Files
swift-mirror/lib/AST/Decl.cpp
Chris Lattner a49dfe2b3a Start setting 'self' as a rvalue instead of an rvalue. First up are
property and subscript getters which have no explicit FuncDecl for 
the getter.  I'm not exactly sure where these come from, but they 
look like something the clang importer is producing in some cases.


Swift SVN r11642
2013-12-25 23:37:29 +00:00

1680 lines
54 KiB
C++

//===--- Decl.cpp - Swift Language Decl ASTs ------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Expr.h"
#include "swift/AST/TypeLoc.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
// Only allow allocation of Decls using the allocator in ASTContext.
void *Decl::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
// Only allow allocation of Modules using the allocator in ASTContext.
void *Module::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef Decl::getKindName(DeclKind K) {
switch (K) {
#define DECL(Id, Parent) case DeclKind::Id: return #Id;
#include "swift/AST/DeclNodes.def"
}
}
DeclContext *Decl::getInnermostDeclContext() {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return func;
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
return nominal;
if (auto ext = dyn_cast<ExtensionDecl>(this))
return ext;
if (auto topLevel = dyn_cast<TopLevelCodeDecl>(this))
return topLevel;
return getDeclContext();
}
Module *Decl::getModuleContext() const {
return getDeclContext()->getParentModule();
}
// Helper functions to verify statically whether source-location
// functions have been overridden.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceLocType(SourceLoc (Class::*)() const);
inline TwoChars checkSourceLocType(SourceLoc (Decl::*)() const);
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Decl::*)() const);
SourceRange Decl::getSourceRange() const {
switch (getKind()) {
#define DECL(ID, PARENT) \
static_assert(sizeof(checkSourceRangeType(&ID##Decl::getSourceRange)) == 1, \
#ID "Decl is missing getSourceRange()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getSourceRange();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
SourceLoc Decl::getLoc() const {
switch (getKind()) {
#define DECL(ID, X) \
static_assert(sizeof(checkSourceLocType(&ID##Decl::getLoc)) == 1, \
#ID "Decl is missing getLoc()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getLoc();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
ClangNode Decl::getClangNodeSlow() const {
return getASTContext().getClangNode(this);
}
void Decl::setClangNode(ClangNode node) {
DeclBits.FromClang = true;
getASTContext().setClangNode(this, node);
}
bool Decl::isTransparent() const {
// Check if the declaration had the attribute.
if (getAttrs().isTransparent())
return true;
// Check if this is a function declaration which is within a transparent
// extension.
if (const AbstractFunctionDecl *FD = dyn_cast<AbstractFunctionDecl>(this)) {
if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(FD->getParent()))
return ED->isTransparent();
}
// If this is a getter or a seter, check if the transparent attribute was set
// on the value decl.
if (const FuncDecl *FD = dyn_cast<FuncDecl>(this)) {
if (ValueDecl *VD = FD->getGetterOrSetterDecl())
return VD->isTransparent();
}
return false;
}
GenericParamList::GenericParamList(SourceLoc LAngleLoc,
ArrayRef<GenericParam> Params,
SourceLoc WhereLoc,
MutableArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc)
: Brackets(LAngleLoc, RAngleLoc), NumParams(Params.size()),
WhereLoc(WhereLoc), Requirements(Requirements),
OuterParameters(nullptr)
{
memcpy(this + 1, Params.data(), NumParams * sizeof(GenericParam));
}
GenericParamList *GenericParamList::create(ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericParam> Params,
SourceLoc RAngleLoc) {
unsigned Size = sizeof(GenericParamList)
+ sizeof(GenericParam) * Params.size();
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params, SourceLoc(),
MutableArrayRef<RequirementRepr>(),
RAngleLoc);
}
GenericParamList *
GenericParamList::create(const ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericParam> Params,
SourceLoc WhereLoc,
MutableArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc) {
unsigned Size = sizeof(GenericParamList)
+ sizeof(GenericParam) * Params.size();
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params,
WhereLoc,
Context.AllocateCopy(Requirements),
RAngleLoc);
}
ImportDecl *ImportDecl::create(ASTContext &Ctx, DeclContext *DC,
SourceLoc ImportLoc, ImportKind Kind,
SourceLoc KindLoc, bool Exported,
ArrayRef<AccessPathElement> Path) {
assert(!Path.empty());
assert(Kind == ImportKind::Module || Path.size() > 1);
void *buffer = Ctx.Allocate(sizeof(ImportDecl) +
Path.size() * sizeof(AccessPathElement),
alignof(ImportDecl));
return new (buffer) ImportDecl(DC, ImportLoc, Kind, KindLoc, Exported, Path);
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLoc ImportLoc, ImportKind K,
SourceLoc KindLoc, bool Exported,
ArrayRef<AccessPathElement> Path)
: Decl(DeclKind::Import, DC), ImportLoc(ImportLoc), KindLoc(KindLoc),
NumPathElements(Path.size()) {
ImportDeclBits.ImportKind = static_cast<unsigned>(K);
assert(getImportKind() == K && "not enough bits for ImportKind");
ImportDeclBits.IsExported = Exported;
std::uninitialized_copy(Path.begin(), Path.end(), getPathBuffer());
}
ImportKind ImportDecl::getBestImportKind(const ValueDecl *VD) {
switch (VD->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::EnumCase:
llvm_unreachable("not a ValueDecl");
case DeclKind::AssociatedType:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::GenericTypeParam:
case DeclKind::Subscript:
case DeclKind::EnumElement:
llvm_unreachable("not a top-level ValueDecl");
case DeclKind::Protocol:
return ImportKind::Protocol;
case DeclKind::Class:
return ImportKind::Class;
case DeclKind::Enum:
return ImportKind::Enum;
case DeclKind::Struct:
return ImportKind::Struct;
case DeclKind::TypeAlias: {
Type underlyingTy = cast<TypeAliasDecl>(VD)->getUnderlyingType();
return getBestImportKind(underlyingTy->getAnyNominal());
}
case DeclKind::Func:
return ImportKind::Func;
case DeclKind::Var:
return ImportKind::Var;
}
}
Optional<ImportKind>
ImportDecl::findBestImportKind(ArrayRef<ValueDecl *> Decls) {
assert(!Decls.empty());
ImportKind FirstKind = ImportDecl::getBestImportKind(Decls.front());
// Only functions can be overloaded.
if (Decls.size() == 1)
return FirstKind;
if (FirstKind != ImportKind::Func)
return Nothing;
for (auto NextDecl : Decls.slice(1)) {
if (ImportDecl::getBestImportKind(NextDecl) != FirstKind)
return Nothing;
}
return FirstKind;
}
void ExtensionDecl::setConformances(ArrayRef<ProtocolConformance *> c) {
Conformances = c;
}
SourceRange PatternBindingDecl::getSourceRange() const {
SourceLoc startLoc = getStartLoc();
if (auto init = getInit()) {
SourceLoc EndLoc = init->getSourceRange().End;
if (EndLoc.isValid())
return { startLoc, EndLoc };
}
return { startLoc, Pat->getSourceRange().End };
}
SourceLoc TopLevelCodeDecl::getStartLoc() const {
return Body->getStartLoc();
}
SourceRange TopLevelCodeDecl::getSourceRange() const {
return Body->getSourceRange();
}
/// isReferencedAsLValue - Returns 'true' if references to this
/// declaration are l-values.
bool ValueDecl::isReferencedAsLValue() const {
if (auto *VD = dyn_cast<VarDecl>(this))
return VD->isSettable();
return false;
}
bool ValueDecl::isDefinition() const {
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::Subscript:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
llvm_unreachable("non-value decls shouldn't get here");
case DeclKind::Func:
case DeclKind::Constructor:
case DeclKind::Destructor:
return cast<AbstractFunctionDecl>(this)->getBodyKind() !=
AbstractFunctionDecl::BodyKind::None;
case DeclKind::Var:
case DeclKind::Enum:
case DeclKind::EnumElement:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Protocol:
return true;
}
}
bool ValueDecl::isInstanceMember() const {
DeclContext *DC = getDeclContext();
if (!DC->isTypeContext())
return false;
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
llvm_unreachable("Not a ValueDecl");
case DeclKind::Class:
case DeclKind::Enum:
case DeclKind::Protocol:
case DeclKind::Struct:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
// Types are not instance members.
return false;
case DeclKind::Constructor:
// Constructors are not instance members.
return false;
case DeclKind::Destructor:
// Destructors are technically instance members, although they
// can't actually be referenced as such.
return true;
case DeclKind::Func:
// Non-static methods are instance members.
return !cast<FuncDecl>(this)->isStatic();
case DeclKind::EnumElement:
// enum elements are not instance members.
return false;
case DeclKind::Subscript:
// Subscripts are always instance members.
return true;
case DeclKind::Var:
// Non-static variables are instance members.
return !cast<VarDecl>(this)->isStatic();
}
}
bool ValueDecl::needsCapture() const {
// We don't need to capture anything from non-local contexts.
if (!getDeclContext()->isLocalContext())
return false;
// We don't need to capture types.
if (isa<TypeDecl>(this))
return false;
return true;
}
ValueDecl *ValueDecl::getOverriddenDecl() const {
if (auto fd = dyn_cast<FuncDecl>(this)) {
return fd->getOverriddenDecl();
}
if (auto vd = dyn_cast<VarDecl>(this)) {
return vd->getOverriddenDecl();
}
if (auto sd = dyn_cast<SubscriptDecl>(this)) {
return sd->getOverriddenDecl();
}
return nullptr;
}
bool ValueDecl::canBeAccessedByDynamicLookup() const {
if (getName().empty())
return false;
// Dynamic lookup can only find [objc] members.
if (!isObjC())
return false;
// Dynamic lookup can only find class and protocol members, or extensions of
// classes.
auto nominalDC =getDeclContext()->getDeclaredTypeOfContext()->getAnyNominal();
if (!nominalDC ||
(!isa<ClassDecl>(nominalDC) && !isa<ProtocolDecl>(nominalDC)))
return false;
// Dynamic lookup cannot find results within a non-protocol generic context,
// because there is no sensible way to infer the generic arguments.
if (getDeclContext()->isGenericContext() && !isa<ProtocolDecl>(nominalDC))
return false;
// Dynamic lookup can find functions, variables, and subscripts.
if (isa<FuncDecl>(this) || isa<VarDecl>(this) || isa<SubscriptDecl>(this))
return true;
return false;
}
ArrayRef<ValueDecl *> ValueDecl::getConformances() {
if (!conformsToProtocolRequirement())
return ArrayRef<ValueDecl *>();
return getASTContext().getConformances(this);
}
void ValueDecl::setType(Type T) {
assert(Ty.isNull() && "changing type of declaration");
Ty = T;
if (!T.isNull() && T->is<ErrorType>())
setInvalid();
}
/// Overwrite the type of this declaration.
void ValueDecl::overwriteType(Type T) {
Ty = T;
if (!T.isNull() && T->is<ErrorType>())
setInvalid();
}
DeclContext *ValueDecl::getPotentialGenericDeclContext() {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return func;
return getDeclContext();
}
Type ValueDecl::getInterfaceType() const {
if (InterfaceTy)
return InterfaceTy;
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
return nominal->computeInterfaceType();
if (auto assocType = dyn_cast<AssociatedTypeDecl>(this)) {
auto proto = cast<ProtocolDecl>(getDeclContext());
(void)proto->getType(); // make sure we've computed the type.
auto selfTy = proto->getGenericParamTypes()[0];
auto &ctx = getASTContext();
InterfaceTy = DependentMemberType::get(
selfTy,
const_cast<AssociatedTypeDecl *>(assocType),
ctx);
InterfaceTy = MetatypeType::get(InterfaceTy, ctx);
return InterfaceTy;
}
if (!hasType())
return Type();
// If the type involves a type variable, don't cache it.
auto type = getType();
assert((type.isNull() || !type->is<PolymorphicFunctionType>())
&& "decl has polymorphic function type but no interface type");
if (type->hasTypeVariable())
return type;
InterfaceTy = type;
return InterfaceTy;
}
void ValueDecl::setInterfaceType(Type type) {
assert((type.isNull() || !type->hasTypeVariable()) &&
"Type variable in interface type");
assert((type.isNull() || !type->is<PolymorphicFunctionType>()) &&
"setting polymorphic function type as interface type");
InterfaceTy = type;
}
Type TypeDecl::getDeclaredType() const {
if (auto TAD = dyn_cast<TypeAliasDecl>(this))
return TAD->getAliasType();
if (auto typeParam = dyn_cast<AbstractTypeParamDecl>(this))
return typeParam->getType()->castTo<MetatypeType>()->getInstanceType();
return cast<NominalTypeDecl>(this)->getDeclaredType();
}
Type TypeDecl::getDeclaredInterfaceType() const {
return getInterfaceType()->castTo<MetatypeType>()->getInstanceType();
}
bool NominalTypeDecl::derivesProtocolConformance(ProtocolDecl *protocol) const {
// Enums with raw types can derive their RawRepresentable conformance.
if (auto *enumDecl = dyn_cast<EnumDecl>(this)) {
auto rawRepresentable
= getASTContext().getProtocol(KnownProtocolKind::RawRepresentable);
return enumDecl->hasRawType() && protocol == rawRepresentable;
}
return false;
}
GenericSignature::GenericSignature(ArrayRef<GenericTypeParamType *> params,
ArrayRef<Requirement> requirements)
: NumGenericParams(params.size()), NumRequirements(requirements.size())
{
std::copy(params.begin(), params.end(),
getGenericParamsBuffer().data());
std::copy(requirements.begin(), requirements.end(),
getRequirementsBuffer().data());
}
GenericSignature *GenericSignature::get(ArrayRef<GenericTypeParamType *> params,
ArrayRef<Requirement> requirements,
ASTContext &ctx) {
// Allocate storage for the object.
size_t bytes = sizeof(GenericSignature)
+ sizeof(GenericTypeParamType *) * params.size()
+ sizeof(Requirement) * requirements.size();
void *mem = ctx.Allocate(bytes, alignof(GenericSignature));
return new (mem) GenericSignature(params, requirements);
}
void NominalTypeDecl::setGenericSignature(
ArrayRef<GenericTypeParamType *> params,
ArrayRef<Requirement> requirements) {
assert(!GenericSig && "Already have generic signature");
GenericSig = GenericSignature::get(params, requirements, getASTContext());
}
void NominalTypeDecl::computeType() {
assert(!hasType() && "Nominal type declaration already has a type");
// Compute the declared type.
Type parentTy = getDeclContext()->getDeclaredTypeInContext();
ASTContext &ctx = getASTContext();
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
if (!DeclaredTy)
DeclaredTy = ProtocolType::get(proto, ctx);
} else if (getGenericParams()) {
DeclaredTy = UnboundGenericType::get(this, parentTy, ctx);
} else {
DeclaredTy = NominalType::get(this, parentTy, ctx);
}
// Set the type.
setType(MetatypeType::get(DeclaredTy, ctx));
// A protocol has an implicit generic parameter list consisting of a single
// generic parameter, Self, that conforms to the protocol itself. This
// parameter is always implicitly bound.
//
// If this protocol has been deserialized, it already has generic parameters.
// Don't add them again.
if (!getGenericParams()) {
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
// The generic parameter 'Self'.
auto selfId = ctx.getIdentifier("Self");
auto selfDecl = new (ctx) GenericTypeParamDecl(proto, selfId,
proto->getLoc(), 0, 0);
IdentTypeRepr::Component protoRef(proto->getLoc(), proto->getName(), { });
protoRef.setValue(proto);
TypeLoc selfInherited[1] = {
TypeLoc(IdentTypeRepr::create(ctx, protoRef))
};
selfInherited[0].setType(DeclaredTy);
selfDecl->setInherited(ctx.AllocateCopy(selfInherited));
selfDecl->setImplicit();
// The generic parameter list itself.
GenericParams = GenericParamList::create(ctx, SourceLoc(),
GenericParam(selfDecl),
SourceLoc());
}
}
}
Type NominalTypeDecl::getDeclaredTypeInContext() {
if (DeclaredTyInContext)
return DeclaredTyInContext;
Type Ty = getDeclaredType();
if (UnboundGenericType *UGT = Ty->getAs<UnboundGenericType>()) {
// If we have an unbound generic type, bind the type to the archetypes
// in the type's definition.
NominalTypeDecl *D = UGT->getDecl();
SmallVector<Type, 4> GenericArgs;
for (auto Param : *D->getGenericParams())
GenericArgs.push_back(Param.getAsTypeParam()->getArchetype());
Ty = BoundGenericType::get(D, getDeclContext()->getDeclaredTypeInContext(),
GenericArgs);
}
DeclaredTyInContext = Ty;
return DeclaredTyInContext;
}
Type NominalTypeDecl::computeInterfaceType() const {
if (InterfaceTy)
return InterfaceTy;
// Figure out the interface type of the parent.
Type parentType;
if (auto typeOfParentContext = getDeclContext()->getDeclaredTypeOfContext())
parentType = typeOfParentContext->getAnyNominal()
->getDeclaredInterfaceType();
Type type;
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
type = ProtocolType::get(const_cast<ProtocolDecl *>(proto),getASTContext());
} else if (auto params = getGenericParams()) {
// If we have a generic type, bind the type to the archetypes
// in the type's definition.
SmallVector<Type, 4> genericArgs;
for (auto param : *params)
genericArgs.push_back(param.getAsTypeParam()->getDeclaredType());
type = BoundGenericType::get(const_cast<NominalTypeDecl *>(this),
parentType, genericArgs);
} else {
type = NominalType::get(const_cast<NominalTypeDecl *>(this), parentType,
getASTContext());
}
InterfaceTy = MetatypeType::get(type, getASTContext());
return InterfaceTy;
}
ExtensionRange NominalTypeDecl::getExtensions() {
auto &context = Decl::getASTContext();
// If our list of extensions is out of date, update it now.
if (context.getCurrentGeneration() > ExtensionGeneration) {
unsigned previousGeneration = ExtensionGeneration;
ExtensionGeneration = context.getCurrentGeneration();
context.loadExtensions(this, previousGeneration);
}
return ExtensionRange(ExtensionIterator(FirstExtension), ExtensionIterator());
}
void NominalTypeDecl::addExtension(ExtensionDecl *extension) {
assert(!extension->NextExtension.getInt() && "Already added extension");
extension->NextExtension.setInt(true);
// First extension; set both first and last.
if (!FirstExtension) {
FirstExtension = extension;
LastExtension = extension;
return;
}
// Add to the end of the list.
LastExtension->NextExtension.setPointer(extension);
LastExtension = extension;
}
void NominalTypeDecl::getImplicitProtocols(
SmallVectorImpl<ProtocolDecl *> &protocols) {
// If this is a class, it conforms to the DynamicLookup protocol.
if (isa<ClassDecl>(this)) {
if (auto dynamicLookup
= getASTContext().getProtocol(KnownProtocolKind::DynamicLookup)) {
protocols.push_back(dynamicLookup);
}
}
}
TypeAliasDecl::TypeAliasDecl(SourceLoc TypeAliasLoc, Identifier Name,
SourceLoc NameLoc, TypeLoc UnderlyingTy,
DeclContext *DC)
: TypeDecl(DeclKind::TypeAlias, DC, Name, NameLoc, {}),
TypeAliasLoc(TypeAliasLoc),
UnderlyingTy(UnderlyingTy)
{
// Set the type of the TypeAlias to the right MetatypeType.
ASTContext &Ctx = getASTContext();
AliasTy = new (Ctx, AllocationArena::Permanent) NameAliasType(this);
setType(MetatypeType::get(AliasTy, Ctx));
}
SourceRange TypeAliasDecl::getSourceRange() const {
if (UnderlyingTy.hasLocation())
return { TypeAliasLoc, UnderlyingTy.getSourceRange().End };
// FIXME: Inherits clauses
return { TypeAliasLoc, getNameLoc() };
}
GenericTypeParamDecl::GenericTypeParamDecl(DeclContext *dc, Identifier name,
SourceLoc nameLoc,
unsigned depth, unsigned index)
: AbstractTypeParamDecl(DeclKind::GenericTypeParam, dc, name, nameLoc),
Depth(depth), Index(index)
{
auto &ctx = dc->getASTContext();
auto type = new (ctx, AllocationArena::Permanent) GenericTypeParamType(this);
setType(MetatypeType::get(type, ctx));
}
SourceRange GenericTypeParamDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
}
return SourceRange(getNameLoc(), endLoc);
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
TypeLoc defaultDefinition)
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
KeywordLoc(keywordLoc), DefaultDefinition(defaultDefinition)
{
auto &ctx = dc->getASTContext();
auto type = new (ctx, AllocationArena::Permanent) AssociatedTypeType(this);
setType(MetatypeType::get(type, ctx));
}
SourceRange AssociatedTypeDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
}
return SourceRange(KeywordLoc, endLoc);
}
EnumDecl::EnumDecl(SourceLoc EnumLoc,
Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Enum, Parent, Name, NameLoc, Inherited,
GenericParams),
EnumLoc(EnumLoc)
{
EnumDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
}
StructDecl::StructDecl(SourceLoc StructLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Struct, Parent, Name, NameLoc, Inherited,
GenericParams),
StructLoc(StructLoc) { }
ClassDecl::ClassDecl(SourceLoc ClassLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Class, Parent, Name, NameLoc, Inherited,
GenericParams),
ClassLoc(ClassLoc) {
ClassDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
}
EnumCaseDecl *EnumCaseDecl::create(SourceLoc CaseLoc,
ArrayRef<EnumElementDecl *> Elements,
DeclContext *DC) {
void *buf = DC->getASTContext()
.Allocate(sizeof(EnumCaseDecl) +
sizeof(EnumElementDecl*) * Elements.size(),
alignof(EnumCaseDecl));
return ::new (buf) EnumCaseDecl(CaseLoc, Elements, DC);
}
EnumElementDecl *EnumDecl::getElement(Identifier Name) const {
// FIXME: Linear search is not great for large enum decls.
for (Decl *D : getMembers())
if (EnumElementDecl *Elt = dyn_cast<EnumElementDecl>(D))
if (Elt->getName() == Name)
return Elt;
return 0;
}
ProtocolDecl::ProtocolDecl(DeclContext *DC, SourceLoc ProtocolLoc,
SourceLoc NameLoc, Identifier Name,
MutableArrayRef<TypeLoc> Inherited)
: NominalTypeDecl(DeclKind::Protocol, DC, Name, NameLoc, Inherited,
nullptr),
ProtocolLoc(ProtocolLoc)
{
ProtocolDeclBits.RequiresClassValid = false;
ProtocolDeclBits.RequiresClass = false;
ProtocolDeclBits.ExistentialConformsToSelfValid = false;
ProtocolDeclBits.ExistentialConformsToSelf = false;
ProtocolDeclBits.KnownProtocol = 0;
ProtocolDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
}
bool ProtocolDecl::inheritsFrom(const ProtocolDecl *Super) const {
if (this == Super)
return false;
llvm::SmallPtrSet<const ProtocolDecl *, 4> Visited;
SmallVector<const ProtocolDecl *, 4> Stack;
Stack.push_back(this);
Visited.insert(this);
while (!Stack.empty()) {
const ProtocolDecl *Current = Stack.back();
Stack.pop_back();
for (auto InheritedProto : Current->getProtocols()) {
if (InheritedProto == Super)
return true;
if (Visited.insert(InheritedProto))
Stack.push_back(InheritedProto);
}
}
return false;
}
void ProtocolDecl::collectInherited(
llvm::SmallPtrSet<ProtocolDecl *, 4> &Inherited) {
SmallVector<const ProtocolDecl *, 4> Stack;
Stack.push_back(this);
while (!Stack.empty()) {
const ProtocolDecl *Current = Stack.back();
Stack.pop_back();
for (auto InheritedProto : Current->getProtocols()) {
if (Inherited.insert(InheritedProto))
Stack.push_back(InheritedProto);
}
}
}
bool ProtocolDecl::requiresClassSlow() {
ProtocolDeclBits.RequiresClass = false;
if (isProtocolsValid()) {
// Only cache the result if it can not change in future.
ProtocolDeclBits.RequiresClassValid = true;
}
if (getAttrs().isClassProtocol()) {
ProtocolDeclBits.RequiresClass = true;
return true;
}
// Check inherited protocols for class-ness.
for (auto *proto : getProtocols()) {
if (proto->requiresClass()) {
ProtocolDeclBits.RequiresClass = true;
return true;
}
}
return false;
}
GenericTypeParamDecl *ProtocolDecl::getSelf() const {
return getGenericParams()->getParams()[0].getAsTypeParam();
}
SourceRange VarDecl::getTypeSourceRangeForDiagnostics() const {
if (!getParentPattern())
return getSourceRange();
auto *Pat = getParentPattern()->getPattern();
if (auto *TP = dyn_cast<TypedPattern>(Pat)) {
return TP->getTypeLoc().getTypeRepr()->getSourceRange();
}
return getSourceRange();
}
void VarDecl::setComputedAccessors(ASTContext &Context, SourceLoc LBraceLoc,
FuncDecl *Get, FuncDecl *Set,
SourceLoc RBraceLoc) {
assert(!GetSet && "Variable already has accessors?");
void *Mem = Context.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
GetSet = new (Mem) GetSetRecord;
GetSet->Braces = SourceRange(LBraceLoc, RBraceLoc);
GetSet->Get = Get;
GetSet->Set = Set;
if (Get)
Get->makeGetter(this);
if (Set)
Set->makeSetter(this);
}
Type VarDecl::getGetterType() const {
// If we have a getter, use its type.
if (auto getter = getGetter())
return getter->getType();
// Otherwise, compute the type.
GenericParamList *outerParams = nullptr;
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/isStatic(),
/*@mutating*/false,
&outerParams);
// Form the getter type.
auto &ctx = getASTContext();
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx), getType());
// Add 'self', if we have one.
if (selfTy) {
if (outerParams)
getterTy = PolymorphicFunctionType::get(selfTy, getterTy, outerParams);
else
getterTy = FunctionType::get(selfTy, getterTy);
}
return getterTy;
}
Type VarDecl::getGetterInterfaceType() const {
// If we have a getter, use its type.
if (auto getter = getGetter())
return getter->getInterfaceType();
// Otherwise, compute the type.
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/isStatic(),
/*@mutating*/ false);
// Form the getter type.
auto &ctx = getASTContext();
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx),
getInterfaceType());
// Add 'self', if we have one.
if (selfTy) {
ArrayRef<GenericTypeParamType*> genericParams;
ArrayRef<Requirement> requirements;
std::tie(genericParams, requirements)
= getDeclContext()->getGenericSignatureOfContext();
if (genericParams.empty() && requirements.empty())
getterTy = FunctionType::get(selfTy, getterTy);
else
getterTy = GenericFunctionType::get(genericParams, requirements,
selfTy, getterTy,
AnyFunctionType::ExtInfo());
}
return getterTy;
}
Type VarDecl::getSetterType() const {
// If we have a setter, use its type.
if (auto setter = getSetter())
return setter->getType();
// Otherwise, compute the type.
GenericParamList *outerParams = nullptr;
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/isStatic(),
/*@mutating*/!isStatic(),
&outerParams);
// Form the element -> () function type.
auto &ctx = getASTContext();
TupleTypeElt valueElt(getType(), ctx.getIdentifier("value"));
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
TupleType::getEmpty(ctx));
// Add the 'self' type, if we have one.
if (selfTy) {
if (outerParams)
setterTy = PolymorphicFunctionType::get(selfTy, setterTy, outerParams);
else
setterTy = FunctionType::get(selfTy, setterTy);
}
return setterTy;
}
Type VarDecl::getSetterInterfaceType() const {
// If we have a getter, use its type.
if (auto setter = getSetter())
return setter->getInterfaceType();
// Otherwise, compute the type.
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/isStatic(),
/*@mutating*/ !isStatic());
// Form the element -> () function type.
auto &ctx = getASTContext();
TupleTypeElt valueElt(getInterfaceType(), ctx.getIdentifier("value"));
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
TupleType::getEmpty(ctx));
// Add the 'self' type, if we have one.
if (selfTy) {
ArrayRef<GenericTypeParamType*> genericParams;
ArrayRef<Requirement> requirements;
std::tie(genericParams, requirements)
= getDeclContext()->getGenericSignatureOfContext();
if (genericParams.empty() && requirements.empty())
setterTy = FunctionType::get(selfTy, setterTy);
else
setterTy = GenericFunctionType::get(genericParams, requirements,
selfTy, setterTy,
AnyFunctionType::ExtInfo());
}
return setterTy;
}
bool VarDecl::isAnonClosureParam() const {
auto name = getName();
if (name.empty())
return false;
auto nameStr = name.str();
if (nameStr.empty())
return false;
return nameStr[0] == '$';
}
Type AbstractFunctionDecl::
computeSelfType(GenericParamList **outerGenericParams) {
bool isStatic = false;
bool isMutating = false;
if (auto *FD = dyn_cast<FuncDecl>(this)) {
isStatic = FD->isStatic();
isMutating = FD->isMutating();
isMutating = true;
} else if (isa<ConstructorDecl>(this) || isa<DestructorDecl>(this)) {
// constructors and destructors of value types have an implicitly
// @inout self.
isMutating = !getDeclContext()->getDeclaredTypeInContext()
->hasReferenceSemantics();
isMutating = true;
}
return getDeclContext()->getSelfTypeInContext(isStatic, isMutating,
outerGenericParams);
}
VarDecl *AbstractFunctionDecl::getImplicitSelfDeclSlow() const {
if (auto FD = dyn_cast<FuncDecl>(this)) {
VarDecl *SelfDecl = FD->getImplicitSelfDeclImpl();
ImplicitSelfDeclAndIsCached.setPointerAndInt(SelfDecl, true);
return SelfDecl;
}
ImplicitSelfDeclAndIsCached.setPointerAndInt(nullptr, true);
return nullptr;
}
Type AbstractFunctionDecl::getExtensionType() const {
return getDeclContext()->getDeclaredTypeInContext();
}
std::pair<DefaultArgumentKind, Type>
AbstractFunctionDecl::getDefaultArg(unsigned Index) const {
ArrayRef<const Pattern *> Patterns = getArgParamPatterns();
if (isa<FuncDecl>(this) && getImplicitSelfDecl()) {
// Skip the 'self' parameter; it is not counted.
Patterns = Patterns.slice(1);
}
// Find the (sub-)pattern for this index.
// FIXME: This is O(n), which is lame. We should fix the FuncDecl
// representation.
const TuplePatternElt *Found = nullptr;
for (auto OrigPattern : Patterns) {
auto Params =
dyn_cast<TuplePattern>(OrigPattern->getSemanticsProvidingPattern());
if (!Params) {
if (Index == 0) {
return { DefaultArgumentKind::None, Type() };
}
--Index;
continue;
}
for (auto &Elt : Params->getFields()) {
if (Index == 0) {
Found = &Elt;
break;
}
--Index;
}
if (Found)
break;
}
assert(Found && "No argument with this index");
return { Found->getDefaultArgKind(), Found->getPattern()->getType() };
}
VarDecl *FuncDecl::getImplicitSelfDeclImpl() const {
ArrayRef<const Pattern *> ArgParamPatterns = getArgParamPatterns();
if (ArgParamPatterns.empty())
return nullptr;
// "self" is represented as (typed_pattern (named_pattern (var_decl 'self')).
auto TP = dyn_cast<TypedPattern>(ArgParamPatterns[0]);
if (!TP)
return nullptr;
// The decl should be named 'self' and be implicit.
auto NP = dyn_cast<NamedPattern>(TP->getSubPattern());
if (NP && NP->getBoundName().str() == "self" && NP->isImplicit())
return NP->getDecl();
return nullptr;
}
FuncDecl *FuncDecl::createDeserialized(ASTContext &Context,
SourceLoc StaticLoc, SourceLoc FuncLoc,
Identifier Name, SourceLoc NameLoc,
GenericParamList *GenericParams,
Type Ty, unsigned NumParamPatterns,
DeclContext *Parent) {
assert(NumParamPatterns > 0);
void *Mem = Context.Allocate(
sizeof(FuncDecl) + 2 * NumParamPatterns * sizeof(Pattern *),
alignof(FuncDecl));
return ::new (Mem)
FuncDecl(StaticLoc, FuncLoc, Name, NameLoc, NumParamPatterns,
GenericParams, Ty, Parent);
}
FuncDecl *FuncDecl::create(ASTContext &Context, SourceLoc StaticLoc,
SourceLoc FuncLoc, Identifier Name,
SourceLoc NameLoc, GenericParamList *GenericParams,
Type Ty, ArrayRef<Pattern *> ArgParams,
ArrayRef<Pattern *> BodyParams,
TypeLoc FnRetType, DeclContext *Parent) {
assert(ArgParams.size() == BodyParams.size());
const unsigned NumParamPatterns = ArgParams.size();
auto *FD = FuncDecl::createDeserialized(
Context, StaticLoc, FuncLoc, Name, NameLoc, GenericParams, Ty,
NumParamPatterns, Parent);
FD->setDeserializedSignature(ArgParams, BodyParams, FnRetType);
return FD;
}
void FuncDecl::setDeserializedSignature(ArrayRef<Pattern *> ArgParams,
ArrayRef<Pattern *> BodyParams,
TypeLoc FnRetType) {
MutableArrayRef<Pattern *> ArgParamsRef = getArgParamPatterns();
MutableArrayRef<Pattern *> BodyParamsRef = getBodyParamPatterns();
const unsigned NumParamPatterns = ArgParamsRef.size();
assert(ArgParams.size() == BodyParams.size());
assert(NumParamPatterns == ArgParams.size());
for (unsigned i = 0; i != NumParamPatterns; ++i)
ArgParamsRef[i] = ArgParams[i];
for (unsigned i = 0; i != NumParamPatterns; ++i)
BodyParamsRef[i] = BodyParams[i];
this->FnRetType = FnRetType;
}
Type FuncDecl::getResultType() const {
Type resultTy = getType();
if (!resultTy || resultTy->is<ErrorType>())
return resultTy;
for (unsigned i = 0, e = getNaturalArgumentCount(); i != e; ++i)
resultTy = resultTy->castTo<AnyFunctionType>()->getResult();
if (!resultTy)
resultTy = TupleType::getEmpty(getASTContext());
return resultTy;
}
bool FuncDecl::isUnaryOperator() const {
if (!isOperator())
return false;
unsigned opArgIndex = isa<ProtocolDecl>(getDeclContext()) ? 1 : 0;
auto *argTuple = dyn_cast<TuplePattern>(getArgParamPatterns()[opArgIndex]);
if (!argTuple)
return true;
return argTuple->getNumFields() == 1 && !argTuple->hasVararg();
}
bool FuncDecl::isBinaryOperator() const {
if (!isOperator())
return false;
unsigned opArgIndex = isa<ProtocolDecl>(getDeclContext()) ? 1 : 0;
auto *argTuple = dyn_cast<TuplePattern>(getArgParamPatterns()[opArgIndex]);
if (!argTuple)
return false;
return argTuple->getNumFields() == 2
|| (argTuple->getNumFields() == 1 && argTuple->hasVararg());
}
StringRef VarDecl::getObjCGetterSelector(SmallVectorImpl<char> &buffer) const {
llvm::raw_svector_ostream out(buffer);
// The getter selector is the property name itself.
// FIXME: 'is' prefix for boolean properties?
out << getName().str();
return out.str();
}
StringRef VarDecl::getObjCSetterSelector(SmallVectorImpl<char> &buffer) const {
llvm::raw_svector_ostream out(buffer);
// The setter selector for, e.g., 'fooBar' is 'setFooBar:', with the
// property name capitalized and preceded by 'set'.
StringRef name = getName().str();
assert(name.size() >= 1 && "empty var name?!");
out << "set" << char(toupper(name[0])) << name.slice(1, name.size()) << ':';
return out.str();
}
/// Produce the selector for this "Objective-C method" in the given buffer.
StringRef FuncDecl::getObjCSelector(SmallVectorImpl<char> &buffer) const {
assert(buffer.empty());
// Property accessors should go through a different path.
assert(!isGetterOrSetter());
llvm::raw_svector_ostream out(buffer);
// Start with the method name.
out << getName().str();
// We should always have exactly two levels of argument pattern.
auto argPatterns = getArgParamPatterns();
assert(argPatterns.size() == 2);
const Pattern *pattern = argPatterns[1];
auto tuple = dyn_cast<TuplePattern>(pattern);
// If it's an empty tuple pattern, it's a nullary selector.
if (tuple && tuple->getNumFields() == 0)
return out.str();
// Otherwise, it's at least a unary selector.
out << ':';
// If it's a unary selector, we're done.
if (!tuple) {
return out.str();
}
// For every element except the first, add a selector component.
for (auto &elt : tuple->getFields().slice(1)) {
auto eltPattern = elt.getPattern()->getSemanticsProvidingPattern();
// Add a label to the selector component if there's a tag.
if (auto named = dyn_cast<NamedPattern>(eltPattern)) {
out << named->getBoundName().str();
}
// Add the colon regardless. Yes, this can sometimes create a
// component that's just a colon, and that's actually a legal
// selector.
out << ':';
}
return out.str();
}
SourceRange FuncDecl::getSourceRange() const {
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { FuncLoc, BodyEndLoc };
if (auto *B = getBody())
return { FuncLoc, B->getEndLoc() };
if (getBodyResultTypeLoc().hasLocation())
return { FuncLoc, getBodyResultTypeLoc().getSourceRange().End };
const Pattern *LastPat = getArgParamPatterns().back();
return { FuncLoc, LastPat->getEndLoc() };
}
/// Determine whether the given type is (or bridges to) an
/// Objective-C object type.
static bool isObjCObjectOrBridgedType(Type type) {
// FIXME: Bridged types info should be available here in the AST
// library, rather than hard-coding them.
if (auto structTy = type->getAs<StructType>()) {
auto structDecl = structTy->getDecl();
const DeclContext *DC = structDecl->getDeclContext();
if (DC->isModuleScopeContext() && DC->getParentModule()->isStdlibModule()) {
if (structDecl->getName().str() == "String")
return true;
}
return false;
}
// Unwrap metatypes for remaining checks.
if (auto metaTy = type->getAs<MetatypeType>())
type = metaTy->getInstanceType();
// Class types are Objective-C object types.
if (type->is<ClassType>())
return true;
// [objc] protocols
if (auto protoTy = type->getAs<ProtocolType>()) {
auto proto = protoTy->getDecl();
return proto->requiresClass() && proto->isObjC();
}
return false;
}
/// Determine whether the given Swift type is an integral type, i.e.,
/// a type that wraps a builtin integer.
static bool isIntegralType(Type type) {
// Consider structs in the "swift" module that wrap a builtin
// integer type to be integral types.
if (auto structTy = type->getAs<StructType>()) {
auto structDecl = structTy->getDecl();
const DeclContext *DC = structDecl->getDeclContext();
if (!DC->isModuleScopeContext() || !DC->getParentModule()->isStdlibModule())
return false;
// Find the single ivar.
VarDecl *singleVar = nullptr;
for (auto member : structDecl->getMembers()) {
auto var = dyn_cast<VarDecl>(member);
if (!var || var->isComputed())
continue;
if (singleVar)
return false;
singleVar = var;
}
if (!singleVar)
return false;
// Check whether it has integer type.
return singleVar->getType()->is<BuiltinIntegerType>();
}
return false;
}
Type SubscriptDecl::getGetterType() const {
// If we have a getter, use its type.
if (auto getter = getGetter())
return getter->getType();
// Otherwise, compute the type.
GenericParamList *outerParams = nullptr;
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/false,
/*@mutating*/false,
&outerParams);
// Form the () -> element function type.
auto &ctx = getASTContext();
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx), getElementType());
// Prepend the indices.
getterTy = FunctionType::get(getIndices()->getType(), getterTy);
// Prepend the 'self' type.
if (outerParams)
getterTy = PolymorphicFunctionType::get(selfTy, getterTy, outerParams);
else
getterTy = FunctionType::get(selfTy, getterTy);
return getterTy;
}
Type SubscriptDecl::getGetterInterfaceType() const {
// If we have a getter, use its type.
if (auto getter = getGetter())
return getter->getInterfaceType();
// Otherwise, compute the type.
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/false,
/*@mutating*/ false);
auto interfaceTy = getInterfaceType()->castTo<AnyFunctionType>();
auto indicesTy = interfaceTy->getInput();
auto elementTy = interfaceTy->getResult();
// Form the () -> element function type.
auto &ctx = getASTContext();
Type getterTy = FunctionType::get(TupleType::getEmpty(ctx), elementTy);
// Prepend the indices.
getterTy = FunctionType::get(indicesTy, getterTy);
// Prepend the 'self' type.
ArrayRef<GenericTypeParamType*> genericParams;
ArrayRef<Requirement> requirements;
std::tie(genericParams, requirements)
= getDeclContext()->getGenericSignatureOfContext();
if (genericParams.empty() && requirements.empty())
getterTy = FunctionType::get(selfTy, getterTy);
else
getterTy = GenericFunctionType::get(genericParams, requirements,
selfTy, getterTy,
AnyFunctionType::ExtInfo());
return getterTy;
}
Type SubscriptDecl::getSetterType() const {
// If we have a setter, use its type.
if (auto setter = getSetter())
return setter->getType();
// Otherwise, compute the type.
GenericParamList *outerParams = nullptr;
auto selfTy = getDeclContext()->getSelfTypeInContext(/*isStatic=*/false,
/*@mutating*/true,
&outerParams);
// Form the element -> () function type.
auto &ctx = getASTContext();
TupleTypeElt valueElt(getElementType(), ctx.getIdentifier("value"));
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
TupleType::getEmpty(ctx));
// Prepend the indices.
setterTy = FunctionType::get(getIndices()->getType(), setterTy);
// Prepend the 'self' type.
if (outerParams)
setterTy = PolymorphicFunctionType::get(selfTy, setterTy, outerParams);
else
setterTy = FunctionType::get(selfTy, setterTy);
return setterTy;
}
Type SubscriptDecl::getSetterInterfaceType() const {
// If we have a setter, use its type.
if (auto setter = getSetter())
return setter->getInterfaceType();
// Otherwise, compute the type.
auto selfTy = getDeclContext()->getInterfaceSelfType(/*isStatic=*/false,
/*@mutating*/ true);
auto interfaceTy = getInterfaceType()->castTo<AnyFunctionType>();
auto indicesTy = interfaceTy->getInput();
auto elementTy = interfaceTy->getResult();
// Form the element -> () function type.
auto &ctx = getASTContext();
TupleTypeElt valueElt(elementTy, ctx.getIdentifier("value"));
Type setterTy = FunctionType::get(TupleType::get(valueElt, ctx),
TupleType::getEmpty(ctx));
// Prepend the indices.
setterTy = FunctionType::get(indicesTy, setterTy);
// Prepend the 'self' type.
ArrayRef<GenericTypeParamType*> genericParams;
ArrayRef<Requirement> requirements;
std::tie(genericParams, requirements)
= getDeclContext()->getGenericSignatureOfContext();
if (genericParams.empty() && requirements.empty())
setterTy = FunctionType::get(selfTy, setterTy);
else
setterTy = GenericFunctionType::get(genericParams, requirements,
selfTy, setterTy,
AnyFunctionType::ExtInfo());
return setterTy;
}
ObjCSubscriptKind SubscriptDecl::getObjCSubscriptKind() const {
auto indexTy = getIndices()->getType();
// Look through a named 1-tuple.
if (auto tupleTy = indexTy->getAs<TupleType>()) {
if (tupleTy->getNumElements() == 1 &&
!tupleTy->getFields()[0].isVararg()) {
indexTy = tupleTy->getElementType(0);
}
}
// If the index type is an integral type, we have an indexed
// subscript.
if (isIntegralType(indexTy))
return ObjCSubscriptKind::Indexed;
// If the index type is an object type in Objective-C, we have a
// keyed subscript.
if (isObjCObjectOrBridgedType(indexTy))
return ObjCSubscriptKind::Keyed;
return ObjCSubscriptKind::None;
}
StringRef SubscriptDecl::getObjCGetterSelector() const {
switch (getObjCSubscriptKind()) {
case ObjCSubscriptKind::None:
llvm_unreachable("Not an Objective-C subscript");
case ObjCSubscriptKind::Indexed:
return "objectAtIndexedSubscript:";
case ObjCSubscriptKind::Keyed:
return "objectForKeyedSubscript:";
}
}
StringRef SubscriptDecl::getObjCSetterSelector() const {
switch (getObjCSubscriptKind()) {
case ObjCSubscriptKind::None:
llvm_unreachable("Not an Objective-C subscript");
case ObjCSubscriptKind::Indexed:
return "setObject:atIndexedSubscript:";
case ObjCSubscriptKind::Keyed:
return "setObject:forKeyedSubscript:";
}
}
SourceRange EnumElementDecl::getSourceRange() const {
if (RawValueExpr && !RawValueExpr->isImplicit())
return {getStartLoc(), RawValueExpr->getEndLoc()};
if (ArgumentType.hasLocation())
return {getStartLoc(), ArgumentType.getSourceRange().End};
return {getStartLoc(), getNameLoc()};
}
SourceRange SubscriptDecl::getSourceRange() const {
if (Braces.isValid())
return { getSubscriptLoc(), Braces.End };
return { getSubscriptLoc(), ElementTy.getSourceRange().End };
}
SourceRange ConstructorDecl::getSourceRange() const {
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getConstructorLoc(), BodyEndLoc };
if (!Body || !Body->getEndLoc().isValid()) {
const DeclContext *DC = getDeclContext();
switch (DC->getContextKind()) {
case DeclContextKind::ExtensionDecl:
return cast<ExtensionDecl>(DC)->getSourceRange();
case DeclContextKind::NominalTypeDecl:
return cast<NominalTypeDecl>(DC)->getSourceRange();
default:
if (isInvalid())
return getConstructorLoc();
llvm_unreachable("Unhandled decl kind");
}
}
return { getConstructorLoc(), Body->getEndLoc() };
}
Type ConstructorDecl::getArgumentType() const {
Type ArgTy = getType();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getInput();
return ArgTy;
}
Type ConstructorDecl::getResultType() const {
Type ArgTy = getType();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
return ArgTy;
}
/// Produce the selector for this "Objective-C method" in the given buffer.
StringRef
ConstructorDecl::getObjCSelector(SmallVectorImpl<char> &buffer) const {
assert(buffer.empty());
llvm::raw_svector_ostream out(buffer);
// In the beginning, there was 'init'.
out << "init";
// If there are no parameters, this is just 'init'.
auto tuple = cast<TuplePattern>(getArgParams());
if (tuple->getNumFields() == 0) {
return out.str();
}
// The first field is special: we uppercase the name.
const auto &firstElt = tuple->getFields()[0];
auto firstPattern = firstElt.getPattern()->getSemanticsProvidingPattern();
if (auto firstNamed = dyn_cast<NamedPattern>(firstPattern)) {
if (!firstNamed->getBoundName().empty()) {
auto nameStr = firstNamed->getBoundName().str();
out << (char)toupper(nameStr[0]);
out << nameStr.substr(1);
}
// If there is only a single parameter and its type is the empty tuple
// type, we're done: don't add the trailing colon.
if (tuple->getNumFields() == 1) {
auto emptyTupleTy = TupleType::getEmpty(getASTContext());
if (!firstPattern->getType()->isEqual(emptyTupleTy))
out << ':';
return out.str();
}
// Continue with the remaining selectors.
out << ':';
}
// For every remaining element, add a selector component.
for (auto &elt : tuple->getFields().slice(1)) {
auto eltPattern = elt.getPattern()->getSemanticsProvidingPattern();
// Add a label to the selector component if there's a tag.
if (auto named = dyn_cast<NamedPattern>(eltPattern)) {
out << named->getBoundName().str();
}
// Add the colon regardless. Yes, this can sometimes create a
// component that's just a colon, and that's actually a legal
// selector.
out << ':';
}
return out.str();
}
Type ConstructorDecl::getInitializerInterfaceType() {
if (!InitializerInterfaceType) {
assert((!InitializerType || !InitializerType->is<PolymorphicFunctionType>())
&& "polymorphic function type is invalid interface type");
// Don't cache type variable types.
if (InitializerType->hasTypeVariable())
return InitializerType;
InitializerInterfaceType = InitializerType;
}
return InitializerInterfaceType;
}
void ConstructorDecl::setInitializerInterfaceType(Type t) {
assert(!t->is<PolymorphicFunctionType>()
&& "polymorphic function type is invalid interface type");
InitializerInterfaceType = t;
}
SourceRange DestructorDecl::getSourceRange() const {
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getDestructorLoc(), BodyEndLoc };
if (getBodyKind() == BodyKind::None)
return getDestructorLoc();
return { getDestructorLoc(), Body->getEndLoc() };
}