dbfc3d07787ULL, // x 2^-116 ~= 10^-35
|
|
0x84ec3c97da624ab4ULL, // x 2^-112 ~= 10^-34
|
|
0xa6274bbdd0fadd61ULL, // x 2^-109 ~= 10^-33
|
|
0xcfb11ead453994baULL, // x 2^-106 ~= 10^-32
|
|
0x81ceb32c4b43fcf4ULL, // x 2^-102 ~= 10^-31
|
|
0xa2425ff75e14fc31ULL, // x 2^-99 ~= 10^-30
|
|
0xcad2f7f5359a3b3eULL, // x 2^-96 ~= 10^-29
|
|
0xfd87b5f28300ca0dULL, // x 2^-93 ~= 10^-28
|
|
0x9e74d1b791e07e48ULL, // x 2^-89 ~= 10^-27
|
|
0xc612062576589ddaULL, // x 2^-86 ~= 10^-26
|
|
0xf79687aed3eec551ULL, // x 2^-83 ~= 10^-25
|
|
0x9abe14cd44753b52ULL, // x 2^-79 ~= 10^-24
|
|
0xc16d9a0095928a27ULL, // x 2^-76 ~= 10^-23
|
|
0xf1c90080baf72cb1ULL, // x 2^-73 ~= 10^-22
|
|
0x971da05074da7beeULL, // x 2^-69 ~= 10^-21
|
|
0xbce5086492111aeaULL, // x 2^-66 ~= 10^-20
|
|
0xec1e4a7db69561a5ULL, // x 2^-63 ~= 10^-19
|
|
0x9392ee8e921d5d07ULL, // x 2^-59 ~= 10^-18
|
|
0xb877aa3236a4b449ULL, // x 2^-56 ~= 10^-17
|
|
0xe69594bec44de15bULL, // x 2^-53 ~= 10^-16
|
|
0x901d7cf73ab0acd9ULL, // x 2^-49 ~= 10^-15
|
|
0xb424dc35095cd80fULL, // x 2^-46 ~= 10^-14
|
|
0xe12e13424bb40e13ULL, // x 2^-43 ~= 10^-13
|
|
0x8cbccc096f5088cbULL, // x 2^-39 ~= 10^-12
|
|
0xafebff0bcb24aafeULL, // x 2^-36 ~= 10^-11
|
|
0xdbe6fecebdedd5beULL, // x 2^-33 ~= 10^-10
|
|
0x89705f4136b4a597ULL, // x 2^-29 ~= 10^-9
|
|
0xabcc77118461cefcULL, // x 2^-26 ~= 10^-8
|
|
0xd6bf94d5e57a42bcULL, // x 2^-23 ~= 10^-7
|
|
0x8637bd05af6c69b5ULL, // x 2^-19 ~= 10^-6
|
|
0xa7c5ac471b478423ULL, // x 2^-16 ~= 10^-5
|
|
0xd1b71758e219652bULL, // x 2^-13 ~= 10^-4
|
|
0x83126e978d4fdf3bULL, // x 2^-9 ~= 10^-3
|
|
0xa3d70a3d70a3d70aULL, // x 2^-6 ~= 10^-2
|
|
0xccccccccccccccccULL, // x 2^-3 ~= 10^-1
|
|
};
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT || SWIFT_DTOA_BINARY64_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
// Tables with powers of 10
|
|
//
|
|
// The constant powers of 10 here represent pure fractions
|
|
// with a binary point at the far left. (Each number in
|
|
// this first table is implicitly divided by 2^128.)
|
|
//
|
|
// Table size: 896 bytes
|
|
//
|
|
// A 64-bit significand allows us to exactly represent powers of 10 up
|
|
// to 10^27. In 128 bits, we can exactly represent powers of 10 up to
|
|
// 10^55. As with all of these tables, the binary exponent is not stored;
|
|
// it is computed by the `binaryExponentFor10ToThe(p)` function.
|
|
static const uint64_t powersOf10_Exact128[56 * 2] = {
|
|
// Low order ... high order
|
|
0x0000000000000000ULL, 0x8000000000000000ULL, // x 2^1 == 10^0 exactly
|
|
0x0000000000000000ULL, 0xa000000000000000ULL, // x 2^4 == 10^1 exactly
|
|
0x0000000000000000ULL, 0xc800000000000000ULL, // x 2^7 == 10^2 exactly
|
|
0x0000000000000000ULL, 0xfa00000000000000ULL, // x 2^10 == 10^3 exactly
|
|
0x0000000000000000ULL, 0x9c40000000000000ULL, // x 2^14 == 10^4 exactly
|
|
0x0000000000000000ULL, 0xc350000000000000ULL, // x 2^17 == 10^5 exactly
|
|
0x0000000000000000ULL, 0xf424000000000000ULL, // x 2^20 == 10^6 exactly
|
|
0x0000000000000000ULL, 0x9896800000000000ULL, // x 2^24 == 10^7 exactly
|
|
0x0000000000000000ULL, 0xbebc200000000000ULL, // x 2^27 == 10^8 exactly
|
|
0x0000000000000000ULL, 0xee6b280000000000ULL, // x 2^30 == 10^9 exactly
|
|
0x0000000000000000ULL, 0x9502f90000000000ULL, // x 2^34 == 10^10 exactly
|
|
0x0000000000000000ULL, 0xba43b74000000000ULL, // x 2^37 == 10^11 exactly
|
|
0x0000000000000000ULL, 0xe8d4a51000000000ULL, // x 2^40 == 10^12 exactly
|
|
0x0000000000000000ULL, 0x9184e72a00000000ULL, // x 2^44 == 10^13 exactly
|
|
0x0000000000000000ULL, 0xb5e620f480000000ULL, // x 2^47 == 10^14 exactly
|
|
0x0000000000000000ULL, 0xe35fa931a0000000ULL, // x 2^50 == 10^15 exactly
|
|
0x0000000000000000ULL, 0x8e1bc9bf04000000ULL, // x 2^54 == 10^16 exactly
|
|
0x0000000000000000ULL, 0xb1a2bc2ec5000000ULL, // x 2^57 == 10^17 exactly
|
|
0x0000000000000000ULL, 0xde0b6b3a76400000ULL, // x 2^60 == 10^18 exactly
|
|
0x0000000000000000ULL, 0x8ac7230489e80000ULL, // x 2^64 == 10^19 exactly
|
|
0x0000000000000000ULL, 0xad78ebc5ac620000ULL, // x 2^67 == 10^20 exactly
|
|
0x0000000000000000ULL, 0xd8d726b7177a8000ULL, // x 2^70 == 10^21 exactly
|
|
0x0000000000000000ULL, 0x878678326eac9000ULL, // x 2^74 == 10^22 exactly
|
|
0x0000000000000000ULL, 0xa968163f0a57b400ULL, // x 2^77 == 10^23 exactly
|
|
0x0000000000000000ULL, 0xd3c21bcecceda100ULL, // x 2^80 == 10^24 exactly
|
|
0x0000000000000000ULL, 0x84595161401484a0ULL, // x 2^84 == 10^25 exactly
|
|
0x0000000000000000ULL, 0xa56fa5b99019a5c8ULL, // x 2^87 == 10^26 exactly
|
|
0x0000000000000000ULL, 0xcecb8f27f4200f3aULL, // x 2^90 == 10^27 exactly
|
|
0x4000000000000000ULL, 0x813f3978f8940984ULL, // x 2^94 == 10^28 exactly
|
|
0x5000000000000000ULL, 0xa18f07d736b90be5ULL, // x 2^97 == 10^29 exactly
|
|
0xa400000000000000ULL, 0xc9f2c9cd04674edeULL, // x 2^100 == 10^30 exactly
|
|
0x4d00000000000000ULL, 0xfc6f7c4045812296ULL, // x 2^103 == 10^31 exactly
|
|
0xf020000000000000ULL, 0x9dc5ada82b70b59dULL, // x 2^107 == 10^32 exactly
|
|
0x6c28000000000000ULL, 0xc5371912364ce305ULL, // x 2^110 == 10^33 exactly
|
|
0xc732000000000000ULL, 0xf684df56c3e01bc6ULL, // x 2^113 == 10^34 exactly
|
|
0x3c7f400000000000ULL, 0x9a130b963a6c115cULL, // x 2^117 == 10^35 exactly
|
|
0x4b9f100000000000ULL, 0xc097ce7bc90715b3ULL, // x 2^120 == 10^36 exactly
|
|
0x1e86d40000000000ULL, 0xf0bdc21abb48db20ULL, // x 2^123 == 10^37 exactly
|
|
0x1314448000000000ULL, 0x96769950b50d88f4ULL, // x 2^127 == 10^38 exactly
|
|
0x17d955a000000000ULL, 0xbc143fa4e250eb31ULL, // x 2^130 == 10^39 exactly
|
|
0x5dcfab0800000000ULL, 0xeb194f8e1ae525fdULL, // x 2^133 == 10^40 exactly
|
|
0x5aa1cae500000000ULL, 0x92efd1b8d0cf37beULL, // x 2^137 == 10^41 exactly
|
|
0xf14a3d9e40000000ULL, 0xb7abc627050305adULL, // x 2^140 == 10^42 exactly
|
|
0x6d9ccd05d0000000ULL, 0xe596b7b0c643c719ULL, // x 2^143 == 10^43 exactly
|
|
0xe4820023a2000000ULL, 0x8f7e32ce7bea5c6fULL, // x 2^147 == 10^44 exactly
|
|
0xdda2802c8a800000ULL, 0xb35dbf821ae4f38bULL, // x 2^150 == 10^45 exactly
|
|
0xd50b2037ad200000ULL, 0xe0352f62a19e306eULL, // x 2^153 == 10^46 exactly
|
|
0x4526f422cc340000ULL, 0x8c213d9da502de45ULL, // x 2^157 == 10^47 exactly
|
|
0x9670b12b7f410000ULL, 0xaf298d050e4395d6ULL, // x 2^160 == 10^48 exactly
|
|
0x3c0cdd765f114000ULL, 0xdaf3f04651d47b4cULL, // x 2^163 == 10^49 exactly
|
|
0xa5880a69fb6ac800ULL, 0x88d8762bf324cd0fULL, // x 2^167 == 10^50 exactly
|
|
0x8eea0d047a457a00ULL, 0xab0e93b6efee0053ULL, // x 2^170 == 10^51 exactly
|
|
0x72a4904598d6d880ULL, 0xd5d238a4abe98068ULL, // x 2^173 == 10^52 exactly
|
|
0x47a6da2b7f864750ULL, 0x85a36366eb71f041ULL, // x 2^177 == 10^53 exactly
|
|
0x999090b65f67d924ULL, 0xa70c3c40a64e6c51ULL, // x 2^180 == 10^54 exactly
|
|
0xfff4b4e3f741cf6dULL, 0xd0cf4b50cfe20765ULL, // x 2^183 == 10^55 exactly
|
|
};
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_BINARY64_SUPPORT
|
|
// Rounded values supporting the full range of binary64
|
|
//
|
|
// Table size: 464 bytes
|
|
//
|
|
// We only store every 28th power of ten here.
|
|
// We can multiply by an exact 64-bit power of
|
|
// ten from the table above to reconstruct the
|
|
// significand for any power of 10.
|
|
static const uint64_t powersOf10_Binary64[] = {
|
|
// low-order half, high-order half
|
|
0x3931b850df08e738, 0x95fe7e07c91efafa, // x 2^-1328 ~= 10^-400
|
|
0xba954f8e758fecb3, 0x9774919ef68662a3, // x 2^-1235 ~= 10^-372
|
|
0x9028bed2939a635c, 0x98ee4a22ecf3188b, // x 2^-1142 ~= 10^-344
|
|
0x47b233c92125366e, 0x9a6bb0aa55653b2d, // x 2^-1049 ~= 10^-316
|
|
0x4ee367f9430aec32, 0x9becce62836ac577, // x 2^-956 ~= 10^-288
|
|
0x6f773fc3603db4a9, 0x9d71ac8fada6c9b5, // x 2^-863 ~= 10^-260
|
|
0xc47bc5014a1a6daf, 0x9efa548d26e5a6e1, // x 2^-770 ~= 10^-232
|
|
0x80e8a40eccd228a4, 0xa086cfcd97bf97f3, // x 2^-677 ~= 10^-204
|
|
0xb8ada00e5a506a7c, 0xa21727db38cb002f, // x 2^-584 ~= 10^-176
|
|
0xc13e60d0d2e0ebba, 0xa3ab66580d5fdaf5, // x 2^-491 ~= 10^-148
|
|
0xc2974eb4ee658828, 0xa54394fe1eedb8fe, // x 2^-398 ~= 10^-120
|
|
0xcb4ccd500f6bb952, 0xa6dfbd9fb8e5b88e, // x 2^-305 ~= 10^-92
|
|
0x3f2398d747b36224, 0xa87fea27a539e9a5, // x 2^-212 ~= 10^-64
|
|
0xdde50bd1d5d0b9e9, 0xaa242499697392d2, // x 2^-119 ~= 10^-36
|
|
0xfdc20d2b36ba7c3d, 0xabcc77118461cefc, // x 2^-26 ~= 10^-8
|
|
0x0000000000000000, 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly
|
|
0x9670b12b7f410000, 0xaf298d050e4395d6, // x 2^160 == 10^48 exactly
|
|
0x3b25a55f43294bcb, 0xb0de65388cc8ada8, // x 2^253 ~= 10^76
|
|
0x58edec91ec2cb657, 0xb2977ee300c50fe7, // x 2^346 ~= 10^104
|
|
0x29babe4598c311fb, 0xb454e4a179dd1877, // x 2^439 ~= 10^132
|
|
0x577b986b314d6009, 0xb616a12b7fe617aa, // x 2^532 ~= 10^160
|
|
0x0c11ed6d538aeb2f, 0xb7dcbf5354e9bece, // x 2^625 ~= 10^188
|
|
0x6d953e2bd7173692, 0xb9a74a0637ce2ee1, // x 2^718 ~= 10^216
|
|
0x9d6d1ad41abe37f1, 0xbb764c4ca7a4440f, // x 2^811 ~= 10^244
|
|
0x4b2d8644d8a74e18, 0xbd49d14aa79dbc82, // x 2^904 ~= 10^272
|
|
0xe0470a63e6bd56c3, 0xbf21e44003acdd2c, // x 2^997 ~= 10^300
|
|
0x505f522e53053ff2, 0xc0fe908895cf3b44, // x 2^1090 ~= 10^328
|
|
0xcca845ab2beafa9a, 0xc2dfe19c8c055535, // x 2^1183 ~= 10^356
|
|
0x1027fff56784f444, 0xc4c5e310aef8aa17, // x 2^1276 ~= 10^384
|
|
};
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
// Every 56th power of 10 across the range of Float80/Binary128
|
|
//
|
|
// Table size: 5,728 bytes
|
|
//
|
|
// Note: We could cut this in half at the cost of one additional
|
|
// 256-bit multiply by only storing the positive values and
|
|
// multiplying by 10^-4984 to obtain the negative ones.
|
|
static const uint64_t powersOf10_Binary128[] = {
|
|
// Low-order ... high-order
|
|
0xaec2e6aff96b46aeULL, 0xf91044c2eff84750ULL, 0x2b55c9e70e00c557ULL, 0xb6536903bf8f2bdaULL, // x 2^-16556 ~= 10^-4984
|
|
0xda1b3c3dd3889587ULL, 0x73a7380aba84a6b1ULL, 0xbddb2dfde3f8a6e3ULL, 0xb9e5428330737362ULL, // x 2^-16370 ~= 10^-4928
|
|
0xa2d23c57cfebb9ecULL, 0x9f165c039ead6d77ULL, 0x88227fdfc13ab53dULL, 0xbd89006346a9a34dULL, // x 2^-16184 ~= 10^-4872
|
|
0x333d510cf27e5a5ULL, 0x4e3cc383eaa17b7bULL, 0xe05fe4207ca3d508ULL, 0xc13efc51ade7df64ULL, // x 2^-15998 ~= 10^-4816
|
|
0xff242c569bc1f539ULL, 0x5c67ba58680c4cceULL, 0x3c55f3f947fef0e9ULL, 0xc50791bd8dd72edbULL, // x 2^-15812 ~= 10^-4760
|
|
0xe4b75ae27bec50bfULL, 0x25b0419765fdfcdbULL, 0x915564d8ab057eeULL, 0xc8e31de056f89c19ULL, // x 2^-15626 ~= 10^-4704
|
|
0x548b1e80a94f3434ULL, 0xe418e9217ce83755ULL, 0x801e38463183fc88ULL, 0xccd1ffc6bba63e21ULL, // x 2^-15440 ~= 10^-4648
|
|
0x541950a0fdc2b4d9ULL, 0xeea173da1f0eb7b4ULL, 0xcfadf6b2aa7c4f43ULL, 0xd0d49859d60d40a3ULL, // x 2^-15254 ~= 10^-4592
|
|
0x7e64501be95ad76bULL, 0x451e855d8acef835ULL, 0x9e601e707a2c3488ULL, 0xd4eb4a687c0253e8ULL, // x 2^-15068 ~= 10^-4536
|
|
0xdadd9645f360cb51ULL, 0xf290163350ecb3ebULL, 0xa8edffdccfe4db4bULL, 0xd9167ab0c1965798ULL, // x 2^-14882 ~= 10^-4480
|
|
0x7e447db3018ffbdfULL, 0x4fa1860c08a85923ULL, 0xb17cd86e7fcece75ULL, 0xdd568fe9ab559344ULL, // x 2^-14696 ~= 10^-4424
|
|
0x61cd4655bf64d265ULL, 0xb19fd88fe285b3bcULL, 0x1151250681d59705ULL, 0xe1abf2cd11206610ULL, // x 2^-14510 ~= 10^-4368
|
|
0xa5703f5ce7a619ecULL, 0x361243a84b55574dULL, 0x25a8e1e5dbb41d6ULL, 0xe6170e21b2910457ULL, // x 2^-14324 ~= 10^-4312
|
|
0xb93897a6cf5d3e61ULL, 0x18746fcc6a190db9ULL, 0x66e849253e5da0c2ULL, 0xea984ec57de69f13ULL, // x 2^-14138 ~= 10^-4256
|
|
0x309043d12ab5b0acULL, 0x79c93cff11f09319ULL, 0xf5a7800f23ef67b8ULL, 0xef3023b80a732d93ULL, // x 2^-13952 ~= 10^-4200
|
|
0xa3baa84c049b52b9ULL, 0xbec466ee1b586342ULL, 0xe85fc7f4edbd3caULL, 0xf3defe25478e074aULL, // x 2^-13766 ~= 10^-4144
|
|
0xd1f4628316b15c7aULL, 0xae16192410d3135eULL, 0x4268a54f70bd28c4ULL, 0xf8a551706112897cULL, // x 2^-13580 ~= 10^-4088
|
|
0x9eb9296cc5749dbaULL, 0x48324e275376dfddULL, 0x5052e9289f0f2333ULL, 0xfd83933eda772c0bULL, // x 2^-13394 ~= 10^-4032
|
|
0xff6aae669a5a0d8aULL, 0x24fed95087b9006eULL, 0x1b02378a405b421ULL, 0x813d1dc1f0c754d6ULL, // x 2^-13207 ~= 10^-3976
|
|
0xf993f18de00dc89bULL, 0x15617da021b89f92ULL, 0xb782db1fc6aba49bULL, 0x83c4e245ed051dc1ULL, // x 2^-13021 ~= 10^-3920
|
|
0xc6a0d64a712172b1ULL, 0x2217669197ac1504ULL, 0x4250be2eeba87d15ULL, 0x86595584116caf3cULL, // x 2^-12835 ~= 10^-3864
|
|
0xbdc0c67a220687bULL, 0x44a66a6d6fd6537bULL, 0x3f1f93f1943ca9b6ULL, 0x88fab70d8b44952aULL, // x 2^-12649 ~= 10^-3808
|
|
0xb60b57164ad28122ULL, 0xde5bd4572c25a830ULL, 0x2c87f18b39478aa2ULL, 0x8ba947b223e5783eULL, // x 2^-12463 ~= 10^-3752
|
|
0xbd59568efdb9bfeeULL, 0x292f8f2c98d7f44cULL, 0x4054f5360249ebd1ULL, 0x8e6549867da7d11aULL, // x 2^-12277 ~= 10^-3696
|
|
0x9fa0721e66791accULL, 0x1789061d717d454cULL, 0xc1187fa0c18adbbeULL, 0x912effea7015b2c5ULL, // x 2^-12091 ~= 10^-3640
|
|
0x982b64e953ac4e27ULL, 0x45efb05f20cf48b3ULL, 0x4b4de34e0ebc3e06ULL, 0x9406af8f83fd6265ULL, // x 2^-11905 ~= 10^-3584
|
|
0xa53f5950eec21dcaULL, 0x3bd8754763bdbca1ULL, 0xac73f0226eff5ea1ULL, 0x96ec9e7f9004839bULL, // x 2^-11719 ~= 10^-3528
|
|
0x320e19f88f1161b7ULL, 0x72e93fe0cce7cfd9ULL, 0x2184706ea46a4c38ULL, 0x99e11423765ec1d0ULL, // x 2^-11533 ~= 10^-3472
|
|
0x491aba48dfc0e36eULL, 0xd3de560ee34022b2ULL, 0xddadb80577b906bdULL, 0x9ce4594a044e0f1bULL, // x 2^-11347 ~= 10^-3416
|
|
0x6789d038697142fULL, 0x7a466a75be73db21ULL, 0x60dbd8aa443b560fULL, 0x9ff6b82ef415d222ULL, // x 2^-11161 ~= 10^-3360
|
|
0x40ed8056af76ac43ULL, 0x8251c601e346456ULL, 0x7401c6f091f87727ULL, 0xa3187c82120dace6ULL, // x 2^-10975 ~= 10^-3304
|
|
0x8c643ee307bffec6ULL, 0xf369a11c6f66c05aULL, 0x4d5b32f713d7f476ULL, 0xa649f36e8583e81aULL, // x 2^-10789 ~= 10^-3248
|
|
0xe32f5e080e36b4beULL, 0x3adf30ff2eb163d4ULL, 0xb4b39dd9ddb8d317ULL, 0xa98b6ba23e2300c7ULL, // x 2^-10603 ~= 10^-3192
|
|
0x6b9d538c192cfb1bULL, 0x1c5af3bd4d2c60b5ULL, 0xec41c1793d69d0d1ULL, 0xacdd3555869159d1ULL, // x 2^-10417 ~= 10^-3136
|
|
0x1adadaeedf7d699cULL, 0x71043692494aa743ULL, 0x3ca5a7540d9d56c9ULL, 0xb03fa252bd05a815ULL, // x 2^-10231 ~= 10^-3080
|
|
0xec3e4e5fc6b03617ULL, 0x47c9b16afe8fdf74ULL, 0x92e1bc1fbb33f18dULL, 0xb3b305fe328e571fULL, // x 2^-10045 ~= 10^-3024
|
|
0x1d42fa68b12bdb23ULL, 0xac46a7b3f2b4b34eULL, 0xa908fd4a88728b6aULL, 0xb737b55e31cdde04ULL, // x 2^-9859 ~= 10^-2968
|
|
0x887dede507f2b618ULL, 0x359a8fa0d014b9a7ULL, 0x7c4c65d15c614c56ULL, 0xbace07232df1c802ULL, // x 2^-9673 ~= 10^-2912
|
|
0x504708e718b4b669ULL, 0xfb4d9440822af452ULL, 0xef84cc99cb4c5d17ULL, 0xbe7653b01aae13e5ULL, // x 2^-9487 ~= 10^-2856
|
|
0x5b7977525516bff0ULL, 0x75913092420c9b35ULL, 0xcfc147ade4843a24ULL, 0xc230f522ee0a7fc2ULL, // x 2^-9301 ~= 10^-2800
|
|
0xad5d11883cc1302bULL, 0x860a754894b9a0bcULL, 0x4668677d5f46c29bULL, 0xc5fe475d4cd35cffULL, // x 2^-9115 ~= 10^-2744
|
|
0x42032f9f971bfc07ULL, 0x9fb576046ab35018ULL, 0x474b3cb1fe1d6a7fULL, 0xc9dea80d6283a34cULL, // x 2^-8929 ~= 10^-2688
|
|
0xd3e7fbb72403a4ddULL, 0x8ca223055819af54ULL, 0xd6ea3b733029ef0bULL, 0xcdd276b6e582284fULL, // x 2^-8743 ~= 10^-2632
|
|
0xba2431d885f2b7d9ULL, 0xc9879fc42869f610ULL, 0x3736730a9e47fef8ULL, 0xd1da14bc489025eaULL, // x 2^-8557 ~= 10^-2576
|
|
0xa11edbcd65dd1844ULL, 0xcb8edae81a295887ULL, 0x3d24e68dc1027246ULL, 0xd5f5e5681a4b9285ULL, // x 2^-8371 ~= 10^-2520
|
|
0xa0f076652f69ad08ULL, 0x9d19c341f5f42f2aULL, 0x742ab8f3864562c8ULL, 0xda264df693ac3e30ULL, // x 2^-8185 ~= 10^-2464
|
|
0x29f760ef115f2824ULL, 0xe0ee47c041c9de0fULL, 0x8c119f3680212413ULL, 0xde6bb59f56672cdaULL, // x 2^-7999 ~= 10^-2408
|
|
0x8b90230b3409c9d3ULL, 0x9d76eef2c1543e65ULL, 0x43190b523f872b9cULL, 0xe2c6859f5c284230ULL, // x 2^-7813 ~= 10^-2352
|
|
0xd44ce9993bc6611eULL, 0x777c9b2dfbede079ULL, 0x2a0969bf88679396ULL, 0xe7372943179706fcULL, // x 2^-7627 ~= 10^-2296
|
|
0xe8c5f5a63fd0fbd1ULL, 0xccc12293f1d7a58ULL, 0x131565be33dda91aULL, 0xebbe0df0c8201ac5ULL, // x 2^-7441 ~= 10^-2240
|
|
0xdb97988dd6b776f4ULL, 0xeb2106f435f7e1d5ULL, 0xccfb1cc2ef1f44deULL, 0xf05ba3330181c750ULL, // x 2^-7255 ~= 10^-2184
|
|
0x2fcbc8df94a1d54bULL, 0x796d0a8120801513ULL, 0x5f8385b3a882ff4cULL, 0xf5105ac3681f2716ULL, // x 2^-7069 ~= 10^-2128
|
|
0xc8700c11071a40f5ULL, 0x23cb9e9df9331fe4ULL, 0x166c15f456786c27ULL, 0xf9dca895a3226409ULL, // x 2^-6883 ~= 10^-2072
|
|
0x9589f4637a50cbb5ULL, 0xea8242b0030e4a51ULL, 0x6c656c3b1f2c9d91ULL, 0xfec102e2857bc1f9ULL, // x 2^-6697 ~= 10^-2016
|
|
0xc4be56c83349136cULL, 0x6188db81ac8e775dULL, 0xfa70b9a2ca60b004ULL, 0x81def119b76837c8ULL, // x 2^-6510 ~= 10^-1960
|
|
0xb85d39054658b363ULL, 0xe7df06bc613fda21ULL, 0x6a22490e8e9ec98bULL, 0x8469e0b6f2b8bd9bULL, // x 2^-6324 ~= 10^-1904
|
|
0x800b1e1349fef248ULL, 0x469cfd2e6ca32a77ULL, 0x69138459b0fa72d4ULL, 0x87018eefb53c6325ULL, // x 2^-6138 ~= 10^-1848
|
|
0xb62593291c768919ULL, 0xc098e6ed0bfbd6f6ULL, 0x6c83ad1260ff20f4ULL, 0x89a63ba4c497b50eULL, // x 2^-5952 ~= 10^-1792
|
|
0x92ee7fce474479d3ULL, 0xe02017175bf040c6ULL, 0xd82ef2860273de8dULL, 0x8c5827f711735b46ULL, // x 2^-5766 ~= 10^-1736
|
|
0x7b0e6375ca8c77d9ULL, 0x5f07e1e10097d47fULL, 0x416d7f9ab1e67580ULL, 0x8f17964dfc3961f2ULL, // x 2^-5580 ~= 10^-1680
|
|
0xc8d869ed561af1ceULL, 0x8b6648e941de779bULL, 0x56700866b85d57feULL, 0x91e4ca5db93dbfecULL, // x 2^-5394 ~= 10^-1624
|
|
0xfc04df783488a410ULL, 0x64d1f15da2c146b1ULL, 0x43cf71d5c4fd7868ULL, 0x94c0092dd4ef9511ULL, // x 2^-5208 ~= 10^-1568
|
|
0xfbaf03b48a965a64ULL, 0x9b6122aa2b72a13cULL, 0x387898a6e22f821bULL, 0x97a9991fd8b3afc0ULL, // x 2^-5022 ~= 10^-1512
|
|
0x50f7f7c13119aaddULL, 0xe415d8b25694250aULL, 0x8f8857e875e7774eULL, 0x9aa1c1f6110c0dd0ULL, // x 2^-4836 ~= 10^-1456
|
|
0xce214403545fd685ULL, 0xf36d1ad779b90e09ULL, 0xa5c58d5f91a476d7ULL, 0x9da8ccda75b341b5ULL, // x 2^-4650 ~= 10^-1400
|
|
0x63ddfb68f971b0c5ULL, 0x2822e38faf74b26eULL, 0x6e1f7f1642ebaac8ULL, 0xa0bf0465b455e921ULL, // x 2^-4464 ~= 10^-1344
|
|
0xf0d00cec9daf7444ULL, 0x6bf3eea6f661a32aULL, 0xfad2be1679765f27ULL, 0xa3e4b4a65e97b76aULL, // x 2^-4278 ~= 10^-1288
|
|
0x463b4ab4bd478f57ULL, 0x6f6583b5b36d5426ULL, 0x800cfab80c4e2eb1ULL, 0xa71a2b283c14fba6ULL, // x 2^-4092 ~= 10^-1232
|
|
0xef163df2fa96e983ULL, 0xa825f32bc8f6b080ULL, 0x850b0c5976b21027ULL, 0xaa5fb6fbc115010bULL, // x 2^-3906 ~= 10^-1176
|
|
0x7db1b3f8e100eb43ULL, 0x2862b1f61d64ddc3ULL, 0x61363686961a41e5ULL, 0xadb5a8bdaaa53051ULL, // x 2^-3720 ~= 10^-1120
|
|
0xfd349cf00ba1e09aULL, 0x6d282fe1b7112879ULL, 0xc6f075c4b81fc72dULL, 0xb11c529ec0d87268ULL, // x 2^-3534 ~= 10^-1064
|
|
0xf7221741b221cf6fULL, 0x3739f15b06ac3c76ULL, 0xb4e4be5b6455ef96ULL, 0xb494086bbfea00c3ULL, // x 2^-3348 ~= 10^-1008
|
|
0xc4e5a2f864c403bbULL, 0x6e33cdcda4367276ULL, 0x24d256c540a50309ULL, 0xb81d1f9569068d8eULL, // x 2^-3162 ~= 10^-952
|
|
0x276e3f0f67f0553bULL, 0xde73d9d5be6974ULL, 0x6d4aa5b50bb5dc0dULL, 0xbbb7ef38bb827f2dULL, // x 2^-2976 ~= 10^-896
|
|
0x51a34a3e674484edULL, 0x1fb6069f8b26f840ULL, 0x925624c0d7d93317ULL, 0xbf64d0275747de70ULL, // x 2^-2790 ~= 10^-840
|
|
0xcc775c8cb6de1dbcULL, 0x6d60d02eac6309eeULL, 0x8e5a2e5116baf191ULL, 0xc3241cf0094a8e70ULL, // x 2^-2604 ~= 10^-784
|
|
0x6023c8fa17d7b105ULL, 0x69cf8f51d2e5e65ULL, 0xb0560c246f90e9e8ULL, 0xc6f631e782d57096ULL, // x 2^-2418 ~= 10^-728
|
|
0x92c17acb2d08d5fdULL, 0xc26ffb8e81532725ULL, 0x2ffff1289a804c5aULL, 0xcadb6d313c8736fcULL, // x 2^-2232 ~= 10^-672
|
|
0x47df78ab9e92897aULL, 0xc02b302a892b81dcULL, 0xa855e127113c887bULL, 0xced42ec885d9dbbeULL, // x 2^-2046 ~= 10^-616
|
|
0xdaf2dec03ec0c322ULL, 0x72db3bc15b0c7014ULL, 0xe00bad8dfc0d8c8eULL, 0xd2e0d889c213fd60ULL, // x 2^-1860 ~= 10^-560
|
|
0xd3a04799e4473ac8ULL, 0xa116409a2fdf1e9eULL, 0xc654d07271e6c39fULL, 0xd701ce3bd387bf47ULL, // x 2^-1674 ~= 10^-504
|
|
0x5c8a5dc65d745a24ULL, 0x2726c48a85389fa7ULL, 0x84c663cee6b86e7cULL, 0xdb377599b6074244ULL, // x 2^-1488 ~= 10^-448
|
|
0xd7ebc61ba77a9e66ULL, 0x8bf77d4bc59b35b1ULL, 0xcb285ceb2fed040dULL, 0xdf82365c497b5453ULL, // x 2^-1302 ~= 10^-392
|
|
0x744ce999bfed213aULL, 0x363b1f2c568dc3e2ULL, 0xfd1b1b2308169b25ULL, 0xe3e27a444d8d98b7ULL, // x 2^-1116 ~= 10^-336
|
|
0x6a40608fe10de7e7ULL, 0xf910f9f648232f14ULL, 0xd1b3400f8f9cff68ULL, 0xe858ad248f5c22c9ULL, // x 2^-930 ~= 10^-280
|
|
0x9bdbfc21260dd1adULL, 0x4609ac5c7899ca36ULL, 0xa4f8bf5635246428ULL, 0xece53cec4a314ebdULL, // x 2^-744 ~= 10^-224
|
|
0xd88181aad19d7454ULL, 0xf80f36174730ca34ULL, 0xdc44e6c3cb279ac1ULL, 0xf18899b1bc3f8ca1ULL, // x 2^-558 ~= 10^-168
|
|
0xee19bfa6947f8e02ULL, 0xaa09501d5954a559ULL, 0x4d4617b5ff4a16d5ULL, 0xf64335bcf065d37dULL, // x 2^-372 ~= 10^-112
|
|
0xebbc75a03b4d60e6ULL, 0xac2e4f162cfad40aULL, 0xeed6e2f0f0d56712ULL, 0xfb158592be068d2eULL, // x 2^-186 ~= 10^-56
|
|
0x0ULL, 0x0ULL, 0x0ULL, 0x8000000000000000ULL, // x 2^1 == 10^0 exactly
|
|
0x0ULL, 0x2000000000000000ULL, 0xbff8f10e7a8921a4ULL, 0x82818f1281ed449fULL, // x 2^187 == 10^56 exactly
|
|
0x51775f71e92bf2f2ULL, 0x74a7ef0198791097ULL, 0x3e2cf6bc604ddb0ULL, 0x850fadc09923329eULL, // x 2^373 ~= 10^112
|
|
0xb204b3d9686f55b5ULL, 0xfb118fc9c217a1d2ULL, 0x90fb44d2f05d0842ULL, 0x87aa9aff79042286ULL, // x 2^559 ~= 10^168
|
|
0xd7924bff833149faULL, 0xbc10c5c5cda97c8dULL, 0x82bd6b70d99aaa6fULL, 0x8a5296ffe33cc92fULL, // x 2^745 ~= 10^224
|
|
0xa67d072d3c7fa14bULL, 0x7ec63730f500b406ULL, 0xdb0b487b6423e1e8ULL, 0x8d07e33455637eb2ULL, // x 2^931 ~= 10^280
|
|
0x546f2a35dc367e47ULL, 0x949063d8a46f0c0eULL, 0x213a4f0aa5e8a7b1ULL, 0x8fcac257558ee4e6ULL, // x 2^1117 ~= 10^336
|
|
0x50611a621c0ee3aeULL, 0x202d895116aa96beULL, 0x1c306f5d1b0b5fdfULL, 0x929b7871de7f22b9ULL, // x 2^1303 ~= 10^392
|
|
0xffa6738a27dcf7a3ULL, 0x3c11d8430d5c4802ULL, 0xa7ea9c8838ce9437ULL, 0x957a4ae1ebf7f3d3ULL, // x 2^1489 ~= 10^448
|
|
0x5bf36c0f40bde99dULL, 0x284ba600ee9f6303ULL, 0xbf1d49cacccd5e68ULL, 0x9867806127ece4f4ULL, // x 2^1675 ~= 10^504
|
|
0xa6e937834ed12e58ULL, 0x73f26eb82f6b8066ULL, 0x655494c5c95d77f2ULL, 0x9b63610bb9243e46ULL, // x 2^1861 ~= 10^560
|
|
0xcd4b7660adc6930ULL, 0x8f868688f8eb79ebULL, 0x2e008393fd60b55ULL, 0x9e6e366733f85561ULL, // x 2^2047 ~= 10^616
|
|
0x3efb9807d86d3c6aULL, 0x84c10a1d22f5adc5ULL, 0x55e04dba4b3bd4ddULL, 0xa1884b69ade24964ULL, // x 2^2233 ~= 10^672
|
|
0xf065089401df33b4ULL, 0x1fc02370c451a755ULL, 0x44b222741eb1ebbfULL, 0xa4b1ec80f47c84adULL, // x 2^2419 ~= 10^728
|
|
0xa62d0da836fce7d5ULL, 0x75933380ceb5048cULL, 0x1cf4a5c3bc09fa6fULL, 0xa7eb6799e8aec999ULL, // x 2^2605 ~= 10^784
|
|
0x7a400df820f096c2ULL, 0x802c4085068d2dd5ULL, 0x3c4a575151b294dcULL, 0xab350c27feb90accULL, // x 2^2791 ~= 10^840
|
|
0xf48b51375df06e86ULL, 0x412fe9e72afd355eULL, 0x870a8d87239d8f35ULL, 0xae8f2b2ce3d5dbe9ULL, // x 2^2977 ~= 10^896
|
|
0x881883521930127cULL, 0xe53fd3fcb5b4df25ULL, 0xdd929f09c3eff5acULL, 0xb1fa17404a30e5e8ULL, // x 2^3163 ~= 10^952
|
|
0x270cd9f1348eb326ULL, 0x37ed82fe9c75fccfULL, 0x1931b583a9431d7eULL, 0xb5762497dbf17a9eULL, // x 2^3349 ~= 10^1008
|
|
0x8919b01a5b3d9ec1ULL, 0x6a7669bdfc6f699cULL, 0xe30db03e0f8dd286ULL, 0xb903a90f561d25e2ULL, // x 2^3535 ~= 10^1064
|
|
0xf0461526b4201aa5ULL, 0x7fe40defe17e55f5ULL, 0x9eb5cb19647508c5ULL, 0xbca2fc30cc19f090ULL, // x 2^3721 ~= 10^1120
|
|
0xd67bf35422978bbfULL, 0xdbb1c416ebe661fULL, 0x24bd4c00042ad125ULL, 0xc054773d149bf26bULL, // x 2^3907 ~= 10^1176
|
|
0xdd093192ef5508d0ULL, 0x6eac3085943ccc0fULL, 0x7ea30dbd7ea479e3ULL, 0xc418753460cdcca9ULL, // x 2^4093 ~= 10^1232
|
|
0xfe4ff20db6d25dc2ULL, 0x5d5d5a9519e34a42ULL, 0x764f4cf916b4deceULL, 0xc7ef52defe87b751ULL, // x 2^4279 ~= 10^1288
|
|
0xd8adfb2e00494c5eULL, 0x72435286baf0e84eULL, 0xbeb7fbdc1cbe8b37ULL, 0xcbd96ed6466cf081ULL, // x 2^4465 ~= 10^1344
|
|
0xe07c1e4384f594afULL, 0xc6b90b8874d5189ULL, 0xdce472c619aa3f63ULL, 0xcfd7298db6cb9672ULL, // x 2^4651 ~= 10^1400
|
|
0x5dd902c68fa448cfULL, 0xea8d16bd9544e48eULL, 0xe47defc14a406e4fULL, 0xd3e8e55c3c1f43d0ULL, // x 2^4837 ~= 10^1456
|
|
0x1223d79357bedca8ULL, 0xeae6c2843752ac35ULL, 0xb7157c60a24a0569ULL, 0xd80f0685a81b2a81ULL, // x 2^5023 ~= 10^1512
|
|
0xcff72d64bc79e429ULL, 0xccc52c236decd778ULL, 0xfb0b98f6bbc4f0cbULL, 0xdc49f3445824e360ULL, // x 2^5209 ~= 10^1568
|
|
0x3731f76b905dffbbULL, 0x5e2bddd7d12a9e42ULL, 0xc6c6c1764e047e15ULL, 0xe09a13d30c2dba62ULL, // x 2^5395 ~= 10^1624
|
|
0xeb58d8ef2ada7c09ULL, 0xbc1a3b726b789947ULL, 0x87e8dcfc09dbc33aULL, 0xe4ffd276eedce658ULL, // x 2^5581 ~= 10^1680
|
|
0x249a5c06dc5d5db7ULL, 0xa8f09440be97bfe6ULL, 0xb1a3642a8da3cf4fULL, 0xe97b9b89d001dab3ULL, // x 2^5767 ~= 10^1736
|
|
0xbf34ff7963028cd9ULL, 0xc20578fa3851488bULL, 0x2d4070f33b21ab7bULL, 0xee0ddd84924ab88cULL, // x 2^5953 ~= 10^1792
|
|
0x2d0511317361d5ULL, 0xd6919e041129a1a7ULL, 0xa2bf0c63a814e04eULL, 0xf2b70909cd3fd35cULL, // x 2^6139 ~= 10^1848
|
|
0x1fa87f28acf1dcd2ULL, 0xe7a0a88981d1a0f9ULL, 0x8f13995cf9c2747ULL, 0xf77790f0a48a45ceULL, // x 2^6325 ~= 10^1904
|
|
0x1b6ff8afbe589b72ULL, 0xc851bb3f9aeb1211ULL, 0x7a37993eb21444faULL, 0xfc4fea4fd590b40aULL, // x 2^6511 ~= 10^1960
|
|
0xef23a4cbc039f0c2ULL, 0xbb3f8498a972f18eULL, 0xb7b1ada9cdeba84dULL, 0x80a046447e3d49f1ULL, // x 2^6698 ~= 10^2016
|
|
0x2cc44f2b602b6231ULL, 0xf231f4b7996b7278ULL, 0xcc6866c5d69b2cbULL, 0x8324f8aa08d7d411ULL, // x 2^6884 ~= 10^2072
|
|
0x822c97629a3a4c69ULL, 0x8a9afcdbc940e6f9ULL, 0x7fe2b4308dcbf1a3ULL, 0x85b64a659077660eULL, // x 2^7070 ~= 10^2128
|
|
0xf66cfcf42d4896b0ULL, 0x1f11852a20ed33c5ULL, 0x1d73ef3eaac3c964ULL, 0x88547abb1d8e5bd9ULL, // x 2^7256 ~= 10^2184
|
|
0x63093ad0caadb06cULL, 0x31be1482014cdaf0ULL, 0x1e34291b1ef566c7ULL, 0x8affca2bd1f88549ULL, // x 2^7442 ~= 10^2240
|
|
0xab50f69048738e9aULL, 0xa126c32ff4882be8ULL, 0x9e9383d73d486881ULL, 0x8db87a7c1e56d873ULL, // x 2^7628 ~= 10^2296
|
|
0xe57e659432b0a73eULL, 0x47a0e15dfc7986b8ULL, 0x9cc5ee51962c011aULL, 0x907eceba168949b3ULL, // x 2^7814 ~= 10^2352
|
|
0x8a6ff950599f8ae5ULL, 0xd1cbbb7d005a76d3ULL, 0x413407cfeeac9743ULL, 0x93530b43e5e2c129ULL, // x 2^8000 ~= 10^2408
|
|
0xd4e6b6e847550caaULL, 0x56a3106227b87706ULL, 0x7efa7d29c44e11b7ULL, 0x963575ce63b6332dULL, // x 2^8186 ~= 10^2464
|
|
0xd835c90b09842263ULL, 0xb69f01a641da2a42ULL, 0x5a848859645d1c6fULL, 0x9926556bc8defe43ULL, // x 2^8372 ~= 10^2520
|
|
0x9b0ae73c204ecd61ULL, 0x794fd5e5a51ac2fULL, 0x51edea897b34601fULL, 0x9c25f29286e9ddb6ULL, // x 2^8558 ~= 10^2576
|
|
0x3130484fb0a61d89ULL, 0x32b7105223a27365ULL, 0xb50008d92529e91fULL, 0x9f3497244186fca4ULL, // x 2^8744 ~= 10^2632
|
|
0x8cd036553f38a1e8ULL, 0x5e997e9f45d7897dULL, 0xf09e780bcc8238d9ULL, 0xa2528e74eaf101fcULL, // x 2^8930 ~= 10^2688
|
|
0xe1f8b43b08b5d0efULL, 0xa0eaf3f62dc1777cULL, 0x3a5828869701a165ULL, 0xa580255203f84b47ULL, // x 2^9116 ~= 10^2744
|
|
0x3c7f62e3154fa708ULL, 0x5786f3927eb15bd5ULL, 0x8b231a70eb5444ceULL, 0xa8bdaa0a0064fa44ULL, // x 2^9302 ~= 10^2800
|
|
0x1ebc24a19cd70a2aULL, 0x843fddd10c7006b8ULL, 0xfa1bde1f473556a4ULL, 0xac0b6c73d065f8ccULL, // x 2^9488 ~= 10^2856
|
|
0x46b6aae34cfd26fcULL, 0xdb7d919b136c68ULL, 0x7730e00421da4d55ULL, 0xaf69bdf68fc6a740ULL, // x 2^9674 ~= 10^2912
|
|
0x1c4edcb83fc4c49dULL, 0x61c0edd56bbcb3e8ULL, 0x7f959cb702329d14ULL, 0xb2d8f1915ba88ca5ULL, // x 2^9860 ~= 10^2968
|
|
0x428c840d247382feULL, 0x9cc3b1569b1325a4ULL, 0x40c3a071220f5567ULL, 0xb6595be34f821493ULL, // x 2^10046 ~= 10^3024
|
|
0xbeb82e734787ec63ULL, 0xbeff12280d5a1676ULL, 0x11c48d02b8326bd3ULL, 0xb9eb5333aa272e9bULL, // x 2^10232 ~= 10^3080
|
|
0x302349e12f45c73fULL, 0xb494bcc96d53e49cULL, 0x566765461bd2f61bULL, 0xbd8f2f7a1ba47d6dULL, // x 2^10418 ~= 10^3136
|
|
0x5704ebf5f16946ceULL, 0x431388ec68ac7a26ULL, 0xb889018e4f6e9a52ULL, 0xc1454a673cb9b1ceULL, // x 2^10604 ~= 10^3192
|
|
0x5a30431166af9b23ULL, 0x132d031fc1d1fec0ULL, 0xf85333a94848659fULL, 0xc50dff6d30c3aefcULL, // x 2^10790 ~= 10^3248
|
|
0x7573d4b3ffe4ba3bULL, 0xf888498a40220657ULL, 0x1a1aeae7cf8a9d3dULL, 0xc8e9abc872eb2bc1ULL, // x 2^10976 ~= 10^3304
|
|
0xb5eaef7441511eb9ULL, 0xc9cf998035a91664ULL, 0x12e29f09d9061609ULL, 0xccd8ae88cf70ad84ULL, // x 2^11162 ~= 10^3360
|
|
0x73aed4f1908f4d01ULL, 0x8c53e7beeca4578fULL, 0xdf7601457ca20b35ULL, 0xd0db689a89f2f9b1ULL, // x 2^11348 ~= 10^3416
|
|
0x5adbd55696e1cdd9ULL, 0x4949d09424b87626ULL, 0xcbdcd02f23cc7690ULL, 0xd4f23ccfb1916df5ULL, // x 2^11534 ~= 10^3472
|
|
0x3f500ccf4ea03593ULL, 0x9b80aac81b50762aULL, 0x44289dd21b589d7aULL, 0xd91d8fe9a3d019ccULL, // x 2^11720 ~= 10^3528
|
|
0x134ca67a679b84aeULL, 0x8909e424a112a3cdULL, 0x95aa118ec1d08317ULL, 0xdd5dc8a2bf27f3f7ULL, // x 2^11906 ~= 10^3584
|
|
0xe89e3cf733d9ff40ULL, 0x14344660a175c36ULL, 0x72c4d2cad73b0a7bULL, 0xe1b34fb846321d04ULL, // x 2^12092 ~= 10^3640
|
|
0x68c0a2c6c02dae9aULL, 0xb11160a6edb5f57ULL, 0xe20a88f1134f906dULL, 0xe61e8ff47461cda9ULL, // x 2^12278 ~= 10^3696
|
|
0x47fa54906741561aULL, 0xaa13acba1e5511f5ULL, 0xc7c91d5c341ed39dULL, 0xea9ff638c54554e1ULL, // x 2^12464 ~= 10^3752
|
|
0x365460ed91271c24ULL, 0xabe33496aff629b4ULL, 0xf659ede2159a45ecULL, 0xef37f1886f4b6690ULL, // x 2^12650 ~= 10^3808
|
|
0xe4cbf4acc7fba37fULL, 0x350e915f7055b1b8ULL, 0x78d946bab954b82fULL, 0xf3e6f313130ef0efULL, // x 2^12836 ~= 10^3864
|
|
0xe692accdfa5bd859ULL, 0xf4d4d3202379829eULL, 0xc9b1474d8f89c269ULL, 0xf8ad6e3fa030bd15ULL, // x 2^13022 ~= 10^3920
|
|
0xeca0018ea3b8d1b4ULL, 0xe878edb67072c26dULL, 0x6b1d2745340e7b14ULL, 0xfd8bd8b770cb469eULL, // x 2^13208 ~= 10^3976
|
|
0xce5fec949ab87cf7ULL, 0x151dcd7a53488c3ULL, 0xf22e502fcdd4bca2ULL, 0x81415538ce493bd5ULL, // x 2^13395 ~= 10^4032
|
|
0x5e1731fbff8c032eULL, 0xe752f53c2f8fa6c1ULL, 0x7c1735fc3b813c8cULL, 0x83c92edf425b292dULL, // x 2^13581 ~= 10^4088
|
|
0xb552102ea83f47e6ULL, 0xdf0fd2002ff6b3a3ULL, 0x367500a8e9a178fULL, 0x865db7a9ccd2839eULL, // x 2^13767 ~= 10^4144
|
|
0x76507bafe00ec873ULL, 0x71b256ecd954434cULL, 0xc9ac50475e25293aULL, 0x88ff2f2bade74531ULL, // x 2^13953 ~= 10^4200
|
|
0x5e2075ba289a360bULL, 0xac376f28b45e5accULL, 0x879b2e5f6ee8b1cULL, 0x8badd636cc48b341ULL, // x 2^14139 ~= 10^4256
|
|
0xab87d85e6311e801ULL, 0xb7f786d14d58173dULL, 0x2f33c652bd12fab7ULL, 0x8e69eee1f23f2be5ULL, // x 2^14325 ~= 10^4312
|
|
0x7fed9b68d77255beULL, 0x35dc241819de7182ULL, 0xad6a6308a8e8b557ULL, 0x9133bc8f2a130fe5ULL, // x 2^14511 ~= 10^4368
|
|
0x728ae72899d4bd12ULL, 0xe5413d9414142a55ULL, 0x9dbaa465efe141a0ULL, 0x940b83f23a55842aULL, // x 2^14697 ~= 10^4424
|
|
0xf7740145246fb8fULL, 0x186ef2c39acb4103ULL, 0x888c9ab2fc5b3437ULL, 0x96f18b1742aad751ULL, // x 2^14883 ~= 10^4480
|
|
0xd8bb0fba2183c6efULL, 0xbf66d66cc34f0197ULL, 0xba00864671d1053fULL, 0x99e6196979b978f1ULL, // x 2^15069 ~= 10^4536
|
|
0x9b71ed2ceb790e49ULL, 0x6faac32d59cc1f5dULL, 0x61d59d402aae4feaULL, 0x9ce977ba0ce3a0bdULL, // x 2^15255 ~= 10^4592
|
|
0xa0aa6d5e63991cfbULL, 0x19482fa0ac45669cULL, 0x803c1cd864033781ULL, 0x9ffbf04722750449ULL, // x 2^15441 ~= 10^4648
|
|
0x95a9949e04b8bff3ULL, 0x900aa3c2f02ac9d4ULL, 0xa28a151725a55e10ULL, 0xa31dcec2fef14b30ULL, // x 2^15627 ~= 10^4704
|
|
0x3acf9496dade0ce9ULL, 0xbd8ecf923d23bec0ULL, 0x5b8452af2302fe13ULL, 0xa64f605b4e3352cdULL, // x 2^15813 ~= 10^4760
|
|
0x6204425d2b58e822ULL, 0xdee162a8a1248550ULL, 0x82b84cabc828bf93ULL, 0xa990f3c09110c544ULL, // x 2^15999 ~= 10^4816
|
|
0x91a2658e0639f32ULL, 0x66fa2184cee0b861ULL, 0x8d29dd5122e4278dULL, 0xace2d92db0390b59ULL, // x 2^16185 ~= 10^4872
|
|
0x80acda113324758aULL, 0xded179c26d9ab828ULL, 0x58f8fde02c03a6c6ULL, 0xb045626fb50a35e7ULL, // x 2^16371 ~= 10^4928
|
|
0x7128a8aad239ce8fULL, 0x8737bd250290cd5bULL, 0xd950102978dbd0ffULL, 0xb3b8e2eda91a232dULL, // x 2^16557 ~= 10^4984
|
|
};
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_BINARY32_SUPPORT
|
|
// Given a power `p`, this returns three values:
|
|
// * 64-bit fractions `lower` and `upper`
|
|
// * integer `exponent`
|
|
//
|
|
// The returned values satisty the following:
|
|
// ```
|
|
// lower * 2^exponent <= 10^p <= upper * 2^exponent
|
|
// ```
|
|
//
|
|
// Note: Max(*upper - *lower) = 3
|
|
static void intervalContainingPowerOf10_Binary32(int p, uint64_t *lower, uint64_t *upper, int *exponent) {
|
|
if (p >= 0) {
|
|
uint64_t base = powersOf10_Exact128[p * 2 + 1];
|
|
*lower = base;
|
|
if (p < 28) {
|
|
*upper = base;
|
|
} else {
|
|
*upper = base + 1;
|
|
}
|
|
} else {
|
|
uint64_t base = powersOf10_negativeBinary32[p + 40];
|
|
*lower = base;
|
|
*upper = base + 1;
|
|
}
|
|
*exponent = binaryExponentFor10ToThe(p);
|
|
}
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_BINARY64_SUPPORT
|
|
// Given a power `p`, this returns three values:
|
|
// * 128-bit fractions `lower` and `upper`
|
|
// * integer `exponent`
|
|
//
|
|
// Note: This function takes on average about 10% of the total runtime
|
|
// for formatting a double, as the general case here requires several
|
|
// multiplications to accurately reconstruct the lower and upper
|
|
// bounds.
|
|
//
|
|
// The returned values satisty the following:
|
|
// ```
|
|
// lower * 2^exponent <= 10^p <= upper * 2^exponent
|
|
// ```
|
|
//
|
|
// Note: Max(*upper - *lower) = 3
|
|
static void intervalContainingPowerOf10_Binary64(int p, swift_uint128_t *lower, swift_uint128_t *upper, int *exponent) {
|
|
if (p >= 0 && p <= 55) {
|
|
// Use one 64-bit exact value
|
|
swift_uint128_t exact;
|
|
initialize128WithHighLow64(exact,
|
|
powersOf10_Exact128[p * 2 + 1],
|
|
powersOf10_Exact128[p * 2]);
|
|
*upper = exact;
|
|
*lower = exact;
|
|
*exponent = binaryExponentFor10ToThe(p);
|
|
return;
|
|
}
|
|
|
|
// Multiply a 128-bit approximate value with a 64-bit exact value
|
|
int index = p + 400;
|
|
// Copy a pair of uint64_t into a swift_uint128_t
|
|
int mainPower = index / 28;
|
|
const uint64_t *base_p = powersOf10_Binary64 + mainPower * 2;
|
|
swift_uint128_t base;
|
|
initialize128WithHighLow64(base, base_p[1], base_p[0]);
|
|
int extraPower = index - mainPower * 28;
|
|
int baseExponent = binaryExponentFor10ToThe(p - extraPower);
|
|
|
|
int e = baseExponent;
|
|
if (extraPower == 0) {
|
|
// We're using a tightly-rounded lower bound, so +1 gives a tightly-rounded upper bound
|
|
*lower = base;
|
|
#if HAVE_UINT128_T
|
|
*upper = *lower + 1;
|
|
#else
|
|
*upper = *lower;
|
|
upper->low += 1;
|
|
#endif
|
|
} else {
|
|
// We need to multiply two values to get a lower bound
|
|
int64_t extra = powersOf10_Exact128[extraPower * 2 + 1];
|
|
e += binaryExponentFor10ToThe(extraPower);
|
|
*lower = multiply128x64RoundingDown(base, extra);
|
|
// +2 is enough to get an upper bound
|
|
// (Verified through exhaustive testing.)
|
|
#if HAVE_UINT128_T
|
|
*upper = *lower + 2;
|
|
#else
|
|
*upper = *lower;
|
|
upper->low += 2;
|
|
#endif
|
|
}
|
|
*exponent = e;
|
|
}
|
|
#endif
|
|
|
|
#if SWIFT_DTOA_FLOAT80_SUPPORT || SWIFT_DTOA_BINARY128_SUPPORT
|
|
// As above, but returning 256-bit fractions suitable for
|
|
// converting float80/binary128.
|
|
static void intervalContainingPowerOf10_Binary128(int p, swift_uint256_t *lower, swift_uint256_t *upper, int *exponent) {
|
|
if (p >= 0 && p <= 55) {
|
|
// We have an exact form, return a zero-width interval
|
|
// and avoid the multiplication.
|
|
uint64_t exactLow = powersOf10_Exact128[p * 2];
|
|
uint64_t exactHigh = powersOf10_Exact128[p * 2 + 1];
|
|
initialize256WithHighMidLow64(*lower, exactHigh, exactLow, 0, 0);
|
|
*upper = *lower;
|
|
*exponent = binaryExponentFor10ToThe(p);
|
|
return;
|
|
}
|
|
|
|
int index = p + 4984;
|
|
const uint64_t *base_p = powersOf10_Binary128 + (index / 56) * 4;
|
|
// The values in the table are always tightly rounded down, so we use that
|
|
// directly as a lower bound.
|
|
initialize256WithHighMidLow64(*lower, base_p[3], base_p[2], base_p[1], base_p[0]);
|
|
int extraPower = index % 56;
|
|
int e = binaryExponentFor10ToThe(p - extraPower);
|
|
|
|
if (extraPower > 0) {
|
|
swift_uint128_t extra;
|
|
initialize128WithHighLow64(extra,
|
|
powersOf10_Exact128[extraPower * 2 + 1],
|
|
powersOf10_Exact128[extraPower * 2]);
|
|
multiply256x128RoundingDown(lower, extra);
|
|
e += binaryExponentFor10ToThe(extraPower);
|
|
}
|
|
// We could compute upper similar to lower using rounding-up
|
|
// multiplications, but this is faster.
|
|
// Since there's just one multiplication, we can prove that 2 is
|
|
// enough to get a true upper bound, and we've verified (through
|
|
// exhaustive testing) that the least-significant component never
|
|
// wraps.
|
|
*upper = *lower;
|
|
#if HAVE_UINT128_T
|
|
upper->low += 2;
|
|
#else
|
|
upper->elt[0] += 2;
|
|
#endif
|
|
|
|
*exponent = e;
|
|
}
|
|
#endif
|