mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Over the past day or so I have been thinking about how we are going to need to manage verification of semantic ARC semantics in the pass pipeline. Specifically the Eliminator pass really needs to be a function pass to ensure that we can transparently put it at any stage of the optimization pipeline. This means that just having a flag on the SILVerifier that states whether or not ownership is enabled is not sufficient for our purposes. Instead, while staging in the SIL ownership model, we need a bit on all SILFunctions to state whether the function has been run through the ownership model eliminator so that the verifier can ensure that we are in a world with "SIL ownership" or in a world without "SIL ownership", never in a world with only some "SIL ownership" instructions. We embed this distinction in SIL by creating the concept of a function with "qualified ownership" and a function with "unqualified ownership". Define a function with "qualified ownership" as a function that contains no instructions with "unqualified ownership" (i.e. unqualified load) and a function with "unqualified ownership" as a function containing such no "ownership qualified" instructions (i.e. load [copy]) and at least 1 unqualified ownership instruction. This commit embeds this distinction into SILFunction in a manner that is transparently ignored when compiling with SIL ownership disabled. This is done by representing qualified or unqualified ownership via an optional Boolean on SILFunction. If the Boolean is None, then SILOwnership is not enabled and the verifier/passes can work as appropriate. If the Boolean is not None, then it states whether or not the function has been run through the Ownership Model Eliminator and thus what invariants the verifier should enforce. How does this concept flow through the compilation pipeline for functions in a given module? When SIL Ownership is enabled, all SILFunctions that are produced in a given module start with "qualified ownership" allowing them to contain SIL ownership instructions. After the Ownership Model eliminator has run, the Ownership Model sets the "unqualified" ownership flag on the SILFunction stating that no more ownership qualified instructions are allowed to be seen in the given function. But what about functions that are parsed or are deserialized from another module? Luckily, given the manner in which we have categories our functions, we can categorize functions directly without needing to add anything to the parser or to the deserializer. This is done by enforcing that it is illegal to have a function with qualified ownership and unqualified ownership instructions and asserting that functions without either are considered qualified. rdar://28685236
562 lines
19 KiB
C++
562 lines
19 KiB
C++
//===--- SILFunction.cpp - Defines the SILFunction data structure ---------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILBasicBlock.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/CFG.h"
|
|
#include "swift/AST/ArchetypeBuilder.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
SILSpecializeAttr::SILSpecializeAttr(ArrayRef<Substitution> subs)
|
|
: numSubs(subs.size()) {
|
|
std::copy(subs.begin(), subs.end(), getTrailingObjects<Substitution>());
|
|
}
|
|
|
|
SILSpecializeAttr *SILSpecializeAttr::create(SILModule &M,
|
|
ArrayRef<Substitution> subs) {
|
|
unsigned size =
|
|
sizeof(SILSpecializeAttr) + (subs.size() * sizeof(Substitution));
|
|
void *buf = M.allocate(size, alignof(SILSpecializeAttr));
|
|
return ::new (buf) SILSpecializeAttr(subs);
|
|
}
|
|
|
|
SILFunction *SILFunction::create(SILModule &M, SILLinkage linkage,
|
|
StringRef name,
|
|
CanSILFunctionType loweredType,
|
|
GenericEnvironment *genericEnv,
|
|
Optional<SILLocation> loc,
|
|
IsBare_t isBareSILFunction,
|
|
IsTransparent_t isTrans,
|
|
IsFragile_t isFragile,
|
|
IsThunk_t isThunk,
|
|
ClassVisibility_t classVisibility,
|
|
Inline_t inlineStrategy, EffectsKind E,
|
|
SILFunction *insertBefore,
|
|
const SILDebugScope *debugScope,
|
|
DeclContext *DC) {
|
|
// Get a StringMapEntry for the function. As a sop to error cases,
|
|
// allow the name to have an empty string.
|
|
llvm::StringMapEntry<SILFunction*> *entry = nullptr;
|
|
if (!name.empty()) {
|
|
entry = &*M.FunctionTable.insert(std::make_pair(name, nullptr)).first;
|
|
assert(!entry->getValue() && "function already exists");
|
|
name = entry->getKey();
|
|
}
|
|
|
|
auto fn = new (M) SILFunction(M, linkage, name,
|
|
loweredType, genericEnv, loc,
|
|
isBareSILFunction, isTrans, isFragile, isThunk,
|
|
classVisibility, inlineStrategy, E,
|
|
insertBefore, debugScope, DC);
|
|
|
|
if (entry) entry->setValue(fn);
|
|
return fn;
|
|
}
|
|
|
|
SILFunction::SILFunction(SILModule &Module, SILLinkage Linkage, StringRef Name,
|
|
CanSILFunctionType LoweredType,
|
|
GenericEnvironment *genericEnv,
|
|
Optional<SILLocation> Loc, IsBare_t isBareSILFunction,
|
|
IsTransparent_t isTrans, IsFragile_t isFragile,
|
|
IsThunk_t isThunk, ClassVisibility_t classVisibility,
|
|
Inline_t inlineStrategy, EffectsKind E,
|
|
SILFunction *InsertBefore,
|
|
const SILDebugScope *DebugScope, DeclContext *DC)
|
|
: Module(Module), Name(Name), LoweredType(LoweredType),
|
|
GenericEnv(genericEnv), DeclCtx(DC), DebugScope(DebugScope),
|
|
Bare(isBareSILFunction), Transparent(isTrans), Fragile(isFragile),
|
|
Thunk(isThunk), ClassVisibility(classVisibility), GlobalInitFlag(false),
|
|
InlineStrategy(inlineStrategy), Linkage(unsigned(Linkage)),
|
|
KeepAsPublic(false), EffectsKindAttr(E), HasQualifiedOwnership() {
|
|
if (InsertBefore)
|
|
Module.functions.insert(SILModule::iterator(InsertBefore), this);
|
|
else
|
|
Module.functions.push_back(this);
|
|
|
|
Module.removeFromZombieList(Name);
|
|
|
|
// Set our BB list to have this function as its parent. This enables us to
|
|
// splice efficiently basic blocks in between functions.
|
|
BlockList.Parent = this;
|
|
|
|
// If SILOwnership is not enabled, HasQualifiedOwnership is None. If
|
|
// SILOwnership is enabled, we always initialize functions to have
|
|
// SILOwnership initially.
|
|
if (Module.getOptions().EnableSILOwnership)
|
|
HasQualifiedOwnership = true;
|
|
}
|
|
|
|
SILFunction::~SILFunction() {
|
|
// If the function is recursive, a function_ref inst inside of the function
|
|
// will give the function a non-zero ref count triggering the assertion. Thus
|
|
// we drop all instruction references before we erase.
|
|
// We also need to drop all references if instructions are allocated using
|
|
// an allocator that may recycle freed memory.
|
|
dropAllReferences();
|
|
|
|
auto &M = getModule();
|
|
for (auto &BB : *this) {
|
|
for (auto I = BB.begin(), E = BB.end(); I != E;) {
|
|
auto Inst = &*I;
|
|
++I;
|
|
SILInstruction::destroy(Inst);
|
|
// TODO: It is only safe to directly deallocate an
|
|
// instruction if this BB is being removed in scope
|
|
// of destructing a SILFunction.
|
|
M.deallocateInst(Inst);
|
|
}
|
|
BB.InstList.clearAndLeakNodesUnsafely();
|
|
}
|
|
|
|
assert(RefCount == 0 &&
|
|
"Function cannot be deleted while function_ref's still exist");
|
|
}
|
|
|
|
void SILFunction::setDeclContext(Decl *D) {
|
|
if (!D)
|
|
return;
|
|
switch (D->getKind()) {
|
|
// These four dual-inherit from DeclContext.
|
|
case DeclKind::Func: DeclCtx = cast<FuncDecl>(D); break;
|
|
case DeclKind::Constructor: DeclCtx = cast<ConstructorDecl>(D); break;
|
|
case DeclKind::Extension: DeclCtx = cast<ExtensionDecl>(D); break;
|
|
case DeclKind::Destructor: DeclCtx = cast<DestructorDecl>(D); break;
|
|
default:
|
|
DeclCtx = D->getDeclContext();
|
|
}
|
|
assert(DeclCtx);
|
|
}
|
|
|
|
void SILFunction::setDeclContext(Expr *E) {
|
|
DeclCtx = dyn_cast_or_null<AbstractClosureExpr>(E);
|
|
}
|
|
|
|
bool SILFunction::hasForeignBody() const {
|
|
if (!hasClangNode()) return false;
|
|
return SILDeclRef::isClangGenerated(getClangNode());
|
|
}
|
|
|
|
void SILFunction::numberValues(llvm::DenseMap<const ValueBase*,
|
|
unsigned> &ValueToNumberMap) const {
|
|
unsigned idx = 0;
|
|
for (auto &BB : *this) {
|
|
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I)
|
|
ValueToNumberMap[*I] = idx++;
|
|
|
|
for (auto &I : BB)
|
|
ValueToNumberMap[&I] = idx++;
|
|
}
|
|
}
|
|
|
|
|
|
ASTContext &SILFunction::getASTContext() const {
|
|
return getModule().getASTContext();
|
|
}
|
|
|
|
bool SILFunction::shouldOptimize() const {
|
|
if (Module.getStage() == SILStage::Raw)
|
|
return true;
|
|
return !hasSemanticsAttr("optimize.sil.never");
|
|
}
|
|
|
|
Type SILFunction::mapTypeIntoContext(Type type) const {
|
|
return ArchetypeBuilder::mapTypeIntoContext(getModule().getSwiftModule(),
|
|
getGenericEnvironment(),
|
|
type);
|
|
}
|
|
|
|
namespace {
|
|
template<typename SubstFn>
|
|
struct SubstDependentSILType
|
|
: CanTypeVisitor<SubstDependentSILType<SubstFn>, CanType>
|
|
{
|
|
SILModule &M;
|
|
SubstFn Subst;
|
|
|
|
SubstDependentSILType(SILModule &M, SubstFn Subst)
|
|
: M(M), Subst(std::move(Subst))
|
|
{}
|
|
|
|
using super = CanTypeVisitor<SubstDependentSILType<SubstFn>, CanType>;
|
|
using super::visit;
|
|
|
|
CanType visitDependentMemberType(CanDependentMemberType t) {
|
|
// If a dependent member type appears in lowered position, we need to lower
|
|
// its context substitution against the associated type's abstraction
|
|
// pattern.
|
|
CanType astTy = Subst(t);
|
|
auto origTy = AbstractionPattern::getOpaque();
|
|
|
|
return M.Types.getLoweredType(origTy, astTy)
|
|
.getSwiftRValueType();
|
|
}
|
|
|
|
CanType visitTupleType(CanTupleType t) {
|
|
// Dependent members can appear in lowered position inside tuples.
|
|
|
|
SmallVector<TupleTypeElt, 4> elements;
|
|
|
|
for (auto &elt : t->getElements())
|
|
elements.push_back(elt.getWithType(visit(CanType(elt.getType()))));
|
|
|
|
return TupleType::get(elements, t->getASTContext())
|
|
->getCanonicalType();
|
|
}
|
|
|
|
CanType visitSILFunctionType(CanSILFunctionType t) {
|
|
// Dependent members can appear in lowered position inside SIL functions.
|
|
|
|
SmallVector<SILParameterInfo, 4> params;
|
|
for (auto ¶m : t->getParameters())
|
|
params.push_back(param.map([&](CanType pt) -> CanType {
|
|
return visit(pt);
|
|
}));
|
|
|
|
SmallVector<SILResultInfo, 4> results;
|
|
for (auto &result : t->getAllResults())
|
|
results.push_back(result.map([&](CanType pt) -> CanType {
|
|
return visit(pt);
|
|
}));
|
|
|
|
Optional<SILResultInfo> errorResult;
|
|
if (t->hasErrorResult()) {
|
|
errorResult = t->getErrorResult().map([&](CanType elt) -> CanType {
|
|
return visit(elt);
|
|
});
|
|
}
|
|
|
|
return SILFunctionType::get(t->getGenericSignature(),
|
|
t->getExtInfo(),
|
|
t->getCalleeConvention(),
|
|
params, results, errorResult,
|
|
t->getASTContext());
|
|
}
|
|
|
|
CanType visitType(CanType t) {
|
|
// Other types get substituted into context normally.
|
|
return Subst(t);
|
|
}
|
|
};
|
|
|
|
template<typename SubstFn>
|
|
SILType doSubstDependentSILType(SILModule &M,
|
|
SubstFn Subst,
|
|
SILType t) {
|
|
CanType result = SubstDependentSILType<SubstFn>(M, std::move(Subst))
|
|
.visit(t.getSwiftRValueType());
|
|
return SILType::getPrimitiveType(result, t.getCategory());
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILType SILFunction::mapTypeIntoContext(SILType type) const {
|
|
return doSubstDependentSILType(getModule(),
|
|
[&](CanType t) { return mapTypeIntoContext(t)->getCanonicalType(); },
|
|
type);
|
|
}
|
|
|
|
SILType ArchetypeBuilder::substDependentType(SILModule &M, SILType type) {
|
|
return doSubstDependentSILType(M,
|
|
[&](CanType t) { return substDependentType(t)->getCanonicalType(); },
|
|
type);
|
|
}
|
|
|
|
Type SILFunction::mapTypeOutOfContext(Type type) const {
|
|
return ArchetypeBuilder::mapTypeOutOfContext(getModule().getSwiftModule(),
|
|
getGenericEnvironment(),
|
|
type);
|
|
}
|
|
|
|
bool SILFunction::isNoReturnFunction() const {
|
|
return SILType::getPrimitiveObjectType(getLoweredFunctionType())
|
|
.isNoReturnFunction();
|
|
}
|
|
|
|
SILBasicBlock *SILFunction::createBasicBlock() {
|
|
return new (getModule()) SILBasicBlock(this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// View CFG Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
|
|
static llvm::cl::opt<unsigned>
|
|
MaxColumns("view-cfg-max-columns", llvm::cl::init(80),
|
|
llvm::cl::desc("Maximum width of a printed node"));
|
|
|
|
namespace {
|
|
enum class LongLineBehavior { None, Truncate, Wrap };
|
|
} // end anonymous namespace
|
|
static llvm::cl::opt<LongLineBehavior>
|
|
LLBehavior("view-cfg-long-line-behavior",
|
|
llvm::cl::init(LongLineBehavior::Truncate),
|
|
llvm::cl::desc("Behavior when line width is greater than the "
|
|
"value provided my -view-cfg-max-columns "
|
|
"option"),
|
|
llvm::cl::values(
|
|
clEnumValN(LongLineBehavior::None, "none", "Print everything"),
|
|
clEnumValN(LongLineBehavior::Truncate, "truncate",
|
|
"Truncate long lines"),
|
|
clEnumValN(LongLineBehavior::Wrap, "wrap", "Wrap long lines"),
|
|
clEnumValEnd));
|
|
|
|
static llvm::cl::opt<bool>
|
|
RemoveUseListComments("view-cfg-remove-use-list-comments",
|
|
llvm::cl::init(false),
|
|
llvm::cl::desc("Should use list comments be removed"));
|
|
|
|
template <typename InstTy, typename CaseValueTy>
|
|
inline CaseValueTy getCaseValueForBB(const InstTy *Inst,
|
|
const SILBasicBlock *BB) {
|
|
for (unsigned i = 0, e = Inst->getNumCases(); i != e; ++i) {
|
|
auto P = Inst->getCase(i);
|
|
if (P.second != BB)
|
|
continue;
|
|
return P.first;
|
|
}
|
|
llvm_unreachable("Error! should never pass in BB that is not a successor");
|
|
}
|
|
|
|
namespace llvm {
|
|
template <>
|
|
struct DOTGraphTraits<SILFunction *> : public DefaultDOTGraphTraits {
|
|
|
|
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
static std::string getGraphName(const SILFunction *F) {
|
|
return "CFG for '" + F->getName().str() + "' function";
|
|
}
|
|
|
|
static std::string getSimpleNodeLabel(const SILBasicBlock *Node,
|
|
const SILFunction *F) {
|
|
std::string OutStr;
|
|
raw_string_ostream OSS(OutStr);
|
|
const_cast<SILBasicBlock *>(Node)->printAsOperand(OSS, false);
|
|
return OSS.str();
|
|
}
|
|
|
|
static std::string getCompleteNodeLabel(const SILBasicBlock *Node,
|
|
const SILFunction *F) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
|
|
OS << *Node;
|
|
std::string OutStr = OS.str();
|
|
if (OutStr[0] == '\n')
|
|
OutStr.erase(OutStr.begin());
|
|
|
|
// Process string output to make it nicer...
|
|
unsigned ColNum = 0;
|
|
unsigned LastSpace = 0;
|
|
for (unsigned i = 0; i != OutStr.length(); ++i) {
|
|
if (OutStr[i] == '\n') { // Left justify
|
|
OutStr[i] = '\\';
|
|
OutStr.insert(OutStr.begin() + i + 1, 'l');
|
|
ColNum = 0;
|
|
LastSpace = 0;
|
|
} else if (RemoveUseListComments && OutStr[i] == '/' &&
|
|
i != (OutStr.size() - 1) && OutStr[i + 1] == '/') {
|
|
unsigned Idx = OutStr.find('\n', i + 1); // Find end of line
|
|
OutStr.erase(OutStr.begin() + i, OutStr.begin() + Idx);
|
|
--i;
|
|
|
|
} else if (ColNum == MaxColumns) { // Handle long lines.
|
|
|
|
if (LLBehavior == LongLineBehavior::Wrap) {
|
|
if (!LastSpace)
|
|
LastSpace = i;
|
|
OutStr.insert(LastSpace, "\\l...");
|
|
ColNum = i - LastSpace;
|
|
LastSpace = 0;
|
|
i += 3; // The loop will advance 'i' again.
|
|
} else if (LLBehavior == LongLineBehavior::Truncate) {
|
|
unsigned Idx = OutStr.find('\n', i + 1); // Find end of line
|
|
OutStr.erase(OutStr.begin() + i, OutStr.begin() + Idx);
|
|
--i;
|
|
}
|
|
|
|
// Else keep trying to find a space.
|
|
} else
|
|
++ColNum;
|
|
if (OutStr[i] == ' ')
|
|
LastSpace = i;
|
|
}
|
|
return OutStr;
|
|
}
|
|
|
|
std::string getNodeLabel(const SILBasicBlock *Node,
|
|
const SILFunction *Graph) {
|
|
if (isSimple())
|
|
return getSimpleNodeLabel(Node, Graph);
|
|
else
|
|
return getCompleteNodeLabel(Node, Graph);
|
|
}
|
|
|
|
static std::string getEdgeSourceLabel(const SILBasicBlock *Node,
|
|
SILBasicBlock::const_succ_iterator I) {
|
|
SILBasicBlock *Succ = I->getBB();
|
|
const TermInst *Term = Node->getTerminator();
|
|
|
|
// Label source of conditional branches with "T" or "F"
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(Term))
|
|
return (Succ == CBI->getTrueBB()) ? "T" : "F";
|
|
|
|
// Label source of switch edges with the associated value.
|
|
if (auto *SI = dyn_cast<SwitchValueInst>(Term)) {
|
|
if (SI->hasDefault() && SI->getDefaultBB() == Succ)
|
|
return "def";
|
|
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
|
|
SILValue I = getCaseValueForBB<SwitchValueInst, SILValue>(SI, Succ);
|
|
OS << I; // TODO: or should we output the literal value of I?
|
|
return OS.str();
|
|
}
|
|
|
|
if (auto *SEIB = dyn_cast<SwitchEnumInst>(Term)) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
|
|
EnumElementDecl *E =
|
|
getCaseValueForBB<SwitchEnumInst, EnumElementDecl *>(SEIB, Succ);
|
|
OS << E->getFullName();
|
|
return OS.str();
|
|
}
|
|
|
|
if (auto *SEIB = dyn_cast<SwitchEnumAddrInst>(Term)) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
|
|
EnumElementDecl *E =
|
|
getCaseValueForBB<SwitchEnumAddrInst, EnumElementDecl *>(SEIB, Succ);
|
|
OS << E->getFullName();
|
|
return OS.str();
|
|
}
|
|
|
|
if (auto *DMBI = dyn_cast<DynamicMethodBranchInst>(Term))
|
|
return (Succ == DMBI->getHasMethodBB()) ? "T" : "F";
|
|
|
|
if (auto *CCBI = dyn_cast<CheckedCastBranchInst>(Term))
|
|
return (Succ == CCBI->getSuccessBB()) ? "T" : "F";
|
|
|
|
if (auto *CCBI = dyn_cast<CheckedCastAddrBranchInst>(Term))
|
|
return (Succ == CCBI->getSuccessBB()) ? "T" : "F";
|
|
|
|
return "";
|
|
}
|
|
};
|
|
} // end llvm namespace
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
static llvm::cl::opt<std::string>
|
|
TargetFunction("view-cfg-only-for-function", llvm::cl::init(""),
|
|
llvm::cl::desc("Only print out the cfg for this function"));
|
|
#endif
|
|
|
|
|
|
void SILFunction::viewCFG() const {
|
|
/// When asserts are disabled, this should be a NoOp.
|
|
#ifndef NDEBUG
|
|
// If we have a target function, only print that function out.
|
|
if (!TargetFunction.empty() && !(getName().str() == TargetFunction))
|
|
return;
|
|
|
|
ViewGraph(const_cast<SILFunction *>(this), "cfg" + getName().str());
|
|
#endif
|
|
}
|
|
|
|
/// Returns true if this function has either a self metadata argument or
|
|
/// object from which Self metadata may be obtained.
|
|
bool SILFunction::hasSelfMetadataParam() const {
|
|
auto paramTypes = getLoweredFunctionType()->getParameterSILTypes();
|
|
if (paramTypes.empty())
|
|
return false;
|
|
|
|
auto silTy = paramTypes.back();
|
|
if (!silTy.isClassOrClassMetatype())
|
|
return false;
|
|
|
|
auto metaTy = dyn_cast<MetatypeType>(silTy.getSwiftRValueType());
|
|
(void)metaTy;
|
|
assert(!metaTy || metaTy->getRepresentation() != MetatypeRepresentation::Thin
|
|
&& "Class metatypes are never thin.");
|
|
return true;
|
|
}
|
|
|
|
bool SILFunction::hasName(const char *Name) const {
|
|
return getName() == Name;
|
|
}
|
|
|
|
/// Returns true if this function can be referenced from a fragile function
|
|
/// body.
|
|
bool SILFunction::hasValidLinkageForFragileRef() const {
|
|
// Fragile functions can reference 'static inline' functions imported
|
|
// from C.
|
|
if (hasForeignBody())
|
|
return true;
|
|
|
|
// If we can inline it, we can reference it.
|
|
if (hasValidLinkageForFragileInline())
|
|
return true;
|
|
|
|
// Otherwise, only public functions can be referenced.
|
|
return hasPublicVisibility(getLinkage());
|
|
}
|
|
|
|
/// Helper method which returns true if the linkage of the SILFunction
|
|
/// indicates that the objects definition might be required outside the
|
|
/// current SILModule.
|
|
bool
|
|
SILFunction::isPossiblyUsedExternally() const {
|
|
return swift::isPossiblyUsedExternally(getLinkage(),
|
|
getModule().isWholeModule());
|
|
}
|
|
|
|
bool SILFunction::isExternallyUsedSymbol() const {
|
|
return swift::isPossiblyUsedExternally(getEffectiveSymbolLinkage(),
|
|
getModule().isWholeModule());
|
|
}
|
|
|
|
void SILFunction::convertToDeclaration() {
|
|
assert(isDefinition() && "Can only convert definitions to declarations");
|
|
dropAllReferences();
|
|
getBlocks().clear();
|
|
}
|
|
|
|
ArrayRef<Substitution> SILFunction::getForwardingSubstitutions() {
|
|
if (ForwardingSubs)
|
|
return *ForwardingSubs;
|
|
|
|
auto *env = getGenericEnvironment();
|
|
if (!env)
|
|
return {};
|
|
|
|
auto sig = getLoweredFunctionType()->getGenericSignature();
|
|
auto *M = getModule().getSwiftModule();
|
|
ForwardingSubs = env->getForwardingSubstitutions(M, sig);
|
|
|
|
return *ForwardingSubs;
|
|
}
|